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Abstract We develop a new notion of security against
timing attacks where the attacker is able to simulta-
neously observe the execution time of a program and
the probability of the values of low variables. We then
propose an algorithm which computes an estimate of
the security of a program with respect to this notion
in terms of timing leakage, and show how to use this
estimate for cost optimisation.
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1 Introduction

Early work on language-based security, such as Volpano
and Smith’s type systems [1], precluded the use of high
security variables to affect control flow. Specifically, the
conditions in if-commands and while-commands were
restricted to using only low security information. If this
restriction is weakened, it opens up the possibility that
high security data may be leaked through the different
timing behaviour of alternative control paths. This kind
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of leakage of information is said to form a covert timing
channel and is a serious threat to the security of pro-
grams (cf. e.g. [2]). On the other hand, observing the
probability distribution of the low events may also of-
fer the possibility of knowing secret information; in this
case the leakage forms a probabilistic covert channel,
which also represents a serious problem for the security
of many daily life applications (cf. e.g. [4]).

We develop a new notion of security against timing
attacks where the attacker is able to simultaneously ob-
serve the execution time of a (probabilistic) program
and the probability of the values of low variables. This
notion is a non-trivial extension of similar ideas for de-
terministic programs [3] which also cover attacks based
on the combined observation of time and low variables.
This earlier work presents an approach which, having
identified a covert timing channel, provides a program
transformation which neutralises the channel.

We start by introducing a semantic model of timed
probabilistic transition systems. Our approach is based
on modelling programs essentially as Markov Chains
(MC) where the stochastic behaviour is determined by
a joint distribution on both the values assigned to the
program’s variables and the time it takes the program
to perform a given command. This is very different from
approaches in the area of automata theory which are
also dealing with both time and probability. In this
area the timed automata constitute a well-established
model [6]. These automata have been extended with
probability and used in model checking for the verifica-
tion of probabilistic timed temporal logic properties of
real-time systems [7]. The resulting model is however
essentially different from our MC model, as it is based
on a Markov Decision Process where rewards are in-
terpreted as time durations. In particular, the presence
of non-determinism makes it not very appropriate as
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a base of the quantitative analysis we propose in this
paper which aims at measuring timing leaks.

We next present a concrete programming language
with a timed probabilistic transition system as its exe-
cution model. This language is based on the language
studied in [3] but is extended with a probabilistic choice
construct – whilst this may not play a role in user pro-
grams, it has an essential role in our program transfor-
mation. In order to determine and quantify the security
of systems and the effectiveness of potential counter-
measures against timing attacks, we then discuss an ap-
proximate notion of timed bisimilarity and construct an
algorithm for computing a quantitative estimate of the
vulnerability of a system against timing attacks; this
is given in terms of the mismatch between the actual
transition probabilities and those of an ideal perfectly
confined program. We show the correctness of our al-
gorithm with respect to the notion of security against
timing leaks; in particular we show that it returns a zero
estimate whenever the program is secure, i.e. no proba-
bilistic timing covert channels can reveal the program’s
private information.

The security measure we use in this paper stems
from process algebraic models [11,29,12,16] where se-
curity is identified with indistinguishability in the sense
of bisimulation equivalence: A system is safe if for dif-
ferent values of a secret the behaviours are bisimilar. In
particular, it refers to the notion of ε-bisimilarity orig-
inally introduced in [11,29]. Unfortunately, this mea-
sure, like other approximate bisimilarity notions – see
e.g. [28] – although theoretically appealing appears to
be difficult to compute. The concrete measure, which we
call δ, computed by our algorithm is therefore only an
(easily computable) approximation of this measure ob-
tained by exploiting the fact that the executions of the
probabilistic non-concurrent language we consider form
trees, i.e. acyclic rather than general graphs. However,
due to its origins as a ‘bisimilarity’ notion, the measure
δ treats time labels as completely different even if they
differ only a little bit. In order to combine ‘bisimilarity’
and ‘similarity’ of labels we therefore introduce another
notion δ′, which re-scale the behavioural differences of
two programs registered by the measure δ via a weight
expressing some kind of similarity on the labels.

Finally, we present a probabilistic variation of the
padding algorithm in [3] which we use to illustrate –
via an example – a technique for formally analysing
the trade-off between security costs and protection, the
latter being expressed via any security measure such
as δ or δ′. This variation consists in introducing ran-
domness into the transformation process, so that the
program will be effectively transformed only with a cer-
tain probability. The percentage of security can be in

this way established on the base of the optimisation of
other computational costs. This leads to an answer to
the question posed in the title which is neither a ‘yes’
nor a ‘not’, but rather ‘it depends’. In fact, depending
on the particular objective one may need to partially
close the channel in order to get the best performance.

An earlier version of this paper appeared in the Pro-
ceedings of the 10th International Conference on Infor-
mation and Communications Security [5].

2 The Approach: Introducing Noise

In order to illustrate the original approach by Agat as
well as our own extension let us consider the following
simple program:

if k==1 then
skip(1); skip(10)

else
skip(1)

fi;

We use here a simple “waiting” statement skip(n)
which has no effect besides that it takes n time units
to execute.

Assuming that k ∈ {0, 1} is a secret, i.e. high, vari-
able we obviously have a problem: If we execute the
program just once and it takes 11 time steps, i.e. eleven
times the time it takes to perform a semantically mean-
ingless skip, then we know for certain that the secret
value of k was 1; if on the other hand it terminates in
just one time step, then we know for certain that we
executed this fragment in a situation with k = 0. There
are only two possible running times (1 or 11 times steps)
and thus we always know the value of k if we only ob-
serve the running time.

Agat’s idea now was to simply transform the pro-
gram in such a way that both branches of the if state-
ment have the same running time while their effec-
tive semantics stays the same. Unfortunately, it will
in general not be possible, except perhaps if we use
some program optimisation, to shorten the executions
of the longer, then branch, thus the general solution
is to “pad” the else branch by adding 10 additional
time steps making the running times of executions for
k==0 and k==1 indistinguishable while keeping the orig-
inal semantics of the branches unchanged. Concretely
– without discussing the details of his transformation
here – Agat replaces the above program by something
like:
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if k==1 then
skip(1); skip(10)

else
skip(1); skip(10)

fi;

Now the problem is that this introduces a quite sub-
stantial overhead: whenever k is 0 we will increase the
running time by about an order of magnitude. The is-
sue is whether it is possible to get away with a smaller
overhead. We could, for example, try to fix this by a
“partial” padding, i.e. adding only some of the missing
time to the shorter branch. As an example consider the
program

if k==1 then
skip(1); skip(10)

else
skip(1); skip(5)

fi;

Clearly, this adds only half the needed time over-
head for k = 0. However, this program now is as leaky
as the original one: if we observe a running time of
11 time steps we know for certain that k==0, etc. The
only way we could perhaps get away with this approach
would be if the difference between the then and else
branch is smaller than the precision of the clock used
by an attacker, e.g. 10.9 vs 11 time steps – but in this
case the additional overhead is again nearly as bad as
in the case of Agat’s fix.

Our approach is based on the idea of introducing
noise in the padding technique in order to obfuscate
the running time. One easy way to do this is to make it
a random decision (of the program) whether to execute
the original or the padded version, let’s say with a 50 :
50 chance.

if k==1 then
skip(1); skip(10)

else
choose 0.5: skip(1)
or 0.5: skip(1); skip(10)
ro

fi;

Now the average running time of the else branch is
again increased only by half of what a prefect padding
would require. However, if we observe a running time of
11 time steps, it could be that k = 0 as well as k = 1.
Thus, the running time does not allow to determine
with certainty what the value of k was. Furthermore,
each time we even execute the program with the same
values for k we get different running times. This is par-
ticularly important, as it is usually the case that our
little program is executed repeatedly. Consider, for ex-

ample, our transformed fragment as part of a for or
while loop:

i := 1;
while i<=3 do

if k[i]==1 then
skip(1); skip(10)

else
choose 0.5: skip(1)
or 0.5: skip(1); skip(10)
ro

fi;
od;

Let us take the array k being [1, 0, 0]. With “par-
tial” padding we would then observe always a running
time of 11 + 6 + 6 = 23 time steps. If, in particular,
we could observe each repetition separately we could
exactly determine each bit of k. With “probabilistic”
padding the running time could be 11 + 1 + 1 = 13,
or 11 + 11 + 1 = 23, or even 11 + 11 + 11 = 33 time
steps, though in the average the overhead would be the
same as with “partial” padding. Furthermore, we can
in general not reconstruct the array k, even if we would
know the times for every iteration, even less so when
we know only the total running time. If the three it-
erations take 11, 1, and 1 steps respectively, it could
be that k = [1, 0, 0] but also k = [0, 0, 0]. In the case
that all three iterations take 11 time steps each, then
we have all possibilities for k.

There are, of course, many more similar ways of in-
troducing “noise” into a program. In the following we
will not fix a constant 50 : 50 chance between execut-
ing the original program and the fully padded version;
instead we will use a parameter p to indicate how much
padding, and thus overhead, we are willing to accept.
For p = 1 we will get, as an extreme case, “perfect”
padding. We will however not investigate more compli-
cated schemes, where p could depend on the context,
the environment or state, etc.

Obviously, with our “noisy” approach, something
can be said about k, i.e. some information about the
secret is leaked. For example, with the running times
11, 1, 1 we can exclude that k = [1, 0, 1], etc. However,
our “probabilistic” padding leads to a smaller time over-
head than Agat’s transformation. This means that the
secret is not perfectly protected but only up to a point.
Our next aim is to measure the security level our “prob-
abilistic” padding allows for. We will base the “security
measure” on the notion of ε-bisimilarity which we in-
troduced in previous work and which has a direct sta-
tistical interpretation via so-called hypothesis testing
[12].
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The important point we aim to demonstrate ulti-
mately in this paper is that by using a quantitative
concept of security and a quantitative notion of security
costs one can investigate in a formal way the tradeoff
between these quantities. One outcome is the realisation
that “perfect” padding a’la Agat is not necessarily an
“optimal” padding, but that instead a detailed analysis
of the cost/security balance can result in an optimal
“probabilistic” padding with p 6= 1.

3 The Model

We introduce a general model for the semantics of pro-
grams where time and probability are explicitly intro-
duced in order to keep track of both the probabilistic
evolution of the program/system state and its running
time.

The scenario we have in mind is that of a multilevel
security system and an attacker who can observe the
system looking at the values of its public variables and
the time it takes to perform a given operation or before
terminating, or other similar properties related to its
timing behaviour.

In order to keep the model simple, we assume that
the execution time of a statement is constant and that
there is no distinction between any ‘local’ and ‘global’
clocks. In a more realistic model, one has – of course – to
take into account that the execution speed might differ
depending on which other process is running on the
same system and/or delays due to uncontrollable events
in the communication infrastructure, i.e. network.

Our reference model is the timed probabilistic tran-
sition system we define below. The intuitive idea is that
of a probabilistic transition system, similar to those de-
fined in all generality in [8], but with transition prob-
abilities defined by a joint distribution of two random
variables representing the variable updates and the time,
respectively.

Let us consider a finite set X, and let Dist(X) de-
note the set of all probability distributions on X, that
is the set of all functions π : X → [0, 1], such that∑
x∈X π(x) = 1. We often represent these functions as

sets of tuples {〈x, π(x)〉}x∈X .
If the set X is presented as a Cartesian product,

i.e. X = X1 × X2, then we refer to a distribution on
X also as a joint distribution on X1 and X2. A joint
distribution associates to each pair (x1, x2), with x1 ∈
X1, x2 ∈ X2 the probability π(x1, x2).

It is important to point out that, in general, it is
not possible to define any joint distribution on X1×X2

as a ‘product’ of distributions on X1 and X2, i.e. for
a given joint distribution π on X = X1 × X2 it is, in

general, not possible to find distributions π1 and π2 on
X1 and X2 such that for all (x1, x2) ∈ X1×X2 we have
π(x1, x2) = π1(x1)π2(x2). In the special cases where a
joint distribution π can be expressed in this way, as a
‘product’, we say that the distributions π1 and π2 are
independent (cf. e.g. [9]).

3.1 Timed Probabilistic Transition Systems

The execution model of programs which we will use
in the following is that of a labelled transition system;
more precisely, we will consider probabilistic transition
systems (PTS). We will put labels on transitions as well
as states; the former will have “times” associated with
them while the latter will be labelled by uninterpreted
entities which are intended to represent the values of
(low security) variables, i.e. the computational state
during the execution of a program. We will not specify
what kind of “time labels” we use, e.g. whether we have
a discrete or continuous time model. We just assume
that time labels are taken from a finite set T ⊆ R+ of
positive real numbers. The “state labels” will be taken
from an abstract set which we denote by L.

Definition 1 We define a timed Probabilistic Transi-
tion System with labelled states, or tPTS, as a triple
(S,−→, λ), with S a finite set of states, −→ ⊆ S ×
[0, 1] × T × S a probabilistic transition relation, and
λ : S → L a state labelling function.

For (s1, p, t, s2) ∈−→ we write s1
p:t // s2 with

s1, s2 ∈ S, p ∈ [0, 1] and t ∈ T.
A general PTS allows for various forms of nondeter-

minism; this can be restricted by imposing one of the
following conditions (or both):

1. for all s ∈ S and t ∈ T we have∑
i

{pi | (s, pi, t, si) ∈−→} = 1

2. for all possible times t ∈ T and pairs of states s1, s2 ∈
S there is at most one tuple (s1, p, t, s2) ∈−→.

The first condition means that we consider a purely
probabilistic or generative execution model. The sec-
ond condition allows us to associate a unique proba-
bility to every transition time between two states, i.e.
triple (s1, t, s2); this means that we can define a func-

tion π : S × T × S → [0, 1] such that s1
p:t // s2 iff

π(s1, t, s2) = p. Note however, that it is still possible to
have differently timed transitions between states, i.e. it
is possible to have (s1, t1, p2, s2) ∈−→ as well as also
(s1, t2, p2, s2) ∈−→ with t1 6= t2.
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In the case where for all s1, s2 ∈ S there exists
at most one (s1, t, p, s2) ∈−→, we can also represent
a timed Probabilistic Transition System with labelled
states as a quadruple (S,−→, τ, λ) with τ : S × S →
[0, 1]×T, a timing function. Thus, to any two states s1
and s2 we associate a unique transition time ts1,s2 and
probability ps1,s2 .

Both the concrete and the abstract semantics we
will define in Section 1 for our imperative language are
generative tPTS’s; however, while the concrete seman-
tics satisfies condition 2., the abstract semantics does
not.

Definition 2 Consider a tPTS (S,−→, λ) and an ini-
tial state s0 ∈ S. An execution sequence or trace starting

in s0 is a sequence (s0, s1, . . .) such that si
pi:ti // si+1,

for all i = 0, 1, 2, . . ..

We associate, in the obvious way, to an execution
sequence σ = (s0, s1, . . .) three more sequences: (i) the
transition probability sequence: (p1, p2, . . .), (ii) a time
stamp sequence: (t1, t2, . . .), and (iii) a state label se-
quence: (λ(so), λ(s1), . . .).

Even for a tPTS with a finite number of states it
is possible to have infinite execution sequences. It is
thus, in general, necessary to consider measure theo-
retic notions in order to define a mathematically sound
model for the possible behaviours of a tPTS. However,
as long as we consider only terminating systems, i.e.
finite traces, things are somewhat simpler. In particu-
lar, in this case, probability distributions can replace
measures as they are equivalent. In this paper we re-
strict our attention to terminating traces and proba-
bility distributions. This allows us to define for every
finite execution sequence σ = (s0, s1, . . .) its running
time as τ(σ) =

∑
ti, and its execution probability as

π(σ) =
∏
ti. We will also associate to every state s0

its execution tree, i.e. the collection of all execution se-
quences starting in s0.

3.2 Observing tPTS’s

In Section 4 we will present an operational semantics
of a simple imperative programming language, pWhile,
via a tPTS. Based on this model we will then inves-
tigate the vulnerability against attackers who are able
to observe (i) the time, and (ii) the state labels, i.e.
the low variables. In this setting we will argue that the
combined observation of time and low variables is more
powerful than the observation of time and low variables
separately. The following example aims to illustrate this
aspect which comes from the properties of joint proba-
bility distributions.

Example 1 In order to illustrate the role of joint distri-
butions in the observation of timed PTS’s let us con-
sider the following two simple systems:

A = •s1
1
4 :1

}}{{
{{

{{
{{
1
4 :2

�� 1
4 :1 !!CC

CC
CC

CC 1
4 :2

((QQQQQQQQQQQQQQQ

•s11 •s12 ◦s13 ◦s14

B = •s2
1
4 :2

}}{{
{{

{{
{{
1
4 :2

�� 1
4 :1 !!CC

CC
CC

CC 1
4 :1

((QQQQQQQQQQQQQQQ

•s21 •s22 ◦s23 ◦s24

We assume that the attacker can observe the execution
times and that he/she is also able to (partially) distin-
guish (the final) states. In our example we assume that
the states depicted as • and ◦ form two classes which
the attacker can identify (e.g. because • and ◦ states
have the same values for low variables). The question
now is whether this information allows the attacker to
distinguish the two tPTS’s.

If we consider the information obtained by observing
the running time, we see that both systems exhibit the
same time behaviour corresponding to the distribution
{〈1, 1

2 〉, {〈2,
1
2 〉} over T = {1, 2}. The same is true in the

case where the information is obtained by inspecting
the final states: we have the distributions {〈•, 1

2 〉, 〈◦,
1
2 〉}

over L = {•, ◦} for both systems.
However, considering that the attacker can observe

running time and labels simultaneously, we see that the
system A always runs for 2 time steps iff it ends up in
a • state and 1 time step iff it ends up in a ◦ state. In
system B there is no such correlation between running
time and final state. The difference between the two
systems, which allows an attacker to distinguish them,
is reflected in the joint distributions over T× L.

These joint probability distributions can be expressed
in matrix form for the two systems above as:

χ1(t, l) 1 2
• 1

4
1
4

◦ 1
4

1
4

χ2(t, l) 1 2
• 0 1

2

◦ 1
2 0

Note that while χ1 is the product of two independent
probability distributions on T and L it is not possible
to represent χ2 in the same way.

4 An Imperative Language

We consider a language similar to one used in [3] with
the addition of a probabilistic choice construct. We
omit from Agat’s language output commands and let
statements, i.e. local evaluation environments, as well
as data structures like arrays and records.
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The syntax of the language is as follows:
Operators: op ::= + | ∗ | − | = | < | . . .
Expressions: e ::= v | x | e op e
Commands: C,D ::= x := e | skipAsn x e

| if (e) then C else D
| skipIf e C | while (e) do C

| C;D | choosep C or D
Basic Values: v ::= n | true | false

As explained in [3] and shown later, the skip commands
(skipAsn and skipIf) are used in the transformation
to pad programs; as can be seen from the semantics they
exhibit the same timing behaviour as assignment and
the conditional, respectively. The probabilistic choice is
used in an essential way in the program transformation
presented later. Note that p ∈ [0, 1] in choosep C or D
is a constant. We will distinguish purely on syntac-
tic grounds between deterministic programs which do
not contain a choice construct and probabilistic ones
which do. It is easy to see that deterministic programs
in our language form a proper sub-language of the one
in [3].

We also keep the language of types as in [3], al-
though in a simplified form:
Security levels s ::= L | H
Base types τ ::= Int | Bool
Security types τ ::= τs

with L ≤ H and s ≤ s and sub-typing relation:
s1 ≤ s2
τs1 ≤ τs2

.

We will indicate by E the state of a computation
and denote by EL its restriction to low variables, i.e.
a state which is defined as E for all the low variables
for which E is defined, and is undefined otherwise. We
call a pair 〈E | C〉, of a state and a command a con-
figuration. We say that two configurations 〈E | C〉 and
〈E′ | C ′〉 are low equivalent if and only if EL = E′L
and we indicate this by 〈E | C〉 =L 〈E′ | C ′〉. In the
following we will sometimes use for configurations the
shorthand notation c, c1, c2, . . . , c

′, c′1, . . .. We will also
denote by Conf the set of all configurations.

4.1 Operational Semantics

The operational semantics of pWhile – except for the
probabilistic choice construct – follows essentially the
one presented in [3]. For the convenience of the reader
we present here all the rules which are based on the big
step semantics for expressions (where [[op]] represents
the usual semantics of arithmetic and Boolean opera-
tors):

E ` v ⇓ v E(x) = v
E ` x ⇓ v

E ` e1 ⇓ v1 E ` e2 ⇓ v2
E ` e1 op e2 ⇓ v1[[op]]v2

The small step semantics is then defined as a timed
PTS via the SOS rules in Table 1.

The time labels t. represent the time it takes to per-
form certain operations: tx is the time to store a vari-
able, te is the time it takes to evaluate an expression,
tasn represents the time to perform an assignment, tbr
is the time required for a branching step, and tch is the
time to perform a probabilistic choice. By ts we denote
any sequence of time labels and with

√
we indicate

termination.
The rule (Choose) is the only new rule with respect

to the original semantics in [3]. It states that the exe-
cution of a probabilistic choice construct leads, after a
time tch, to a state where either the command C or the
command D is executed with probability p or 1− p, re-
spectively. This rule together with the standard transi-
tion rules for the other constructs of the language define
a tPTS (S,−→, λ) for our pWhile language according
to Definition 1. In this tPTS, −→ is the transition re-

lation
p:t // defined in Table 1 (where the time t

is, strictly speaking, the accumulated time labels, i.e.
t =

∑
ts), the state labels are given by the environ-

ment, i.e. λ(〈E | C〉) = E, and the elements in S are
configurations, i.e. S = Conf. In the rest of the pa-
per we will use interchangeably the words ‘state’ and
‘configuration’ to indicate such elements.

As mentioned earlier the rules (SkipAsn) and (SkipIf)
are skip operations which have the same timing be-
haviour as the assignment and conditional, respectively.
The rules show why the skip operations need to be pa-
rameterised: in order to access the timing behaviour of
the critical subcomponents of the associated command.

4.2 Abstract Semantics

According to the notion of security we consider in this
paper, an observer or attacker can only observe the
changes in low variables. Therefore, we can simplify the
semantics by ‘collapsing’ the execution tree in such a
way that execution steps during which the value of all
low variables is unchanged are combined into one single
step.

We call an execution sequence σ deterministic if
π(σ) = 1, and we call it low stable if λ(ci) =L λ(cj)
for all ci, cj ∈ σ. The empty path (of length zero) is by
definition deterministic and low stable.

An execution sequence is maximal deterministic/low
stable if it is not a proper sub-sequence of another de-
terministic/low stable path.
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(Assign)
E ` e ⇓ v

〈E | x := e〉
1:te·tx·tasn·

√
// E[x = v]

(Seq)
〈E | C〉

p:ts·
√

// E′

〈E | C;D〉
p:ts // 〈E′ | D〉

〈E | C〉
p:ts // 〈E′ | C′〉

〈E | C;D〉
p:ts // 〈E′ | C′;D〉

(If)
E ` e ⇓ true

〈E | if (e) then C else D〉
1:te·tbr // 〈E | C〉

E ` e ⇓ false

〈E | if (e) then C else D〉
1:te·tbr // 〈E | D〉

(While)
E ` e ⇓ false

〈E | while (e) do C〉
1:te·tbr·

√
// E

E ` e ⇓ true

〈E | while (e) do C〉
1:te·tbr // 〈E | C; while (e) do C〉

(Choose)

〈E | choosep C or D〉
p:tch // 〈E | C〉 〈E | choosep C or D〉

(1−p):tch // 〈E | D〉

(SkipAsn)
E ` e ⇓ v

〈E | skipAsn x e〉
1:te·tx·tasn·

√
// E

(SkipIf)
E ` e ⇓ v ∈ {true, false}

〈E | skipIf e C〉
1:te·tbr // 〈E | C〉

Table 1 Operational Semantics

Definition 3 We define the collapsed transition rela-
tion by:

〈E1 | C1〉
p:T +3 〈E2 | C2〉

iff

(i) there exists a configuration 〈E′1 | C ′1〉 such that

〈E1 | C1〉
p:t // 〈E′1 | C ′1〉,

(ii) the (possibly empty) path

〈E′1 | C ′1〉
1:t1 // . . . 〈E′2 | C ′2〉

1:tn // 〈E2 | C2〉

is deterministic, if the path is empty then 〈E′1 | C ′1〉 =
〈E′2 | C ′2〉 = . . . = 〈E2 | C2〉,

(iii) the (possibly partially empty) path

〈E1 | C1〉
p:t // 〈E′1 | C ′1〉

1:t1 // . . . 〈E′2 | C ′2〉

is maximal low stable, 〈E1 | C1〉 and 〈E′1 | C ′1〉 are
distinct configurations – cf. (i) – the remaining con-
figurations could be identical to 〈E′1 | C ′1〉 – cf. (ii),

(iv) and T = t+
n∑
i=1

ti.

Notice that in this definition deterministic (sub-)paths
(in case (ii) and (iii)) could be empty, therefore it is not
required that 〈E′1 | C ′1〉, 〈E′2 | C ′2〉, . . . and 〈E2 | C2〉
are distinct.

Definition 3 is illustrated in the following example.
In the depicted execution trees we indicate in the nodes
only the state and omit the program parts of the corre-
sponding configurations. Moreover, we use the notation

[n,m] for the state E where h has value n and l has
value m.
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The collapsed execution tree represents in effect what
an attacker can actually observe during the program ex-
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ecution (for our analysis of the situation we still record
the value of h although it is invisible to the attacker).

Note that the collapsed transition relation
p:t +3

on Conf can equivalently be seen as a relation =⇒∈
(Conf,JDist) between configurations to joint distri-
butions χ ∈ JDist = Dist(T × Conf), that is distri-
butions on time t ∈ T and states s ∈ Conf such that

χ(c′, t) = p iff c
p:t +3 c′.

5 Bisimulation and Timing Leaks

Observing the low variables and the running time sepa-
rately is not the same as observing them together; a cor-
relation between the two random variables (probability
and time) has to be taken into account (cf. Section 3). A
naive probabilistic extension of the Γ -bisimulation no-
tion introduced in [3] might not take this into account.
More precisely, this may happen if time and probability
are treated as two independent aspects which are ob-
served separately in a mutual exclusive way. According
to such a notion an attacker must set up two different
covert channels if she wants to exploit possible inter-
ference through both the probabilistic and the timing
behaviour of the system.

The notion of bisimulation we introduce here allows
us to define a stronger security condition, according to
which an attacker must be able to distinguish the prob-
abilities that two programs compute a given result in
a given execution time. This is obviously different from
being able to distinguish the probability distributions
of the results and the running time.

5.1 Probabilistic Time Bisimulation

Probabilistic bisimulation as it was first introduced in
[10] refers to an equivalence on probability distributions
over the states of the processes. This latter equivalence
is defined as a lifting of the bisimulation relation on
the support sets of the distributions, namely the states
themselves.

An equivalence relation ∼ ⊆ S × S on S can be
lifted to a relation ∼∗ ⊆ Dist(S) × Dist(S) between
probability distributions on S as follows (cf [8, Thm 1]):

µ ∼∗ ν iff ∀[s] ∈ S/∼ : µ([s]) = ν([s]),

where for any δ ∈ Dist(S),

δ([s]) =
∑
s′∈[s]

δ(s′).

It follows that ∼∗ is also an equivalence relation ([8,
Thm 3]).

For any equivalence relation ∼ on the set Conf of
configurations, we define the associated low equivalence
relation ∼L by c1 ∼L c2 if c1 ∼ c2 and c1 =L c2.
Obviously ∼L is again an equivalence relation. We can
lift a low equivalence ∼L to (∼L)∗ which we simply
denote by ∼∗L.

We define below a probabilistic bisimulation relation
where we identify two configurations, c1 and c2, if their
stepwise behaviour, which we express via the abstract
semantics =⇒ introduced in Definition 3, is the ‘same’;
this means that the joint probability of reaching in a
given time low-equivalent configurations from both c1
and c2 is the same.

Definition 4 Given a set oL of low variables, a prob-
abilistic time bisimulation ∼ is a relation on configu-
rations such that whenever c1 ∼ c2, then c1 =⇒ χ1

implies that there exists χ2 such that c2 =⇒ χ2 and
χ1 ∼∗L χ2.

We say that two configurations are probabilistic time
bisimilar or PT-bisimilar, c1 ∼ c2, if there exists a prob-
abilistic time bisimulation relation in which they are
related. PT-bisimilarity is an equivalence relation cor-
responding to the largest PT-bisimulation on configu-
rations.

This definition generalises the one in [3] which only
applies to deterministic transition systems. Note that
there is a difference between ∼∗L= (∼L)∗ and (∼∗)L.
To see this, consider again Example 1. On one hand, if
we consider a PT-bisimulation ∼ on the states of the
two PTS’s A and B, we obtain only two classes, the
roots × = {s1, s2} and the set of leaves ⊥ = {sij} with
i ∈ {1, 2} and j ∈ {1, 2, 3, 4}. Then s1 =⇒ χ1 and
s2 =⇒ χ2 induce on these two classes the distributions:

χ1(t, c) 1 2
× 0 0
⊥ 1

2
1
2

χ2(t, c) 1 2
× 0 0
⊥ 1

2
1
2

These distributions are therefore identified by the lifting
∼∗. We now have to extend this relation over distribu-
tions to a low equivalence in order to define (∼∗)L. We
do not define a low equivalence for distributions (we
will not need it in the following), however, it is clear
that in whatever way we would do this, any distinction
between χ1 and χ2 will depend at best on the definition
of the low equivalence and not on the structure original
transition system, and will therefore have to inherit the
indistinguishability of χ1 and χ2.

On the other hand, the equivalence on joint distri-
butions we need in Definition 4 is the lifting of the low
probabilistic time bisimilarity ∼L expressing the con-
dition that for all classes [c] ∈ Conf/∼L

, that is [c] =
{c′ | c ∼ c′ and c′ =L c}, we have that χ1([c]) = χ2([c]).
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In our example this relation leads to a partitions of
states as follows:

× = {s1, s2}
• = {s11, s12, s21, s22}
◦ = {s13, s14, s23, s24}

If we lift s1 =⇒ χ1 and s2 =⇒ χ2 from distributions
over states to distribution over classes in ∼L we get the
distributions

χ1(t, l) 1 2
× 0 0
• 1

4
1
4

◦ 1
4

1
4

χ2(t, l) 1 2
× 0 0
• 0 1

2

◦ 1
2 0

which establishes the fact, we already discussed before,
that s1 and s2 are not bisimilar according to (∼L)∗.
Only this latter notion is therefore able to take into ac-
count the correlation between time and low variables,
while the former would be a straightforward generali-
sation of the time bisimulation in [3] which is unable to
model such a correlation.

Definition 5 Two tPTS T1 and T2 are PT-bisimilar
iff there exists a probabilistic time bisimulation ∼ on
ConfT1 ∪ ConfT2 such that for all equivalence classes
[c]∼ we have [c]∼ ∩ ConfT1 6= ∅ and [c]∼ ∩ ConfT2 6= ∅.

5.2 Probabilistic Time Secure Programs

We now exploit the notion of bisimilarity introduced
above in order to introduce a security property ensuring
that a system is confined against any combined attacks
based on both timing and probabilistic covert channels.

Definition 6 A pWhile program P is probabilistic time
secure or PT-secure if for any set of initial states E and
E′ such that EL = E′L, the execution trees rooted in
〈E,P 〉 and 〈E′, P 〉 are PT-bisimilar.

For deterministic programs, there is always only one
execution path if we start in an initial configuration
〈E,P 〉. The only way to obtain truly branching execu-
tion trees is via (probabilistic) choose statements. The
conditional statements, i.e. if and while, do not intro-
duce branches. In fact, given a concrete configuration,
e.g. 〈E, if (e) then . . .〉, we always know how to con-
tinue because we know whether the guard expression e
evaluates in the environment E into true or false.

It is easy to see that two execution paths are PT-
bisimilar if and only if they have the same execution
time (or length) for sections during which the observ-
able low variables do not change. To illustrate this con-
sider the following example.

Example 2 Let us consider just one high variable h and
a low variable l which both can take only values in
{0, 1}. The program we wish to investigate (using a
concrete syntax which is slightly easier to parse auto-
matically) is then the following:

if h==0 then
h := 1; l := 1

else
skipAsn h 1; l := 1

fi;
l := 0

The execution of this program leads to four possible
deterministic paths, depending on the values of h and
l. If we only record the values of h and l along these
paths by the pair [h, l] we get:

[0, 0]
th==0·tbr// [0, 0]

t1·th·tasn// [1, 0]
t1·tl·tasn// [1, 1]

t0·tl·tasn// [1, 0]

[1, 0]
th==0·tbr// [1, 0]

t1·th·tasn// [1, 0]
t1·tl·tasn// [1, 1]

t0·tl·tasn// [1, 0]

[0, 1]
th==0·tbr// [0, 1]

t1·th·tasn// [1, 1]
t1·tl·tasn// [1, 1]

t0·tl·tasn// [1, 0]

[1, 1]
th==0·tbr// [1, 1]

t1·th·tasn// [1, 1]
t1·tl·tasn// [1, 1]

t0·tl·tasn// [1, 0]

If we are recording only the observable low variable l
these become:

[0]
th==0·tbr // [0]

t1·th·tasn // [0]
t1·tl·tasn // [1]

t0·tl·tasn // [0]

[0]
th==0·tbr // [0]

t1·th·tasn // [0]
t1·tl·tasn // [1]

t0·tl·tasn // [0]

[1]
th==0·tbr // [1]

t1·th·tasn // [1]
t1·tl·tasn // [1]

t0·tl·tasn // [0]

[1]
th==0·tbr // [1]

t1·th·tasn // [1]
t1·tl·tasn // [1]

t0·tl·tasn // [0]

and after collapsing the transition relation we have, if
we start with l 7→ 0

[0]
th==0·tbr·t1·th·tasn·t1·tl·tasn +3 [1]

t0·tl·tasn +3 [0]

[0]
th==0·tbr·t1·th·tasn·t1·tl·tasn +3 [1]

t0·tl·tasn +3 [0]

and for l 7→ 1:

[1]
th==0·tbr·t1·th·tasn·t1·tl·tasn·t0·tl·tasn +3 [0]

[1]
th==0·tbr·t1·th·tasn·t1·tl·tasn·t0·tl·tasn +3 [0]

Clearly, the pairs of “trees” which start with the
same (observable) value for l are PT-bisimilar. Thus
we can conclude that our little program is indeed PT-
secure.

In the presence of choose statements, then we need
to consider the branching structure, instead of just the
total execution times along collapsed transitions.
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Example 3 Take again a high variable h and a low vari-
able l with values in {0, 1}. Then the following (branch-
ing) program is not PT-secure:

if h==0 then
choose 0.5: h := h; l := 1
or 0.5: l := 0
ro

else
choose 0.5: h := h; l := 0
or 0.5: l := 1
ro

fi;
l := 0

The detailed construction of the execution trees is
rather involved and we will not depict it here. It suffices
to say that for h 7→ 0 and h 7→ 1 we essentially get
execution trees of the same structure as in Section 3.2.

Let us assume that we start, for example, with the
observable state in which l 7→ 0. Then the two execution
trees – for h 7→ 0 and h 7→ 1 – are not PT-bisimilar.
Thus we come to the conclusion that this program is not
PT-secure. This is consistent with what we said about
the simultaneous observation of time and final results
in Section 3.2.

6 Computing Approximate Bisimulations

Our next task is to quantify the security of a system.
Clearly, the prevailing idealist’s approach is to distin-
guish only between the realms of the good and bad,
i.e. whether a system is resisting against (all possi-
ble) attacks or not. A more economical and practical
approach aims instead on distinguishing between the
many shades of gray represented by real systems which
might be more or less well protected against attacks.

One can think of various ways of measuring the se-
curity of programs and we do not aim to provide here
a definitive answer, instead we will consider a reason-
able measure which allows us to investigate the trade-off
between security and security costs. Security measures
can be based on a statistical evaluation of case stud-
ies, i.e. empirical testing, or introduced via information
theoretic notions as in e.g. [34,14,33], or by quantifying
the (bi)similarity of systems. In this paper we will follow
the latter approach. We will exploit the well-established
relationship between indistinguishability and security:
A secret is well protected if the observable behaviour of
a system which accesses this secret is always the same
irrespectively of the concrete value of the secret in ques-
tion. It is then impossible for an attacker – with certain
observational capabilities – to determine the secret by
observing the behaviour of the system.

In concurrency theory the notion of bisimulation – in
all its different timed, barbed, probabilistic, etc. vari-
ations – is arguably the most important concept de-
scribing process equivalence. It is quite common to de-
fine security by reference to this concept by assessing
a secret as safe or secure if for two different values of
the secret the systems are bisimilar. It is also helpful
for our programme that Agat’s work [3] too is based on
this notion, though given that he only considers deter-
ministic programs it is somewhat degenerated as all his
execution trees are non-branching, i.e. are represented
by a single execution path.

In this section we will first summarise our notion
of approximate or ε-bisimulation which we introduced
previously [12,13] in order to define a quantified ver-
sion of security (cf 6.1). It turns out that it is relatively
expensive to compute the exact value of ε and we thus
introduce a computational approximation δ and discuss
the relation between the two quantities δ and ε, in 6.2.
Finally, as it turns out that δ (as well as ε) is rather un-
forgiving regarding to what one might consider only a
‘small’ behavioural difference, we introduce a weighted
version δ′ which will use in order to quantify the secu-
rity of a program (cf 6.4).

6.1 ε-Bisimulation

In [12,13] we introduce an approximate version of bisim-
ulation and confinement where the approximation can
be used as a measure ε for the information leakage of
the system under analysis. In the above mentioned work
we represented systems by linear operators, i.e. by their
transition matrices M. In the case of probabilistic pro-
grams and systems these matrices M are the usual well
known stochastic matrices which are the generators of
the corresponding Markov chains (for details see [12,
13]).

One can then show that two systems M1 and M2

are bisimilar if there exist simplified or abstracted ver-
sions of M1 and M2, represented by matrices M#

1 and
M#

2 , such that M#
1 = M#

2 . The abstract systems are
obtained by lumping states, i.e. by identifying each con-
crete state si with a class Cj of states which are all
behavioural equivalent to each other.

Concretely, we can compute this via n×m matrices
K (where n is the number of concrete states and m the
number of abstract classes) with Kij = 1 iff si ∈ Cj
and 0 otherwise. We refer to such matrices which have
exactly one entry 1 in each row while all other entries
are 0 as classification matrices, and denote the set of all
classification matrices by K. The abstract systems are
then given by M#

i = K†iMiKi with Ki some classifi-
cation matrix and † constructing the so called Moore-
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Penrose pseudo-inverse – in the case of classification
matrices K† can be constructed as the row-normalised
transpose of K.

The problem of showing that two systems M1 and
M2 are behaviourally equivalent, i.e. are (probabilisti-
cally) bisimilar, is now translated into finding two clas-
sification matrices Ki ∈ K such that

M#
1 = K†1M1K1 = K†2M2K2 = M#

2 .

In case that two systems are not bisimilar we still
can define a quantity ε which describes how (non-)bisi-
milar the two systems are. This ε is formally defined in
terms of the norm of a linear operator representing the
partition induced by the ‘minimal’ bisimulation on the
set of the states of a given system, i.e. the one minimis-
ing the observational difference between the system’s
components (see again [12] for further details, in par-
ticular regarding labelled PTS’s):

Definition 7 Let M1 and M2 be the matrix represen-
tations of two probabilistic transition systems. We say
that M1 and M2 are ε-bisimilar, denoted by M1 ∼εb
M2, iff

inf
K1,K2∈K

‖K†1M1K1 −K†2M2K2‖ = ε

where ‖.‖ denotes an appropriate norm, e.g. the supre-
mum norm ‖.‖∞.

In principle, ε provides now also a measure for the
security of systems, concretely it says how confined (the
secret or identity of) a system is. In [12] we investi-
gated this further and provided a statistical interpreta-
tion of ε based on hypothesis testing: The smaller ε is
the more observations by the attacker are needed be-
fore she can identify with a certain confidence α the
secret of a given process. However, there is a drawback
to our construction: We did not provide a computation-
ally feasible way to obtain the inf over all classification
matrices. A brute force approach is prohibitively expen-
sive. This is in contrast to the situation in the classical
(i.e. non-probabilistic) case where we know of efficient
lumping algorithms, like the ones based on the work by
Paige and Tarjan [15], which allow for a quasi directed
search of the optimal class structure.

6.2 Constructing a Lumping and δ

Already in [16] we exploited the algorithmic solution
proposed by Paige and Tarjan [15] for computing bisim-
ulation equivalence over sets and adapted it to proba-
bilistic transition systems. This was in order to intro-
duce a padding algorithm which – contrary to what we
aim to achieve in this current paper – attempted to the

elimination of timing leaks by transforming the compu-
tational paths of a program so as to make it perfectly
secure. The resulting transformation was shown to be
correct in the sense of preserving the program’s I/O
behaviour, while eliminating any possible timing covert
channel.

The algorithm we present here can be seen as a
‘more computational’ version of the algorithm in [16] in
two ways. First, the abstract labels are replaced by the
statements in a concrete language (pWhile) and their
execution times; and second, instead of transforming
the execution trees, our algorithm accumulates the in-
formation about the difference between their transition
probabilities and uses this information to compute an
upper bound δ to the maximal information leakage ε of
the given program.

The algorithmic paradigm for partition refinement
introduced by Paige and Tarjan in [15], see also [17,18],
constructs a partition of a state space Σ which is stable
for a given transition relation →, that is it does not
need further refinement. It is a well-known result that
this partition corresponds to a bisimulation equivalence
on the transition system (Σ,→). The refinement pro-
cedure used in the algorithm consists in splitting the
blocks in a given partition P by replacing each block
B ∈ P with B ∩ preS and B \ preS, where for any
X ⊆ Σ, pre(X) = {s ∈ Σ | s → x for some x ∈ X}.
This algorithm has been adapted in [17] to probabilis-
tic processes; in particular, the Derisavi et al. algo-
rithm constructs the optimal lumping quotient of a fi-
nite Markov chain, and can then be used to check the
probabilistic bisimilarity of two PTS’s.

In order to check whether two execution trees T1

and T2 in our tPTS model are PT-bisimilar, we can
apply a similar refinement technique to the set of states
formed by the disjoint union, T1⊕T2, of the states in T1

and T2. The lumping procedure starts from an initial
partition and refine it step by step by using a splitter
block B in the following way: Take all the blocks Bi in
P and determine for all states in each of these blocks Bi
the probabilities and times to reach the splitter block
B; if the states in Bi can reach B in a given time with
different probabilities, or if the states in Bi do not agree
on the values of the low variables then split Bi into sub-
blocks.

Our lumping algorithm QLumping(T1, T2) essen-
tially follows the same strategy but, additionally it ex-
ploits the ‘layering’ implicit in a tree structure. Infor-
mally, it can be described as follows: It begins with an
initial partition of the union T1⊕T2 of the two execution
trees, whose blocks are represented by each layer Li, i.e.
set of configurations at the same height (or level) i. We
then traverse the trees layer by layer starting from the
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leaves, i.e. layer 0. On each layer we refine the partition
by a two phases splitting: (i) we group configurations
based on the values of the low variables, and (ii) refine
the partitioning of the current layer – except in the case
of the leave layer – on the basis of the possible transi-
tions of the configurations in the current layer. The idea
is to refine a given layer partition until it is stable, i.e.
no further sub-partioning is necessary, and then move
on to the next layer above.

The sub-partitioning of a layer partition based on
the transitions which lead to the layers below can be
done in two ways: Either by considering the pre-image
of the blocks in the layers below [backward splitting],
or by considering the joint distributions of reaching the
blocks below from a given configuration in the current
layer [forward splitting].

Backward Splitting. We define for every possible time
t ∈ T and probability p ∈ [0, 1] and any set B of con-
figurations (usually B will be a block) its pre-image

pretp(B) = {c | c
pi:t +3 ci, ci ∈ B,

∑
pi = p}

i.e. the set of all configurations c which can reach in time
t the block B with probability p. In backward splitting
we take a block Bi, called the splitter, in one of the
layers below the current layer and check whether one
of the blocks B in the current layer is “intersected” by
the pre-image of Bi, i.e. if there exists a p and t such
that pre(Bi) ∩ B is neither empty nor all of B. In this
case we split/refine B accordingly.

Forward Splitting. For a given configuration c we de-
note the joint distribution on T × Conf(T1 ⊕ T2) of
reaching blocks B from c in time t as:

χc(B, t) =
∑
{p | c

p:t +3 ck, ck ∈ B}.

We say that χc = χc′ if χc(B, t) = χc′(B, t) for all
block B and times t. In forward splitting we separate
configurations c and c′ (i.e. put them in new sub-blocks)
whenever χc 6= χc′ – where we actually have to consider
only the blocks Bi below the current layer and a finite
number of possible transition times.

While backward splitting is conceptually perhaps
easier and more in line with the original Paige-Tarjan
algorithm, we have chosen here the second approach as
it turned out to be easier to implement.

The Procedure QLumping. Algorithm 1 describes es-
sentially the procedure that we have implemented in
Octave for computing the approximation δ. It constructs
a lumping by using the forward splitting strategy de-
scribed above, and also computes δ by using the sub-
routine CompDelta(L1, L2) which returns the best match

for each layer. This corresponds to the minimal differ-
ence between the probabilities of reaching a block in a
lower layer in a given time among all the blocks in that
layer.

Algorithm 1 A Lumping Algorithm
1: procedure QLumping(T1, T2)
2: Assume: T1 & T2 execution tree with states S1 & S2

3: δ ← 0

4: n← 0
5: P ← ∅ . Initial Partition

6: while n ≤ Height(T1 ⊕ T2) do

7: L1 ← Layer(T1, n) . Current layer in T1

8: L2 ← Layer(T2, n) . Current layer in T2

9: L← {L1 ∪ L2} . Current layer as single block

10: Ls← LowSplit(L) . Use low variables for partition
11: if n 6= 0 then . Except for the leaves

12: Ls← ChiSplit(Ls)

13: end if
14: P ← P ∪ Ls . Add partitioned layer to P

15: δ ← max(δ,CompDelta(L1, L2))
16: n← n+ 1 . Go to next level

17: end while

18: return δ
19: end procedure

The sub-routine LowSplit(L) splits a block L ac-
cording to the values of the low variables, i.e. it returns
a set of blocks {Bk} where for any ci, cj ∈ Bk we have
ci =L cj .

The sub-routine ChiSplit(L) does something simi-
lar based on the joint distributions χc, i.e. given a set of
blocks {Bk} it returns a set of blocks {Bl} such that the
Bls are sub-blocks of the Bks (i.e. for every Bl we have
Bl ∩ Bk = Bl or Bl ∩ Bk = ∅) and for any ci, cj ∈ Bl
we have χci = χcj .

In order to compute the best matches for the χ’s
in T1 and T2 on the current level we utilise the sub-
procedure CompDelta(L1, L2). Note that it returns 1
if the layer does not contain any representative of one
of the two trees. This is in fact the maximal distance of
two configurations.

Algorithm 2 Algorithm for computing δ
1: procedure CompDelta(L1, L2)
2: β ← 1
3: while L1 6= ∅ do
4: choose c1 ∈ L1, L1 ← L1 \ c1 . For all c1 ∈ L1

5: L′2 ← L2 . New ‘working copy’ of L2

6: while L′2 6= ∅ do
7: choose c2 ∈ L′2, L′2 ← L′2 \ c2 . For all c2 ∈ L′2
8: β ← min(β, ‖χc1 − χc2‖∞) . Find best match
9: end while

10: δ ← max(δ, β)

11: end while
12: return δ

13: end procedure
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6.3 Correctness — Relation between ε and δ

The strategy for constructing the lumping described
above determines the coarsest partition of a set which is
stable wrt a given relation [17,18], that is in our case the
coarsest PT-bisimulation equivalence. Obviously, this
does not necessarily coincide with the ‘minimal’ one
corresponding to the quantity ε defined in [12]. Thus,
δ will be in general only a safe approximation, namely
an upper bound to the capacity of probabilistic timing
covert channel defined by ε. In this section we will show
the correctness of our algorithm for computing the es-
timate δ of the security of a program.

The procedure Layer(T, n) in Algorithm 1 returns
the set of configurations whose height in the execution
tree T is n. We now define the function level which
associates to each configuration c in a execution tree T
its height in the tree.

Definition 8 Let T be an execution tree for a given
program P , and let c ∈ ConfT . Then the level of c is
recursively defined as follows:

level(c) = 0 if c is a leaf

level(c) = 1 +max{level(c′) | c
p:t +3 c′} otherwise

We will show that the notion of level determines
a partition which is coarser than the maximum PT-
bisimulation (see [18]).

Lemma 1 Let c1 and c2 be two states of a acyclic tPTS
T . Then if c1 ∼PT c2 then level(c1) = level(c2).

Proof By induction on level(c).

The procedure Height(T ) in Algorithm 1 returns
the height of the execution tree T . This corresponds to
the maximum depth reached in a path from the root to
a leaf. Thus, we have that if r is the root then level(r) =
Height(T ).

Proposition 1 Given two execution trees T1 and T2

with roots r1 and r2 respectively, then T1 ∼PT T2 iff
r1 ∼PT r2.

Proof (if) We show that if T1 6∼PT T2 then r1 6∼PT r2.
The hypothesis implies that for all partitions P ∈
P(ConfT1 ∪ ConfT2), if P is a probabilistic time
bisimulation then there exists B ∈ P such that ei-
ther B ∩ConfT1 = ∅ or B ∩ConfT2 = ∅. Suppose
that B ∈ Layer(T1, i), for some 0 ≤ i ≤ h, where
h = max(level(r1), level(r2)), and consider a path
ρ from r1 to a configuration c ∈ B. Then we can
show by induction that for all j > i there exists
c2 ∈ Layer(T2, j) and c1 ∈ ρ ∩ Layer(T1, j), such
that for some B′ ∈ P and t, χc1(t, B′) > 0 while

χc2(t, B′) = 0. That means that any mismatch in
layer i propagates to all layers j above. In particu-
lar, at level h we have that r1 6∼PT r2.

(only if) Let P be the partition on the union tree. By
Definition 5 every block B ∈ P must contain a rep-
resentative of each tree. Moreover, by Lemma 1 if
c1, c2 ∈ B then level(c1) = level(c2). Thus, the
block at the root level can only contain r1 and r2,
and by Definition 5 it must contain both.

In Figure 1 we illustrate the behaviour of the al-
gorithm QLumping(T1, T2) before stating formally its
correctness, that is that the algorithm always returns
zero if T1 ∼PT T2, and vice versa.

This sketch depicts the situation at the i-th itera-
tion of Algorithm 1 where we have to partition layer Li.
At this point all layers below Li have already been par-
titioned; moreover their partitions are stable and will
not change any further. The configurations cj in layer
Li can make transition to any layer below. In our exam-
ple we assume that there are reachable configurations
dk in layer Li−1 and configurations el in layer Li−2.
We indicate the low-equivalence of two configurations
by shading the corresponding nodes. We assume only
two different environments, namely the one where l = 0
(white nodes) and the one where l = 1 (grey nodes).

The first observation we make is that c1 =L c2, while
c3 has a different value for the low variable. Therefore,
LowSplit(Li) will put c1 and c2 in one block, while c3
will end up in another block. We next concentrate only
on c1 and c2 and determine their joint distributions χck

,
that is the distributions on time and configurations,
Dist(T×Conf), χc1 and χc2 given below.

χc1 d1 d2 d3 d4 d5 d6 e1 e2
t1 p1 0 0 0 0 0 0 0
t2 0 p2 0 0 0 0 0 0
t3 0 0 p3 0 0 0 0 0
t4 0 0 0 0 0 0 0 0
t5 0 0 0 0 0 0 0 0
t6 0 0 0 0 0 0 0 0
t′1 0 0 0 0 0 0 p′1 0
t′2 0 0 0 0 0 0 0 0

χc2 d1 d2 d3 d4 d5 d6 e1 e2
t1 0 0 0 0 0 0 0 0
t2 0 0 0 0 0 0 0 0
t3 0 0 0 0 0 0 0 0
t4 0 0 0 p4 0 0 0 0
t5 0 0 0 0 p5 0 0 0
t6 0 0 0 0 0 p6 0 0
t′1 0 0 0 0 0 0 0 0
t′2 0 0 0 0 0 0 0 p′2

To simplify the presentation, let us assume that all
transitions to layer Li and Li−1 take the same time,
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Fig. 1 QLumping at layer Li

e.g. t1...6 = t and t′1,2 = t′. This is, of course, in general
not the case: It is usually possible that configurations
in the same layer are reached with different times. This
assumption however simplifies the joint distributions we
need to consider which becomes:

χc1 d1 d2 d3 d4 d5 d6 e1 e2
t p1 p2 p3 0 0 0 0 0
t′ 0 0 0 0 0 0 p′1 0

χc2 d1 d2 d3 d4 d5 d6 e1 e2
t 0 0 0 p4 p5 p6 0 0
t′ 0 0 0 0 0 0 0 p′2

Note that the normalisation condition for tPTS’s means
that p1 + p2 + p3 + p′1 = 1 and p4 + p5 + p6 + p′2 = 1.

As said before, the layers below Li have already
been partitioned and we know to which block every
configuration belongs to. Clearly, this partition must
reflect (i) the layer structure, i.e. the dk’s cannot belong
to the same block or class as the el’s (cf. Lemma 1), and
(ii) the value of the low variables forces the differently
shaded dk’s into different blocks. For the purpose of this
example, let us assume that the blocks in Li−1 and Li−2

are such that they obey only these two constraints, i.e.
that we have three relevant blocks below Li, namely
B0 = {d1, d2, d6} and B1 = {d3, d4, d5} in layer Li−1

and B′ = {e1, e2} in layer Li−2. There might be oth-
ers but they are not reachable from our configurations
c1 and c2 and we thus can ignore them now. The joint
distributions which give the probabilities of reaching
blocks in certain times, i.e. χcj

∈ Dist(T × P(Conf))
are the following:

χc1 B0 B1 B
′

t p1 + p2 p3 0
t′ 0 0 p′1

χc2 B0 B1 B′

t p6 p4 + p5 0
t′ 0 0 p′2

Thus, c1 and c2 will belong to the same class if and
only if χc1 = χc2 , i.e. if and only if p1+p2 = p6, p4+p5 =
p2 and p′1 = p′2.

Proposition 2 T1 ∼PT T2 iff QLumping(T1, T2) re-
turns δ = 0.

Proof (if) If QLumping(T1, T2) returns δ = 0, then
for each layer n of T1 and T2 the computation of
δ must result in zero. Thus, we have that at level
h = max(Height(T1),Height(T2)) the difference
‖χc1 − χc2‖∞) between the two roots must be zero.
This implies that both c1 and c2 must belong to
layer n. In fact, if c1 would be missing then the
above difference would be 1 and similarly for if c2
would not belong to layer n. Therefore, we have that
c1 ∼PT c2 and by Proposition 1 we conclude that
T1 ∼PT T2.

(only if) Consider the partition P = {Bj}j on ConfT1∪
ConfT2 . Lemma 1 guarantees that every block Bj
is all contained in one only layer Li. Moreover, by
Definition 5 we have that for all j, Bj ∩ConfT1 6= ∅
and Bj ∩ConfT2 6= ∅.
Suppose by contradiction that QLumping(T1, T2)
returns δ 6= 0. Then there must be a layer n, 0 ≤
n < h where Algorithm 2 computes δ > 0. Note
that because of Proposition 1 n cannot be h. Let
n be the minimal layer where δ becomes not zero.
Then the procedure CompDelta() called at the n-
th iteration must calculate β > 0. This means that
for all c1 ∈ Layer(T1, n) and c2 ∈ Layer(T2, n),
χc1 6= χc2 must hold. This implies that at least one
block at layer n doesn’t have a representative in one
of the two trees, which contradicts the hypothesis.

Corollary 1 (Correctness of Algorithm 1) P is
PT-secure iff for any pair of initial configurations c1, c2
the corresponding execution trees T1 and T2 are such
that QLumping(T1, T2) returns δ = 0.

Proof By Definition 6 and Proposition 2.
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6.4 A Weighted Version: δ′

The actual value of δ is determined by the way we com-
pute the best match between the joint probability dis-
tributions χc1 and χc2 in line 8 of CompDelta(L1, L2).
In order to compute δ we use the supremum norm,
‖ · ‖∞, between two distributions, i.e. the largest ab-
solute difference between corresponding entries in χc1
and χc2 , respectively. In other words, we try to identify
a class of states C (in the layer below) and a time in-
terval t such that the probability of reaching this class
in that time from c1 differs maximally from the one for
c2.

Example 4 To illustrate the possible problems with δ

let us consider three very simple PTS’s.
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2 :1
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It is clear that all three execution trees fail to be
bisimilar. If we compute δ via QLumping(., .) we obtain
in the first two layers (starting from the leaves) perfect
correspondence: The nodes 3 and 4 in all three trees
represent leaf nodes and thus all belong to the same
class. The same is true for the states 2 in all three trees
– they can all only go to nodes in the leaf node class
with the same accumulated probability 1, thus they also
belong to the same class, which we can call C2. This
means that up to this level the (maximal) δ we obtain
is still 0.

If it comes to the third iteration however, we can
then finally establish that the three trees are not bisim-
ilar and that δ 6= 0. We have three different time stamps
t1 = 1, t2 = 1.1 and t3 = 100. If we consider the proba-
bilities of reaching the class C2 in each of the execution
trees by starting from the root nodes r1, r2 and r3 then
the joint distributions χri

∈ Dist({t1, t2, t3} × {C2})
are represented by 3× 1 matrices, as we can only reach
a single class, namely C2. Concretely we have:

χr1 C2

t1 1
t2 0
t3 0

χr2 C2

t1 0
t2 1
t3 0

χr3 C2

t1 0
t2 0
t3 1

If we compute δij between tree i and j as the norm
difference we get

δij = ‖χri
− χrj

‖∞ = 1

for all i 6= j. Note that we would get essentially the
same δ using any other vector norm.

One can argue that this is a fair approach as we
treat all classes and time labels the same way, namely
as completely different. However, it might be useful to
develop a measure which reflects the fact that certain
times and classes are more similar than others. In the
above cases it might seem reasonable to say that the
first two trees which have a minimal running difference
in the first step are more similar than they are both
to the last tree which has an about 100 times longer
execution time.

From the point of view of the attacker, such a mea-
sure would encode his/her ability in detecting similarity
as given by the nature and the precision of the instru-
ments he/she is actually using. For example, suppose
it is possible to reach the same class C from c1 and
c2 with different times t1 and t2, such that the cor-
responding probabilities determine δ (i.e. we have the
maximal difference in this case). However, we might in
certain circumstances also want to express the fact that
t1 and t2 are more or less similar, e.g. for t1 = 10 and
t2 = 10.5 we might want a smaller δ′ than for t1 = 1
and t2 = 100. In terms of the attacker, this means that
we make our estimate dependent on the actual power
of the time detection instrument that he/she possesses.

In order to incorporate similarity of times and/or
classes we need to modify the way we determine the
best match in line 8 of CompDelta(L1, L2). Instead
of determining the norm between χc1 and χc2 we can
compute a weighted version as:

β ← min(β, ‖ω · χc1 − ω · χc2‖∞)

or simply

β ← min(β, ‖ω · (χc1 − χc2)‖∞),

where ω re-scales the entries in χc1 and χc2 so as to
reflect the relative importance of certain times and/or
classes. Note that “·” denotes here the component-wise
and not the matrix multiplication: (ω · χ)tC = ωtCχtC .
If, for example, an attacker is not able to detect the
absolute difference between times but can only measure
multiplicities expressing approximative proportions, we
could re-scale the χ’s via ωtC = log(t).

In the following we will use a weighted version δ′

which reflects the similarity of classes. The idea is to
weight according to the “replaceability” of a class. To
this purpose we associate to every class (in the layers
below) a matching measure µ(C) = minC 6=C′ δ′(C,C ′),
i.e. we determine the δ′ between a (sub)tree with a root
in the class C in question and all (sub)trees with roots
in any of the other classes C ′. We can take any represen-
tative of the classes C and C ′ as these are by definition
bisimilar. The measure µ indicates how easy it is to re-
place class C by another one, or how good/precise is
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the attacker in distinguishing successor states. Then δ′

is simply the weighted version of δ as described above
with ωtC = µ(C). Note that there is no problem with
the fact that δ′ is defined recursively as we always know
the δ′ in the layers below, before we compute δ′ in the
current layer.

Example 5 In order to illustrate how δ and δ′ quantify
the difference between various execution trees, let us
consider the following four trees.
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We abstract from the influence of different transition
times and individual state labels, i.e. we assume that
t = 1 for all transitions and that all states are labelled
with the same label.

If we compute the δ and δ′ values between all the
pairs of systems we get the following results:

δ T1 T2 T3 T4

T1 0.000 0.500 1.000 0.000
T2 0.500 0.000 1.000 0.500
T3 1.000 1.000 0.000 1.000
T4 0.000 0.500 1.000 0.000

δ′ T1 T2 T3 T4

T1 0.000 0.250 0.125 0.000
T2 0.250 0.000 0.125 0.250
T3 0.125 0.125 0.000 0.125
T4 0.000 0.250 0.125 0.000

From this we see that δ and δ′ are symmetric, i.e. the
difference between two systems is symmetric; that every
system is bisimilar with itself, i.e. δ = 0 = δ′ (as we have
an empty diagonal); and that the difference between
two systems is between zero and one with values in
between very well possible.

It is important to note that the theoretical frame-
work, which the measure δ is based on, does not allow
for the combination of ‘bisimilarity’ and ‘label similar-
ity’ at the base of the definition of δ′. Developing a

process algebraic framework supporting a measure like
δ′ is certainly an interesting route to follow, though not
in this paper. As we already pointed out, our aim here is
to discuss the analysis of the trade-off between security
and other security costs, and how this can be done in a
formal way – using essentially the framework of static
program analysis – without references to “experience”,
“experiments” or “good practice”.

7 Program Transformation

In [3] Agat introduces a program transformation to re-
move covert timing channels (timing leaks) from pro-
grams written in a sequential imperative programming
language. The language used is a language of security
types with two security levels that is based on earlier
work by Volpano and Smith [20,1]. Whilst Volpano and
Smith restrict the condition in both while-loops and if-
commands to being of the lowest security level, Agat
allows the condition in an if-command to be high se-
curity providing that an external observer cannot de-
tect which branch was taken. He shows that if a pro-
gram is typeable in his system, then it is secure against
timing attacks. This result depends critically on a no-
tion of Γ - bisimulation: an if-command with a high se-
curity condition is only typeable if the two branches
are Γ -bisimilar. Agat’s notion of bisimilarity is timing
aware and based on a notion of low-equivalence which
ensures stepwise non-interference. He does not give an
algorithm for bisimulation checking.

If a program fails to type, Agat presents a transfor-
mation system to remove the timing leak. The trans-
formation pads the branches of if-commands with high
security conditions with dummy commands. The objec-
tive of the padding is that both branches end up with
the same timing and thus become indistinguishable by
an external observer. The transformation utilises the
concept of a low-slice: for a given command C, its low-
slice CL has the same syntactic structure as C but
only has assignments to low security variables; all as-
signments to high security variables and branching on
high security conditions are replaced by SkipAsn com-
mands of appropriate duration. The transformation in-
volves extending the branches in a high security if-
command by adding the low-slice from the other branch.
The effect of this transformation is that the timing
of the execution of both branches are the same and
equal to the sum of timing of the two branches in the
non-transformed program. Agat demonstrates that the
transformation is semantically sound and that trans-
formed programs are secure.

In order to extend this system to our language, we
only have to add a rule for the choose statement (essen-
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(AssignH)
Γ `≤ e : τs Γ `= x : τH s ≤ H

Γ ` x := e : skipAsn x e

(AssignL)
Γ `≤ e : τL Γ `= x : τL

Γ ` x := e : x := e

(Seq) Γ ` C : CL Γ ` D : DL
Γ ` C;D : CL;DL

(IfH)
Γ `≤ e : BoolH Γ ` C : CL Γ ` D : DL

Γ ` if (e) then C else D : skipIf e CL
CL ∼ DL

(IfL)
Γ `≤ e : BoolL Γ ` C : CL Γ ` D : DL

Γ ` if (e) then C else D : if (e) then CL else DL

(While)
Γ `≤ e : BoolL Γ ` C : CL

Γ ` while (e) do C : while (e) do CL

(Choose) Γ ` C : CL Γ ` D : DL
Γ ` choosep C or D : choosep CL or DL

(SkipAsn)
Γ ` skipAsn x e : skipAsn x e

(SkipIf) Γ ` C : CL
Γ ` skipIf e C : skipIf e CL

Table 2 Security Typing Rules

tially a straightforward extension of the rule for if). In
detail, we present the typing rules in Table 2. Note that
the rule (IfH) refers to the semantic notion of timed
bisimilarity, as introduced in Section 5.1.

7.1 Probabilistic Transformation

We consider a probabilistic variant of Agat’s language.
Probabilities play an important role in the transforma-
tion. Rather than just adding the low slice from the
other branch to each branch of a high security con-
ditional, we transform each branch to make a proba-
bilistic choice between its padded and untransformed
variant. This allows us to trade-off the increased run-
time of the padded program versus the vulnerability
to attack of the untransformed program. The transfor-
mation described is just one on a whole spectrum of
probabilistic transformations – at the other extreme we
could probabilistically decide whether or not to execute
each command in the low slice.

All the formal transformation rules for probabilis-
tic padding are the same as in [3]. The only exception
is the rule (IfH): Here we replace – provided certain
typing conditions are fulfilled – the branches of an if
statement not just by the correctly “padded” version
as in [3]; instead we introduce in every branch a choice
such that the secure replacement will be executed only

with probability p while with probability 1−p the orig-
inal code fragment will be executed.

The judgments or transformation rules in Table 3
are of the general form:

Γ ` C ↪→ D | DL

which represents the fact that with a certain (security)
typing Γ we can transform the statement C into D –
we also record, as a side-product, the low slice DL of
D.

In order to transform programs into secure versions
we need to introduce an auxiliary notion, namely the
notion of global effect ge(C) of commands. This is used
to identify (global) variables which might be changed
when a command C is executed. Here is its formal def-
inition (following [3]):

ge(x := e) = {x}
ge(C1;C2) = ge(C1) ∪ ge(C2)

ge(if (e) then C1 else C2) = ge(C1) ∪ ge(C2)
ge(while (e) do C) = ge(C)

ge(choosep C1 or C2) = ge(C1) ∪ ge(C2)
ge(skipAsn x e) = ∅
ge(skipIf e C) = ge(C).

In our version of the language we have omitted local
variables (the let statement in Agat’s version of the
language). As a consequence we have that the side-
conditions ge(D1L) = ∅ and ge(D2l) = ∅ in rule ifH
in Table 3 effectively prevent any assignments, i.e. the
low slices D1L and D2l are “depleted”: they have no
effect on the value of any variable but only spend com-
putational time.

Note that our transformation – contrary to the one
presented in [3] – is “probabilistic” in the sense that
even if we start with a deterministic program C the
transformed program D will in general be probabilistic.
This is due to rule (If)H where we introduce a proba-
bilistic choice which depends on a probabilistic param-
eter p ∈ [0, 1]. To indicate the dependency on p we will
also write

Γ ` C ↪→p D | DL.

In rule ifH we consider the case that a conditional
is controlled by a high variable or, more general, a high
expression e. In this case we need to obfuscate the tim-
ing behaviour. Otherwise it would in general be possible
for an attacker who can observe the execution time to
distinguish which of the two branches was executed and
thus conclude (at least partially) which values the high
variables in e had.

The idea in [3] was to add to each branch the “de-
pleted” version of the other branch. This does not change
the semantics with respect to what is computed but
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(AssignH)
Γ `≤ e : τs Γ `= x : τH s ≤ H
Γ ` x := e ↪→ x := e | skipAsn x e

(AssignL)
Γ `≤ e : τL Γ `= x : τL

Γ ` x := e ↪→ x := e | x := e

(Seq)
Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L

Γ ` C1;C2 ↪→ D1;D2 | D1L;D2L

(IfH)
Γ `≤ e : BoolH Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L ge(D1L) = ∅ ge(D2L) = ∅

Γ ` if (e) then C1 else C2 ↪→ if (e) then (choosep D1;D2L or D1)else (choosep D1L;D2 or D2)

| choosep (skipIf e (D1L;D2L)) or (if (e) then D1L else D2L)

(IfL)
Γ `≤ e : BoolL Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L

Γ ` if (e) then C1 else C2 ↪→ if (e) then D1 else D2 | if (e) then D1L else D2L

(While)
Γ `≤ e : BoolL Γ ` C ↪→ D | DL

Γ ` while (e) do C ↪→ while (e) do D | while (e) do DL

(Choose)
Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L

Γ ` choosep C1 or C2 ↪→ choosep D1 or D2 | choosep D1L or D2L

(SkipAsn)
Γ ` skipAsn x e ↪→ skipAsn x e | skipAsn x e

(SkipIf)
Γ ` C ↪→ D | DL

Γ ` skipIf e C ↪→ skipIf e D | skipIf e DL

Table 3 Probabilistic Program Transformation

gives both branches the same timing behaviour. Inde-
pendently of the value of e we thus always get the same
time behaviour of the padded conditional. The corre-
sponding rule in [3, fig. 9] is thus:

(IfH)

Γ `≤ e : BoolH
Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L

ge(D1L) = ∅ ge(D2L) = ∅
Γ ` if (e) then C1 else C2 ↪→

if (e) then (D1;D2L) else (D1L;D2)
| skipIf e (D1L;D2L)

Our variation on this theme is to introduce this fix-
ing or padding only with a certain probability p, we thus
have after the transformation a probabilistic program
which performs with probability p the padded version
and with 1 − p the original program. The low slice on
the right hand side in ifH implements the pure timing
behaviour of the padded version of the conditional. We
fix the timing leak only with probability p and thus the
low slice of the conditional also retains (with this prob-
ability) a dependency on the value of e. We could also
use a slightly different version of rule ifH which per-

forms the same transformation but describes the low
slice slightly differently.

(If′H)

Γ `≤ e : BoolH
Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L

ge(D1L) = ∅ ge(D2L) = ∅
Γ ` if (e) then C1 else C2 ↪→

if (e) then (choosep D1;D2L or D1)
else (choosep D1L;D2 or D2)
| if (e) then (choosep D1L;D2L or D1L)
else (choosep D1L;D2L or D2L)

7.2 Deterministic Programs

Our next aim is to show that the probabilistic program
transformation in Table 3 is correct, in the sense that
if we take p = 1 in rule (If)H , then the transformation
Γ ` C ↪→ D | DL produces a PT-secure program D. We
will approach this issue by first considering the original
transformation of deterministic programs by Agat.

The first step we have to consider concerns the re-
lationship between the semantics of choose1 C1 or C2

and C1, and choose0 C1 or C2 and C2, respectively.
We use the following notation to denote timing labels:

ts ::= ti · ts | ε
as ::= ti · as |

√
· as | ε.
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Execution paths in Agat’s language are thus labelled
with ts or as depending on whether an execution se-
quence terminates or not. In the probabilistic language,
executions are labelled instead by p : ts or p : as, where
p denotes the probability that the corresponding path is
actually taken. This probability is obtained in the usual
way by the product of probabilities along the path.

We will identify deterministic paths labelled by 1 :
as or 1 : ts with paths labelled just with as or ts, re-
spectively. Furthermore, we treat paths with probabil-
ity zero as ‘impossible’, i.e. they are not in the transition
relation1, and we identify configurations which can be
reached ‘instantaneously’ i.e. where as = 0 or ts = 0.

We then can easily establish that the semantics of
choose1 C1 or C2 and choose0 C1 or C2 is identical
with that of C1 and C2 respectively (provided the choice
is made instantaneously).

Lemma 2 Let C1 and C2 be two deterministic pro-
grams and assume that tch = 0. Then we have for all
environments E that C1 and choose1 C1 or C2 are
semantically equivalent, i.e we have:

〈E | C1〉
ts // 〈E′ | C ′1〉

iff

〈E | choose1 C1 or C2〉
1:ts // 〈E′ | C ′1〉

and

〈E | C1〉
as // E′

iff

〈E | choose1 C1 or C2〉
1:as // E′,

and C2 and choose0 C1 or C2 are semantically equiv-
alent, i.e

〈E | C2〉
ts // 〈E′ | C ′1〉

iff

〈E | choose0 C1 or C2〉
1:ts // 〈E′ | C ′2〉

and

〈E | C2〉
as // 〈E′ | C ′1〉

iff

〈E | choose0 C1 or C2〉
1:as // 〈E′ | C ′2〉.

Proof This follows directly from comparing the rules in
Table 1 and the ones in Figure 5 in [3].

1 Arguably this introduces conceptual and/or philosophical
problems, but has no influence on the mathematical description

of finite computations.

For tch 6= 0 we have essentially the same result ex-
cept that in this case every execution path starting with
〈E | choose1/0 C1 or C2〉 is (slightly) longer then the
one starting with C1 or C2, respectively. We will as-
sume in the following tch = 0 unless otherwise stated.
Our results can be generalised easily to the case tch 6= 0.

For deterministic programs C the transformation in
[3] and the one in Table 3 agree (modulo semantical
equivalence).

Proposition 3 Given a deterministic programs C and
assuming tch = 0 then if

Γ ` C ↪→ D | DL

according to [3, Fig. 9] then also

Γ ` C ↪→1 D
′ | D′L

following Table 3, and vice versa, so that D and DL are
semantically equivalent to D′ and D′L, respectively.

Proof The proof relies on the fact that deterministic
programs C in our languages are also programs in Agat’s
language with the same typing information Γ . The trans-
formations in [3, Fig. 9] – omitting the (Let) and (Out-
put) rules – are identical to the ones in Table 3 with
the exception of rule IfH .

By Proposition 3 we have for p = 1 semantically
equivalent behaviours for D and D′ as well as for DL

and D′L.

The next step is to relate our notion of PT -security
to the one by Agat. In [3] security is described via a
slightly different notion of bisimilarity, namely so-called
Γ -bisimilarity, which is strong enough to cover deter-
ministic programs.

Definition 9 Γ -Bisimilarity∼Γ is the largest symmet-
ric relation on commands that satisfies: C1 ∼Γ C2 if for
all E1, E2 such that E1 =L E2 we have

〈E1 | C1〉
as // 〈E′1 | D1〉

implies

〈E2 | C2〉
as // 〈E′2 | D2〉

and E′1 =L E2 and D1 ∼Γ D2, as well as

〈E1 | C1〉
ts·
√

// E′1

implies

〈E2 | C2〉
ts·
√

// E′2

and E′1 =L E
′
2.



20

A program C in Agat’s language is then called Γ -
secure iff C ∼Γ C (cf Definition 2 in [3]. This notion
can obviously also be applied to deterministic programs
in our language.

For deterministic programs we can see easily that
Γ -security implies PT -security based on the following
result.

Proposition 4 Given two deterministic programs C1

and C2 then C1 ∼Γ C2 implies C1 ∼PT C2.

Proof We only consider deterministic programs. The
distributions χ in the definition of PT -bisimilarity thus
degenerate to point distributions. In other words, we
have only at most one successor to any given configura-
tion and all execution trees degenerate to single paths
without any choice points.

Γ -bisimilarity requires that executions starting in
bisimilar configurations reach observable successor con-
figurations (i.e. where low variables change their value
or where we have termination

√
) along paths with iden-

tical labels as or ts. PT -bisimilarity on the other hand
requires the same execution length as it is based on the
abstract semantics, i.e. PT -bisimilarity requires that
the sum of labels, as in Definition 3 (iv), are the same.
Clearly as = as′ and ts = ts′ imply that

∑
as =

∑
as′

and
∑
ts =

∑
ts′, respectively.

The reverse of Proposition 4 does not hold as the
following example shows.

Example 6 Consider

C1 = h:=0; (if true then h:=0)

and

C2 = (if true then h:=0); h:=0

The relevant execution sequences leading to termina-
tion (no intermediate configuration is observable) for
Γ -bisimilarity are

〈E | C1〉
te·tx·tasn·te·tbr·te·tx·tasn

√
// E′

〈E | C2〉
te·tbr·te·tx·tasn·te·tx·tasn·

√
// E′

with as1 6= as2. On the other hand we have for the
abstract semantics in the definition of PT -bisimilarity:

〈E | C1〉
1:te+tx+tasn+te+tbr·te+tx+tasn +3 E′

〈E | C2〉
1:te+tbr+te+tx+tasn+te+tx+tasn +3 E′

which have the same labels.

As an immediate consequence of Proposition 4 we
have:

Corollary 2 Given a deterministic program C then if
C is Γ -secure then it is also PT -secure.

Agat establishes in Theorem 4 in [3] that the (de-
terministic) transformation of deterministic programs
results in secure programs, cf [3, Thm 4].

Theorem 1 If Γ ` C ↪→ D | DL then D is Γ -secure.

As our transformation with p = 1 and Agat’s are the
identical for deterministic programs – more precisely,
give semantically equivalent transformed programs, as-
suming tch = 0 – we thus have reduced the correctness
of our transformation in Table 3 for deterministic pro-
grams to that of Agat.

Proposition 5 Given a deterministic program C, as-
sume that tch = 0. Then the transformed program D we
obtain with p = 1 via

Γ ` C ↪→1 D | DL

is PT-secure.

Proof By Theorem 4 in [3] we know that D is Γ -secure
and by Corollary 2 it is therefore also PT -secure.

7.3 Probabilistic Programs

We have now established for deterministic programs a
close relationship between Agat’s notion of Γ -security
and our notion of PT -security and thus were able to
utilise the results in [3] in order to prove the correct-
ness of our transformation in the case of deterministic
programs. We will next consider probabilistic programs.

In order to cover also probabilistic programs we first
show that the choice between two PT-secure programs
results in a PT-secure one, i.e. choices do not leak any
timing information.

Lemma 3 Given any two PT-secure programs C1 and
C2 then choosep C1 or C2 is PT-secure for all p ∈
[0, 1].

Proof In order to show that choosep C1 or C2 is PT-
secure we have to show that for any two environments E
and E′ with E =L E

′ we have 〈E | choosep C1 or C2〉 ∼
〈E′ | choosep C1 or C2〉.

By Definition 4 this means that we have to show
that for 〈E | choosep C1 or C2〉 ⇒ χ and any other
〈E′ | choosep C1 or C2〉 ⇒ χ′ the successor distribu-
tions χ and χ′ fulfil χ ∼∗L χ′.

We assume, as before, that tch = 0. We then can
consider the successor distributions 〈E | C1〉 ⇒ χ1 and
〈E | C2〉 ⇒ χ2 in order to construct χ = pχ1 +(1−p)χ2

as a linear (convex) combination of χ1 and χ2. Similarly,
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for 〈E′ | C1〉 ⇒ χ′1 and 〈E′ | C2〉 ⇒ χ′2 we get χ′ =
pχ′1 + (1− p)χ′2.

We know that C1 and C2 are PT -secure which means
that χ1 ∼∗L χ2 and χ′1 ∼∗L χ′2. This implies immediately

χ = pχ1 + (1− p)χ2 ∼∗L pχ′1 + (1− p)χ′2 = χ′

Note that this proof relies essentially on the fact
that the successor distribution of a choice construct
choosep C1 or C2 can be constructed as a linear com-
bination of the corresponding distributions associated
to the alternatives C1 and C2. As a consequence it is
easy to generalise our arguments to other probabilis-
tic extensions of deterministic languages; for example,
allowing for not just two alternatives but n-ary choices.

Proposition 6 Given any two (probabilistic) programs
C1 and C2 which are transformed according to:

C1 ↪→1 C
′
1 | C1L

C2 ↪→1 C
′
2 | C2L

then choosep C ′1 or C ′2 is PT-secure.

Proof The proof is by induction on the nested choices
in C1 and C2. The base case case is for C1 and C2

deterministic, which reduces to the previous Lemma 3.

An an immediate consequence of this is the correct-
ness the program transformation in Table 3.

Corollary 3 (Correctness of Transformation) If
Γ ` C ↪→1 D | DL then D is PT -secure.

We established the correctness of the probabilistic
transformation of probabilistic programs (in the case
that p = 1) based on the correctness of determinis-
tic transformations of deterministic programs as pre-
sented in [3]. The critical steps in our line of argument
concerned the relation between Γ -bisimilarity and PT-
similarity (Lemma 4) and the lifting of PT-security of
deterministic programs to probabilistic ones based on
considering the linear combinations of the joint distri-
butions χi (Lemma 3). This suggests that our approach
could be applied easily also to probabilistic extensions
of other languages.

8 Cost Analysis

In a recent article on so-called “Software Bugtraps” in
The Economist the authors report on some ongoing re-
search at NIST on “Software Assurance Metrics and
Tool Evaluation” [19]. They claim that “The purpose
of the research is to get away from the feeling that ‘all
software has bugs’ and say ‘it will cost this much money
to make software of this kind of quality’”, and conclude:

“Rather than trying to stamp out bugs altogether, in
short, the future of ‘software that makes software bet-
ter’ may lie in working out where the pesticide can be
most cost-effectively applied”.

Our aim is to introduce “cost factors” in a similar
way into computer security. Instead of trying to achieve
perfect security we will look at the trade-off between
costs of security counter measures – such as increased
average running time – and the improvement in terms
of security, which we can measure via the δ introduced
above. Even in simple examples we are able to exhibit
interesting effects.

8.1 An Example

Our probabilistic version of Agat’s padding algorithm
allows us to obtain partially fixed programs. Depending
on the parameter p with which we introduce empty low
slices to obfuscate the timing leaks we can determine
the (average) execution time of the fixed program in
comparison with the improvement in security.

Agat presents in his paper [3] an example which it-
self is based on Kocher’s study [2] of timing attacks
against the RSA algorithm. In order to illustrate our
approach we simplify the example slightly: The inse-
cure program agat we start with is depicted on the
left side in Table 4. The fully padded version Agat’s
algorithm produces, fagat, is on the right hand side of
Table 4 (to keep things simple we omit Agat’s empty
statements like SkipAsn s s; as skip as well as s:=s
can be used just to ‘spend time’ without having any
real effect on the store we can use e.g. s:=s in place of
Agat’s SkipAsn s s). The program, pagat, presented
in the middle of Table 4 is the result of probabilistic
padding: The original program agat is transformed in
such a way that the compensating statements, i.e. low
slices, are executed only with probability p while with
probability q = 1− p the original code is executed. For
p = 0 we have the same behaviour as the original pro-
gram agat while for p = 1 this program behaves in the
same way as Agat’s fully padded version fagat.

In our concrete experiments we used the following
assumptions. The variable i can take values in {1, .., 4}
while k is a three element array with values in {0, 1} –
nothing is concretely assumed about s. The variables
k, representing a secret key, and s have security typ-
ing H, while i is the only low variable which can be
observed by an attacker. We implemented this exam-
ple using (arbitrary) execution times: tasn = 3 (assign
time), tbr = 2 (test/branch time), and tskip = 1 (skip
time), and tch = 0 (choice time).

The abstract semantics for the pagat program –
which only records choice points and the moments in
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i := 1;
while i<=3 do
if k[i]==1 then
s := s;

else
skip;

fi;
i := i+1;
od;

i := 1;
while i<=3 do
if k[i]==1 then
choose p: s := s; skip
or q: s := s
ro

else
choose p: s := s; skip
or q: skip
ro

fi;
i := i+1;
od;

i := 1;
while i<=3 do
if k[i]==1 then
s := s; skip

else
s := s; skip

fi;
i := i+1;
od;

Table 4 Versions of Agat’s Program: agat, pagat, and fagat

time when the low variable changes its value – produces
the following execution trees if we start with keys k=011
and k=010:

•
1:5

+3 •
q:4

#+

p:7

3; •
1:2

+3 •
q:6

#+

p:7

3; •
1:2

+3 •
q:6

#+

p:7

3; •
1:1

+3 •

•
1:5

+3 •
q:4

#+

p:7

3; •
1:2

+3 •
q:6

#+

p:7

3; •
1:2

+3 •
q:4

#+

p:7

3; •
1:1

+3 •

One can easily see from this how probabilistic padding
influences the behaviour of a program: For every bit
in the key k – i.e. every iteration – we have a choice
between executing the original code with probability
q = 1 − p or the ‘safe’ code with probability p. The
new code always takes the same time (in our case 7
ticks) while the original code’s execution time depends
on whether k[i] is set or not (either 4 or 6 time steps in
our case). Clearly, for p = 0 we get in every iteration a
different execution time, depending on the bit k[i], and
thus can deduce the secret value k by just observing
the execution times. However, as the execution time is
always the same for the replacement code, it is impos-
sible to do the same for p = 1. For values of p between
0 and 1, the (average) execution times for k[i] = 0 and
k[i] = 1 become more and more similar. This means
in practical terms that the attacker has to spend more
and more time (i.e. repeated observations of the pro-
gram) in order to determine with high confidence the
exact execution time and thus deduce the value of k[i]
(cf. e.g. [12]).

The price we have to pay for increased security, i.e.
indistinguishability of behaviours, is an increased (aver-
age) execution time. The graph on the left in Figure 2
shows how the running time (vertical axis) increases
in dependence of the padding probability p (horizon-

tal axis) for the eight execution trees we have to con-
sider in this example, i.e. for k = 000, k = 001, k = 010,
etc. Depending on the number of bits set in k we get
four different curves which show how, for example for
k = 000 the running time increases from 29 time steps
(for p = 0, i.e. agat program) to 38 (for p = 1, i.e.
fagat program).

We can employ the bisimilarity measures δ and δ′ in
order to determine the security of the partially padded
program. For this we compute using our algorithm δ(ki, kj)
and δ′(ki, kj) for all possible keys, i.e. i, j = 0, . . . 7. It
turns out that δ = 1 for all values of p < 1 and any pair
of keys ki and kj with i 6= i; only for p = 1 we get, as
one would expect, δ = 0 for all key pairs. The weighted
measure δ′ is more sensitive and we get for example for
p = 0.5 the following values when we compare ki and
kj :

δ′ 000 001 010 011 100 101 110 111
000 0.000 0.125 0.250 0.125 0.500 0.125 0.250 0.125
001 0.125 0.000 0.125 0.250 0.125 0.500 0.125 0.250
010 0.250 0.125 0.000 0.125 0.250 0.125 0.500 0.125
011 0.125 0.250 0.125 0.000 0.125 0.250 0.125 0.500
100 0.500 0.125 0.250 0.125 0.000 0.125 0.250 0.125
101 0.125 0.500 0.125 0.250 0.125 0.000 0.125 0.250
110 0.250 0.125 0.500 0.125 0.250 0.125 0.000 0.125
111 0.125 0.250 0.125 0.500 0.125 0.250 0.125 0.000
The diagonal entries are, of course, all zero as every ex-
ecution tree is bisimilar to itself. The other entries how-
ever are different from 0 and 1 and reflect the similarity
between the two keys and thus the resulting execution
trees. If we plot the development of δ′ as a function of p
we observe only three patterns as depicted in the right
graph in Figure 2. In all three cases δ′ decreases from
an original value 1 to 0, but in different ways.

In analysing the trade-off between increased running
time and security we need to define a cost function. For
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Fig. 2 Running Time t(p) and Security Level δ′(p) as Functions

of p

example, one could be faced with a situation where a
certain code fragment needs to be executed in a cer-
tain maximal time, i.e. there is a (cost) penalty if the
execution takes longer than a certain number of micro-
seconds. In our case we will consider a very simple cost
function c(p) = 6δ′(p) + t(p) with δ′(p) and t(p) the
average δ′ between all possible execution trees and t

the average running time. The diagram in Figure 3 de-
picts how c(p), δ′(p) and t(p) depend on the padding
parameter p.

One can argue about the practical relevance of the
particular cost function we chose. Nevertheless, this ex-
ample illustrates already nicely the non-linear nature of
security cost optimisation: The optimal, i.e. minimal,
cost is reached in this case for p = 0.5, i.e. keeping the
cost of security counter measures in mind it is better
to use a “half-fixed” program rather than a completely
safe one.

9 Related and Further Work

The idea of defining a secure system via the requirement
that an attacker must be unable to observe different be-
haviours as a result of different secrets – i.e. the system
“operates in the same way” whatever value a secret key
has – goes back at least to the seminal work of Goguen
and Meseguer [21].

This led in a number of settings to formalisations of
security concepts such as “non-interference” via various
notions of behavioural equivalences (see e.g. [22–24]).
One of the perhaps most prominent of these equivalence
notions, namely bisimilarity, plays an important role in
the context of the security of concurrent systems. It also
finds applications for sequential programs, like e.g. in
Agat’s work, where bisimulation allows for taking into
account the interaction of the programs with the typ-
ing environment (see later for more explanations). In
order to allow for a decision-theoretic analysis of secu-
rity countermeasures and associated efforts it appears
to be desirable to introduce a “quantitative” notion of
the underlying behavioural equivalence. In the case of
bisimilarity a first step was the introduction of the no-
tion of probabilistic bisimulation by Larson and Skou
[10]. However, this notion turns out to be still too strict
and a number of researchers developed “approximate”
versions. Among them we just name the approaches by
Desharnais et.al. [25,26] and van Breugel [27] and our
work [13,29] (an extensive bibliography on this issue
can be found in [28]). We based this current paper on
the latter approach because it allows for an implemen-
tation of the semantics of pWhile via linear operators,
i.e. matrices, and an efficient computation of δ and δ′

using standard software such as octave [30]. Another
way of quantifying security leakage is via a measure-
ment of the information flow. Various proposals appear
in the literature which use nondeterminism [31], belief
theory [32], information theory [33–35].

Further research will be needed in order to clar-
ify the relation between our approach and the above-
mentioned information theoretic approaches.
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10 Conclusions

In this paper we developed a notion of security, PT-
security, which lifts the concepts of Γ -bisimilarity and
Γ -security introduced in [3] for deterministic programs
to probabilistic programs. We discussed in Section 3.2
the possible problems with such a generalisation and
pointed out that our lifting is able to model the cor-
relation between the two aspects of time and proba-
bility rather than considering them as independent of
each other. We then extended the padding based pro-
gram transformation in [3] in two ways. Firstly, our
transformation can be applied to deterministic as well
as probabilistic programs, and, secondly, the padding
is parametric, i.e. we can introduce the compensating
code fragments with a certain, pre-described probabil-
ity p which expresses the the “strength” or “intensity”
of the repair transformation.

We then established the correctness of our proba-
bilistic padding in the case of p = 1. Having shown
the conservativity of our approach with respect to the
deterministic case, in our proofs we could re-use the re-
sults for the deterministic case, i.e. we could lift Agat’s
results for Γ - bisimilarity and Γ -security.

Clearly, padding leads to a performance penalty.
We then shown how the probabilistic parameter of our
transformation can be utilised for trading security for
performance showing a method which involves a cost
analysis similar to the ones well known in economics
[36,37].

In order to deal with such optimisation problems
where we try to balance security and additional secu-
rity costs, it was necessary to consider not only approx-
imate counter measures (probabilistically fixing leaks)
but also approximate notions and quantitative mea-
sures of security. A number of such security measures
have been proposed within the last decade – e.g. [11] or
information theoretic ones like in [33,34,14,35]. In this
paper, our aim was not to extend the list or compare
the advantages and disadvantages of these proposals.
Instead, we were mainly interested in fixing security
leaks in a approximate way. Our central theses are: (i)
it can make sense to not fix a time leak completely but
instead – given the additional security costs – to settle
for a partial solution; and (ii) the analysis of such a
trade-off situation (security vs. costs) can be done in a
formal way.

In conclusion, coming back to the question posed in
the title of this paper: Should we close a timing covert
channel or not? our answer triggers a counter question:
How much are you willing to pay for security? As we
also propose a continuum between complete closure and
non-closure, depending on how much noise we intro-
duce, we are able to achieve a desired level of security
in exchange for a certain increase in ‘costs’, e.g. av-
erage running time. The answer to the title question,
thus, is a problem of optimal resource allocation: Close
the channel as much as you need in order to achieve
the best security for the price you are willing to pay. It
may seem surprising, but it might be more economical
not to close a leak completely.
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