
Program Analysis (70020)
While Language

Herbert Wiklicky

Department of Computing
Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2024

1 / 21

Syntactic Constructs

We use the following syntactic categories:

a ∈ AExp arithmetic expressions
b ∈ BExp boolean expressions
S ∈ Stmt statements

2 / 21

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following
abstract syntax:

a ::= x | n | a1 opa a2

b ::= true | false | not b | b1 opb b2 | a1 opr a2

S ::= x := a
| skip
| S1;S2
| if b then S1 else S2
| while b do S

3 / 21

Syntactical Categories

We assume some countable/finite set of variables is given;

x , y , z, . . . ∈ Var variables
n,m, . . . ∈ Num numerals

ℓ, . . . ∈ Lab labels

Numerals (integer constants) will not be further defined and
neither will the operators:

opa ∈ Opa arithmetic operators, e.g. +,−,×, . . .
opb ∈ Opb boolean operators, e.g. ∧,∨, . . .
opr ∈ Opr relational operators, e.g. =, <,≤, . . .

4 / 21

Labelled Syntax of WHILE

The labelled syntax of the language WHILE is given by the
following abstract syntax:

a ::= x | n | a1 opa a2

b ::= true | false | not b | b1 opb b2 | a1 opr a2

S ::= [x := a]ℓ

| [skip]ℓ

| S1;S2
| if [b]ℓ then S1 else S2
| while [b]ℓ do S

5 / 21

An Example in WHILE

An example of a program written in this WHILE language is the
following one which computes the factorial of the number stored
in x and leaves the result in z:

[y := x]1;
[z := 1]2;
while [y > 1]3 do (

[z := z ∗ y]4;
[y := y − 1]5);

[y := 0]6

Note the use of meta-symbols, brackets, to group statements.

6 / 21

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use
the concrete syntax of the language WHILE as follows:

a ::= x | n | a1 opa a2

b ::= true | false | not b | b1 opb b2 | a1 opr a2

S ::= x := a
| skip
| S1;S2
| if b then S1 else S2 fi
| while b do S od

7 / 21

Initial Label

When presenting examples of Data Flow Analyses we will use
a number of operations on programs and labels. The first of
these is

init : Stmt → Lab

which returns the initial label of a statement:

init([x := a]ℓ) = ℓ

init([skip]ℓ) = ℓ

init(S1;S2) = init(S1)

init(if [b]ℓ then S1 else S2) = ℓ

init(while [b]ℓ do S) = ℓ

8 / 21

Final Labels

We will also need a function which returns the set of final labels
in a statement; whereas a sequence of statements has a single
entry, it may have multiple exits (e.g. in the conditional):

final : Stmt → P(Lab)

final([x := a]ℓ) = {ℓ}
final([skip]ℓ) = {ℓ}

final(S1;S2) = final(S2)

final(if [b]ℓ then S1 else S2) = final(S1) ∪ final(S2)

final(while [b]ℓ do S) = {ℓ}

The while-loop terminates immediately after the test fails.

9 / 21

Elementary Blocks

The building blocks of our analysis is given by Block is the set
of statements, or elementary blocks, of the form:

▶ [x := a]ℓ, or
▶ [skip]ℓ, as well as
▶ tests of the form [b]ℓ.

10 / 21

Blocks

To access the statements or test associated with a label in a
program we use the function

blocks : Stmt → P(Block)

blocks([x := a]ℓ) = {[x := a]ℓ}
blocks([skip]ℓ) = {[skip]ℓ}

blocks(S1;S2) = blocks(S1) ∪ blocks(S2)

blocks(if [b]ℓ then S1 else S2) = {[b]ℓ} ∪
blocks(S1) ∪ blocks(S2)

blocks(while [b]ℓ do S) = {[b]ℓ} ∪ blocks(S)

11 / 21

Labels

Then the set of labels occurring in a program is given by

labels : Stmt → P(Lab)

where
labels(S) = {ℓ | [B]ℓ ∈ blocks(S)}

Clearly init(S) ∈ labels(S) and final(S) ⊆ labels(S).

12 / 21

Flow

flow : Stmt → P(Lab × Lab)

which maps statements to sets of flows:

flow([x := a]ℓ) = ∅
flow([skip]ℓ) = ∅

flow(S1;S2) = flow(S1) ∪ flow(S2) ∪
{(ℓ, init(S2)) | ℓ ∈ final(S1)}

flow(if [b]ℓ then S1 else S2) = flow(S1) ∪ flow(S2) ∪
{(ℓ, init(S1)), (ℓ, init(S2))}

flow(while [b]ℓ do S) = flow(S) ∪ {(ℓ, init(S))} ∪
{(ℓ′, ℓ) | ℓ′ ∈ final(S)}

13 / 21

An Example Flow

Consider the following program, power, computing the x-th
power of the number stored in y:

[z := 1]1;
while [x > 1]2 do (

[z := z ∗ y]3;
[x := x − 1]4)

We have labels(power) = {1,2,3,4}, init(power) = 1, and
final(power) = {2}. The function flow produces the set:

flow(power) = {(1,2), (2,3), (3,4), (4,2)}

14 / 21

Flow Graph

[x:=x-1]4

[z:=z*y]3

[x>0]2

[z:=1]1
?

?

?

-

?

?

yes

no

15 / 21

Forward Analysis

The function flow is used in the formulation of forward analyses.
Clearly init(S) is the (unique) entry node for the flow graph with
nodes labels(S) and edges flow(S). Also

labels(S) = {init(S)} ∪
{ℓ | (ℓ, ℓ′) ∈ flow(S)} ∪
{ℓ′ | (ℓ, ℓ′) ∈ flow(S)}

and for composite statements (meaning those not simply of the
form [B]ℓ) the equation remains true when removing the
{init(S)} component.

16 / 21

Reverse Flow

In order to formulate backward analyses we require a function
that computes reverse flows:

flowR : Stmt → P(Lab × Lab)

flowR(S) = {(ℓ, ℓ′) | (ℓ′, ℓ) ∈ flow(S)}

For the power program, flowR produces

{(2,1), (2,4), (3,2), (4,3)}

17 / 21

Backward Analysis

In case final(S) contains just one element that will be the
unique entry node for the flow graph with nodes labels(S) and
edges flowR(S). Also

labels(S) = final(S) ∪
{ℓ | (ℓ, ℓ′) ∈ flowR(S)} ∪
{ℓ′ | (ℓ, ℓ′) ∈ flowR(S)}

18 / 21

Notation

We will use the notation S⋆ to represent the program we are
analysing (the “top-level" statement) and furthermore:
▶ Lab⋆ to represent the labels (labels(S⋆)) appearing in S⋆,
▶ Var⋆ to represent the variables (FV(S⋆)) appearing in S⋆,
▶ Block⋆ to represent the elementary blocks (blocks(S⋆))

occurring in S⋆, and
▶ AExp⋆ to represent the set of non-trivial arithmetic

subexpressions in S⋆ as well as
▶ AExp(a) and AExp(b) to refer to the set of non-trivial

arithmetic subexpressions of a given arithmetic,
respectively boolean, expression.

An expression is trivial if it is a single variable or constant.

19 / 21

Isolated Entries & Exits

Program S⋆ has isolated entries if:

∀ℓ ∈ Lab : (ℓ, init(S⋆)) /∈ flow(S⋆)

This is the case whenever S⋆ does not start with a while-loop.

Similarly, we shall frequently assume that the program S⋆ has
isolated exits; this means that:

∀ℓ1 ∈ final(S⋆) ∀ℓ2 ∈ Lab : (ℓ1, ℓ2) /∈ flow(S⋆)

20 / 21

Label Consistency

A statement, S, is label consistent if and only if:

[B1]
ℓ, [B2]

ℓ ∈ blocks(S) implies B1 = B2

Clearly, if all blocks in S are uniquely labelled (meaning that
each label occurs only once), then S is label consistent.

When S is label consistent the statement or clause “where
[B]ℓ ∈ blocks(S)” is unambiguous in defining a partial function
from labels to elementary blocks; we shall then say that ℓ labels
the block B.

21 / 21

	The While Language

