Program Analysis (70020)

Data Flow Analysis

Herbert Wiklicky

Department of Computing
Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Spring 2026

1/51

Data Flow Analysis

The general approach for determining program properties for
procedural languages via a dataflow analysis:

2/51

Data Flow Analysis

The general approach for determining program properties for
procedural languages via a dataflow analysis:

» Extract (Control) Flow Information

2/51

Data Flow Analysis

The general approach for determining program properties for
procedural languages via a dataflow analysis:

» Extract (Control) Flow Information
» Formulate Data Flow Equations

2/51

Data Flow Analysis

The general approach for determining program properties for
procedural languages via a dataflow analysis:

» Extract (Control) Flow Information
» Formulate Data Flow Equations

» Construct Solution(s) of Equations

2/51

Data Flow Analysis

The general approach for determining program properties for
procedural languages via a dataflow analysis:

» Extract (Control) Flow Information

» Formulate Data Flow Equations
» Update Local Information

» Construct Solution(s) of Equations

2/51

Data Flow Analysis

The general approach for determining program properties for
procedural languages via a dataflow analysis:

» Extract (Control) Flow Information

» Formulate Data Flow Equations

» Update Local Information
» Collect Global Information

» Construct Solution(s) of Equations

2/51

Available Expressions

The Available Expressions Analysis will determine:

For each program point, which expressions must (are
guaranteed to) have already been computed, and not
later modified, on all paths to that program point.

3/51

Available Expressions

The Available Expressions Analysis will determine:

For each program point, which expressions must (are
guaranteed to) have already been computed, and not
later modified, on all paths to that program point.

This information can be used to avoid the re-computation of an
expression. For clarity, we will concentrate on arithmetic
expressions.

3/51

Example

Consider the following simple program:

[x:=a+b]';

[y:=axbl?

while [y > a+ b]® do (
[a:=a+1]%

[x:=a+b]5)

4/51

Example

Consider the following simple program:

[x:=a+b]';

[y:=axbl?

while [y > a+ b]® do (
[a:=a+1]%
[x:=a+b]°)

It should be clear that the expression a+b is available every
time the execution reaches the test (label 3) in the loop; as a
consequence, the expression need not be recomputed.

4/51

AE Analysis

killxe : Block, — P(AEXp,)

5/51

AE Analysis

killxe : Block, — P(AEXp,)

genye : Block, — P(AExp,)

5/51

AE Analysis

Killxe : Block, — P(AEXp,)
genye : Block, — P(AExp,)

AEentry . Lab* — P(AEXp*)

5/51

AE Analysis

Kill : Block, — P(AEXp,)
genye : Block, — P(AExp,)
AEentry . Lab* — P(AEXp*)

5/51

AE Auxiliary Functions

Killhe ([x = al)
killae ([skip 1)
killag ([b]°)

{d € AExp, | x € F (&)}
0
0

6/51

AE Auxiliary Functions

kilhe([x := al?) = {& € AExp, | x € FV(&)}
killag ([skip) = 0
killag([b]") = 0
geme([x:=al’) = {& AExp(a)|x ¢ FV(&)}
genye([skip]®) = 0
genpe([b]’) = AExp(b)

6/51

AE Local Change (e.g. expression x + y)

AEentry(¢)

AEexit(e)

7151

AE Local Change (e.g. expression x + y)

AEentry(¢)

[z=x+y]'V

AEexit(e)

|

7151

AE Local Change (e.g. expression x + y)

AEentry(¢)

x+y<x]* v

AEexit(e)

7151

AE Local Change (e.g. expression x + y)

AEentry(¢)

[x:=x+y]l x

AEexit(e)

|

7151

AE Local Change (e.g. expression x + y)

AEentry(¢)

x+y<x]‘ V
[z=x+y] v
[x:=x+y]" x

AE exif(()
l

Whenever a variable x in an expression gets a new value the
expression becomes unavailable.

7151

AE Equation Schemes

AE () {@, if ¢ = init(S,)

N{AEei(¢') | (¢, 2) € flow(S,)}, otherwise

8/51

AE Equation Schemes

AEentry(e) =

0, if ¢ = init(S,)
({AEexit(¢') | (¢, 0) € flow(S,)}, otherwise

AEexit(g) = (AEentry(E)\k’.”AE([B]Z)) U genAE(([B]e)
where [B]* € blocks(S,)

8/51

AE Global Collection

9/51

AE Global Collection

9/51

AE Global Collection

9/51

AE Global Collection

ol of2 ol
o }\ l / o
of
o ol

9/51

AE Global Collection

9/51

AE Global Collection

ot of2 of3
X +
X+ }\ l % +y
of
ol o2

We push information “forward in time”.

9/51

Largest Solution

The analysis is a forward analysis and we are interested in the
largest sets satisfying the equation for AEens, and AE gyt

10/51

Largest Solution

The analysis is a forward analysis and we are interested in the
largest sets satisfying the equation for AEens, and AE gyt

[z:= x + y];while [true]’ do [skip]’

10/51

Largest Solution

The analysis is a forward analysis and we are interested in the
largest sets satisfying the equation for AEens, and AE gyt

[z:= x + y];while [true]’ do [skip]’

AEentry(f)
AEem‘ry(/)
AEentry(/)

AEexi(¢

)
AEgyi(L')
AE gyi(¢")

exzt(f) N AEexit(gl/)
AEextt(gl)

AEeniry(¢')
AEentry(¢")

10/51

Obtaining Solutions

yes

[]f”

no

11/51

Obtaining Solutions

¢ Y

yes

[]f”
L]

After some simplification, we find that:

no

[- .]é’ | L N

AEentry(e,) = {X + y} ﬂ AEentry(gl)

11/51

AE Example

[x:=a+b]';

[y:=axb]?

while [y > a+ b]® do (
[a:=a+1]%

[x:=a+b]5)

12/51

AE Example

[x:=a+b]';
[y:=axbl?
while [y > a+ b]® do (
[a:=a+1]%
[x:=a+b]5)
4 Killag (£) genae(4)
1 0 {a+ b}
2 0 {a* b}
3 0 {a+ b}
4 | {a+b,axba+1} 0
5 0 {a+ b}

12/51

AE Example: Equations

[x:=a+b]";

[y:=axb]?

while [y > a+ b]® do (
[a:=a+1]%

[x:=a+b]®)

13/51

AE Example: Equations

[x:=a+b]';
[y=axb]?
while [y > a+ b]® do (
[a:=a+1]%
[x:=a+bl]®)
AEqit(1) = AEenn(1)U{a+ b}
AEi(2) = AEemy(2)U {ax b}
AE&it(3) = AEeny(3) U{a+ b}
AEgi(4) = AEemny(4)\{a+b,axb,a+1}
it(5))

13/51

AE Example: Equations

[x:=a+b]';

[y:=axb]?

while [y > a+ b]® do (
[a:=a+1]%

[x:=a+b]5)

14/51

AE Example: Equations

[x:=a+b]';
[y:=axb]?
while [y > a+ b]® do (
[a:=a+1]%
[x:=a+b]5)
AEentry(1) = 0
AEentry(2) = AEexit(1)
AEentry(3) = AEexit(2) N AEexit(s)
AEentry(4) = AEexit(3)
AEentry(5) = AEexit(4)

14/51

AE Example: Equations

AEenry(1) = 0
AEentry(z) = AEgi(1)
AEentry(S) = AEexn‘(z) N AEex:t()
AEentry(4) = AEex:t(s)
AEentry(5) = AEeil(4)
AEgi(1) = AEemry(1)U{a+ b}
AEgi(2) = AEentry(z) U{ax b}
AEgi(3) = AEentry(S) uU{a+ b}
AEqit(4) = AEen(4)\{a+b,axb,a+ 1}
AEgi(5) = AEenry(5)U{a+ b}

15/51

AE Example: Solutions

14 AEem‘ry(E) AEexit(g)

1 0 {a+ b}

2| {a+b} |{a+b,axb}
3| {a+b} {a+ b}

4| {a+ b} 0

5 0 {a+ b}

16/51

AE Example: Solutions

AEentry(¢) | AEexit(()

O ON =S

0 {a+ b}
{a+b} |{a+b,axb}
{a+ b} {a+ b}
{a+ b} 0

0 {a+ b}

[x:=a+b]';

[y:=axbl?

while [y > a+ b]® do (
[a:=a+1]%
[x:=a+b]®)

16/51

AE Example: Solutions

14 AEentry(E) AEexit(e)

1 0 {a+ b}

2| {a+b} |{a+b,axb}
3| {a+ b} {a+ b}

4| {a+ b} 0

5 0 {a+ b}

Note that, even though a is redefined in the loop, the expression
a+b is re-evaluated in the loop and so it is always available on
entry to the loop. On the other hand, a*b is available on the first
entry to the loop but is killed before the next iteration.

16/51

Reaching Definitions Analysis

The Reaching Definitions Analysis is analogous to the previous
one except that we are interested in:

For each program point, which assignments may have
been made and not overwritten, when program execu-
tion reaches this point along some path.

17/51

Reaching Definitions Analysis

The Reaching Definitions Analysis is analogous to the previous
one except that we are interested in:

For each program point, which assignments may have
been made and not overwritten, when program execu-
tion reaches this point along some path.

A main application of Reaching Definitions Analysis is in the
construction of direct links between blocks that produce values
and blocks that use them.

17/51

Example

A simple example to illustrate the RD analysis would be:

[x:=5]";

[y=1]

while [x > 1]® do (
[y:=xxy]%

[x:=x—1]°)

18/51

Example

A simple example to illustrate the RD analysis would be:

[x:=5]";

[y=1]

while [x > 1]® do (
[y:=xxy]%

[x:=x—1]°)

All of the assignments reach the entry of 4 (the assignments
labelled 1 and 2 reach there on the first iteration); only the
assignments labelled 1, 4 and 5 reach the entry of 5.

18/51

RD Analysis

Killzp : Block, — P(Var, x Lab,)

19/51

RD Analysis

Killzp : Block, — P(Var, x Lab,)

gengp : Block, — P(Var, x Lab,)

19/51

RD Analysis

Killzp : Block, — P(Var, x Lab,)
gengp : Block, — P(Var, x Lab,)

RDeniry . Lab* — P(Var* X Lab*)

19/51

RD Analysis

Killzp : Block, — P(Var, x Lab,)
gengp : Block, — P(Var, x Lab,)
RDeniry . Lab* — P(Var* X Lab*)

RDeXit . Lab* — P(Val'* X Lab*)

19/51

RD Analysis

Killzp : Block, — P(Var, x Lab,)
gengp : Block, — P(Var, x Lab,)
RDeniry . Lab* — P(Var* X Lab*)

RDeXit . Lab* — P(Var* X Lab*)

Remark: Strictly speaking we need P(Var, x (Lab, U {7})).

19/51

RD Auxiliary Functions

ki//RD([X :=a]Z)

Il
—

(x, 1)} U {(x£) |

B]" a “definition” of x in S,}

J—

killo ([skip 1°)
killap ([b]")

=2 =

20/51

RD Auxiliary Functions

ki//RD([X :=a]Z)

Il
—

(x, 1)} U {(x£) |

B]" a “definition” of x in S,}

J—

killo ([skip 1°)
killap ([b]")

=2 =

gengp([x = al’) (x,0)}
gengp([skip 1)

gengp([6]°)

1
= S

20/51

RD Equation Schemes

[{(07) | x € FS.)}, if €= init(S,)
RDeniy(t) = { U{RDou(?') | (¢, ¢) € flow(S,)}, otherwise

21/51

RD Equation Schemes

[{(07) | x € FS.)}, if €= init(S,)
RDeniy(t) = {U{RDeX,-t(E’)](2’,€)eflow(8*)}, otherwise

RDexit(E) = (RDentry(E)\ki”RD([B]Z)) U genRD([B]Z)
where [B]* € blocks(S,)

21/51

Smallest Solution

Similar to before, this is a forward analysis but we are interested
in the smallest sets satisfying the equation for RDepgry.

22/51

Smallest Solution

Similar to before, this is a forward analysis but we are interested
in the smallest sets satisfying the equation for RDepgry.

[z:= x + y];while [true]’ do [skip]’

22/51

Smallest Solution

Similar to before, this is a forward analysis but we are interested
in the smallest sets satisfying the equation for RDepgry.

[z:= x + y];while [true]’ do [skip]’

RDentry(g) = {(Xa?)7(yv ?)7 (Zv?)}
RDem‘ry(,) RDexit(E) U RDexit(fl/)
I::{Dentry(/) = RDexit(El)

)

RDexit(¢) = (RDenny(O)\{(2,7)}) U {(2,0)}
RDexit(¢') RDentry(gl)
RDexit(¢") = I:“:)entry(g”)

22/51

Obtaining Solutions

yes

[]f”

no

23/51

Obtaining Solutions

After some simplification, we find that:

§
[]E
¢ Y
["0
yes
[]f”
L]

RDentry(¢") = {(X,?), (¥, ?),(2,£)} URDegntry(¢')

23/51

RD Variations

Sometimes, when the Reaching Definitions analysis is
presented in the literature, one has RDepsry (init(S,)) = () rather
than RDentry (init(S,)) = {((x,?) | x € FV(S,)}.

24/51

RD Variations

Sometimes, when the Reaching Definitions analysis is
presented in the literature, one has RDepsry (init(S,)) = () rather
than RDentry (init(S,)) = {((x,?) | x € FV(S,)}.

This is correct only for programs that always assign variables
before their first use; incorrect optimisations may result if this is
not the case. The advantage of our formulation is that it is
always semantically sound.

24/51

RD Example

[x:=5]";

[y =11

while [x > 1]® do (
[y:=x=y]%

[x:=x—-1]%)

25/51

RD Example

[x:=5]";

[y =11

while [x > 1]® do (
[y:=x=y]%

[x:=x—-1]%)

killgp () gengp(4)

O~ ON =S

{(67),061),(x,5)} | {(x, 1)}
{(y,?),(y(,bZ),(yA)} {(yéj?—’)}
2),(y;4)} | {(r:4)}

(x,9)} | {(x,5)}

25/51

RD Example: Equations

[x:=5]";

[y =11

while [x > 1]® do (
[y:=xxy]%

[x:=x—-1]%)

26/51

RD Example: Equations

[x:=5]";

[y =11

while [x > 1]® do (
[y:=xxy]%

[x:=x—-1]%)

RDexit(1) = (RDentry(1)\{(x,7), (x, 1), (x,5)}) U {(x, 1)}
RDexit(2) = (RDentry(2)\{(y,7), (¥,2), (y,4)}) U{(y,2)}
RDexi(3) = RDentry(3)

RDexit(4) = (RDentry(4)\{(¥,7), (¥, 2), (v, H)}) U{(y,4)}
RDexit(5) = (RDentry(5)\{(x,7), (x, 1), (x,5)}) U {(x,5)}

26/51

RD Example: Equations

[x:=5]";

[y =11

while [x > 1]® do (
[y:=xxy]%

[x:=x—-1]%)

27/51

RD Example: Equations

[x:=5]";

[y =11

while [x > 1]® do (
[y:=xxy]%

[x:=x—-1]%)

RDentry(1) = {(x,7), (¥, ")}
I:{Dem‘ry(Z) = I:{Dexn‘(")

I:{Dem‘ry(S) = I:“:)exn‘()U RDex:t()
I:“:)em‘ry(“') = RDexn‘(B)

I:“:)entry(5) = RDexn‘(4)

27/51

D —
—

—_~ o~

— ~—

rrrrr

SS

RD Example: Equations
Yy
Yy

~— — ~— ~—
- - =
DD D D
—_ —~
_ _ =
—~ —~ o~
n < <
X > X
~— — ~— ~—
— QA Al +—
X > X
— ~— — ~— —
©v ~ = ~ =
= ~ ~ ~
< - - -
3 SN N X
()] ~— ~— ~— ~—
o -~ = = =
— —
D) —~ —~
-~ N > < 1O
—~ o~ —~ —_ = M —
tosE TEXET

-

~ o~ o~ ~_~ o~ o~ o~ o~

~— ~— — S N N N

WSS S

28/51

RD Example: Solutions

R Dexit(g)

y(£)

-

I:{Dent

N N T

29/51

RD Example: Solutions

14 RDentry(E) RDexit(E)
1 {7, (v,)} {7, (x, 1)}
2 {(r. 7). (x, 1)} {(x,1),(y.2)}
31 {(x,1),(¥,2),(y,4), (x,9)} | {(x,1),(y,2),(y,4),(x,5)}
4| {(x,1),(¥.2),(y,4),(x,5)} {(x,1), (¥, 4), (x,9)}
5 {(x,1), (¥, 4),(x,5)} {(v.4),(x,5)}

[x:=5]";

[y=11%

while [x > 1] do (

[y =xxy]%

[x:=x—-1]%)

29/51

Very Busy Expression Analysis

An expression is very busy at the exit from a label if, no matter
what path is taken from the label, the expression must (is
guaranteed to) always be used before any of the variables
occurring in it are redefined. The aim of the Very Busy
Expressions Analysis is to determine:

For each program point, which expressions must (is
guaranteed to) be very busy at exit from the point.

30/51

Very Busy Expression Analysis

An expression is very busy at the exit from a label if, no matter
what path is taken from the label, the expression must (is
guaranteed to) always be used before any of the variables
occurring in it are redefined. The aim of the Very Busy
Expressions Analysis is to determine:

For each program point, which expressions must (is
guaranteed to) be very busy at exit from the point.

A possible optimisation based on this information is to evaluate
the expression at the block and store its value for later use; this
optimisation is sometimes called hoisting the expression.

30/51

Example

We illustrate this analysis with the following example:

if [a > b]'
then ([x :=b—al?;
[y=a-b]?)

else ([y:=b—al%
(x:=a—bJF)

31/51

Example

We illustrate this analysis with the following example:

if [a > b]'
then ([x :=b—al?
[y:=a-b]*)
else([y:=b—al%
[x:=a—b]5)

The expressions a — b and b — a are both very busy at the start
of the program (label 1). They can be hoisted resulting in a
code size reduction.

31/51

VB Analysis

killyg : Block, — P(AEXxp,)

32/51

VB Analysis

killyg : Block, — P(AEXxp,)

genyg : Block, — P(AExp,)

32/51

VB Analysis

killg : Block, — P(AEXp,)
genyg : Block, — P(AExp,)

VBentry . Lab* — P(AEXp*)

32/51

VB Analysis

killyg : Block, — P(AEXxp,)
genyg : Block, — P(AExp,)
VBentry . Lab* — P(AEXp*)

VBt : Lab, — P(AEXp,)

32/51

VB Analysis

killg : Block, — P(AEXp,)

genyg : Block, — P(AExp,)
VBentry : Lab, — P(AEXp,)
VBt : Lab, — P(AEXp,)

The analysis is a backward analysis and we are interested in
the largest sets satisfying the equation for VB gy

32/51

VB Auxiliary Functions

kils([x = a]")
killg([skip %)
killys([b]°)

{d € AExp, | x € F/ &)}
0
0

33/51

VB Auxiliary Functions

kilvg([x := al’) = {a € AExp, | x € FV(&)}
killg([skip]) = 0
kilkg([b]) = 0
genyg([x := a]’) = AExp(a)
genyg([skip]®) = 0
genyg([b]’) = AExp(b)

33/51

VB Local Change

VBentry(¢)

VBexit(g)

34/51

VB Local Change

VBentry(¢)

[z=x+y]" v

VBexit(g)

|

34/51

VB Local Change

VBentry(¢)

x+y<x]* v

VBexit(g)

34/51

VB Local Change

VBentry(¢)

[x=x+y]"V

VBexit(g)

|

34/51

VB Local Change

VBenty(()

x+y<x]* v
[z=x+y] v
[x=x+y]"V

VBeyit(()
T

Whenever a variable x in an expression gets a new value it
does not help us if it was evaluated before.

34/51

VB Equation Schemes

VBof) — 0,if ¢ € final(S,.)
exit(l) = { M{VBentry(?') | (¢',0) € flow”(S,)}, otherwise

35/51

VB Equation Schemes

VBor(f) — 0,if ¢ € final(S,.)
exit(l) = { M{VBentry(?') | (¢',0) € flow”(S,)}, otherwise

VBentry(g) = (VBexit(g)\ki”VB([B]g)) U genVB(BZ)
where [B]’ € blocks(S,)

35/51

VB Global Collection

36/51

VB Global Collection

36/51

VB Global Collection

36/51

VB Global Collection

ol o2 ofs
ot
X+Yy
o o

36/51

VB Global Collection

ol of2 ol
ot
X+y X+y
oli o2

36/51

VB Global Collection

ol of2 ol
ot
X+y X+y
oli o2

We need to go “back in time”.

36/51

VB Example

if [a > b’
then ([x :=b—al?;
[y=a-b]?)

else ([y:=b—al%
[x:=a-b]°)

37/51

VB Example

if [a > b’
then ([x :=b—al?
[y:=a-b]®)
else([y:=b—al%
[x:=a—b]®)
¢ | kilg(?) | genyg(£)
1 0 0
2 0 {b—a}
3 0 {a— b}
4 0 {b—a}
5 0 {a— b}

37/51

VB Example: Equations

if [a > b’
then ([x :=b—al?
[y:=a-b]?)
else([y:=b—al%
[x:=a—b]®)

38/51

VB Example: Equations

if [a > b’
then ([x := b —a]?;
[y:=a-b]?)
else ([y:=b—al%
[x:=a—-b]°)
VBentry(1) = VBexir(1)
VBentry(z) = VBexit(2) U {b - a}
VBory(3) — {a- b}
VBentry(4) = VBexit(4) U {b - a}
VBentry(5) = {a-b}

38/51

VB Example: Equations

if [a > b’
then ([x :=b—al?
[y:=a-b]?)
else([y:=b—al%
[x:=a—b]®)

39/51

VB Example: Equations

if [a > b’
then ([x :=b—al?;

[y=a-b]?)

else ([y:=b—al%

[x:=a-b]5)

VBentry(2) N VBentry(4)
VBentry(3)

0

VBentry(5)

0

39/51

VB Example: Equations

VBeniry(1) = VBexir(1)
VBentry(z) = VBexit(z) U {b - a}
VBenry(3) = {a— b}
VBentry(4) = VBexit(4) U {b - a}
VBenry(5) = {a— b}
VBexit‘(‘I) = VBem‘ry(z) N VBentry(4)
VBexit(2) = VBem‘ry(B)
VBexit(S) = 0
VBexit(4) = VBentry(5)
VBexit(S) =0

40/51

VB Example: Solutions

¢ VBenmy(l) VBexit(£)
1|/{a—bb—a}|{a—b,b—a}
2|{a—b,b—a} {a— b}

3 {a— b} 0

4| {a—b,b—a} {a— b}

5 {a— b} 0

41/51

VB Example: Solutions

0| VBeniy(f) VBeyi(£)
1|/{a—bb—a}|{a—b,b—a}
2|{a—b,b—a} {a— b}
3 {a— b} 0
4| {a—b,b—a} {a— b}
5 {a— b} 0

if [a > b]'

then ([x :=b—a]?;
[y=a-b]?)
else ([y:=b—al’
[x:=a—b]5)

41/51

Live Variable Analysis

A variable is live at the exit from a label if there exists a path
from the label to a use of the variable that does not re-define
the variable. The Live Variables Analysis will determine:

For each program point, which variables may be live at
the exit from the point.

42/51

Live Variable Analysis

A variable is live at the exit from a label if there exists a path
from the label to a use of the variable that does not re-define
the variable. The Live Variables Analysis will determine:

For each program point, which variables may be live at
the exit from the point.

This analysis might be used as the basis for Dead Code
Elimination. If the variable is not live at the exit from a label
then, if the elementary block is an assignment to the variable,
the elementary block can be eliminated.

42/51

Example

The example program to illustrate the LV analysis is:

[x:=2]";

[y =41

[x =173

(if [y > x]*
then[z:=y]°
else [z:=yxy]®);

[x:=2z]

43/51

Example

The example program to illustrate the LV analysis is:

[x:=2]";

[y =41

[x =173

(if [y > x]*
then[z:=y]°
else [z:=yxy]®);

[x:=2z]

The variable x is not live at the exit from 1; the first assignment
to x is thus redundant and can be eliminated. Both x and y are
alive at the exit from label 3.

43/51

LV Analysis

killy : Block, — P(Var,)

44/51

LV Analysis

killy : Block, — P(Var,)

gen,y : Block, — P(Var,)

44/51

LV Analysis

kil : Block, — P(Var,)
gen,y : Block, — P(Var,)

LVentry . Lab* — P(Var*)

44/51

LV Analysis

Killy : Block, — P(Var,)
gen,y : Block, — P(Var,)
LVentry . Lab* — P(Var*)

LVeyit : Lab, — P(Var,)

44/51

LV Analysis

Killy : Block, — P(Var,)

gen,y : Block, — P(Var,)
LVentry : Lab, — P(Var,)
LVeyit : Lab, — P(Var,)

The analysis is a backward analysis and we are interested in
the smallest sets satisfying the equation for LV gy

44/51

LV Auxiliary Functions

Killy ([x = a]?)
killy ([skip 1)
killoy ([6]°)

1|
SR

45/51

LV Auxiliary Functions

killy([x = a]) = {x}
killy ([skip]9) = 0
killy([b]F) = 0

geny([x:=al) = FVa)
geny([skip]) = 0

geny([b]°) = FV(b)

45/51

LV Equation Schemes

Wor(s) — 0,if ¢ € final(S,)
)= UlWemyl?) | (2,0) € oW (S.)}, otherwise

46/51

LV Equation Schemes

Wor(s) — 0,if ¢ € final(S,)
)= UlWemyl?) | (2,0) € oW (S.)}, otherwise

LVentry(E) = (LVexit(e)\k’.//LV([B]e) U genLV([B]Z)
where [B]’ € blocks(S,)

46/51

LV Example

[x=2][y=4P[x:=1];
(if [y >x]*then [z:=y]Pelse [z:=yxy]®);
[x:=z]

47/51

LV Example

[x=2][y=4P[x:=1];
(if [y >x]*then [z:=y]Pelse [z:=yxy]®);

[x:=z]
¢ | killy(2) | geny(£)
1 {x} 0
21 {y} 0
3| {x} 0
4l 0 {x,y}
5| {z} {v}
6| {z} {v}
7] {x {z}

47/51

LV Example: Equations

[x=2]"[y:=4P[x:=1];
(if [y>x]*then [z:=y]Pelse [z:=yxy]®);
[x:=2z]

48/51

LV Example: Equations

[x=2]"[y:=4P[x:=1];
(if [y>x]*then [z:=y]Pelse [z:=yxy]®);

[x:=2z]
|—Ventry(1) = |—Vexit(‘I)\{X}
LVentry(z) = LVexit(z)\{y}
LVentry(s) = LV (3)\{)(}
LVentry(4) = LVexit(4) U {X, }/}
WVentry(5) = (WVexit(9)\{2}) U{y}
LVentry(6) = (LVexit(6)\{Z}) U {y}
LVentry(7) = {Z}

48/51

LV Example: Equations

[x=2]"[y:=4P[x:=1];
(if [y>x]*then [z:=y]Pelse [z:=yxy]®);
[x:=2z]

49/51

LV Example: Equations

[x=2]"[y:=4P[x:=1];
(if [y>x]*then [z:=y]Pelse [z:=yxy]®);

I

—
< <
o o

S 3
S

A W

- - r— r— - - r—
K < < K< K<< <
2
AAAE"—\/—\/—\/—\
\-/_/_/\E_/_/v
I
—
< <
® O
2 =2
S S
N O

— — — — — —
C
—
<
(0]
2
S
=
»
~

49/51

LV Example: Solutions

0| Wentry(€) | LV exit(£)
1 1] 0

2 0 v}

31 {v} {x,y}
41 {x,y} {y}

5/ {y} {z}

6 {y} {z}

7 {z} 0

50/51

LV Example: Solutions

0| Wentry(€) | LV exit(£)
1 1] 0

2 0 v}

31 {v} {x,y}
41 {x,y} {y}

5/ {y} {z}

6 {y} {z}

7 {z} 0

[x =21 [y=4P[x=1]%

(if [y >x]*then [z:=y]Pelse [z:=yxy]®);

[x:=2z]

50/51

LV Variations

Some authors assume that the variables of interest are output
at the end of the program.

51/51

LV Variations

Some authors assume that the variables of interest are output
at the end of the program.

In that case LVgi(7) should be {x, y, z} which means that
LVentry(7), LVexit(5) and LV g,it(6) should all be {y, z}.

51/51

	Data Flow Analysis
	Available Expression Analysis
	Reaching Definitions Analysis
	Very Busy Expression Analysis
	Live Variable Analysis

