

Program Analysis (70020)

While Language

Herbert Wiklicky

Department of Computing
Imperial College London

`herbert@doc.ic.ac.uk`
`h.wiklicky@imperial.ac.uk`

Spring 2026

Syntactic Constructs

We use the following syntactic categories:

- $a \in \mathbf{AExp}$ arithmetic expressions
- $b \in \mathbf{BExp}$ boolean expressions
- $S \in \mathbf{Stmt}$ statements

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

a

b

S

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$a ::= x$

b

S

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$a ::= x \mid n$

b

S

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b$$
$$S$$

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true}$

S

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false}$$
$$S$$

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b$$
$$S$$

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2$$
$$S$$

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$$
$$S$$

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$$
$$S ::= x := a$$

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$$
$$S ::= \begin{aligned} & x := a \\ & \mid \text{skip} \end{aligned}$$

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$$
$$S ::= \begin{aligned} & x := a \\ & \mid \text{skip} \\ & \mid S_1; S_2 \end{aligned}$$

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$

$S ::= x := a$
| **skip**
| $S_1; S_2$
| **if** b **then** S_1 **else** S_2

Abstract Syntax of WHILE

The syntax of the language WHILE is given by the following **abstract syntax**:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$

$S ::= x := a$
| **skip**
| $S_1; S_2$
| **if** b **then** S_1 **else** S_2
| **while** b **do** S

Syntactical Categories

We assume some countable/finite set of variables is given;

$x, y, z, \dots \in \mathbf{Var}$ variables
 $n, m, \dots \in \mathbf{Num}$ numerals

Syntactical Categories

We assume some countable/finite set of variables is given;

$x, y, z, \dots \in \mathbf{Var}$ variables
 $n, m, \dots \in \mathbf{Num}$ numerals
 $\ell, \dots \in \mathbf{Lab}$ labels

Numerals (integer constants) will not be further defined and neither will the operators:

$op_a \in \mathbf{Op}_a$ arithmetic operators, e.g. $+, -, \times, \dots$
 $op_b \in \mathbf{Op}_b$ boolean operators, e.g. \wedge, \vee, \dots
 $op_r \in \mathbf{Op}_r$ relational operators, e.g. $=, <, \leq, \dots$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

a

b

S

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$a ::= x$

b

S

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$a ::= x \mid n$

b

S

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b$$
$$S$$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true}$

S

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false}$$
$$S$$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \text{ op}_a a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b$$
$$S$$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2$$
$$S$$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$$
$$S$$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$$
$$S ::= [x := a]^{\ell}$$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$$
$$S ::= [x := a]^\ell$$
$$\mid [\text{skip}]^\ell$$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$
$$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$$
$$S ::= \begin{aligned} & [x := a]^\ell \\ & \mid [\text{skip}]^\ell \\ & \mid S_1; S_2 \end{aligned}$$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

$$\begin{aligned} a & ::= x \mid n \mid a_1 \ op_a \ a_2 \\ b & ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2 \\ S & ::= [x := a]^\ell \\ & \quad \mid [\mathbf{skip}]^\ell \\ & \quad \mid S_1; S_2 \\ & \quad \mid \mathbf{if } [b]^\ell \ \mathbf{then } S_1 \ \mathbf{else } S_2 \end{aligned}$$

Labelled Syntax of WHILE

The **labelled** syntax of the language WHILE is given by the following **abstract syntax**:

```
a ::= x | n | a1 opa a2  
b ::= true | false | not b | b1 opb b2 | a1 opr a2  
S ::= [x := a]ℓ  
    | [skip]ℓ  
    | S1; S2  
    | if [b]ℓ then S1 else S2  
    | while [b]ℓ do S
```

An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in `x` and leaves the result in `z`:

An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in `x` and leaves the result in `z`:

```
[ y := x ]1;  
[ z := 1 ]2;  
while [y > 1]3 do (  
    [ z := z * y ]4;  
    [ y := y - 1 ]5);  
[ y := 0 ]6
```

An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in `x` and leaves the result in `z`:

```
[ y := x ]1;  
[ z := 1 ]2;  
while [y > 1]3 do (  
    [ z := z * y ]4;  
    [ y := y - 1 ]5);  
[ y := 0 ]6
```

Note the use of **meta-symbols**, brackets, to group statements.

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

a

b

S

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x$

b

S

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n$

b

S

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

b

S

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true}$

S

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false}$

S

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b$

S

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2$

S

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$

S

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$

$S ::= x := a$

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$

$S ::= x := a$
| **skip**

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$

$S ::= x := a$
| skip
| $S_1; S_2$

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$

$S ::= x := a$
 | **skip**
 | $S_1; S_2$
 | **if** b **then** S_1 **else** S_2 **fi**

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$a ::= x \mid n \mid a_1 \ op_a \ a_2$

$b ::= \text{true} \mid \text{false} \mid \text{not } b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$

$S ::= x := a$
 | **skip**
 | $S_1; S_2$
 | **if** b **then** S_1 **else** S_2 **fi**
 | **while** b **do** S **od**

Initial Label

When presenting examples of Data Flow Analyses we will use a number of operations on programs and labels. The first of these is

$$init : \mathbf{Stmt} \rightarrow \mathbf{Lab}$$

which returns the initial label of a statement:

$$init([\mathbf{x} := a]^\ell) = \ell$$

$$init([\mathbf{skip}]^\ell) = \ell$$

$$init(S_1; S_2) = init(S_1)$$

$$init(\mathbf{if} [b]^\ell \mathbf{then} S_1 \mathbf{else} S_2) = \ell$$

$$init(\mathbf{while} [b]^\ell \mathbf{do} S) = \ell$$

Final Labels

We will also need a function which returns the set of final labels in a statement; whereas a sequence of statements has a single entry, it may have multiple exits (e.g. in the conditional):

$$\text{final} : \mathbf{Stmt} \rightarrow \mathcal{P}(\mathbf{Lab})$$

$$\text{final}([\ x := a]^\ell) = \{\ell\}$$

$$\text{final}([\ \mathbf{skip}]^\ell) = \{\ell\}$$

$$\text{final}(S_1; S_2) = \text{final}(S_2)$$

$$\text{final}(\mathbf{if } [b]^\ell \mathbf{then } S_1 \mathbf{else } S_2) = \text{final}(S_1) \cup \text{final}(S_2)$$

$$\text{final}(\mathbf{while } [b]^\ell \mathbf{do } S) = \{\ell\}$$

The **while**-loop terminates immediately after the test fails.

Elementary Blocks

The building blocks of our analysis is given by **Block** is the set of statements, or elementary blocks, of the form:

Elementary Blocks

The building blocks of our analysis is given by **Block** is the set of statements, or elementary blocks, of the form:

- ▶ $[\textcolor{blue}{x} := a]^\ell$, or

Elementary Blocks

The building blocks of our analysis is given by **Block** is the set of statements, or elementary blocks, of the form:

- ▶ $[\text{x} := a]^\ell$, or
- ▶ $[\text{skip}]^\ell$, as well as

Elementary Blocks

The building blocks of our analysis is given by **Block** is the set of statements, or elementary blocks, of the form:

- ▶ $[x := a]^\ell$, or
- ▶ $[\text{skip}]^\ell$, as well as
- ▶ tests of the form $[b]^\ell$.

Blocks

To access the statements or test associated with a label in a program we use the function

$$\text{blocks} : \text{Stmt} \rightarrow \mathcal{P}(\text{Block})$$

$$\text{blocks}([\ x := a]^\ell) = \{[\ x := a]^\ell\}$$

$$\text{blocks}([\ \text{skip}]^\ell) = \{[\ \text{skip}]^\ell\}$$

$$\text{blocks}(S_1; S_2) = \text{blocks}(S_1) \cup \text{blocks}(S_2)$$

$$\begin{aligned} \text{blocks}(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) &= \{[b]^\ell\} \cup \\ &\quad \text{blocks}(S_1) \cup \text{blocks}(S_2) \end{aligned}$$

$$\text{blocks}(\text{while } [b]^\ell \text{ do } S) = \{[b]^\ell\} \cup \text{blocks}(S)$$

Labels

Then the set of labels occurring in a program is given by

$$\textit{labels} : \mathbf{Stmt} \rightarrow \mathcal{P}(\mathbf{Lab})$$

where

$$\textit{labels}(S) = \{\ell \mid [\textcolor{blue}{B}]^\ell \in \textit{blocks}(S)\}$$

Clearly $\textit{init}(S) \in \textit{labels}(S)$ and $\textit{final}(S) \subseteq \textit{labels}(S)$.

Flow

$$\text{flow} : \mathbf{Stmt} \rightarrow \mathcal{P}(\mathbf{Lab} \times \mathbf{Lab})$$

which maps statements to sets of flows:

$$\text{flow}([\ x := a]^\ell) = \emptyset$$

$$\text{flow}([\ \mathbf{skip}]^\ell) = \emptyset$$

$$\begin{aligned} \text{flow}(S_1; S_2) &= \text{flow}(S_1) \cup \text{flow}(S_2) \cup \\ &\quad \{(\ell, \text{init}(S_2)) \mid \ell \in \text{final}(S_1)\} \end{aligned}$$

$$\begin{aligned} \text{flow}(\mathbf{if} [b]^\ell \mathbf{then} S_1 \mathbf{else} S_2) &= \text{flow}(S_1) \cup \text{flow}(S_2) \cup \\ &\quad \{(\ell, \text{init}(S_1)), (\ell, \text{init}(S_2))\} \end{aligned}$$

$$\begin{aligned} \text{flow}(\mathbf{while} [b]^\ell \mathbf{do} S) &= \text{flow}(S) \cup \{(\ell, \text{init}(S))\} \cup \\ &\quad \{(\ell', \ell) \mid \ell' \in \text{final}(S)\} \end{aligned}$$

An Example Flow

Consider the following program, power, computing the x -th power of the number stored in y :

```
[ z := 1 ]1;  
while [x > 1]2 do (  
    [ z := z * y ]3;  
    [ x := x - 1 ]4)
```

An Example Flow

Consider the following program, `power`, computing the x -th power of the number stored in y :

```
[  $z := 1$  ]1;  
while [  $x > 1$ ]2 do (  
    [  $z := z * y$  ]3;  
    [  $x := x - 1$  ]4)
```

We have $\text{labels}(\text{power}) = \{1, 2, 3, 4\}$, $\text{init}(\text{power}) = 1$, and $\text{final}(\text{power}) = \{2\}$. The function flow produces the set:

$$\text{flow}(\text{power}) = \{(1, 2), (2, 3), (3, 4), (4, 2)\}$$

Flow Graph

Forward Analysis

The function $flow$ is used in the formulation of *forward analyses*. Clearly $init(S)$ is the (unique) entry node for the flow graph with nodes $labels(S)$ and edges $flow(S)$. Also

$$\begin{aligned} labels(S) &= \{init(S)\} \cup \\ &\quad \{\ell \mid (\ell, \ell') \in flow(S)\} \cup \\ &\quad \{\ell' \mid (\ell, \ell') \in flow(S)\} \end{aligned}$$

and for composite statements (meaning those not simply of the form $[B]^\ell$) the equation remains true when removing the $\{init(S)\}$ component.

Reverse Flow

In order to formulate *backward analyses* we require a function that computes reverse flows:

$$\text{flow}^R : \mathbf{Stmt} \rightarrow \mathcal{P}(\mathbf{Lab} \times \mathbf{Lab})$$

$$\text{flow}^R(S) = \{(\ell, \ell') \mid (\ell', \ell) \in \text{flow}(S)\}$$

For the power program, flow^R produces

$$\{(2, 1), (2, 4), (3, 2), (4, 3)\}$$

Backward Analysis

In case $final(S)$ contains just one element that will be the unique entry node for the flow graph with nodes $labels(S)$ and edges $flow^R(S)$. Also

$$\begin{aligned} labels(S) &= final(S) \cup \\ &\quad \{\ell \mid (\ell, \ell') \in flow^R(S)\} \cup \\ &\quad \{\ell' \mid (\ell, \ell') \in flow^R(S)\} \end{aligned}$$

Notation

We will use the notation S_* to represent the program we are analysing (the “top-level” statement)

Notation

We will use the notation S_* to represent the program we are analysing (the “top-level” statement) and furthermore:

- ▶ **Lab_{*}** to represent the labels ($\text{labels}(S_*)$) appearing in S_* ,

Notation

We will use the notation S_* to represent the program we are analysing (the “top-level” statement) and furthermore:

- ▶ **Lab_{*}** to represent the labels ($\text{labels}(S_*)$) appearing in S_* ,
- ▶ **Var_{*}** to represent the variables ($\text{FV}(S_*)$) appearing in S_* ,

Notation

We will use the notation S_* to represent the program we are analysing (the “top-level” statement) and furthermore:

- ▶ **Lab_{*}** to represent the labels ($\text{labels}(S_*)$) appearing in S_* ,
- ▶ **Var_{*}** to represent the variables ($\text{FV}(S_*)$) appearing in S_* ,
- ▶ **Block_{*}** to represent the elementary blocks ($\text{blocks}(S_*)$) occurring in S_* , and

Notation

We will use the notation S_* to represent the program we are analysing (the “top-level” statement) and furthermore:

- ▶ **Lab_{*}** to represent the labels ($\text{labels}(S_*)$) appearing in S_* ,
- ▶ **Var_{*}** to represent the variables ($\text{FV}(S_*)$) appearing in S_* ,
- ▶ **Block_{*}** to represent the elementary blocks ($\text{blocks}(S_*)$) occurring in S_* , and
- ▶ **AExp_{*}** to represent the set of *non-trivial* arithmetic subexpressions in S_*

Notation

We will use the notation S_* to represent the program we are analysing (the “top-level” statement) and furthermore:

- ▶ **Lab_{*}** to represent the labels ($\text{labels}(S_*)$) appearing in S_* ,
- ▶ **Var_{*}** to represent the variables ($\text{FV}(S_*)$) appearing in S_* ,
- ▶ **Block_{*}** to represent the elementary blocks ($\text{blocks}(S_*)$) occurring in S_* , and
- ▶ **AExp_{*}** to represent the set of *non-trivial* arithmetic subexpressions in S_*

An expression is **trivial** if it is a single variable or constant.

Notation

We will use the notation S_* to represent the program we are analysing (the “top-level” statement) and furthermore:

- ▶ **Lab_{*}** to represent the labels ($\text{labels}(S_*)$) appearing in S_* ,
- ▶ **Var_{*}** to represent the variables ($\text{FV}(S_*)$) appearing in S_* ,
- ▶ **Block_{*}** to represent the elementary blocks ($\text{blocks}(S_*)$) occurring in S_* , and
- ▶ **AExp_{*}** to represent the set of *non-trivial* arithmetic subexpressions in S_* as well as
- ▶ **AExp(a)** and **AExp(b)** to refer to the set of non-trivial arithmetic subexpressions of a given arithmetic, respectively boolean, expression.

An expression is **trivial** if it is a single variable or constant.

Isolated Entries & Exits

Program S_* has *isolated entries* if:

$$\forall \ell \in \mathbf{Lab} : (\ell, \text{init}(S_*)) \notin \text{flow}(S_*)$$

This is the case whenever S_* does not start with a **while**-loop.

Isolated Entries & Exits

Program S_* has *isolated entries* if:

$$\forall \ell \in \mathbf{Lab} : (\ell, \text{init}(S_*)) \notin \text{flow}(S_*)$$

This is the case whenever S_* does not start with a **while**-loop.

Similarly, we shall frequently assume that the program S_* has *isolated exits*; this means that:

$$\forall \ell_1 \in \text{final}(S_*) \forall \ell_2 \in \mathbf{Lab} : (\ell_1, \ell_2) \notin \text{flow}(S_*)$$

Label Consistency

A statement, S , is **label consistent** if and only if:

$$[B_1]^\ell, [B_2]^\ell \in \text{blocks}(S) \text{ implies } B_1 = B_2$$

Label Consistency

A statement, S , is **label consistent** if and only if:

$$[B_1]^\ell, [B_2]^\ell \in \text{blocks}(S) \text{ implies } B_1 = B_2$$

Clearly, if all blocks in S are uniquely labelled (meaning that each label occurs only once), then S is label consistent.

When S is label consistent the statement or clause “where $[B]^\ell \in \text{blocks}(S)$ ” is unambiguous in defining a partial function from labels to elementary blocks; we shall then say that ℓ **labels** the block B .