Syntactic Constructs

We use the following syntactic categories:

\[
\begin{align*}
 a & \in \text{AEExp} & \text{arithmetic expressions} \\
 b & \in \text{BExp} & \text{boolean expressions} \\
 S & \in \text{Stmt} & \text{statements}
\end{align*}
\]
Abstract Syntax of **WHILE**

The syntax of the language **WHILE** is given by the following abstract syntax:

\[
\begin{align*}
\text{a} & ::= x \mid n \mid a_1 \ op_a a_2 \\
\text{b} & ::= \text{true} \mid \text{false} \mid \text{not} \ b \mid b_1 \ op_b b_2 \mid a_1 \ op_r a_2 \\
\text{S} & ::= x := a \\
& \quad \mid \text{skip} \\
& \quad \mid S_1 ; S_2 \\
& \quad \mid \text{if} \ b \ \text{then} \ S_1 \ \text{else} \ S_2 \\
& \quad \mid \text{while} \ b \ \text{do} \ S
\end{align*}
\]

Syntactical Categories

We assume some countable/finite set of variables is given:

\[
\begin{align*}
x, y, z, \ldots & \in \text{Var} \quad \text{variables} \\
n, m, \ldots & \in \text{Num} \quad \text{numerals} \\
\ell, \ldots & \in \text{Lab} \quad \text{labels}
\end{align*}
\]

Numerals (integer constants) will not be further defined and neither will the operators:

\[
\begin{align*}
op_a & \in \text{Op}_a \quad \text{arithmetic operators, e.g.} \ +, -, \times, \ldots \\
op_b & \in \text{Op}_b \quad \text{boolean operators, e.g.} \ \land, \lor, \ldots \\
op_r & \in \text{Op}_r \quad \text{relational operators, e.g.} \ =, <, \leq, \ldots
\end{align*}
\]
Labelled Syntax of **WHILE**

The labelled syntax of the language **WHILE** is given by the following abstract syntax:

\[
\begin{align*}
a & ::= x | n | a_1 \text{ op}_a a_2 \\
b & ::= \text{true} | \text{false} | \text{not } b | b_1 \text{ op}_b b_2 | a_1 \text{ op}_r a_2 \\
S & ::= [x := a]^{\ell} \\
& \quad | \text{skip}^{\ell} \\
& \quad | S_1 ; S_2 \\
& \quad | \text{if } [b]^{\ell} \text{ then } S_1 \text{ else } S_2 \\
& \quad | \text{while } [b]^{\ell} \text{ do } S
\end{align*}
\]

An Example in **WHILE**

An example of a program written in this **WHILE** language is the following one which computes the factorial of the number stored in \(x\) and leaves the result in \(z\):

\[
\begin{align*}
[y := x]^1; \\
[z := 1]^2; \\
\text{while } [y > 1]^3 \text{ do (} \\
\quad [z := z \ast y]^4; \\
\quad [y := y - 1]^5); \\
[y := 0]^6
\end{align*}
\]

Note the use of meta-symbols, brackets, to group statements.
Concrete Syntax of \texttt{WHILE}

To avoid using brackets (as meta-symbols) we could also use the \textbf{concrete syntax} of the language \texttt{WHILE} as follows:

\begin{verbatim}
\begin{align*}
a & ::= x \mid n \mid a_1 \text{ op } a_2 \\
b & ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \text{ op } b_2 \mid a_1 \text{ op } a_2 \\
S & ::= x := a \\
& \quad \mid \text{skip} \\
& \quad \mid S_1 ; S_2 \\
& \quad \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi} \\
& \quad \mid \text{while } b \text{ do } S \text{ od}
\end{align*}
\end{verbatim}

\textbf{Initial Label}

When presenting examples of Data Flow Analyses we will use a number of operations on programs and labels. The first of these is

\begin{align*}
\text{\textit{init}} : \texttt{Stmt} & \to \texttt{Lab} \\
\end{align*}

which returns the initial label of a statement:

\begin{align*}
\text{init}([x := a]^\ell) & = \ell \\
\text{init}([\text{skip }]^\ell) & = \ell \\
\text{init}(S_1 ; S_2) & = \text{init}(S_1) \\
\text{init}(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) & = \ell \\
\text{init}(\text{while } [b]^\ell \text{ do } S) & = \ell
\end{align*}
Final Labels

We will also need a function which returns the set of final labels in a statement; whereas a sequence of statements has a single entry, it may have multiple exits (e.g. in the conditional):

\[\text{final} : \text{Stmt} \to \mathcal{P}(\text{Lab}) \]

\[
\begin{align*}
\text{final}([\ x := a \]^\ell) &= \{\ell\} \\
\text{final}([\ \text{skip} \]^\ell) &= \{\ell\} \\
\text{final}(S_1 ; S_2) &= \text{final}(S_2) \\
\text{final}(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) &= \text{final}(S_1) \cup \text{final}(S_2) \\
\text{final}(\text{while } [b]^\ell \text{ do } S) &= \{\ell\}
\end{align*}
\]

The **while**-loop terminates immediately after the test fails.

Elementary Blocks

The building blocks of our analysis is given by **Block** is the set of statements, or elementary blocks, of the form:

- \([\ x := a \]^\ell\), or
- \([\ \text{skip} \]^\ell\), as well as
- tests of the form \([b]^\ell\).
Blocks

To access the statements or test associated with a label in a program we use the function

\[\text{blocks} : \text{Stmt} \rightarrow \mathcal{P}(\text{Block}) \]

\[
\text{blocks}(\text{[} x := a \text{]}) = \{ \text{[} x := a \text{]} \}
\]

\[
\text{blocks}(\text{[skip]}) = \{ \text{[skip]} \}
\]

\[
\text{blocks}(S_1; S_2) = \text{blocks}(S_1) \cup \text{blocks}(S_2)
\]

\[
\text{blocks}(\text{if } [b] \text{ then } S_1 \text{ else } S_2) = \{ [b] \} \cup \text{blocks}(S_1) \cup \text{blocks}(S_2)
\]

\[
\text{blocks}(\text{while } [b] \text{ do } S) = \{ [b] \} \cup \text{blocks}(S)
\]

Labels

Then the set of labels occurring in a program is given by

\[\text{labels} : \text{Stmt} \rightarrow \mathcal{P}(\text{Lab}) \]

where

\[
\text{labels}(S) = \{ \ell | [B]_\ell \in \text{blocks}(S) \}
\]

Clearly \(\text{init}(S) \in \text{labels}(S) \) and \(\text{final}(S) \subseteq \text{labels}(S) \).
Flow

\[\text{flow} : \Stmt \rightarrow \mathcal{P}(\text{Lab} \times \text{Lab}) \]

which maps statements to sets of flows:

\[
\begin{align*}
\text{flow}([x := a]^{\ell}) &= \emptyset \\
\text{flow}([\text{skip}]^{\ell}) &= \emptyset \\
\text{flow}(S_1;S_2) &= \text{flow}(S_1) \cup \text{flow}(S_2) \cup \{(\ell, \text{init}(S_2)) \mid \ell \in \text{final}(S_1)\} \\
\text{flow}(\text{if } [b]^{\ell} \text{ then } S_1 \text{ else } S_2) &= \text{flow}(S_1) \cup \text{flow}(S_2) \cup \{(\ell, \text{init}(S_1)), (\ell, \text{init}(S_2))\} \\
\text{flow}(\text{while } [b]^{\ell} \text{ do } S) &= \text{flow}(S) \cup \{(\ell, \text{init}(S))\} \cup \{(\ell', \ell) \mid \ell' \in \text{final}(S)\}
\end{align*}
\]

An Example Flow

Consider the following program, power, computing the \(x\)-th power of the number stored in \(y\):

\[
\begin{align*}
[z := 1]^1; \\
\text{while } [x > 1]^2 \text{ do (} \\
&\quad [z := z \ast y]^3; \\
&\quad [x := x - 1]^4);
\end{align*}
\]

We have \(\text{labels(power)} = \{1, 2, 3, 4\}\), \(\text{init(power)} = 1\), and \(\text{final(power)} = \{2\}\). The function \(\text{flow}\) produces the set:

\[\text{flow(power)} = \{(1, 2), (2, 3), (3, 4), (4, 2)\}\]
The function \(\text{flow} \) is used in the formulation of forward analyses. Clearly \(\text{init}(S) \) is the (unique) entry node for the flow graph with nodes \(\text{labels}(S) \) and edges \(\text{flow}(S) \). Also

\[
\text{labels}(S) = \{ \text{init}(S) \} \cup \{ \ell \mid (\ell, \ell') \in \text{flow}(S) \} \cup \{ \ell' \mid (\ell, \ell') \in \text{flow}(S) \}
\]

and for composite statements (meaning those not simply of the form \([B]^{\ell}\)) the equation remains true when removing the \(\{ \text{init}(S) \} \) component.
Reverse Flow

In order to formulate *backward analyses* we require a function that computes reverse flows:

\[
flow^R : \text{Stmt} \rightarrow \mathcal{P}(\text{Lab} \times \text{Lab})
\]

\[
flow^R(S) = \{ (\ell, \ell') \mid (\ell', \ell) \in flow(S) \}
\]

For the power program, \(flow^R\) produces

\[
\{(2, 1), (2, 4), (3, 2), (4, 3)\}
\]

Backward Analysis

In case \(\text{final}(S)\) contains just one element that will be the unique entry node for the flow graph with nodes \(\text{labels}(S)\) and edges \(flow^R(S)\). Also

\[
\text{labels}(S) = \text{final}(S) \cup \{\ell \mid (\ell, \ell') \in flow^R(S)\} \cup \{\ell' \mid (\ell, \ell') \in flow^R(S)\}
\]
We will use the notation S_\star to represent the program we are analysing (the “top-level" statement) and furthermore:

- Lab_\star to represent the labels ($\text{labels}(S_\star)$) appearing in S_\star,
- Var_\star to represent the variables ($\text{FV}(S_\star)$) appearing in S_\star,
- Block_\star to represent the elementary blocks ($\text{blocks}(S_\star)$) occurring in S_\star, and
- AExp_\star to represent the set of non-trivial arithmetic subexpressions in S_\star as well as
- $\text{AExp}(a)$ and $\text{AExp}(b)$ to refer to the set of non-trivial arithmetic subexpressions of a given arithmetic, respectively boolean, expression.

An expression is trivial if it is a single variable or constant.

Isolated Entries & Exits

Program S_\star has isolated entries if:

$$\forall \ell \in \text{Lab} : (\ell, \text{init}(S_\star)) \notin \text{flow}(S_\star)$$

This is the case whenever S_\star does not start with a while-loop.

Similarly, we shall frequently assume that the program S_\star has isolated exits; this means that:

$$\forall \ell_1 \in \text{final}(S_\star) \forall \ell_2 \in \text{Lab} : (\ell_1, \ell_2) \notin \text{flow}(S_\star)$$
A statement, S, is **label consistent** if and only if:

$$[B_1]^{\ell}, [B_2]^{\ell} \in \text{blocks}(S) \text{ implies } B_1 = B_2$$

Clearly, if all blocks in S are uniquely labelled (meaning that each label occurs only once), then S is label consistent.

When S is label consistent the statement or clause “where $[B]^{\ell} \in \text{blocks}(S)$” is unambiguous in defining a partial function from labels to elementary blocks; we shall then say that ℓ labels the block B.