Non-Existence of Entities (Sci.American 1980s)

There are objects/entities which one can describe but which can’t exist (maybe because their description is “faulty”), one example:

Describe really large numbers, using \(n \) symbols, e.g. \(n = 3 \). Maybe this could be 999, better 9\(^9\), or (hexadecimal) \(F_{16}F_{16} \), . . .

LARGEST \(n \in \mathbb{N} \) DESCRIBED BY AT MOST 43 SYMBOLS

\[
7 + 3 + 9 + 2 + 2 + 4 + 2 + 7 = 36 + 7 \text{ spaces} \Rightarrow 43 \text{ symbols}
\]

Thus, we can’t have the largest number described with 45 symbols:

LARGEST \(n \in \mathbb{N} \) DESCRIBED BY AT MOST 45 SYMBOLS

Halting Problem for Register Machines

Definition. A register machine \(H \) decides the Halting Problem if for all \(e, a_1, \ldots, a_n \in \mathbb{N} \), starting \(H \) with

\[
R_0 = 0 \quad R_1 = e \quad R_2 = \llbracket a_1, \ldots, a_n \rrbracket
\]

and all other registers zeroed, the computation of \(H \) always halts with \(R_0 \) containing 0 or 1; moreover when the computation halts, \(R_0 = 1 \) if and only if

- the register machine program with index \(e \) eventually halts when started with \(R_0 = 0, R_1 = a_1, \ldots, R_n = a_n \) and all other registers zeroed.

Theorem No such register machine \(H \) can exist.
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- Let H' be obtained from H by replacing $START \rightarrow$ by $START \rightarrow \begin{array}{c} Z := R_1 \\ \text{push } Z \\ \text{to } R_2 \end{array}$ (where Z is a register not mentioned in H's program).
- Let C be obtained from H' by replacing each HALT (& each erroneous halt) by $\begin{array}{c} R_0^- \\ R_0^+ \end{array} \rightarrow \rightarrow R_0^+$. $HALT$
- Let $c \in \mathbb{N}$ be the index of C’s program.

Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts if and only if

H' started with $R_1 = c$ halts with $R_0 = 0$ if and only if

H started with $R_1 = c$, $R_2 = \Gamma[c]^{-}$ halts with $R_0 = 0$ if and only if

$\text{prog}(c)$ started with $R_1 = c$ does not halt if and only if

C started with $R_1 = c$ does not halt

Contradiction!
Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e : \mathbb{N} \rightarrow \mathbb{N}$ be the unary partial function computed by the RM with program $\text{prog}(e)$. So for all $x, y \in \mathbb{N}$:

$$\varphi_e(x) = y \text{ holds iff the computation of } \text{prog}(e) \text{ started with } R_0 = 0, R_1 = x \text{ and all other registers zeroed eventually halts with } R_0 = y.$$

Thus

$$e \mapsto \varphi_e$$

defines an onto function from \mathbb{N} to the collection of all computable partial functions from \mathbb{N} to \mathbb{N}.

Notice that the collection of all computable partial functions from \mathbb{N} to \mathbb{N} is countable. So $\mathbb{N} \rightarrow \mathbb{N}$ (uncountable, by Cantor) contains uncomputable functions.
An uncomputable function

Let \(f \in \mathbb{N} \rightarrow \mathbb{N} \) be the partial function \(\{(x, 0) \mid \varphi_x(x) \uparrow\} \).

Thus \(f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ \text{undefined} & \text{if } \varphi_x(x) \downarrow \end{cases} \)

\(f \) is not computable, because if it were, then \(f = \varphi_e \) for some \(e \in \mathbb{N} \) and hence

- If \(\varphi_e(e) \uparrow \), then \(f(e) = 0 \) (by def. of \(f \)); so \(\varphi_e(e) = 0 \) (by def. of \(e \)), i.e. \(\varphi_e(e) \downarrow \)
- If \(\varphi_e(e) \downarrow \), then \(f(e) \uparrow \) (by def. of \(e \)); so \(\varphi_e(e) \uparrow \) (by def. of \(f \))

Contradiction! So \(f \) cannot be computable.

(Un)decidable sets of numbers

Given a subset \(S \subseteq \mathbb{N} \), its characteristic function \(\chi_S \in \mathbb{N} \rightarrow \mathbb{N} \) is given by:

\[\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S. \end{cases} \]
(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) **decidable** if its characteristic function $\chi_S : \mathbb{N} \rightarrow \mathbb{N}$ is a register machine computable function. Otherwise it is called **undecidable**.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem.

For example...

Claim: $S_0 \triangleq \{ e \mid \varphi_e(0) \downarrow \}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0}. From M_0’s program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

- $let e = R_1$ and $\uparrow[a_1, \ldots, a_n] \Rightarrow R_2$ in
- $R_1 := \uparrow(R_1 ::= a_1) ; \cdots ; (R_n ::= a_n) ; prog(e) \uparrow$;
- $R_2 ::= 0$;
- run M_0

Then by assumption on M_0, H decides the Halting Problem. **Contradiction.**

So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable.
Claim: \(S_1 \triangleq \{ e \mid \phi_e \text{ total function} \} \) is undecidable.

Proof (sketch): Suppose \(M_1 \) is a RM computing \(\chi_{S_1} \). From \(M_1 \)'s program we can construct a RM \(M_0 \) to carry out: blue

\[
\text{let } e = R_1 \text{ in } R_1 ::= \Gamma R_1 ::= 0 ; \text{prog}(e) \neg ;
\]

\[\text{run } M_1\]

Then by assumption on \(M_1 \), \(M_0 \) decides membership of \(S_0 \) from previous example (i.e. computes \(\chi_{S_0} \)). **Contradiction.** So no such \(M_1 \) exists, i.e. \(\chi_{S_1} \) is uncomputable, i.e. \(S_1 \) is undecidable.