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Data Flow Analysis

The general approach for determining program properties for
procedural languages via a dataflow analysis:

» Extract (Control) Flow Information

» Formulate Data Flow Equations

» Update Local Information
» Collect Global Information

» Construct Solution(s) of Equations
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Available Expressions

The Available Expressions Analysis will determine:

For each program point, which expressions must (are
guaranteed to) have already been computed, and not
later modified, on all paths to that program point.

This information can be used to avoid the re-computation of an
expression. For clarity, we will concentrate on arithmetic
expressions.

Example

Consider the following simple program:

[x:=a+b]";

[y :=axb]?

while [y > a+ b]° do (
[a:=a+1]%
[x:=a+b]°)

It should be clear that the expression a+b is available every
time the execution reaches the test (label 3) in the loop; as a
consequence, the expression need not be recomputed.
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AE Analysis

killze : Block, — P(AEXp, )
genye : Block, — P(AEXxp,)
AEentfy : Lab* — P(AEXp*)

AE; : Lab, — P(AExp,)
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AE Auxiliary Functions

killae ([ skip 1) =

Kilne([ x := al’) = {& € AExp, | x € FV(&)}
0
killag([b]°) = 0

gene([ x = al’) = {a € AExp(a) | x ¢ FU(&)}

gene([skip]?) = 0
genne([b]) = AExp(b)
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AE Local Change (e.g. expression x + y)

AEentry ()
[x+y<x]t V
[z:=x+Yy ]E Vv

[x:=x+y]" x

AE exit(£)
|

Whenever a variable x in an expression gets a new value the
expression becomes unavailable.
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AE Equation Schemes

AE oriry(0) { 0, if £ = init(S,)

N{AEexit(¢) | (¢',¢) € flow(S,)}, otherwise

AEexit(t) = (AEentry(£)\Killae([B])) U gene(([B]°)
where [B]‘ € blocks(S,)
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AE Global Collection

v A
We push information “forward in time”.
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Largest Solution

The analysis is a forward analysis and we are interested in the
largest sets satisfying the equation for AEenty, and AE gyt

[ z .= x + y |%;while [true]” do [ skip |

AEentry(g) = 0
AEentry(fl) — AEexit(e) M AEexit(EN)
AEentry(fﬂ) — AEexit(gl)
AEgit(f) = AEentry(f) U{x +y}
AEexit(gl) — AEentry(gl)
AEexit(fﬁ) - AEentry(fu)
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Obtaining Solutions

[ ”']g/ no

yes

[ - .]E”
|

After some simplification, we find that:

AEentry(fl) = {X+y}n AEentry(gl)
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AE Example
[x:=a+b];
[y :=axb]?
while [y > a+ b]® do (
[a:=a+1]%
[x:=a+b])
¢ Killng (£) genae(¢)
1 0 {a+ b}
2 ) {ax* b}
3 0 {a+ b}
4|{atbaxbat+i}| 0
5 0 {a+ b}
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AE Example: Equations

[x:=a+b];

[y =axb]?

while [y > a+ b]® do (
[a:=a+1]%
[x:=a+b]°)

(1) = AEenny(1)U{a+ b}
(2) = AEenn(2)U{axb}
Eexit(3) — AEentry(3) U {a + b}
(4) (4)
(5) (5)

AE Example: Equations

[x:=a+b]";

[y =axb]?

while [y > a+ b]® do (
[a:=a+1]%
[x:=a+b]5)
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AE Example: Equations

AEentry(1) = 0
AEentry(2) AEexit(1)
AEentry(S) AEexit(2) M AEexit(5)
AEentry(4) - AEexit(3)
AEentry(5) - AEexit(4)
AEei(1) = AEenn(1)U{a+ b}
AE git(2) AEeniy(2) U {a b}
AEeil(3) = AEenny(3)U{a+ b}
AEoi(4) = AEemy(4)\{a+b,axb,a+1}
AEqi(5) = AEemy(5)U{a+ b}

AE Example: Solutions

AEentry(£)
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AEexit(g)

0
{a+ b}
{a+ b}
{a+ b}

0

OO WOMND =2

{a+ b}
{a+ b,ax b}
{a+ b}
0
{a+ b}

Note that, even though a is redefined in the loop, the expression
a+b is re-evaluated in the loop and so it is always available on
entry to the loop. On the other hand, a*b is available on the first
entry to the loop but is killed before the next iteration.
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Reaching Definitions Analysis

The Reaching Definitions Analysis is analogous to the previous
one except that we are interested in:

For each program point, which assignments may have
been made and not overwritten, when program execu-
tion reaches this point along some path.

A main application of Reaching Definitions Analysis is in the
construction of direct links between blocks that produce values
and blocks that use them.
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Example

A simple example to illustrate the RD analysis would be:

[x :=5];

[y =175

while [x > 1]° do (
[y =xxyl%

[x =x—1]°)

All of the assignments reach the entry of 4 (the assignments
labelled 1 and 2 reach there on the first iteration); only the
assignments labelled 1, 4 and 5 reach the entry of 5.
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RD Analysis

Killrp : Block, — P(Var, x Lab,)
gengp : Block, — P(Var, x Lab,)
RDentry . Lab* — P(Val‘* X Lab*)

RDey : Lab, — P(Var, x Lab,)

Remark: Strictly speaking we need P(Var, x (Lab, U {7})).
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RD Auxiliary Functions

kilo([ x == a]’) = {(x,7)} U {(x.?) |
[B]* a “definition” of x in S,}
killkp([ skip]9) = 0
killep([b]) = 0

gengp([ x := al’) (x,0)}
gengp([ skip ]E; =

gengp([b]°

= = A
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RD Equation Schemes

((x.7) | x € FY(S,)}, if £ = init(S.)
RDentry(f) = { U{RDo(?) | (¢',0) € flow(S,)}, otherwise

RDexil(¢) = (RDentry(¢)\killap([B]")) U gengp([B]°)
where [B]* € blocks(S,)
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Smallest Solution

Similar to before, this is a forward analysis but we are interested
in the smallest sets satisfying the equation for RDentry.

[ z := x + y |“while [true]” do [ skip |

I:{Denl‘ry(g) — {(X> ?)7 (ya ?)7 (Z’ ?)}

RDenz‘ry(gl) — RDexit(g) U I:{Dexil‘(fﬁ)
I:{Denz‘ry(gll) — RDexil‘(gl)
RDexi(¢) = (RDenry(0)\{(2,7)}) U {(z,0)}
RDexit(gl) — |:{Dentry(g/)
RDexit(eﬁ) — I:{Dentry(f//)
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Obtaining Solutions

Y

yes

[ - .]E”
|

After some simplification, we find that:

RDentry(¢') = {(x,?), (¥, ?),(2,¢)} URDegniry(¢')
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RD Variations

Sometimes, when the Reaching Definitions analysis is
presented in the literature, one has RDepry (init(S,)) = 0 rather
than RDentry (init(Sy)) = {((x,?) | x € FV(S,)}.

This is correct only for programs that always assign variables
before their first use; incorrect optimisations may result if this is
not the case. The advantage of our formulation is that it is
always semantically sound.
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RD Example

[x:=5]";

[y:=1]%
while [x > 1]3 do (

[y =xxy]%
[x =x—1])

Killrp (¢) gengp ()

{(7),06,1),(x,9)} | {(x, 1)}
{y.?), (%@2), (y:4)} {(Y(})2)}
{7, (¥,2),(y:4)} | Ay 4)}
{(x,7), (1), (x,9)} | {(x,5)}

OO WO =2

RD Example: Equations

[x :=5];

[y =175

while [x > 1]3 do (
[y :=xxyl%

[x =x—1]°)

RDGX/T(1) - (RDentFY(1)\{(X7?)7(X71)7(X75)})U
?

I:{Dexil‘(z) = (RDentry(z)\{(yy-,
RDexit(3) — RDenz‘ry(3)

RDexit(4) = (RDentry(4)\{(y>-7
(

?
RDexit(5) - (RDentry 5)\{()(7 ?)7 (X7 1)7 (Xv 5)}) U
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RD Example: Equations

[x :=5];

[y =11

while [x > 1]° do (
[y =xxy]%

[x =x—1]°)

I:{Dem‘ry(‘I ) — {(X, ?)a (Ya ?)}
|:{Denz‘ry(z) — I:{Dexit(‘I )

I:”lDent‘ry(?’) — RDexit(z) U RDexit(s)
I:“:)enz‘ry(‘1r) — RDexit(3)

I:{Dent‘ry(5) = RDexit(4)
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RD Example: Equations

RDeniry(1) = {(x,7),(y,?)}

IqDenl‘ry(z) — RDexn‘(1)

I:{Denl‘ry(e’) RDexit(z) U RDexit(5)

RDentry(4) — RDexn‘(S)

I:{Dentry(5) — RDexn‘(4)

RDexit(1) = (RDentry(1)\{(x,7),(x,1),(x;5)}) U{(x, 1)}
RDexit(2) = (RDentry(2)\{(¥,7),(¥,2),(y,4)}) U{(y,2)}
RDexi(3) = RDentry(3)

RDexit(4) = (RDenmy(4)\{(y,7?),(¥,2),(y,4)}) Uiy, 4)}
RDexir(5) = (RDentry(5)\{(x,7),(x,1),(x,5)}) U{(x,5)}
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RD Example: Solutions

4 I:{Denz‘ry(g) RDeX/t(e)
1 {(x,7),(y,")} {,?),(x, 1)}
2 {(y,?),(x, 1)} {(x,1),(y,2)}
3| {(x,1),(y,2),(y,4),(x;9)} | {(x,1),(y,2),(y,4),(x,5)}
41 {(x,1),(y,2),(y,4),(x,5)} {(x,1),(y,4),(x,5)}
5 {(x,1),(y,4),(x,5)} {(y,4),(x,9)}
[x:=5]";
[y =1]%
while [x > 1]° do (
[y =xxy]%

[x =x—1])
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Very Busy Expression Analysis

An expression is very busy at the exit from a label if, no matter
what path is taken from the label, the expression must (is
guaranteed to) always be used before any of the variables
occurring in it are redefined. The aim of the Very Busy
Expressions Analysis is to determine:

For each program point, which expressions must (is
guaranteed to) be very busy at exit from the point.

A possible optimisation based on this information is to evaluate
the expression at the block and store its value for later use; this
optimisation is sometimes called hoisting the expression.
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Example

We illustrate this analysis with the following example:

if [a > b]'
then ([ x :=b—al?;
[y =a-b]°)
else ([y:=b—al%
[x:=a—-b]°)

The expressions a — b and b — a are both very busy at the start
of the program (label 1). They can be hoisted resulting in a
code size reduction.
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VB Analysis

Killys : Block, — P(AEXxp,)

genyg : Block, — P(AExp,)
VBentry : Lab, — P(AEXxp, )
VBeyit : Lab, — P(AEXp,)

The analysis is a backward analysis and we are interested in
the largest sets satisfying the equation for VB gyjt.
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VB Auxiliary Functions

kl//VB([ X:=a ]g)
killg([ skip ]°) =
kilg([6]°) =

{d € AExp, | x € FV/(d)}
)
)

genyg([ x :==a]’) = AExp(a)
genyg([skip]) =
genyg([b]’) = AExp(b)

|
=
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VB Local Change

VBentry(€)

[x+y<x]t V
[z::x+y]£ Vi
[x=x+y]"V

VBexit(£)
T

Whenever a variable x in an expression gets a new value it
does not help us if it was evaluated before.
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VB Equation Schemes

0,if ¢ € final( S,
VBexit(g) { ( )

N{VBentry/(¢') | (¢, £) € flow(S,)}, otherwise

VBentry(£) = (VBexit(€)\Killys([B]%)) U genyg(B*)
where [B]* € blocks(S,)
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VB Global Collection

ol o2 o3
o!
X+Y X+Yy
o o't
T T

We need to go “back in time”.
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VB Example

if [a > b]'
then ([ x :=b—al?;
[y:=a-b]®)
else ([y:=b—al¥
[(x:=a—bl%)
¢ | kilhg(0) | genyg(¥)
1 0 )
2 0 {b— a}
3 0 {a— b}
4 0 {b— a}
5 0 {a— b}
VB Example: Equations
if [a > b]
then ([ x :=b—al?
[y:=a-b]®)

else ([y:=b—al%
[x =a—b]°)

VBentry(1 ) — VBexiz‘(1 )
VBentry(z) = VBexit(z) U {b - a}
VBeniy(3) = {a- b}

VBentry(4) — VBexit(4) U {b - a}
VBeniy(5) = {a—b}
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VB Example: Equations

if [a > b]'
then ([ x :=b—al?;
[y=a-b]’)
else([y:=b—al%
[x:=a—-b ]5 )
VBexiz‘(1 ) — VBentry(z) M VBentry(4)
VBexit(Z) - VBentry(3)
VBeit(3) = 0
VBexit(4) - VBentry(5)
VBeit(9) = 0
VB Example: Equations
VBenz‘ry(‘I ) — VBexiz‘(‘I )
VBentry(Z) = VBexit(Z) U {b - a}
VBorir(3) = f{a- b}
VBentry(4) — VBexit(4) U {b - a}
VBenty(5) = f{a- b}
VBexiz‘(1 ) — VBentry(z) N VBentry(4)
VBexit(Z) — VBentry(S)
VBexit(3) = 0
VBexit(4) — VBentry(5)
VBegit(5) = 0
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VB Example: Solutions

4 VBentry(g ) VBexit(g )
1|{a—bb—a} |{a—b,b—a}
2|{a—b,b— a} {a— b}
3 {a— b} 0
4 |{a—b,b— a} {a— b}
5 {a— b} 0
if [a > b]'
then ([ x :=b—al?;
[y:=a-b]’)

else ([y:=b—al*
(x:—a—b]5)

Live Variable Analysis

A variable is live at the exit from a label if there exists a path
from the label to a use of the variable that does not re-define
the variable. The Live Variables Analysis will determine:

For each program point, which variables may be live at
the exit from the point.

This analysis might be used as the basis for Dead Code
Elimination. If the variable is not live at the exit from a label
then, if the elementary block is an assignment to the variable,
the elementary block can be eliminated.
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Example

The example program to illustrate the LV analysis is:

The variable x is not live at the exit from 1; the first assignment
to x is thus redundant and can be eliminated. Both x and y are

[x:=2]";
[y =45
[x =113
(if [y > x]*

then[z:=y°
else [z:=yxy]°);

[x :=2z]

alive at the exit from label 3.

LV Analysis

The analysis is a backward analysis and we are interested in
the smallest sets satisfying the equation for LV g

killy - Block, — P(Var,)
gen,y : Block, — P(Var,)
LVen['ry . Lab* — P(Val‘*)

LV it : Lab, — P(Var,)
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LV Auxiliary Functions

kil ([ x = al’) = {x}
killy([ skip]9) = 0
killoy ([B]) = 0

geny([x:=al) = FVYa)
geny([skip]) = ¢

geny([b]) = FV(b)
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LV Equation Schemes

0,if £ € final( S,
I—Vexit(g) — { ( )

U{WVentry () | (¢, £) € flow'(S,)}, otherwise

I—Ventry(g) - (Lvexit(g)\k”/LV([B]e) U genLV([B]E)
where [B]‘ € blocks(S,)
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LV Example

[x =21 [y:=41%[x:=1]3
(if [y >x]*then [z:=y]Pelse [z:=yxy]®);

[x:=2z]

U | kil (€) | genyy(4)
1] {x} )

2| {y} 0

3| {x} 0

4 0 {x,y}
5| {z} {y}

6 {z} {y}

7] X {z}

LV Example: Equations
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[x =21 [y=41%[x:=1]%
(if [y >x]*then [z:=y]Pelse [z:=yxy]®);

[x:=2z]

|—Venz‘ry(‘I )
LV entry(2)

LVentry(S) —
LVentry(4) -
LVentry(5) —

LV entry(6)
LV entry(7)

I—Vexiz‘(1 )\{X}
LVexil(2)\{y}

LV exi (3)\{)(}
I—Vexit(4) U {X7 }/}
(WVexit(5)\{2}) U{y}
(LVexit(6)\{z}) U {y}
{z}
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LV Example: Equations

[x =21 [y:=41%[x:=1]3

(if [y >x]*then [z:=y]Pelse [z:=yxy]®);

[x:=2z]
|—Vexit(‘I ) — LVentry(z)
LVexit(z) — LVentry(3)
I—Vexit(3) — LVentry(4)
LVexit(4) LVentry(5) U LVentry(G)
LV exit(5) LV entry(7)
I—Vexit(G) I—Vent‘ry(7)
LVexit(7) = 0
LV Example: Solutions

¢ LVentry(E) I—Vexit(g)

1 0 )

2 0 v}

3| W {x,y}

41 {xy) {v}

5| {y} {z}

61 {y; {z}

7 {z} 0

[x =21 [y =41%[x:=1]3

(if [y >x]*then [z:=y]Pelse [z:=yxy]°);

[x:=z]
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LV Variations

Some authors assume that the variables of interest are output
at the end of the program.

In that case LVg,i(7) should be {x, y, z} which means that
LV entry(7), LV exit(5) and LV gi¢(6) should all be {y, z}.
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