Program Analysis (CO470/97128/97146)
While Language

Herbert Wiklicky

Department of Computing
Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2020
Syntactic Constructs

We use the following syntactic categories:

\[a \in AExp \quad \text{arithmetic expressions} \]
\[b \in BExp \quad \text{boolean expressions} \]
\[S \in Stmt \quad \text{statements} \]
Abstract Syntax of **WHILE**

The syntax of the language **WHILE** is given by the following **abstract syntax**:

\[
\begin{align*}
a & \quad \mid \\
b & \quad \mid \\
S & \quad \mid \\
\end{align*}
\]
Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following abstract syntax:

\[a ::= x \]

\[b ::= \text{true} \mid \text{false} \mid \neg b \mid b_1 \oplus b_2 \mid a_1 \oplus r a_2 \]

\[S ::= x := a \mid \text{skip} \mid S_1 ; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \mid \text{while } b \text{ do } S \]
Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following abstract syntax:

\[
\begin{align*}
a &::= x | n \\
 b & \quad S
\end{align*}
\]
Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following abstract syntax:

\[
\begin{align*}
a & ::= \ x \mid n \mid a_1 \ op_a \ a_2 \\
b \\
S
\end{align*}
\]
Abstract Syntax of \texttt{WHILE}

The syntax of the language \texttt{WHILE} is given by the following abstract syntax:

\begin{align*}
 a &::= x | n | a_1 \; op_a \; a_2 \\
 b &::= \text{true} \\
 S &
\end{align*}
Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following abstract syntax:

\[a ::= x \mid n \mid a_1 \ op_a \ a_2 \]
\[b ::= \text{true} \mid \text{false} \]
\[S ::= x := a \mid \text{skip} \mid S_1 ; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \mid \text{while } b \text{ do } S \]
Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following abstract syntax:

\[
\begin{align*}
a & ::= \ x \ | \ n \ | \ a_1 \ \text{op}_a \ a_2 \\
b & ::= \ \text{true} \ | \ \text{false} \ | \ \text{not} \ b \\
S &
\end{align*}
\]
Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following abstract syntax:

\[
\begin{align*}
a & ::= x \mid n \mid a_1 \ op_a \ a_2 \\
b & ::= \text{true} \mid \text{false} \mid \text{not} \ b \mid b_1 \ op_b \ b_2 \\
S &
\end{align*}
\]
The syntax of the language WHILE is given by the following abstract syntax:

\[a ::= x \mid n \mid a_1 \text{ op}_a a_2 \]

\[b ::= \text{true} \mid \text{false} \mid \text{not} \ b \mid b_1 \text{ op}_b b_2 \mid a_1 \text{ op}_r a_2 \]

\[S \]
Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following abstract syntax:

\[a ::= x | n | a_1 \text{ op}_a a_2 \]

\[b ::= \text{true} | \text{false} | \text{not} b | b_1 \text{ op}_b b_2 | a_1 \text{ op}_r a_2 \]

\[S ::= x ::= a \]
The syntax of the language WHILE is given by the following abstract syntax:

\[
\begin{align*}
 a & \ ::= \ x \mid n \mid a_1 \ op_a \ a_2 \\
 b & \ ::= \ \text{true} \mid \text{false} \mid \text{not} \ b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2 \\
 S & \ ::= \ x := a \\
 & \mid \text{skip}
\end{align*}
\]
Abstract Syntax of \textsc{While}

The syntax of the language \textsc{While} is given by the following abstract syntax:

\[
\begin{align*}
 a & ::= \ x \ | \ n \ | \ a_1 \ op_a \ a_2 \\
 b & ::= \ \text{true} \ | \ \text{false} \ | \ \text{not} \ b \ | \ b_1 \ op_b \ b_2 \ | \ a_1 \ op_r \ a_2 \\
S & ::= \ x := a \\
 & \ | \ \text{skip} \\
 & \ | \ S_1 ; S_2
\end{align*}
\]
Abstract Syntax of \texttt{WHILE}

The syntax of the language \texttt{WHILE} is given by the following abstract syntax:

\[
\begin{align*}
a & ::= \ x \mid n \mid a_1 \ op_a \ a_2 \\
b & ::= \ true \mid false \mid not \ b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2 \\
S & ::= \ x := a \\
& \mid skip \\
& \mid S_1;S_2 \\
& \mid if \ b \ then \ S_1 \ else \ S_2
\end{align*}
\]
Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following abstract syntax:

\[a ::= x \mid n \mid a_1 \text{ op}_a a_2 \]
\[b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \text{ op}_b b_2 \mid a_1 \text{ op}_r a_2 \]
\[S ::= x := a \]
\[\text{skip} \]
\[S_1; S_2 \]
\[\text{if } b \text{ then } S_1 \text{ else } S_2 \]
\[\text{while } b \text{ do } S \]
Syntactical Categories

We assume some countable/finite set of variables is given;

\[x, y, z, \ldots \in \text{Var} \quad \text{variables} \]
\[n, m, \ldots \in \text{Num} \quad \text{numerals} \]
Syntactical Categories

We assume some countable/finite set of variables is given:

\[x, y, z, \ldots \in \text{Var} \quad \text{variables} \]
\[n, m, \ldots \in \text{Num} \quad \text{numerals} \]
\[\ell, \ldots \in \text{Lab} \quad \text{labels} \]

Numerals (integer constants) will not be further defined and neither will the operators:

\[op_a \in \text{Op}_a \quad \text{arithmetic operators, e.g. } +, -, \times, \ldots \]
\[op_b \in \text{Op}_b \quad \text{boolean operators, e.g. } \land, \lor, \ldots \]
\[op_r \in \text{Op}_r \quad \text{relational operators, e.g. } =, <, \leq, \ldots \]
Labelled Syntax of \texttt{WHILE}

The \textit{labelled} syntax of the language \texttt{WHILE} is given by the following \texttt{abstract syntax}:

\begin{itemize}
\item a
\item b
\item S
\end{itemize}
Labelled Syntax of WHILE

The labelled syntax of the language WHILE is given by the following abstract syntax:

\[
\begin{align*}
a & ::= x \\
b & \\
S &
\end{align*}
\]
The labelled syntax of the language \textsc{While} is given by the following abstract syntax:

\begin{align*}
a & ::= \ x \mid n \\
b \\
S &
\end{align*}
The labelled syntax of the language \textsc{While} is given by the following \textbf{abstract syntax}:

\begin{align*}
a &::= x \mid n \mid a_1 \text{ op}_a a_2 \\
b &\quad \\
S &::= \left[x := a \right] \ell \mid \left[\text{skip} \right] \ell \mid S_1 ; S_2 \mid \text{if} \left[b \right] \ell \text{ then } S_1 \text{ else } S_2 \mid \text{while} \left[b \right] \ell \text{ do } S
\end{align*}
Labelled Syntax of \textsc{While}

The \textit{labelled} syntax of the language \textsc{While} is given by the following \textit{abstract syntax}:

\[
\begin{align*}
 a & ::= x \mid n \mid a_1 \text{ op}_a a_2 \\
 b & ::= \text{true} \\
 S & \\
\end{align*}
\]
The labelled syntax of the language WHILE is given by the following abstract syntax:

\[
\begin{align*}
a & ::= x \mid n \mid a_1 \ op_{a} \ a_2 \\
b & ::= true \mid false \\
S &
\end{align*}
\]
The labelled syntax of the language WHILE is given by the following abstract syntax:

\[a ::= x \mid n \mid a_1 \text{ op}_a a_2 \]
\[b ::= \text{true} \mid \text{false} \mid \text{not} \ b \]
\[S ::= \left[x := a \right] \ell \mid \left[\text{skip} \right] \ell \mid S_1 ; S_2 \mid \text{if} \left[b \right] \ell \text{then } S_1 \text{ else } S_2 \mid \text{while} \left[b \right] \ell \text{do } S \]
The labelled syntax of the language WHILE is given by the following abstract syntax:

\[
\begin{align*}
 a &::= x \mid n \mid a_1 \ op_a \ a_2 \\
 b &::= \text{true} \mid \text{false} \mid \text{not} \ b \mid b_1 \ op_b \ b_2 \\
 S &::= \llbracket x := a \rrbracket \ell \mid \llbracket \text{skip} \rrbracket \ell \mid S_1 ; S_2 \mid \text{if} \llbracket b \rrbracket \ell \text{then} S_1 \text{else} S_2 \mid \text{while} \llbracket b \rrbracket \ell \text{do} S
\end{align*}
\]
The labelled syntax of the language **WHILE** is given by the following abstract syntax:

\[
\begin{align*}
 a & ::= x \mid n \mid a_1 \text{ op}_a a_2 \\
 b & ::= \text{true} \mid \text{false} \mid \text{not} \ b \mid b_1 \text{ op}_b b_2 \mid a_1 \text{ op}_r a_2 \\
 S &
\end{align*}
\]
The labelled syntax of the language WHILE is given by the following abstract syntax:

\[
\begin{align*}
 a & ::= \ x \mid n \mid a_1 \ op_a \ a_2 \\
 b & ::= \ true \mid false \mid not \ b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2 \\
 S & ::= [x := a]^\ell
\end{align*}
\]
The labelled syntax of the language \texttt{WHILE} is given by the following \textbf{abstract syntax}:

\[
\begin{align*}
 a & ::= x | n | a_1 \ op_a \ a_2 \\
 b & ::= \text{true} | \text{false} | \text{not} \ b | b_1 \ op_b \ b_2 | a_1 \ op_r \ a_2 \\
 S & ::= [x := a]^l \\
 & \quad | [\text{skip}]^l
\end{align*}
\]
Labelled Syntax of \textsc{While}

The labelled syntax of the language \textsc{While} is given by the following \textbf{abstract syntax}:

\[
\begin{align*}
\text{a} & ::= \ x \mid n \mid a_1 \ op_a \ a_2 \\
\text{b} & ::= \ true \mid false \mid \text{not} \ b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2 \\
\text{S} & ::= \ [x := a]^L \\
& \quad \mid [\text{skip}]^L \\
& \quad \mid S_1;S_2
\end{align*}
\]
The labelled syntax of the language \texttt{WHILE} is given by the following \textbf{abstract syntax}:

\begin{align*}
a & ::= x \mid n \mid a_1 \text{ op}_a a_2 \\
b & ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \text{ op}_b b_2 \mid a_1 \text{ op}_r a_2 \\
S & ::= [x := a]^\ell \\
 & \mid [\text{skip}]^\ell \\
 & \mid S_1 ; S_2 \\
 & \mid \text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2
\end{align*}
The labelled syntax of the language **WHILE** is given by the following **abstract syntax**:

\[
\begin{align*}
a & ::= x \mid n \mid a_1 \text{ op}_a a_2 \\
b & ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \text{ op}_b b_2 \mid a_1 \text{ op}_r a_2 \\
S & ::= [x := a]^\ell \\
& \quad \mid [\text{skip}]^\ell \\
& \quad \mid S_1 ; S_2 \\
& \quad \mid \text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2 \\
& \quad \mid \text{while } [b]^\ell \text{ do } S
\end{align*}
\]
An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in \(x \) and leaves the result in \(z \):
An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in \(x \) and leaves the result in \(z \):

\[
\begin{align*}
[& y := x]^1; \\
[& z := 1]^2; \\
\textbf{while } & [y > 1]^3 \textbf{ do (} \\
[& z := z \times y]^4; \\
[& y := y - 1]^5); \\
[& y := 0]^6
\end{align*}
\]
An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in \(x \) and leaves the result in \(z \):

\[
\begin{align*}
[& y := x]^1; \\
[& z := 1]^2; \\
{\textbf{while}} [& y > 1]^3 \text{ do (} \\
& [& z := z \times y]^4; \\
& [& y := y - 1]^5); \\
[& y := 0]^6
\end{align*}
\]

Note the use of meta-symbols, brackets, to group statements.
Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language **WHILE** as follows:

\[
a
\]

\[
b
\]

\[
S
\]
Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

\[
\begin{align*}
 a & ::= x \\
 b & \\
 S &
\end{align*}
\]
Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language **WHILE** as follows:

\[
\begin{align*}
 a &::= x | n \\
 b &
\end{align*}
\]

\[
\begin{align*}
 S &::= \\
 \text{skip} | S_1 ; S_2 | \text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi} | \text{while } b \text{ do } S \text{ od}
\end{align*}
\]
Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

\[
\begin{align*}
a & ::= x \mid n \mid a_1 \text{ op}_a a_2 \\
b \\
S & ::= x := a \mid \text{skip} \mid S_1 ; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi} \mid \text{while } b \text{ do } S \text{ od}
\end{align*}
\]
Concrete Syntax of \texttt{WHILE}

To avoid using brackets (as meta-symbols) we could also use the \textbf{concrete syntax} of the language \texttt{WHILE} as follows:

\[
\begin{align*}
 a & ::= x \mid n \mid a_1 \ op_a \ a_2 \\
 b & ::= \text{true} \\
 S & \quad \\
\end{align*}
\]
Concrete Syntax of \texttt{WHILE}

To avoid using brackets (as meta-symbols) we could also use the \textbf{concrete syntax} of the language \texttt{WHILE} as follows:

\[
\begin{align*}
 a &::= x \mid n \mid a_1 \textsf{ op } a_2 \\
 b &::= \textit{true} \mid \textit{false} \\
 S &
\end{align*}
\]
Concrete Syntax of \texttt{WHILE}

To avoid using brackets (as meta-symbols) we could also use the \textbf{concrete syntax} of the language \texttt{WHILE} as follows:

\begin{align*}
a & ::= \ x \ | \ n \ | \ a_1 \ op_a a_2 \\
b & ::= \ true \ | \ false \ | \ not \ b \\
S &
\end{align*}
Concrete Syntax of \texttt{WHILE}

To avoid using brackets (as meta-symbols) we could also use the \textbf{concrete syntax} of the language \texttt{WHILE} as follows:

\begin{align*}
a &::= x \mid n \mid a_1 \text{ op}_a a_2 \\
b &::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \text{ op}_b b_2 \\
S &
\end{align*}
Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

\[
\begin{align*}
a & ::= x \mid n \mid a_1 \, \text{op}_a \, a_2 \\
b & ::= \text{true} \mid \text{false} \mid \text{not} \, b \mid b_1 \, \text{op}_b \, b_2 \mid a_1 \, \text{op}_r \, a_2 \\
S &
\end{align*}
\]
Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

\[
\begin{align*}
 a & ::= x \mid n \mid a_1 \text{ op}_a a_2 \\
 b & ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \text{ op}_b b_2 \mid a_1 \text{ op}_r a_2 \\
 S & ::= x := a
\end{align*}
\]
Concrete Syntax of \texttt{WHILE}

To avoid using brackets (as meta-symbols) we could also use the \textbf{concrete syntax} of the language \texttt{WHILE} as follows:

\begin{align*}
a & ::= \ x \mid n \mid a_1 \ op_a \ a_2 \\
b & ::= \ true \mid false \mid not \ b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2 \\
S & ::= \ x := a \\
& \mid \text{skip}
\end{align*}
Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language **WHILE** as follows:

\[
\begin{align*}
 a & ::= x | n | a_1 \text{ op}_a a_2 \\
 b & ::= \text{true} | \text{false} | \text{not} \ b | b_1 \text{ op}_b b_2 | a_1 \text{ op}_r a_2 \\
 S & ::= x ::= a \\
 & \quad | \text{skip} \\
 & \quad | S_1;S_2
\end{align*}
\]
Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

\[
\begin{align*}
a & ::= x \mid n \mid a_1 \text{ op}_a a_2 \\
b & ::= \text{true} \mid \text{false} \mid \text{not} \ b \mid b_1 \text{ op}_b b_2 \mid a_1 \text{ op}_r a_2 \\
S & ::= x ::= a \\
& \quad | \text{skip} \\
& \quad | S_1;S_2 \\
& \quad | \text{if} \ b \ \text{then} \ S_1 \ \text{else} \ S_2 \ \text{fi}
\end{align*}
\]
Concrete Syntax of \texttt{WHILE}

To avoid using brackets (as meta-symbols) we could also use the \textbf{concrete syntax} of the language \texttt{WHILE} as follows:

\begin{align*}
a & ::= x \mid n \mid a_1 \text{ op}_a a_2 \\
b & ::= \text{true} \mid \text{false} \mid \text{not} \ b \mid b_1 \text{ op}_b b_2 \mid a_1 \text{ op}_r a_2 \\
S & ::= x := a \\
 & \mid \text{skip} \\
 & \mid S_1; S_2 \\
 & \mid \text{if} \ b \ \text{then} \ S_1 \ \text{else} \ S_2 \ \text{fi} \\
 & \mid \text{while} \ b \ \text{do} \ S \ \text{od}
\end{align*}
When presenting examples of Data Flow Analyses we will use a number of operations on programs and labels. The first of these is

$$\text{init} : \text{Stmt} \to \text{Lab}$$

which returns the initial label of a statement:

$$\text{init}([x := a]_{\ell}) = \ell$$

$$\text{init}([\text{skip}]_{\ell}) = \ell$$

$$\text{init}(S_1;S_2) = \text{init}(S_1)$$

$$\text{init}(\text{if } [b]_{\ell} \text{ then } S_1 \text{ else } S_2) = \ell$$

$$\text{init}(\text{while } [b]_{\ell} \text{ do } S) = \ell$$
Final Labels

We will also need a function which returns the set of final labels in a statement; whereas a sequence of statements has a single entry, it may have multiple exits (e.g. in the conditional):

\[
\text{final} : \text{Stmt} \rightarrow \mathcal{P}(\text{Lab})
\]

\[
\begin{align*}
\text{final}([\, x := a \,]^\ell) &= \{ \ell \} \\
\text{final}([\, \text{skip} \,]^\ell) &= \{ \ell \} \\
\text{final}(S_1;S_2) &= \text{final}(S_2) \\
\text{final}(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) &= \text{final}(S_1) \cup \text{final}(S_2) \\
\text{final}(\text{while } [b]^\ell \text{ do } S) &= \{ \ell \}
\end{align*}
\]

The \textbf{while}-loop terminates immediately after the test fails.
Elementary Blocks

The building blocks of our analysis is given by **Block** is the set of statements, or elementary blocks, of the form:
The building blocks of our analysis is given by Block is the set of statements, or elementary blocks, of the form:

- $\llbracket x := a \rrbracket^\ell$, or
Elementary Blocks

The building blocks of our analysis is given by Block is the set of statements, or elementary blocks, of the form:

- $[x := a]^{\ell}$, or
- $[\text{skip}]^{\ell}$, as well as
The building blocks of our analysis is given by **Block** is the set of statements, or elementary blocks, of the form:

- $[x := a]^\ell$, or
- $[\text{skip}]^\ell$, as well as
- tests of the form $[b]^\ell$.
Blocks

To access the statements or test associated with a label in a program we use the function

\[
blocks : \text{Stmt} \rightarrow \mathcal{P}(\text{Block})
\]

\[
blocks([x := a]^{\ell}) = \{[x := a]^{\ell}\}
\]

\[
blocks([\text{skip}]^{\ell}) = \{[\text{skip}]^{\ell}\}
\]

\[
blocks(S_1; S_2) = blocks(S_1) \cup blocks(S_2)
\]

\[
blocks(\text{if } [b]^{\ell} \text{ then } S_1 \text{ else } S_2) = \{[b]^{\ell}\} \cup blocks(S_1) \cup blocks(S_2)
\]

\[
blocks(\text{while } [b]^{\ell} \text{ do } S) = \{[b]^{\ell}\} \cup blocks(S)
\]
Then the set of labels occurring in a program is given by

\[\text{labels} : \text{Stmt} \rightarrow \mathcal{P}(\text{Lab}) \]

where

\[\text{labels}(S) = \{ \ell \mid [B]^{\ell} \in \text{blocks}(S) \} \]

Clearly \(\text{init}(S) \in \text{labels}(S) \) and \(\text{final}(S) \subseteq \text{labels}(S) \).
Flow

\[flow : \text{Stmt} \rightarrow \mathcal{P}(\text{Lab} \times \text{Lab})\]

which maps statements to sets of flows:

\[
\begin{align*}
flow([\ x := a \]^\ell) &= \emptyset \\
flow([\ \text{skip} \]^\ell) &= \emptyset \\
flow(S_1;S_2) &= flow(S_1) \cup flow(S_2) \cup \\
&\quad \{(\ell, \text{init}(S_2)) \mid \ell \in \text{final}(S_1)\} \\
flow(\text{if} [b]^\ell \ \text{then} \ S_1 \ \text{else} \ S_2) &= flow(S_1) \cup flow(S_2) \cup \\
&\quad \{(\ell, \text{init}(S_1)), (\ell, \text{init}(S_2))\} \\
flow(\text{while} [b]^\ell \ \text{do} \ S) &= flow(S) \cup \{(\ell, \text{init}(S))\} \cup \\
&\quad \{(\ell', \ell) \mid \ell' \in \text{final}(S)\}
\end{align*}
\]
An Example Flow

Consider the following program, power, computing the x-th power of the number stored in y:

$$[z := 1]^1;$$
$$\textbf{while } [x > 1]^2 \textbf{ do } ($$
$$[z := z \times y]^3; $$
$$[x := x - 1]^4);$$
Consider the following program, power, computing the x-th power of the number stored in y:

\[
\begin{align*}
\text{[} & z := 1 \text{]}; \\
\text{while } & \left[x > 1 \right] \text{ do (} \\
& \text{ [} z := z \times y \text{]}; \\
& \text{ [} x := x - 1 \text{]});
\end{align*}
\]

We have $\text{labels}(\text{power}) = \{1, 2, 3, 4\}$, $\text{init}(\text{power}) = 1$, and $\text{final}(\text{power}) = \{2\}$. The function flow produces the set:

\[
\text{flow}(\text{power}) = \{(1, 2), (2, 3), (3, 4), (4, 2)\}
\]
Flow Graph

1. $z := 1$
2. $x > 0$
 - yes $z := z \times y$
 - no $x := x - 1$
The function $flow$ is used in the formulation of forward analyses. Clearly $init(S)$ is the (unique) entry node for the flow graph with nodes $labels(S)$ and edges $flow(S)$. Also

$$
labels(S) = \{init(S)\} \cup \{\ell \mid (\ell, \ell') \in flow(S)\} \cup \{\ell' \mid (\ell, \ell') \in flow(S)\}
$$

and for composite statements (meaning those not simply of the form $[B]^{\ell}$) the equation remains true when removing the $\{init(S)\}$ component.
In order to formulate *backward analyses* we require a function that computes reverse flows:

\[
\text{flow}^R : \text{Stmt} \rightarrow \mathcal{P}(\text{Lab} \times \text{Lab})
\]

\[
\text{flow}^R(S) = \{ (\ell, \ell') \mid (\ell', \ell) \in \text{flow}(S) \}
\]

For the power program, \(\text{flow}^R \) produces

\[
\{(2, 1), (2, 4), (3, 2), (4, 3)\}
\]
In case $\text{final}(S)$ contains just one element that will be the unique entry node for the flow graph with nodes $\text{labels}(S)$ and edges $\text{flow}^R(S)$. Also

$$\text{labels}(S) = \text{final}(S) \cup \{\ell \mid (\ell, \ell') \in \text{flow}^R(S)\} \cup \{\ell' \mid (\ell, \ell') \in \text{flow}^R(S)\}$$
Notation

We will use the notation S_\star to represent the program we are analysing (the “top-level" statement)
Notation

We will use the notation S_\star to represent the program we are analysing (the “top-level" statement) and furthermore:

- Lab_\star to represent the labels ($\text{labels}(S_\star)$) appearing in S_\star,
Notation

We will use the notation S_\star to represent the program we are analysing (the “top-level" statement) and furthermore:

- **Lab** to represent the labels ($\text{labels}(S_\star)$) appearing in S_\star,
- **Var** to represent the variables ($\text{FV}(S_\star)$) appearing in S_\star, and
- **AExp** to represent the set of non-trivial arithmetic subexpressions in S_\star as well as $\text{AExp}(a)$ and $\text{AExp}(b)$ to refer to the set of non-trivial arithmetic subexpressions of a given arithmetic, respectively boolean, expression.

An expression is trivial if it is a single variable or constant.
Notation

We will use the notation S_\star to represent the program we are analysing (the “top-level” statement) and furthermore:

- **Lab$_\star$** to represent the labels (labels(S_\star)) appearing in S_\star,
- **Var$_\star$** to represent the variables (FV(S_\star)) appearing in S_\star,
- **Block$_\star$** to represent the elementary blocks (blocks(S_\star)) occurring in S_\star, and
Notation

We will use the notation S_\star to represent the program we are analysing (the “top-level" statement) and furthermore:

- **Lab_\star** to represent the labels ($labels(S_\star)$) appearing in S_\star,
- **Var_\star** to represent the variables ($FV(S_\star)$) appearing in S_\star,
- **Block_\star** to represent the elementary blocks ($blocks(S_\star)$) occurring in S_\star, and
- **AExp_\star** to represent the set of *non-trivial* arithmetic subexpressions in S_\star
Notation

We will use the notation S_\star to represent the program we are analysing (the “top-level" statement) and furthermore:

- Lab_\star to represent the labels ($\text{labels}(S_\star)$) appearing in S_\star,
- Var_\star to represent the variables ($\text{FV}(S_\star)$) appearing in S_\star,
- Block_\star to represent the elementary blocks ($\text{blocks}(S_\star)$) occurring in S_\star, and
- AExp_\star to represent the set of non-trivial arithmetic subexpressions in S_\star.

An expression is trivial if it is a single variable or constant.
We will use the notation S_\star to represent the program we are analysing (the “top-level" statement) and furthermore:

- Lab_\star to represent the labels ($\text{labels}(S_\star)$) appearing in S_\star,
- Var_\star to represent the variables ($\text{FV}(S_\star)$) appearing in S_\star,
- Block_\star to represent the elementary blocks ($\text{blocks}(S_\star)$) occurring in S_\star, and
- AExp_\star to represent the set of non-trivial arithmetic subexpressions in S_\star as well as
- $\text{AExp}(a)$ and $\text{AExp}(b)$ to refer to the set of non-trivial arithmetic subexpressions of a given arithmetic, respectively boolean, expression.

An expression is trivial if it is a single variable or constant.
Program S_\star has *isolated entries* if:

$$\forall \ell \in \text{Lab} : (\ell, \text{init}(S_\star)) \notin \text{flow}(S_\star)$$

This is the case whenever S_\star does not start with a *while*-loop.
Program S_\star has *isolated entries* if:

$$\forall \ell \in \text{Lab} : (\ell, \text{init}(S_\star)) \notin \text{flow}(S_\star)$$

This is the case whenever S_\star does not start with a **while**-loop.

Similarly, we shall frequently assume that the program S_\star has *isolated exits*; this means that:

$$\forall \ell_1 \in \text{final}(S_\star) \ \forall \ell_2 \in \text{Lab} : (\ell_1, \ell_2) \notin \text{flow}(S_\star)$$
A statement, S, is label consistent if and only if:

$$[B_1]^\ell, [B_2]^\ell \in \text{blocks}(S) \text{ implies } B_1 = B_2$$
Label Consistency

A statement, \(S \), is label consistent if and only if:

\[
[B_1]^{\ell}, [B_2]^{\ell} \in \text{blocks}(S) \text{ implies } B_1 = B_2
\]

Clearly, if all blocks in \(S \) are uniquely labelled (meaning that each label occurs only once), then \(S \) is label consistent.

When \(S \) is label consistent the statement or clause “where \([B]^{\ell} \in \text{blocks}(S) \)” is unambiguous in defining a partial function from labels to elementary blocks; we shall then say that \(\ell \) labels the block \(B \).