Syntactic Constructs

We use the following syntactic categories:

\[a \in AExp \quad \text{arithmetic expressions} \]
\[b \in BExp \quad \text{boolean expressions} \]
\[S \in Stmt \quad \text{statements} \]
Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following abstract syntax:

\[\begin{align*}
a & ::= x \mid n \mid a_1 \ op_a \ a_2 \\
b & ::= \text{true} \mid \text{false} \mid \text{not} \ b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2 \\
S & ::= x := a \\
& \mid \text{skip} \\
& \mid S_1 ; \ S_2 \\
& \mid \text{if} \ b \ \text{then} \ S_1 \ \text{else} \ S_2 \\
& \mid \text{while} \ b \ \text{do} \ S
\end{align*}\]

Syntactical Categories

We assume some countable/finite set of variables is given:

\[\begin{align*}
x, y, z, \ldots & \in \text{Var} \quad \text{variables} \\
n, m, \ldots & \in \text{Num} \quad \text{numerals} \\
\ell, \ldots & \in \text{Lab} \quad \text{labels}
\end{align*}\]

Numerals (integer constants) will not be further defined and neither will the operators:

\[\begin{align*}
op_a & \in \text{Op}_a \quad \text{arithmetic operators, e.g. +, −, \times, \ldots} \\
op_b & \in \text{Op}_b \quad \text{boolean operators, e.g. \&, \vee, \ldots} \\
op_r & \in \text{Op}_r \quad \text{relational operators, e.g. =, <, \leq, \ldots}
\end{align*}\]
The labelled syntax of the language WHILE is given by the following abstract syntax:

\[a ::= x \mid n \mid a_1 \ op_a \ a_2 \]
\[b ::= true \mid false \mid not \ b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2 \]
\[S ::= [x := a]^\ell \]
\[[skip]^\ell \]
\[S_1 ; S_2 \]
\[if \ [b]^\ell \ then \ S_1 \ else \ S_2 \]
\[while \ [b]^\ell \ do \ S \]

An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in \(x \) and leaves the result in \(z \):

\[
[y := x]^1; \\
[z := 1]^2; \\
while [y > 1]^3 \ do \ (\\
\quad [z := z * y]^4; \\
\quad [y := y - 1]^5); \\
[y := 0]^6
\]

Note the use of meta-symbols, brackets, to group statements.
Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

\[
\begin{align*}
a & ::= x \mid n \mid a_1 \text{op}_a a_2 \\
b & ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \text{op}_b b_2 \mid a_1 \text{op}_r a_2 \\
S & ::= x := a \\
& \mid \text{skip} \\
& \mid S_1;S_2 \\
& \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi} \\
& \mid \text{while } b \text{ do } S \text{ od}
\end{align*}
\]

Initial Label

When presenting examples of Data Flow Analyses we will use a number of operations on programs and labels. The first of these is

\[
\text{init} : \text{Stmt} \rightarrow \text{Lab}
\]

which returns the initial label of a statement:

\[
\begin{align*}
\text{init}([x := a]^\ell) & = \ell \\
\text{init}([\text{skip }]^\ell) & = \ell \\
\text{init}(S_1;S_2) & = \text{init}(S_1) \\
\text{init}(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) & = \ell \\
\text{init}(\text{while } [b]^\ell \text{ do } S) & = \ell
\end{align*}
\]
Final Labels

We will also need a function which returns the set of final labels in a statement; whereas a sequence of statements has a single entry, it may have multiple exits (e.g. in the conditional):

\[
final: \text{Stmt} \rightarrow \mathcal{P}(\text{Lab})
\]

\[
\begin{align*}
final([x := a]^\ell) &= \{ \ell \} \\
final([\text{skip}]^\ell) &= \{ \ell \} \\
final(S_1; S_2) &= final(S_2) \\
final(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) &= final(S_1) \cup final(S_2) \\
final(\text{while } [b]^\ell \text{ do } S) &= \{ \ell \}
\end{align*}
\]

The \textbf{while}-loop terminates immediately after the test fails.

Elementary Blocks

The building blocks of our analysis is given by \textbf{Block} is the set of statements, or elementary blocks, of the form:

- \([x := a]^\ell\), or
- \([\text{skip}]^\ell\), as well as
- tests of the form \([b]^\ell\).
Blocks

To access the statements or test associated with a label in a program we use the function

\[
blocks : \text{Stmt} \rightarrow \mathcal{P}(\text{Block})
\]

\[
blocks([x := a])^\ell = \{[x := a]^\ell\}
\]

\[
blocks([\text{skip}])^\ell = \{[\text{skip}]^\ell\}
\]

\[
blocks(S_1;S_2) = blocks(S_1) \cup blocks(S_2)
\]

\[
blocks(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) = \{[b]^\ell\} \cup blocks(S_1) \cup blocks(S_2)
\]

\[
blocks(\text{while } [b]^\ell \text{ do } S) = \{[b]^\ell\} \cup blocks(S)
\]

Labels

Then the set of labels occurring in a program is given by

\[
labels : \text{Stmt} \rightarrow \mathcal{P}(\text{Lab})
\]

where

\[
labels(S) = \{\ell \mid [B]^\ell \in blocks(S)\}
\]

Clearly \(\text{init}(S) \in labels(S)\) and \(\text{final}(S) \subseteq labels(S)\).
Flow

\[\text{flow} : \text{Stmt} \rightarrow \mathcal{P}(\text{Lab} \times \text{Lab}) \]

which maps statements to sets of flows:

\[
\begin{align*}
\text{flow}(\{ x := a \}^\ell) & = \emptyset \\
\text{flow}(\{ \text{skip} \}^\ell) & = \emptyset \\
\text{flow}(S_1; S_2) & = \text{flow}(S_1) \cup \text{flow}(S_2) \cup \\
& \quad \{ (\ell, \text{init}(S_2)) \mid \ell \in \text{final}(S_1) \} \\
\text{flow}(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) & = \text{flow}(S_1) \cup \text{flow}(S_2) \cup \\
& \quad \{ (\ell, \text{init}(S_1)), (\ell, \text{init}(S_2)) \} \\
\text{flow}(\text{while } [b]^\ell \text{ do } S) & = \text{flow}(S) \cup \{ (\ell, \text{init}(S)) \} \cup \\
& \quad \{ (\ell', \ell) \mid \ell' \in \text{final}(S) \}
\end{align*}
\]

An Example Flow

Consider the following program, power, computing the \(x \)-th power of the number stored in \(y \):

\[
\begin{align*}
\{ z := 1 \}^1; \\
\text{while } [x > 1]^2 \text{ do } (\\
\quad & \quad \{ z := z \times y \}^3; \\
\quad & \quad \{ x := x - 1 \}^4);
\end{align*}
\]

We have \(\text{labels}(\text{power}) = \{1, 2, 3, 4\} \), \(\text{init}(\text{power}) = 1 \), and \(\text{final}(\text{power}) = \{2\} \). The function \(\text{flow} \) produces the set:

\[\text{flow}(\text{power}) = \{ (1, 2), (2, 3), (3, 4), (4, 2) \} \]
Forward Analysis

The function $flow$ is used in the formulation of forward analyses. Clearly $init(S)$ is the (unique) entry node for the flow graph with nodes $labels(S)$ and edges $flow(S)$. Also

$$ labels(S) = \{init(S)\} \cup \{ \ell \mid (\ell, \ell') \in flow(S) \} \cup \{ \ell' \mid (\ell, \ell') \in flow(S) \} $$

and for composite statements (meaning those not simply of the form $[B]^{\ell}$) the equation remains true when removing the $\{init(S)\}$ component.
Reverse Flow

In order to formulate backward analyses we require a function that computes reverse flows:

\[
flow^R : Stmt \rightarrow \mathcal{P}(Lab \times Lab)
\]

\[
flow^R(S) = \{(l, l') \mid (l', l) \in flow(S)\}
\]

For the power program, \(flow^R\) produces

\[
\{(2, 1), (2, 4), (3, 2), (4, 3)\}
\]

Backward Analysis

In case \(final(S)\) contains just one element that will be the unique entry node for the flow graph with nodes \(labels(S)\) and edges \(flow^R(S)\). Also

\[
\text{labels}(S) = final(S) \cup \{l \mid (l, l') \in flow^R(S)\} \cup \{l' \mid (l, l') \in flow^R(S)\}
\]
Notation

We will use the notation S_\star to represent the program we are analysing (the “top-level" statement) and furthermore:

- Lab_\star to represent the labels ($\text{labels}(S_\star)$) appearing in S_\star,
- Var_\star to represent the variables ($\text{FV}(S_\star)$) appearing in S_\star,
- Block_\star to represent the elementary blocks ($\text{blocks}(S_\star)$) occurring in S_\star, and
- AExp_\star to represent the set of non-trivial arithmetic subexpressions in S_\star as well as
- $\text{AExp}(a)$ and $\text{AExp}(b)$ to refer to the set of non-trivial arithmetic subexpressions of a given arithmetic, respectively boolean, expression.

An expression is trivial if it is a single variable or constant.

Isolated Entries & Exits

Program S_\star has isolated entries if:

$$\forall \ell \in \text{Lab} : (\ell, \text{init}(S_\star)) \notin \text{flow}(S_\star)$$

This is the case whenever S_\star does not start with a while-loop.

Similarly, we shall frequently assume that the program S_\star has isolated exits; this means that:

$$\forall \ell_1 \in \text{final}(S_\star) \forall \ell_2 \in \text{Lab} : (\ell_1, \ell_2) \notin \text{flow}(S_\star)$$
A statement, S, is label consistent if and only if:

$$[B_1]^{\ell}, [B_2]^{\ell} \in \text{blocks}(S) \implies B_1 = B_2$$

Clearly, if all blocks in S are uniquely labelled (meaning that each label occurs only once), then S is label consistent.

When S is label consistent the statement or clause “where $[B]^{\ell} \in \text{blocks}(S)$” is unambiguous in defining a partial function from labels to elementary blocks; we shall then say that ℓ labels the block B.