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Lectures: 13 January until 26 February 2026
Lecture Theatre 144 on Tuesday (4pm-6pm)

and Thursday (2pm-4pm).

Tutorials typically Tuesdays, first hour.

Coursework Tests 27 January and 17 February

Material and Notes on

https://www.doc.ic.ac.uk/∼herbert/teaching.html

Scientia, Panopto, etc.

Assessment

Coursework Test I: Tue 27 January, 16:00
Coursework Test II: Tue 17 February, 16:00

Examination: Week 11, 16–20 March 2026
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Program Analysis

Program analysis is an automated technique for finding out
properties of programs without having to execute them.

Static Analysis vs Dynamic Testing

▶ Compiler Optimisation
▶ Program Verification
▶ Security Analysis

Unfortunately, the achieving the aims of (static) program
analysis tend to be computationally extremely hard.
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Program Properties

In some sense Program Analysis is an impossible task.

Decidable Problems There exists an algorithm or
computational process which computes a solution
(in finite time) for all instances of the problem.

Halting Problem There is no general computational process or
machine which can decide whether or not any
given program terminates.

Rice Theorem Any non-trivial program property is undecidible.

The approach is to find terminating algorithms for program
analysis while not always finding a “meaningful” solution.
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Fermat’s Program – Terminates?

1: try ← true;
2: x ← 1;
3: while try do
4: y ← 1;
5: while y ≤ x && try do
6: z ← 1;
7: while z ≤ y && try do
8: try ← x3 + y3 ̸= z3

9: z ← z + 1;
10: end while
11: y ← y + 1;
12: end while
13: x ← x + 1;
14: end while
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Collatz Problem – Unknown

Take an integer x and compute a sequence of updates:

1: while x ̸= 1 do
2: if x mod 2 = 0 then
3: x ← x/2;
4: else
5: x ← 3× x + 1
6: end if
7: end while

Currently it is unknown whether this terminates for all x .
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Techniques

Some techniques used in program analysis include:

▶ Data Flow Analysis
▶ Control Flow Analysis
▶ Types and Effects Systems
▶ Abstract Interpretation

Flemming Nielson, Hanne Riis Nielson and Chris Hankin:
Principles of Program Analysis. Springer Verlag, 1999/2005.

Xavier Rival and Kwangkeun Yi: Introduction to Static Analysis
– An Abstract Interpretation Perspective. MIT Press, 2020.

Patrick Cousot: Principles of Abstract Interpretation. 2021.
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A First Example

Consider the following fragment in some procedural language.

1: m← 2;
2: while n > 1 do
3: m← m × n;
4: n← n − 1
5: end while
6: stop

[m← 2]1;
while [n > 1]2 do

[m← m × n]3;
[n← n − 1]4

end while
[stop]5

We annotate a program such that it becomes clear about what
program point we are talking about.
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A Parity Analysis

Claim: This program fragment always returns an even m,
idependently of the initial values of m and n.

We can statically determine that in any circumstances the value
of m at the last statement will be even for any input n.

A program analysis, so-called parity analysis, can determine
this by propagating the even/odd or parity information forwards
form the start of the program.
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Properties

We will assign to each variable one of three properties:

▶ even — the value is known to be even
▶ odd — the value is known to be odd
▶ unknown — the parity of the value is unknown

For both variables m and n we record its parity at each stage of
the computation (beginning of each statement).
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A First Example

Executing the program with abstract values, parity, for m and n.

1: m← 2;
2: while n > 1 do
3: m← m × n;
4: n← n − 1
5: end while
6: stop

Important: We can restart the loop!
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A First Example

The first program computes 2 times the factorial for any positive
value of n. Replacing ‘2’ by ‘1’ in the first statement gives:

1: m← 1;
2: while n > 1 do
3: m← m × n;
4: n← n − 1
5: end while
6: stop

i.e. the factorial – but then the program analysis is unable to tell
us anything about the parity of m at the end of the execution.
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Loss of Precision

The analysis of the new program does not give a satisfying
result because:

▶ m could be even — if the input n > 1, or
▶ m could be odd — if the input n ≤ 1.

However, even if we fix/require the input to be positive and
even — e.g. by some suitable conditional assignment — the
program analysis still might not be able to accurately predict
that m will be even at statement 5.
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Safe Approximations

Such a loss of precession is a common feature of program
analysis: many properties that we are interested in are
essentially undecidable and therefore we cannot hope to
detect (all of) them accurately.

We only aim to ensure that the answers/results we obtain by
program analysis are at least safe, i.e.

▶ yes means definitely yes,
▶ no means maybe no.
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Data Flow Analysis

The starting point for data flow analysis is a representation of
the control flow graph of the program: the nodes of such a
graph may represent individual statements – as in a flowchart –
or sequences of statements; arcs specify how control may be
passed during program execution.

The data flow analysis is usually specified as a set of equations
which associate analysis information with program points which
correspond to the nodes in the control flow graph. This
information may be propagated forwards through the program
(e.g. parity analysis) or backwards.

When the control flow graph is not explicitly given, we need a
preliminary control flow analysis
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Control Flow Information

[x:=x-1]4

[z:=z*y]3

[x>0]2

[z:=1]1
?

?

?

-

?

?

yes

no

This allows us to determine the predecessors pred and
successors succ of each statement, e.g. pred(2) = {1, 4}.
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Reaching Definition

Reaching Definition (RD) analysis determines which set of
definitions (i.e. assignments) are current when control reaches
a certain program point p.

The analysis can be specified by equations of the form:

RDentry(p) =


RDinit if p is initial⋃

p′∈pred(p)

RDexit(p′) otherwise

RDexit(p) = (RDentry(p)\killRD(p)) ∪ genRD(p)
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Analysis Information

At each program point some definitions get “killed” (those which
define the same variable as at the program point) while others
are “generated”.

A suitable representation for properties are sets of pairs, where
each pair contains a variable x and a program point p: the
meaning of the pair (x , p) is that the assignment to x at point p
is the current one. The initial value in this case is:

RDinit = {(x , ?) | x is a variable in the program}

Reaching Definitions is a forward analysis and we require the
least (most precise) solutions to the set of equations.
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Equations & Solutions

For our initial program fragment

[m← 2]1;
while [n > 1]2 do

[m← m × n]3;
[n← n − 1]4

end while
[stop]5

some of the RD equations we get are:

RDentry(1) = {(m, ?), (n, ?)}
RDentry(2) = RDexit(1) ∪ RDexit(4)
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Equations & Solutions

RDentry(1) = {(m, ?), (n, ?)}
RDentry(2) = RDexit(1) ∪ RDexit(4)

RDentry RDexit
1 {(m, ?), (n, ?)} {(m, 1), (n, ?)}
2 {(m,1), (m, 3), (n, ?), (n,4)} {(m, 1), (m, 3), (n, ?), (n,4)}
3 {(m,1), (m, 3), (n, ?), (n,4)} {(m, 3), (n, ?), (n, 4)}
4 {(m,3), (n, ?), (n, 4)} {(m, 3), (n, 4)}
5 {(m,1), (m, 3), (n, ?), (n,4)} {(m, 1), (m, 3), (n, ?), (n,4)}
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Solving Equations

How can we construct solution to the data flow equations?
Answer: Iteratively, by improving approximations/guesses.

INPUT: Control Flow Graph
i.e. initial(p), pred(p).

OUTPUT: Reaching Definitions RD.

METHOD: Step 1: Initialisation
Step 2: Iteration
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Some Examples

Some examples of data flow analyses — and the possible
applications and optimisations they allow for — are:

▶ Reaching Definitions — Constant Folding
▶ Available Expressions — Avoid Re-computations
▶ Very Busy Expressions — Hoisting
▶ Live Variables — Dead Code Elimination

▶ Information Flow — Computer Security
▶ (Probabilistic) Program Slicing
▶ Shape Analyis — Pointer Analysis — etc.
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Code Optimisation

To illustrate the ideas we shall show how Reaching Definitions
can be used to perform Constant Folding.

There are two ingredients to this:

▶ Replace the use of a variable in some expression by a
constant if it is known that the value of that variable will
always be a constant.

▶ Simplify an expression by partially evaluating it:
subexpressions that contain no variables can be evaluated.
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Constant Folding I

RD ⊢ [ x := a ]ℓ ▷ [ x := a[y 7→ n] ]ℓ

if


y ∈ FV(a) ∧ (y , ?) /∈ RDentry(ℓ) ∧
∀(y ′, ℓ′) ∈ RDentry(ℓ) :

y ′ = y ⇒ [. . .]ℓ
′
= [ y := n ]ℓ

′

RD ⊢ [ x := a ]ℓ ▷ [ x := n ]ℓ

if
{

FV(a) = ∅ ∧ a is not constant ∧
a evaluates to n
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Constant Folding II

RD ⊢ S1 ▷ S′
1

RD ⊢ S1;S2 ▷ S′
1;S2

RD ⊢ S2 ▷ S′
2

RD ⊢ S1;S2 ▷ S1;S′
2

RD ⊢ S1 ▷ S′
1

RD ⊢ if [b]ℓ then S1 else S2 ▷ if [b]ℓ then S′
1 else S2

RD ⊢ S2 ▷ S′
2

RD ⊢ if [b]ℓ then S1 else S2 ▷ if [b]ℓ then S1 else S′
2

RD ⊢ S ▷ S′

RD ⊢ while [b]ℓ do S ▷ while [b]ℓ do S′
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An Example
To illustrate the use of the transformation consider:

[ x := 10 ]1; [ y := x + 10 ]2; [ z := y + 10 ]3

The (least) solution to the Reaching Definition analysis is:

RDentry(1) = {(x , ?), (y , ?), (z, ?)}
RDexit(1) = {(x , 1), (y , ?), (z, ?)}

RDentry(2) = {(x , 1), (y , ?), (z, ?)}
RDexit(2) = {(x , 1), (y ,2), (z, ?)}

RDentry(3) = {(x , 1), (y ,2), (z, ?)}
RDexit(3) = {(x , 1), (y ,2), (z, 3)}

26 / 33



An Example
To illustrate the use of the transformation consider:

[ x := 10 ]1; [ y := x + 10 ]2; [ z := y + 10 ]3

The (least) solution to the Reaching Definition analysis is:

RDentry(1) = {(x , ?), (y , ?), (z, ?)}
RDexit(1) = {(x , 1), (y , ?), (z, ?)}

RDentry(2) = {(x , 1), (y , ?), (z, ?)}
RDexit(2) = {(x , 1), (y ,2), (z, ?)}

RDentry(3) = {(x , 1), (y ,2), (z, ?)}
RDexit(3) = {(x , 1), (y ,2), (z, 3)}

26 / 33



Constant Folding

We have for example the following:

RD ⊢ [ y := x + 10 ]2 ▷ [ y := 10 + 10 ]2

and therfore the rules for sequential composition allow us to do
the following transformation:

RD ⊢ [ x := 10 ]1; [ y := x + 10 ]2; [ z := y + 10 ]3 ▷
[ x := 10 ]1; [ y := 10 + 10 ]2; [ z := y + 10 ]3
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Transformation

We can continue this kind of transformation and obtain:

RD ⊢ [ x := 10 ]1; [ y := x + 10 ]2; [ z := y + 10 ]3

▷ [ x := 10 ]1; [ y := 10 + 10 ]2; [ z := y + 10 ]3

▷ [ x := 10 ]1; [ y := 20 ]2; [ z := y + 10 ]3

▷ [ x := 10 ]1; [ y := 20 ]2; [ z := 20 + 10 ]3

▷ [ x := 10 ]1; [ y := 20 ]2; [ z := 30 ]3

after which no more steps are possible.
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Additional Issues

The above example shows that optimisation is in general the
result of a number of successive transformations.

RD ⊢ S1 ▷ S2 ▷ . . . ▷ Sn.

This could be costly because one S1 has been transformed into
S2 we might have to re-compute the Reaching Definition
analysis before the next transformation step can be done.

It could also be the case that different sequences of
transformations either lead to different end results or are of very
different length.

29 / 33



Additional Issues

The above example shows that optimisation is in general the
result of a number of successive transformations.

RD ⊢ S1 ▷ S2 ▷ . . . ▷ Sn.

This could be costly because one S1 has been transformed into
S2 we might have to re-compute the Reaching Definition
analysis before the next transformation step can be done.

It could also be the case that different sequences of
transformations either lead to different end results or are of very
different length.

29 / 33



Additional Issues

The above example shows that optimisation is in general the
result of a number of successive transformations.

RD ⊢ S1 ▷ S2 ▷ . . . ▷ Sn.

This could be costly because one S1 has been transformed into
S2 we might have to re-compute the Reaching Definition
analysis before the next transformation step can be done.

It could also be the case that different sequences of
transformations either lead to different end results or are of very
different length.

29 / 33



Correctness

Any Program Analysis should be:

▶ unambigously specified,
▶ efficiently computable,
▶ most importantly: correct.

For example, why not consider in RD before:

RDentry(2) = RDexit(1) ∩ RDexit(4)

instead of RDentry(2) = RDexit(1) ∪ RDexit(4).

It requires formal (mathematical) proof whether an analysis (or
program transformation) is correct with respect to some
model of execution or semantics.
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Formal Semantics

A program is foremost a text but it has intended meaning or
semantics describing its execution.

A simple example: Why is 0.9̇ = 0.99999 . . . = 1?

Obviously, these are different strings! However, they have a
meaning or semantics as specification of a real number in R.
More concretely, infinite strings refer to the limit of their
expansion, so [[0.9̇]] = lim(0.9,0.99, 0.999, . . .) = 1 = [[1]].

This course will mostely be concerned with intutive or
light-weight semantics when it comes to the “meaning” of a
program and the correctness of a program analysis.
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Modelling and Specification
Architecture and Structural Engineering

Figure: York Minster
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Topics Covered – Executive Summary

▶ Data Flow Analyis

▶ Monotone Frameworks
▶ Control Flow Analysis
▶ Abstract Interpretation
▶ Probabilistic Programs
▶ Probabilistic Abstract Interpretation
▶ Further Topics
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