
Program Analysis (70020)
Monotone Frameworks

Herbert Wiklicky

Department of Computing
Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2024

1 / 55

Partially Ordered Set

A partial ordering is a relation on a set L, i.e.

v: L× L→ {tt, ff} or v ⊆ L× L

that is:

I reflexive ∀l : l v l ,
I transitive ∀l1, l2, l3 : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3, and
I anti-symmetric ∀l1, l2 : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2.

A partially ordered set (L,v) is a set L equipped with a partial
ordering v (sometimes written vL). We shall write l2 w l1 for
l1 v l2 and l1 @ l2 for l1 v l2 ∧ l1 6= l2.

2 / 55

Partially Ordered Set

A partial ordering is a relation on a set L, i.e.

v: L× L→ {tt, ff} or v ⊆ L× L

that is:

I reflexive ∀l : l v l ,

I transitive ∀l1, l2, l3 : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3, and
I anti-symmetric ∀l1, l2 : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2.

A partially ordered set (L,v) is a set L equipped with a partial
ordering v (sometimes written vL). We shall write l2 w l1 for
l1 v l2 and l1 @ l2 for l1 v l2 ∧ l1 6= l2.

2 / 55

Partially Ordered Set

A partial ordering is a relation on a set L, i.e.

v: L× L→ {tt, ff} or v ⊆ L× L

that is:

I reflexive ∀l : l v l ,
I transitive ∀l1, l2, l3 : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3, and

I anti-symmetric ∀l1, l2 : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2.

A partially ordered set (L,v) is a set L equipped with a partial
ordering v (sometimes written vL). We shall write l2 w l1 for
l1 v l2 and l1 @ l2 for l1 v l2 ∧ l1 6= l2.

2 / 55

Partially Ordered Set

A partial ordering is a relation on a set L, i.e.

v: L× L→ {tt, ff} or v ⊆ L× L

that is:

I reflexive ∀l : l v l ,
I transitive ∀l1, l2, l3 : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3, and
I anti-symmetric ∀l1, l2 : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2.

A partially ordered set (L,v) is a set L equipped with a partial
ordering v (sometimes written vL). We shall write l2 w l1 for
l1 v l2 and l1 @ l2 for l1 v l2 ∧ l1 6= l2.

2 / 55

Partially Ordered Set

A partial ordering is a relation on a set L, i.e.

v: L× L→ {tt, ff} or v ⊆ L× L

that is:

I reflexive ∀l : l v l ,
I transitive ∀l1, l2, l3 : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3, and
I anti-symmetric ∀l1, l2 : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2.

A partially ordered set (L,v) is a set L equipped with a partial
ordering v (sometimes written vL). We shall write l2 w l1 for
l1 v l2 and l1 @ l2 for l1 v l2 ∧ l1 6= l2.

2 / 55

Examples of POS’s

Example: Integers
The integers Z ordered in the usual way, i.e. for i1, i2 ∈ Z:

i1 v i2 iff i1 ≤ i2

Example: Power-Set
Take a (finite) set X and consider at the set of all sub-sets of X ,
i.e. its power set P(X). A partial ordering on P(X) is given by
inclusion, i.e. for two sub-sets S1,S2 ∈ P(X):

S1 v S2 iff S1 ⊆ S2

3 / 55

Examples of POS’s

Example: Integers
The integers Z ordered in the usual way, i.e. for i1, i2 ∈ Z:

i1 v i2 iff i1 ≤ i2

Example: Power-Set
Take a (finite) set X and consider at the set of all sub-sets of X ,
i.e. its power set P(X). A partial ordering on P(X) is given by
inclusion, i.e. for two sub-sets S1,S2 ∈ P(X):

S1 v S2 iff S1 ⊆ S2

3 / 55

Upper/Lower Bounds

Given a partially ordered set (L,v).

A subset Y of L has l ∈ L as an upper bound if

∀l ′ ∈ Y : l ′ v l

and as a lower bound if

∀l ′ ∈ Y : l ′ w l .

4 / 55

Upper/Lower Bounds

Given a partially ordered set (L,v).

A subset Y of L has l ∈ L as an upper bound if

∀l ′ ∈ Y : l ′ v l

and as a lower bound if

∀l ′ ∈ Y : l ′ w l .

4 / 55

Least Upper/Greatest Lower Bounds

Given a partially ordered set (L,v) and Y ⊆ L.

A least upper bound l of Y is an upper bound of Y that satisfies
l v l0 whenever l0 is another upper bound of Y ;

Similarly, a greatest lower bound l of Y is a lower bound of Y
satisfying: l0 v l whenever l0 is another lower bound of Y .

Note that subsets Y of a partially ordered set L need not have
least upper bounds nor greatest lower bounds but when they
exist they are unique (since v is anti-symmetric) and they are
denoted

⊔
Y and

d
Y , respectively.

Sometimes
⊔

is called the join operator and
d

the meet
operator and we shall write l1 t l2 for

⊔
{l1, l2} and similarly

l1 u l2 for
d
{l1, l2}.

5 / 55

Least Upper/Greatest Lower Bounds

Given a partially ordered set (L,v) and Y ⊆ L.

A least upper bound l of Y is an upper bound of Y that satisfies
l v l0 whenever l0 is another upper bound of Y ;

Similarly, a greatest lower bound l of Y is a lower bound of Y
satisfying: l0 v l whenever l0 is another lower bound of Y .

Note that subsets Y of a partially ordered set L need not have
least upper bounds nor greatest lower bounds but when they
exist they are unique (since v is anti-symmetric) and they are
denoted

⊔
Y and

d
Y , respectively.

Sometimes
⊔

is called the join operator and
d

the meet
operator and we shall write l1 t l2 for

⊔
{l1, l2} and similarly

l1 u l2 for
d
{l1, l2}.

5 / 55

Least Upper/Greatest Lower Bounds

Given a partially ordered set (L,v) and Y ⊆ L.

A least upper bound l of Y is an upper bound of Y that satisfies
l v l0 whenever l0 is another upper bound of Y ;

Similarly, a greatest lower bound l of Y is a lower bound of Y
satisfying: l0 v l whenever l0 is another lower bound of Y .

Note that subsets Y of a partially ordered set L need not have
least upper bounds nor greatest lower bounds but when they
exist they are unique (since v is anti-symmetric) and they are
denoted

⊔
Y and

d
Y , respectively.

Sometimes
⊔

is called the join operator and
d

the meet
operator and we shall write l1 t l2 for

⊔
{l1, l2} and similarly

l1 u l2 for
d
{l1, l2}.

5 / 55

Least Upper/Greatest Lower Bounds

Given a partially ordered set (L,v) and Y ⊆ L.

A least upper bound l of Y is an upper bound of Y that satisfies
l v l0 whenever l0 is another upper bound of Y ;

Similarly, a greatest lower bound l of Y is a lower bound of Y
satisfying: l0 v l whenever l0 is another lower bound of Y .

Note that subsets Y of a partially ordered set L need not have
least upper bounds nor greatest lower bounds but when they
exist they are unique (since v is anti-symmetric) and they are
denoted

⊔
Y and

d
Y , respectively.

Sometimes
⊔

is called the join operator and
d

the meet
operator and we shall write l1 t l2 for

⊔
{l1, l2} and similarly

l1 u l2 for
d
{l1, l2}.

5 / 55

Complete Lattice

A complete lattice

L = (L,v) = (L,v,t,u,⊥,>)

is a partially ordered set (L,v) such that all subsets have least
upper bounds as well as greatest lower bounds.

Furthermore, define ⊥ =
⊔
∅ =

d
L is the least element and

> =
d
∅ =

⊔
L is the greatest element.

6 / 55

Complete Lattice

A complete lattice

L = (L,v) = (L,v,t,u,⊥,>)

is a partially ordered set (L,v) such that all subsets have least
upper bounds as well as greatest lower bounds.

Furthermore, define ⊥ =
⊔
∅ =

d
L is the least element and

> =
d
∅ =

⊔
L is the greatest element.

6 / 55

Power-Set Lattice

Take a (finite) set X and look again at its power set P(X). A
partial ordering ‘v’ on P(X) is given as above by inclusion ‘⊆’.

The meet and join operators are given by (set) intersection

S1 u S2 = S1 ∩ S2

and (set) union
S1 t S2 = S1 ∪ S2.

The least and greatest elements in P(X) are given by ⊥ = ∅
and > = X .

7 / 55

Power-Set Lattice

Take a (finite) set X and look again at its power set P(X). A
partial ordering ‘v’ on P(X) is given as above by inclusion ‘⊆’.

The meet and join operators are given by (set) intersection

S1 u S2 = S1 ∩ S2

and (set) union
S1 t S2 = S1 ∪ S2.

The least and greatest elements in P(X) are given by ⊥ = ∅
and > = X .

7 / 55

Power-Set Lattice

Take a (finite) set X and look again at its power set P(X). A
partial ordering ‘v’ on P(X) is given as above by inclusion ‘⊆’.

The meet and join operators are given by (set) intersection

S1 u S2 = S1 ∩ S2

and (set) union
S1 t S2 = S1 ∪ S2.

The least and greatest elements in P(X) are given by ⊥ = ∅
and > = X .

7 / 55

Power-Set: Hasse Diagrams

•

• • •

• • •

•

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

∅

•

• • •

• • •

•
{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

∅

8 / 55

Power-Set: Hasse Diagrams

•

• • •

• • •

•

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

∅

•

• • •

• • •

•
{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

∅

8 / 55

Properties of Functions I
A function f : L1 → L2 between two partially ordered sets
L1 = (L1,v1) and L2 = (L2,v2) is monotone (or isotone or
order-preserving) if

∀l , l ′ ∈ L1 : l v1 l ′ ⇒ f (l) v2 f (l ′)

A function f : L1 → L2 is an additive function (or a join
morphism, sometimes called a distributive function) if

∀l1, l2 ∈ L1 : f (l1 t l2) = f (l1) t f (l2)

and it is called a multiplicative function (or a meet morphism) if

∀l1, l2 ∈ L1 : f (l1 u l2) = f (l1) u f (l2)

9 / 55

Properties of Functions I
A function f : L1 → L2 between two partially ordered sets
L1 = (L1,v1) and L2 = (L2,v2) is monotone (or isotone or
order-preserving) if

∀l , l ′ ∈ L1 : l v1 l ′ ⇒ f (l) v2 f (l ′)

A function f : L1 → L2 is an additive function (or a join
morphism, sometimes called a distributive function) if

∀l1, l2 ∈ L1 : f (l1 t l2) = f (l1) t f (l2)

and it is called a multiplicative function (or a meet morphism) if

∀l1, l2 ∈ L1 : f (l1 u l2) = f (l1) u f (l2)

9 / 55

Properties of Functions I
A function f : L1 → L2 between two partially ordered sets
L1 = (L1,v1) and L2 = (L2,v2) is monotone (or isotone or
order-preserving) if

∀l , l ′ ∈ L1 : l v1 l ′ ⇒ f (l) v2 f (l ′)

A function f : L1 → L2 is an additive function (or a join
morphism, sometimes called a distributive function) if

∀l1, l2 ∈ L1 : f (l1 t l2) = f (l1) t f (l2)

and it is called a multiplicative function (or a meet morphism) if

∀l1, l2 ∈ L1 : f (l1 u l2) = f (l1) u f (l2)

9 / 55

Properties of Functions II

The function f : L1 → L2 is a completely additive function (or a
complete join morphism) if for all Y ⊆ L1:

f
(⊔

1Y
)
=
⊔

2
{

f (l ′) | l ′ ∈ Y
}

whenever
⊔

1Y exists

and it is completely multiplicative (or a complete meet
morphism) if for all Y ⊆ L1:

f
(l

1Y
)
=

l
2
{

f (l ′) | l ′ ∈ Y
}

whenever
l

1Y exists

10 / 55

Properties of Functions II

The function f : L1 → L2 is a completely additive function (or a
complete join morphism) if for all Y ⊆ L1:

f
(⊔

1Y
)
=
⊔

2
{

f (l ′) | l ′ ∈ Y
}

whenever
⊔

1Y exists

and it is completely multiplicative (or a complete meet
morphism) if for all Y ⊆ L1:

f
(l

1Y
)
=

l
2
{

f (l ′) | l ′ ∈ Y
}

whenever
l

1Y exists

10 / 55

Cartesian Product L1 × L2

Let L1 = (L1,v1) and L2 = (L2,v2) be partially ordered sets.
Define L = (L,v) by

L = L1 × L2 = {(l1, l2) | l1 ∈ L1 ∧ l2 ∈ L2}

(l11, l21) v (l12, l22) iff l11 v1 l12 ∧ l21 v2 l22

If additionally each Li = (Li ,vi ,
⊔

i ,
d

i ,⊥i ,>i) is a complete
lattice then so is L = (L,v,

⊔
,
d
,⊥,>) and furthermore⊔

Y = (
⊔

1{l1 | ∃ l2 : (l1, l2) ∈ Y} ,
⊔

2{l2 | ∃ l1 : (l1, l2) ∈ Y})

and ⊥ = (⊥1,⊥2) and similarly for
d

Y and >.

11 / 55

Cartesian Product L1 × L2

Let L1 = (L1,v1) and L2 = (L2,v2) be partially ordered sets.
Define L = (L,v) by

L = L1 × L2 = {(l1, l2) | l1 ∈ L1 ∧ l2 ∈ L2}

(l11, l21) v (l12, l22) iff l11 v1 l12 ∧ l21 v2 l22

If additionally each Li = (Li ,vi ,
⊔

i ,
d

i ,⊥i ,>i) is a complete
lattice then so is L = (L,v,

⊔
,
d
,⊥,>) and furthermore⊔

Y = (
⊔

1{l1 | ∃ l2 : (l1, l2) ∈ Y} ,
⊔

2{l2 | ∃ l1 : (l1, l2) ∈ Y})

and ⊥ = (⊥1,⊥2) and similarly for
d

Y and >.

11 / 55

Total Function Space S → L1

Let L1 = (L1,v1) be a partially ordered set and let S be a set.
Define L = (L,v) by

L = {f : S → L1 | f is a total function}

f v f ′ iff ∀s ∈ S : f (s) v1 f ′(s)

If additionally L1 = (L1,v1,
⊔

1,
d

1,⊥1,>1) is a complete lattice
then so is L = (L,v,

⊔
,
d
,⊥,>) and furthermore⊔

Y = λs.
⊔

1{f (s) | f ∈ Y}

and ⊥ = λs.⊥1 and similarly for
d

Y and >.

12 / 55

Total Function Space S → L1

Let L1 = (L1,v1) be a partially ordered set and let S be a set.
Define L = (L,v) by

L = {f : S → L1 | f is a total function}

f v f ′ iff ∀s ∈ S : f (s) v1 f ′(s)

If additionally L1 = (L1,v1,
⊔

1,
d

1,⊥1,>1) is a complete lattice
then so is L = (L,v,

⊔
,
d
,⊥,>) and furthermore⊔

Y = λs.
⊔

1{f (s) | f ∈ Y}

and ⊥ = λs.⊥1 and similarly for
d

Y and >.

12 / 55

Chains

A subset Y ⊆ L of a partially ordered set L = (L,v) is a chain if

∀l1, l2 ∈ Y : (l1 v l2) ∨ (l2 v l1)

Thus a chain is a (possibly empty) subset of L that is totally
ordered.

We shall say that it is a finite chain if it is a finite subset of L.

13 / 55

Ascending and Descending Chains

A sequence (ln)n = (ln)n∈N of elements in L is an ascending
chain if

n ≤ m⇒ ln v lm

Writing (ln)n also for {ln | n ∈ N} it is clear that an ascending
chain also is a chain.

Similarly, a sequence (ln)n is a descending chain if

n ≤ m⇒ ln w lm

14 / 55

Ascending and Descending Chains

A sequence (ln)n = (ln)n∈N of elements in L is an ascending
chain if

n ≤ m⇒ ln v lm

Writing (ln)n also for {ln | n ∈ N} it is clear that an ascending
chain also is a chain.

Similarly, a sequence (ln)n is a descending chain if

n ≤ m⇒ ln w lm

14 / 55

Stabilising Chains

We shall say that a sequence (ln)n eventually stabilises if and
only if

∃n0 ∈ N : ∀n ∈ N : n ≥ n0 ⇒ ln = ln0

For the sequence (ln)n we write
⊔

n ln for
⊔
{ln | n ∈ N} and

similarly we write
d

n ln for
d
{ln | n ∈ N}.

15 / 55

Stabilising Chains

We shall say that a sequence (ln)n eventually stabilises if and
only if

∃n0 ∈ N : ∀n ∈ N : n ≥ n0 ⇒ ln = ln0

For the sequence (ln)n we write
⊔

n ln for
⊔
{ln | n ∈ N} and

similarly we write
d

n ln for
d
{ln | n ∈ N}.

15 / 55

ACC & DCC

We shall say that a partially ordered set L = (L,v) has finite
height if and only if all chains are finite.

It has finite height at most h if all chains contain at most h + 1
elements; it has finite height h if additionally there is a chain
with h + 1 elements.

A partially ordered set L satisfies the Ascending Chain
Condition (ACC) if and only if all ascending chains eventually
stabilise.

A partially ordered set L satisfies the Descending Chain
Condition (DCC) if and only if all descending chains eventually
stabilise.

16 / 55

ACC & DCC

We shall say that a partially ordered set L = (L,v) has finite
height if and only if all chains are finite.

It has finite height at most h if all chains contain at most h + 1
elements; it has finite height h if additionally there is a chain
with h + 1 elements.

A partially ordered set L satisfies the Ascending Chain
Condition (ACC) if and only if all ascending chains eventually
stabilise.

A partially ordered set L satisfies the Descending Chain
Condition (DCC) if and only if all descending chains eventually
stabilise.

16 / 55

ACC & DCC

We shall say that a partially ordered set L = (L,v) has finite
height if and only if all chains are finite.

It has finite height at most h if all chains contain at most h + 1
elements; it has finite height h if additionally there is a chain
with h + 1 elements.

A partially ordered set L satisfies the Ascending Chain
Condition (ACC) if and only if all ascending chains eventually
stabilise.

A partially ordered set L satisfies the Descending Chain
Condition (DCC) if and only if all descending chains eventually
stabilise.

16 / 55

ACC & DCC

We shall say that a partially ordered set L = (L,v) has finite
height if and only if all chains are finite.

It has finite height at most h if all chains contain at most h + 1
elements; it has finite height h if additionally there is a chain
with h + 1 elements.

A partially ordered set L satisfies the Ascending Chain
Condition (ACC) if and only if all ascending chains eventually
stabilise.

A partially ordered set L satisfies the Descending Chain
Condition (DCC) if and only if all descending chains eventually
stabilise.

16 / 55

Chain Examples

•

•

•

•

-3

-2

-1

0

•−∞

•

•

•

•

3

2

1

0

• ∞

17 / 55

Chain Examples

•

•

•

•

-3

-2

-1

0

•−∞

•

•

•

•

3

2

1

0

• ∞

17 / 55

Reductive and Extensive Functions
Consider a monotone function f : L→ L on a complete lattice L.

A fixed point of f is an element l ∈ L such that f (l) = l , we write

Fix(f) = {l | f (l) = l}

for the set of fixed points.

The function f is reductive at l if and only if f (l) v l and we write

Red(f) = {l | f (l) v l}

for the set of elements upon which f is reductive; we shall say
that f itself is reductive if Red(f) = L. Similarly, the function f is
extensive at l if and only if f (l) w l , we write

Ext(f) = {l | f (l) w l}

18 / 55

Reductive and Extensive Functions
Consider a monotone function f : L→ L on a complete lattice L.

A fixed point of f is an element l ∈ L such that f (l) = l , we write

Fix(f) = {l | f (l) = l}

for the set of fixed points.

The function f is reductive at l if and only if f (l) v l and we write

Red(f) = {l | f (l) v l}

for the set of elements upon which f is reductive; we shall say
that f itself is reductive if Red(f) = L. Similarly, the function f is
extensive at l if and only if f (l) w l , we write

Ext(f) = {l | f (l) w l}

18 / 55

Reductive and Extensive Functions
Consider a monotone function f : L→ L on a complete lattice L.

A fixed point of f is an element l ∈ L such that f (l) = l , we write

Fix(f) = {l | f (l) = l}

for the set of fixed points.

The function f is reductive at l if and only if f (l) v l and we write

Red(f) = {l | f (l) v l}

for the set of elements upon which f is reductive; we shall say
that f itself is reductive if Red(f) = L.

Similarly, the function f is
extensive at l if and only if f (l) w l , we write

Ext(f) = {l | f (l) w l}

18 / 55

Reductive and Extensive Functions
Consider a monotone function f : L→ L on a complete lattice L.

A fixed point of f is an element l ∈ L such that f (l) = l , we write

Fix(f) = {l | f (l) = l}

for the set of fixed points.

The function f is reductive at l if and only if f (l) v l and we write

Red(f) = {l | f (l) v l}

for the set of elements upon which f is reductive; we shall say
that f itself is reductive if Red(f) = L. Similarly, the function f is
extensive at l if and only if f (l) w l , we write

Ext(f) = {l | f (l) w l}

18 / 55

Fixed Points

Since L is a complete lattice it is always the case that the set
Fix(f) will have a greatest lower bound in L and we denote it by
lfp(f):

lfp(f) =
l

Fix(f) =
l

Red(f) ∈ Fix(f) ⊆ Red(f)

Similarly, the set Fix(f) will have a least upper bound in L and
we denote it by gfp(f):

gfp(f) =
⊔

Fix(f) =
⊔

Ext(f) ∈ Fix(f) ⊆ Ext(f)

19 / 55

Fixed Points

Since L is a complete lattice it is always the case that the set
Fix(f) will have a greatest lower bound in L and we denote it by
lfp(f):

lfp(f) =
l

Fix(f) =
l

Red(f) ∈ Fix(f) ⊆ Red(f)

Similarly, the set Fix(f) will have a least upper bound in L and
we denote it by gfp(f):

gfp(f) =
⊔

Fix(f) =
⊔

Ext(f) ∈ Fix(f) ⊆ Ext(f)

19 / 55

Existence of Fixed Points

If L satisfies the Ascending Chain Condition then there exists n
such that f n(⊥) = f n+1(⊥) and hence

lfp(f) = f n(⊥).

If L satisfies the Descending Chain Condition then there exists
n such that f n(>) = f n+1(>) and hence

gfp(f) = f n(>).

Indeed any monotone function f over a partially ordered set
satisfying the Ascending Chain Condition is continuous.

20 / 55

Existence of Fixed Points

If L satisfies the Ascending Chain Condition then there exists n
such that f n(⊥) = f n+1(⊥) and hence

lfp(f) = f n(⊥).

If L satisfies the Descending Chain Condition then there exists
n such that f n(>) = f n+1(>) and hence

gfp(f) = f n(>).

Indeed any monotone function f over a partially ordered set
satisfying the Ascending Chain Condition is continuous.

20 / 55

Existence of Fixed Points

If L satisfies the Ascending Chain Condition then there exists n
such that f n(⊥) = f n+1(⊥) and hence

lfp(f) = f n(⊥).

If L satisfies the Descending Chain Condition then there exists
n such that f n(>) = f n+1(>) and hence

gfp(f) = f n(>).

Indeed any monotone function f over a partially ordered set
satisfying the Ascending Chain Condition is continuous.

20 / 55

Fix-points etc.
•

•

•

•

•

•

•

•

•

•

•

@
@
@
@
@
@
@
@
@
@

�
�

�
�

�
�

�
�
�

�

�
�
�
�
�
�
�
�
�
�

@
@

@
@

@
@

@
@
@

@

A
A
A
A
A
A
A

�
�
�
�
�
�
�

�
�
�
�
�
�
�

A
A
A
A
A
A
A

A
A
A
A
A
A
A

�
�
�
�
�
�
�

�
�
�
�
�
�
�

A
A
A
A
A
A
A

Red(f) -

Fix(f) -

Ext(f) -

>

f n(>)
d

n f n(>)

gfp(f)

lfp(f)⊔
n f n(⊥)

f n(⊥)

⊥

21 / 55

Fixed Points and Solutions

Given equations over some domain, e.g. integers

6x3 − 3x2 − x = 7

We look at it as a “recursive” equation:

6x3 − 3x2 − 7 = x

or simply:
f (x) = x .

If x is a fixed point of f then it is a solution to the equation.

22 / 55

Fixed Points and Solutions

Given equations over some domain, e.g. integers

6x3 − 3x2 − x = 7

We look at it as a “recursive” equation:

6x3 − 3x2 − 7 = x

or simply:
f (x) = x .

If x is a fixed point of f then it is a solution to the equation.

22 / 55

Lattice Equations
Given a system of equations with unknowns x1, . . . , xn over a
complete lattice L (fulfilling ACC/DCC).

x1 = f1(x1, . . . , xn)

.

xn = fm(x1, . . . , xn)

Consider the equations as defining a function F : Ln → Ln

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

In our case we start with a recursive set of equations:

Analysis(i) = fi(Analysis(1), . . . ,Analysis(n)).

23 / 55

Lattice Equations
Given a system of equations with unknowns x1, . . . , xn over a
complete lattice L (fulfilling ACC/DCC).

x1 = f1(x1, . . . , xn)

.

xn = fm(x1, . . . , xn)

Consider the equations as defining a function F : Ln → Ln

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

In our case we start with a recursive set of equations:

Analysis(i) = fi(Analysis(1), . . . ,Analysis(n)).

23 / 55

Lattice Equations
Given a system of equations with unknowns x1, . . . , xn over a
complete lattice L (fulfilling ACC/DCC).

x1 = f1(x1, . . . , xn)

.

xn = fm(x1, . . . , xn)

Consider the equations as defining a function F : Ln → Ln

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

In our case we start with a recursive set of equations:

Analysis(i) = fi(Analysis(1), . . . ,Analysis(n)).

23 / 55

Chaotic Iteration

Iteration: Construct iteratively the smallest or largest
solution/fixed point, i.e. lfp(F) or gfp(F), by starting with

xi = x0
i = ⊥ or xi = x0

i = >

and construct a sequence of approximations like:

x0
i = ⊥

x1
i = f (x0

1 , . . . , x
0
n)

.

xk
i = f (xk−1

1 , . . . , xk−1
n)

until we converge, i.e. the sequence stabilises.

24 / 55

Chaotic Iteration

Iteration: Construct iteratively the smallest or largest
solution/fixed point, i.e. lfp(F) or gfp(F), by starting with

xi = x0
i = ⊥ or xi = x0

i = >

and construct a sequence of approximations like:

x0
i = ⊥

x1
i = f (x0

1 , . . . , x
0
n)

.

xk
i = f (xk−1

1 , . . . , xk−1
n)

until we converge, i.e. the sequence stabilises.

24 / 55

An Example

Look at the complete lattice P(X) = P({a,b, c,d}).
Construct solutions to the following set equations:

S1 = {a} ∪ S4

S2 = S1 ∪ S3

S3 = S4 ∩ {b}
S4 = S2 ∪ {b, c}

25 / 55

Two Solutions

Starting from ⊥ gives:

S1 = ∅ {a} {a,b, c} {a,b, c} {a,b, c} . . .
S2 = ∅ ∅ {a} {a,b, c} {a,b, c} . . .
S3 = ∅ ∅ {b} {b} {b} . . .
S4 = ∅ {b, c} {b, c} {a,b, c} {a,b, c} . . .

Starting from > gives:

S1 = {a,b, c,d} {a,b, c,d} {a,b, c,d} . . .
S2 = {a,b, c,d} {a,b, c,d} {a,b, c,d} . . .
S3 = {a,b, c,d} {b} {b} . . .
S4 = {a,b, c,d} {a,b, c,d} {a,b, c,d} . . .

26 / 55

Two Solutions

Starting from ⊥ gives:

S1 = ∅ {a} {a,b, c} {a,b, c} {a,b, c} . . .
S2 = ∅ ∅ {a} {a,b, c} {a,b, c} . . .
S3 = ∅ ∅ {b} {b} {b} . . .
S4 = ∅ {b, c} {b, c} {a,b, c} {a,b, c} . . .

Starting from > gives:

S1 = {a,b, c,d} {a,b, c,d} {a,b, c,d} . . .
S2 = {a,b, c,d} {a,b, c,d} {a,b, c,d} . . .
S3 = {a,b, c,d} {b} {b} . . .
S4 = {a,b, c,d} {a,b, c,d} {a,b, c,d} . . .

26 / 55

Knaster-Tarski Fixed Point Theorem

Mathematics literature is full of Fixed Point Theorems, e.g.

Theorem (Knaster-Tarski)
Let L be a complete lattice and assume that f : L 7→ L is an
order-preserving map. Then⊔

{x ∈ L | x v f (x)} ∈ Fix(f).

B.A. Davey and H.A. Priestley: Introduction to Lattices and
Order, Cambridge 1990.

27 / 55

Knaster-Tarski Fixed Point Theorem

Mathematics literature is full of Fixed Point Theorems, e.g.

Theorem (Knaster-Tarski)
Let L be a complete lattice and assume that f : L 7→ L is an
order-preserving map. Then⊔

{x ∈ L | x v f (x)} ∈ Fix(f).

B.A. Davey and H.A. Priestley: Introduction to Lattices and
Order, Cambridge 1990.

27 / 55

Knaster-Tarski Fixed Point Theorem

Mathematics literature is full of Fixed Point Theorems, e.g.

Theorem (Knaster-Tarski)
Let L be a complete lattice and assume that f : L 7→ L is an
order-preserving map. Then⊔

{x ∈ L | x v f (x)} ∈ Fix(f).

B.A. Davey and H.A. Priestley: Introduction to Lattices and
Order, Cambridge 1990.

27 / 55

Classical Analyses

Each of the four classical analyses considers equations for a
label consistent program S? and they take the form:

Analysis◦(`) =

{
ι, if ` ∈ E⊔
{Analysis•(`

′) | (`′, `) ∈ F},otherwise

Analysis•(`) = f`(Analysis◦(`))

28 / 55

Classical Analyses

Each of the four classical analyses considers equations for a
label consistent program S? and they take the form:

Analysis◦(`) =

{
ι, if ` ∈ E⊔
{Analysis•(`

′) | (`′, `) ∈ F},otherwise

Analysis•(`) = f`(Analysis◦(`))

⊔
is
⋂

or
⋃

(and t is ∪ or ∩),

28 / 55

Classical Analyses

Each of the four classical analyses considers equations for a
label consistent program S? and they take the form:

Analysis◦(`) =

{
ι, if ` ∈ E⊔
{Analysis•(`

′) | (`′, `) ∈ F},otherwise

Analysis•(`) = f`(Analysis◦(`))

F is either flow(S?) or flowR(S?),

28 / 55

Classical Analyses

Each of the four classical analyses considers equations for a
label consistent program S? and they take the form:

Analysis◦(`) =

{
ι, if ` ∈ E⊔
{Analysis•(`

′) | (`′, `) ∈ F},otherwise

Analysis•(`) = f`(Analysis◦(`))

E is {init(S?)} or final(S?),

28 / 55

Classical Analyses

Each of the four classical analyses considers equations for a
label consistent program S? and they take the form:

Analysis◦(`) =

{
ι, if ` ∈ E⊔
{Analysis•(`

′) | (`′, `) ∈ F},otherwise

Analysis•(`) = f`(Analysis◦(`))

ι specifies the initial or final analysis information, and

28 / 55

Classical Analyses

Each of the four classical analyses considers equations for a
label consistent program S? and they take the form:

Analysis◦(`) =

{
ι, if ` ∈ E⊔
{Analysis•(`

′) | (`′, `) ∈ F},otherwise

Analysis•(`) = f`(Analysis◦(`))

f` is the transfer function associated with B` ∈ blocks(S?).

28 / 55

Forward vs Backward Analysis

The forward analyses have F to be flow(S?) and then
Analysis◦ concerns entry conditions and Analysis• concerns
exit conditions; also the equation system presupposes that S?

has isolated entries.

The backward analyses have F to be flowR(S?) and then
Analysis◦ concerns exit conditions and Analysis• concerns
entry conditions; also the equation system presupposes that S?

has isolated exits.

29 / 55

Forward vs Backward Analysis

The forward analyses have F to be flow(S?) and then
Analysis◦ concerns entry conditions and Analysis• concerns
exit conditions; also the equation system presupposes that S?

has isolated entries.

The backward analyses have F to be flowR(S?) and then
Analysis◦ concerns exit conditions and Analysis• concerns
entry conditions; also the equation system presupposes that S?

has isolated exits.

29 / 55

Must vs May Analysis

When
⊔

is
⋂

we require the greatest sets that solve the
equations and we are able to detect properties satisfied by all
paths of execution reaching (or leaving) the entry (or exit) of a
label; these analyses are often called must analyses.

When
⊔

is
⋃

we require the least sets that solve the equations
and we are able to detect properties satisfied by at least one
execution path to (or from) the entry (or exit) of a label; these
analyses are often called may analyses.

30 / 55

Must vs May Analysis

When
⊔

is
⋂

we require the greatest sets that solve the
equations and we are able to detect properties satisfied by all
paths of execution reaching (or leaving) the entry (or exit) of a
label; these analyses are often called must analyses.

When
⊔

is
⋃

we require the least sets that solve the equations
and we are able to detect properties satisfied by at least one
execution path to (or from) the entry (or exit) of a label; these
analyses are often called may analyses.

30 / 55

Alternative Formulation

It is occasionally awkward to have to assume that forward
analyses have isolated entries and that backward analyses
have isolated exits. This motivates reformulating the above
equations to be of the form:

Analysis◦(`) =
⊔
{Analysis•(`

′) | (`′, `) ∈ F} t ι`E

Analysis•(`) = f`(Analysis◦(`))

where

ι`E =

{
ι if ` ∈ E
⊥ if ` /∈ E

and ⊥ satisfies l t ⊥ = l (hence ⊥ is not really there).

31 / 55

Alternative Formulation

It is occasionally awkward to have to assume that forward
analyses have isolated entries and that backward analyses
have isolated exits. This motivates reformulating the above
equations to be of the form:

Analysis◦(`) =
⊔
{Analysis•(`

′) | (`′, `) ∈ F} t ι`E

Analysis•(`) = f`(Analysis◦(`))

where

ι`E =

{
ι if ` ∈ E
⊥ if ` /∈ E

and ⊥ satisfies l t ⊥ = l (hence ⊥ is not really there).

31 / 55

Transfer Functions

The view that we take here is that a program is a transition
system; the nodes represent blocks and each block has a
transfer function associated with it that specifies how the block
acts on the “input” state.

Note that for forward analyses, the input state is the entry state,
and for backward analyses, it is the exit state.

32 / 55

Transfer Functions

The view that we take here is that a program is a transition
system; the nodes represent blocks and each block has a
transfer function associated with it that specifies how the block
acts on the “input” state.

Note that for forward analyses, the input state is the entry state,
and for backward analyses, it is the exit state.

32 / 55

Monotone & Distributive Frameworks

A Monotone Framework consists of:

I a complete lattice, L, that satisfies the Ascending Chain
Condition, and we write

⊔
for the least upper bound

operator; and
I a set F of monotone functions from L to L that contains the

identity function and that is closed under function
composition.

A Distributive Framework is a Monotone Framework
where additionally all functions f in F are required to be
distributive:

f (l1 t l2) = f (l1) t f (l2)

33 / 55

Monotone & Distributive Frameworks

A Monotone Framework consists of:

I a complete lattice, L, that satisfies the Ascending Chain
Condition, and we write

⊔
for the least upper bound

operator; and

I a set F of monotone functions from L to L that contains the
identity function and that is closed under function
composition.

A Distributive Framework is a Monotone Framework
where additionally all functions f in F are required to be
distributive:

f (l1 t l2) = f (l1) t f (l2)

33 / 55

Monotone & Distributive Frameworks

A Monotone Framework consists of:

I a complete lattice, L, that satisfies the Ascending Chain
Condition, and we write

⊔
for the least upper bound

operator; and
I a set F of monotone functions from L to L that contains the

identity function and that is closed under function
composition.

A Distributive Framework is a Monotone Framework
where additionally all functions f in F are required to be
distributive:

f (l1 t l2) = f (l1) t f (l2)

33 / 55

Monotone & Distributive Frameworks

A Monotone Framework consists of:

I a complete lattice, L, that satisfies the Ascending Chain
Condition, and we write

⊔
for the least upper bound

operator; and
I a set F of monotone functions from L to L that contains the

identity function and that is closed under function
composition.

A Distributive Framework is a Monotone Framework
where additionally all functions f in F are required to be
distributive:

f (l1 t l2) = f (l1) t f (l2)

33 / 55

Instance of a Framework

An instance, Analysis, of a Monotone or Distributive Framework
to consists of:

I the complete lattice, L, of the framework;
I the space of transfer functions, F , of the framework;
I a finite flow, F , that typically is flow(S?) or flowR(S?);
I a finite set of so-called extremal labels, E , that typically is
{init(S?)} or final(S?);

I an extremal value, ι ∈ L, for the extremal labels; and
I a mapping, f·, from the labels Lab? of F to transfer

functions in F .

34 / 55

Instance of a Framework

An instance, Analysis, of a Monotone or Distributive Framework
to consists of:

I the complete lattice, L, of the framework;

I the space of transfer functions, F , of the framework;
I a finite flow, F , that typically is flow(S?) or flowR(S?);
I a finite set of so-called extremal labels, E , that typically is
{init(S?)} or final(S?);

I an extremal value, ι ∈ L, for the extremal labels; and
I a mapping, f·, from the labels Lab? of F to transfer

functions in F .

34 / 55

Instance of a Framework

An instance, Analysis, of a Monotone or Distributive Framework
to consists of:

I the complete lattice, L, of the framework;
I the space of transfer functions, F , of the framework;

I a finite flow, F , that typically is flow(S?) or flowR(S?);
I a finite set of so-called extremal labels, E , that typically is
{init(S?)} or final(S?);

I an extremal value, ι ∈ L, for the extremal labels; and
I a mapping, f·, from the labels Lab? of F to transfer

functions in F .

34 / 55

Instance of a Framework

An instance, Analysis, of a Monotone or Distributive Framework
to consists of:

I the complete lattice, L, of the framework;
I the space of transfer functions, F , of the framework;
I a finite flow, F , that typically is flow(S?) or flowR(S?);

I a finite set of so-called extremal labels, E , that typically is
{init(S?)} or final(S?);

I an extremal value, ι ∈ L, for the extremal labels; and
I a mapping, f·, from the labels Lab? of F to transfer

functions in F .

34 / 55

Instance of a Framework

An instance, Analysis, of a Monotone or Distributive Framework
to consists of:

I the complete lattice, L, of the framework;
I the space of transfer functions, F , of the framework;
I a finite flow, F , that typically is flow(S?) or flowR(S?);
I a finite set of so-called extremal labels, E , that typically is
{init(S?)} or final(S?);

I an extremal value, ι ∈ L, for the extremal labels; and
I a mapping, f·, from the labels Lab? of F to transfer

functions in F .

34 / 55

Instance of a Framework

An instance, Analysis, of a Monotone or Distributive Framework
to consists of:

I the complete lattice, L, of the framework;
I the space of transfer functions, F , of the framework;
I a finite flow, F , that typically is flow(S?) or flowR(S?);
I a finite set of so-called extremal labels, E , that typically is
{init(S?)} or final(S?);

I an extremal value, ι ∈ L, for the extremal labels; and

I a mapping, f·, from the labels Lab? of F to transfer
functions in F .

34 / 55

Instance of a Framework

An instance, Analysis, of a Monotone or Distributive Framework
to consists of:

I the complete lattice, L, of the framework;
I the space of transfer functions, F , of the framework;
I a finite flow, F , that typically is flow(S?) or flowR(S?);
I a finite set of so-called extremal labels, E , that typically is
{init(S?)} or final(S?);

I an extremal value, ι ∈ L, for the extremal labels; and
I a mapping, f·, from the labels Lab? of F to transfer

functions in F .

34 / 55

Equations

An instance gives rise to a set of equations, Analysis=, of the
form considered earlier:

Analysis◦(`) =
⊔
{Analysis•(`

′) | (`′, `) ∈ F} t ι`E

where ι`E =

{
ι if ` ∈ E
⊥ if ` /∈ E

Analysis•(`) = f`(Analysis◦(`))

35 / 55

Classical Instances

Available Reaching Very Busy Live
Expressions Definitions Expressions Variables

L P(AExp?) P(Var? × Lab?) P(AExp?) P(Var?)
v ⊇ ⊆ ⊇ ⊆⊔ ⋂ ⋃ ⋂ ⋃
⊥ AExp? ∅ AExp? ∅
ι ∅ {(x , ?) |x ∈FV(S?)} ∅ ∅
E {init(S?)} {init(S?)} final(S?) final(S?)

F flow(S?) flow(S?) flowR(S?) flowR(S?)

F {f : L→ L | ∃lk , lg : f (l) = (l \ lk) ∪ lg}
f` f`(l) = (l \ kill([B]`)) ∪ gen([B]`) where [B]` ∈ blocks(S?)

36 / 55

Classical Monotone Frameworks

Lemma: Each of the four classical data flow analyses is a
Monotone Framework as well as a Distributive Framework.

It is worth pointing out that in order to get this result we have
made the frameworks dependent upon the actual program –
this is needed to enforce that the Ascending Chain Condition is
fulfilled.

37 / 55

Classical Monotone Frameworks

Lemma: Each of the four classical data flow analyses is a
Monotone Framework as well as a Distributive Framework.

It is worth pointing out that in order to get this result we have
made the frameworks dependent upon the actual program –
this is needed to enforce that the Ascending Chain Condition is
fulfilled.

37 / 55

A Non-Distributive Example

The Constant Propagation Analysis (CP) will determine:

For each program point, whether or not a variable has a
constant value whenever execution reaches that point.

Such information can be used as the basis for an optimisation
known as Constant Folding: all uses of the variable may be
replaced by the constant value.

38 / 55

A Non-Distributive Example

The Constant Propagation Analysis (CP) will determine:

For each program point, whether or not a variable has a
constant value whenever execution reaches that point.

Such information can be used as the basis for an optimisation
known as Constant Folding: all uses of the variable may be
replaced by the constant value.

38 / 55

CP State: Z>

The (abstract) states for the CP Analysis are given by:

ŜtateCP = ((Var? → Z>)⊥,v,t,u,⊥, λx .>)

where Var? is the set of variables appearing in the program.

Z> = Z ∪ {>} is partially ordered as follows:

∀z ∈ Z> : z v >

∀z1, z2 ∈ Z : (z1 v z2)⇔ (z1 = z2)

39 / 55

CP State: Z>

The (abstract) states for the CP Analysis are given by:

ŜtateCP = ((Var? → Z>)⊥,v,t,u,⊥, λx .>)

where Var? is the set of variables appearing in the program.

Z> = Z ∪ {>} is partially ordered as follows:

∀z ∈ Z> : z v >

∀z1, z2 ∈ Z : (z1 v z2)⇔ (z1 = z2)

39 / 55

CP State: Partial Order Z> vs Lattice Z>⊥

We construct a non-standard partial order on Z:

. . . −2 −1 0 +1 +2 . . .

>

We could also consider a complete lattice Z>⊥ (but don’t):

. . . −2 −1 0 +1 +2 . . .

>

⊥

40 / 55

CP State: Partial Order Z> vs Lattice Z>⊥

We construct a non-standard partial order on Z:

. . . −2 −1 0 +1 +2 . . .

>

We could also consider a complete lattice Z>⊥ (but don’t):

. . . −2 −1 0 +1 +2 . . .

>

⊥

40 / 55

CP State: Partial Order Z> vs Lattice Z>⊥

We construct a non-standard partial order on Z:

. . . −2 −1 0 +1 +2 . . .

>

We could also consider a complete lattice Z>⊥ (but don’t):

. . . −2 −1 0 +1 +2 . . .

>

⊥

40 / 55

CP State: Partial Order Z> vs Lattice Z>⊥

We construct a non-standard partial order on Z:

. . . −2 −1 0 +1 +2 . . .

>

We could also consider a complete lattice Z>⊥ (but don’t):

. . . −2 −1 0 +1 +2 . . .

>

⊥

40 / 55

CP State: Partial Order Z> vs Lattice Z>⊥

We construct a non-standard partial order on Z:

. . . −2 −1 0 +1 +2 . . .

>

We could also consider a complete lattice Z>⊥ (but don’t):

. . . −2 −1 0 +1 +2 . . .

>

⊥

40 / 55

CP State: Partial Order Z> vs Lattice Z>⊥

We construct a non-standard partial order on Z:

. . . −2 −1 0 +1 +2 . . .

>

We could also consider a complete lattice Z>⊥ (but don’t):

. . . −2 −1 0 +1 +2 . . .

>

⊥

40 / 55

CP State: Partial Order Z> vs Lattice Z>⊥

We construct a non-standard partial order on Z:

. . . −2 −1 0 +1 +2 . . .

>

We could also consider a complete lattice Z>⊥ (but don’t):

. . . −2 −1 0 +1 +2 . . .

>

⊥

40 / 55

CP State: Partial Order Z> vs Lattice Z>⊥

We construct a non-standard partial order on Z:

. . . −2 −1 0 +1 +2 . . .

>

We could also consider a complete lattice Z>⊥ (but don’t):

. . . −2 −1 0 +1 +2 . . .

>

⊥

40 / 55

CP State: Partial Order Z> vs Lattice Z>⊥

We construct a non-standard partial order on Z:

. . . −2 −1 0 +1 +2 . . .

>

We could also consider a complete lattice Z>⊥ (but don’t):

. . . −2 −1 0 +1 +2 . . .

>

⊥

40 / 55

CP State: Lattice

To capture the case where no information is available we extend
Var? → Z> with a least element ⊥, written (Var? → Z>)⊥.

The partial ordering v on ŜtateCP = (Var? → Z>)⊥ is:

∀σ̂ ∈ (Var? → Z>)⊥ : ⊥ v σ̂

∀σ̂1, σ̂2 ∈ Var? → Z> : σ̂1 v σ̂2 iff ∀x : σ̂1(x) v σ̂2(x)

and the binary least upper bound operation is then:

∀σ̂ ∈ (Var? → Z>)⊥ : σ̂ t ⊥ = σ̂ = ⊥ t σ̂

∀σ̂1, σ̂2 ∈ Var? → Z> : ∀x : (σ̂1 t σ̂2)(x) = σ̂1(x) t σ̂2(x)

41 / 55

CP State: Lattice

To capture the case where no information is available we extend
Var? → Z> with a least element ⊥, written (Var? → Z>)⊥.

The partial ordering v on ŜtateCP = (Var? → Z>)⊥ is:

∀σ̂ ∈ (Var? → Z>)⊥ : ⊥ v σ̂

∀σ̂1, σ̂2 ∈ Var? → Z> : σ̂1 v σ̂2 iff ∀x : σ̂1(x) v σ̂2(x)

and the binary least upper bound operation is then:

∀σ̂ ∈ (Var? → Z>)⊥ : σ̂ t ⊥ = σ̂ = ⊥ t σ̂

∀σ̂1, σ̂2 ∈ Var? → Z> : ∀x : (σ̂1 t σ̂2)(x) = σ̂1(x) t σ̂2(x)

41 / 55

CP State: Lattice

To capture the case where no information is available we extend
Var? → Z> with a least element ⊥, written (Var? → Z>)⊥.

The partial ordering v on ŜtateCP = (Var? → Z>)⊥ is:

∀σ̂ ∈ (Var? → Z>)⊥ : ⊥ v σ̂

∀σ̂1, σ̂2 ∈ Var? → Z> : σ̂1 v σ̂2 iff ∀x : σ̂1(x) v σ̂2(x)

and the binary least upper bound operation is then:

∀σ̂ ∈ (Var? → Z>)⊥ : σ̂ t ⊥ = σ̂ = ⊥ t σ̂

∀σ̂1, σ̂2 ∈ Var? → Z> : ∀x : (σ̂1 t σ̂2)(x) = σ̂1(x) t σ̂2(x)

41 / 55

CP State Evaluation

ACP : AExp→ (ŜtateCP → Z>⊥)

ACP[[x]]σ̂ =

{
⊥ if σ̂ = ⊥
σ̂(x) otherwise

ACP[[n]]σ̂ =

{
⊥ if σ̂ = ⊥
n otherwise

ACP[[a1 opa a2]]σ̂ = ACP[[a1]]σ̂ ôpa ACP[[a2]]σ̂

The operations on Z are lifted to Z>⊥ = Z ∪ {⊥,>} by taking
z1 ôpa z2 = z1 opa z2 if z1, z2 ∈ Z (and where opa is the
corresponding arithmetic operation on Z), z1 ôpa z2 = ⊥ if
z1 = ⊥ or z2 = ⊥ and z1 ôpa z2 = > otherwise.

42 / 55

CP State Evaluation

ACP : AExp→ (ŜtateCP → Z>⊥)

ACP[[x]]σ̂ =

{
⊥ if σ̂ = ⊥
σ̂(x) otherwise

ACP[[n]]σ̂ =

{
⊥ if σ̂ = ⊥
n otherwise

ACP[[a1 opa a2]]σ̂ = ACP[[a1]]σ̂ ôpa ACP[[a2]]σ̂

The operations on Z are lifted to Z>⊥ = Z ∪ {⊥,>} by taking
z1 ôpa z2 = z1 opa z2 if z1, z2 ∈ Z (and where opa is the
corresponding arithmetic operation on Z), z1 ôpa z2 = ⊥ if
z1 = ⊥ or z2 = ⊥ and z1 ôpa z2 = > otherwise.

42 / 55

CP State Evaluation

ACP : AExp→ (ŜtateCP → Z>⊥)

ACP[[x]]σ̂ =

{
⊥ if σ̂ = ⊥
σ̂(x) otherwise

ACP[[n]]σ̂ =

{
⊥ if σ̂ = ⊥
n otherwise

ACP[[a1 opa a2]]σ̂ = ACP[[a1]]σ̂ ôpa ACP[[a2]]σ̂

The operations on Z are lifted to Z>⊥ = Z ∪ {⊥,>} by taking
z1 ôpa z2 = z1 opa z2 if z1, z2 ∈ Z (and where opa is the
corresponding arithmetic operation on Z), z1 ôpa z2 = ⊥ if
z1 = ⊥ or z2 = ⊥ and z1 ôpa z2 = > otherwise.

42 / 55

CP Transfer Function

FCP = {f | f is a monotone function on ŜtateCP}

[x := a]` : f CP
` (σ̂) =

{
⊥ if σ̂ = ⊥
σ̂[x 7→ ACP[[a]]σ̂] otherwise

[skip]` : f CP
` (σ̂) = σ̂

[b]` : f CP
` (σ̂) = σ̂

43 / 55

CP Transfer Function

FCP = {f | f is a monotone function on ŜtateCP}

[x := a]` : f CP
` (σ̂) =

{
⊥ if σ̂ = ⊥
σ̂[x 7→ ACP[[a]]σ̂] otherwise

[skip]` : f CP
` (σ̂) = σ̂

[b]` : f CP
` (σ̂) = σ̂

43 / 55

CP Flow

Constant Propagation (CP) is a forward analysis, so for the
program S? we take the flow, F , to be flow(S?).

The extremal labels, E , are given by {init(S?)}, and the
extremal value, ιCP, is λx .>. The property lattice L and transfer
function FCP as above.

Lemma: Constant Propagation is a Monotone Framework that
is not a Distributive Framework.

44 / 55

CP Flow

Constant Propagation (CP) is a forward analysis, so for the
program S? we take the flow, F , to be flow(S?).

The extremal labels, E , are given by {init(S?)}, and the
extremal value, ιCP, is λx .>. The property lattice L and transfer
function FCP as above.

Lemma: Constant Propagation is a Monotone Framework that
is not a Distributive Framework.

44 / 55

Distributive Framework

To show that it is not a Distributive Framework consider the
transfer function f CP

` for [y := x ∗ x]` and let σ̂1 and σ̂2 be such
that σ̂1(x) = 1 and σ̂2(x) = −1.

Then σ̂1 t σ̂2 maps x to > and thus f CP
` (σ̂1 t σ̂2) maps y to >

and hence fails to record that y has the constant value 1.

However, both f CP
` (σ̂1) and f CP

` (σ̂2) map y to 1 and so does
f CP
` (σ̂1) t f CP

` (σ̂2).

45 / 55

Distributive Framework

To show that it is not a Distributive Framework consider the
transfer function f CP

` for [y := x ∗ x]` and let σ̂1 and σ̂2 be such
that σ̂1(x) = 1 and σ̂2(x) = −1.

Then σ̂1 t σ̂2 maps x to > and thus f CP
` (σ̂1 t σ̂2) maps y to >

and hence fails to record that y has the constant value 1.

However, both f CP
` (σ̂1) and f CP

` (σ̂2) map y to 1 and so does
f CP
` (σ̂1) t f CP

` (σ̂2).

45 / 55

Distributive Framework

To show that it is not a Distributive Framework consider the
transfer function f CP

` for [y := x ∗ x]` and let σ̂1 and σ̂2 be such
that σ̂1(x) = 1 and σ̂2(x) = −1.

Then σ̂1 t σ̂2 maps x to > and thus f CP
` (σ̂1 t σ̂2) maps y to >

and hence fails to record that y has the constant value 1.

However, both f CP
` (σ̂1) and f CP

` (σ̂2) map y to 1 and so does
f CP
` (σ̂1) t f CP

` (σ̂2).

45 / 55

Transfer Functions and Information Collection
Consider transfer function for the block [y := x ∗ x]`.

x y
−1 >

x y
+1 1

x y
> >

t

x y
−1 1

f`

x y
+1 1

f`

x y
> >

f`

x y
> 1

t

46 / 55

Transfer Functions and Information Collection
Consider transfer function for the block [y := x ∗ x]`.

x y
−1 >

x y
+1 1

x y
> >

t

x y
−1 1

f`

x y
+1 1

f`

x y
> >

f`

x y
> 1

t

46 / 55

Transfer Functions and Information Collection
Consider transfer function for the block [y := x ∗ x]`.

x y
−1 >

x y
+1 1

x y
> >

t

x y
−1 1

f`

x y
+1 1

f`

x y
> >

f`

x y
> 1

t

46 / 55

Transfer Functions and Information Collection
Consider transfer function for the block [y := x ∗ x]`.

x y
−1 >

x y
+1 1

x y
> >

t

x y
−1 1

f`

x y
+1 1

f`

x y
> >

f`

x y
> 1

t

46 / 55

Transfer Functions and Information Collection
Consider transfer function for the block [y := x ∗ x]`.

x y
−1 >

x y
+1 1

x y
> >

t

x y
−1 1

f`

x y
+1 1

f`

x y
> >

f`

x y
> 1

t

46 / 55

Transfer Functions and Information Collection
Consider transfer function for the block [y := x ∗ x]`.

x y
−1 >

x y
+1 1

x y
> >

t

x y
−1 1

f`

x y
+1 1

f`

x y
> >

f`

x y
> 1

t

46 / 55

Transfer Functions and Information Collection
Consider transfer function for the block [y := x ∗ x]`.

x y
−1 >

x y
+1 1

x y
> >

t

x y
−1 1

f`

x y
+1 1

f`

x y
> >

f`

x y
> 1

t

46 / 55

The MFP Solution (1)

INPUT: An instance of a Monotone Framework:
(L,F ,F ,E , ι, f·)

OUTPUT: MFP◦,MFP•

Step 1: Initialisation (of W and Analysis)
W := nil;
for all (`, `′) in F do

W := cons((`, `′),W);
for all ` in F or E do

if ` ∈ E then Analysis[`] := ι
else Analysis[`] := ⊥L;

47 / 55

The MFP Solution (1)

INPUT: An instance of a Monotone Framework:
(L,F ,F ,E , ι, f·)

OUTPUT: MFP◦,MFP•

Step 1: Initialisation (of W and Analysis)
W := nil;
for all (`, `′) in F do

W := cons((`, `′),W);
for all ` in F or E do

if ` ∈ E then Analysis[`] := ι
else Analysis[`] := ⊥L;

47 / 55

The MFP Solution (2&3)

Step 2: Iteration (updating W and Analysis)
while W 6= nil do

` := fst(head(W)); `′ = snd(head(W));
W := tail(W);
if f`(Analysis[`]) 6v Analysis[`′] then

Analysis[`′] := Analysis[`′] t f`(Analysis[`]);
for all (`′, `′′) in F do W := cons((`′, `′′),W);

Step 3: Presenting the result (MFP◦ and MFP•)
for all ` in F or E do

MFP◦(`) := Analysis[`];
MFP•(`) := f`(Analysis[`])

48 / 55

The MFP Solution (2&3)

Step 2: Iteration (updating W and Analysis)
while W 6= nil do

` := fst(head(W)); `′ = snd(head(W));
W := tail(W);
if f`(Analysis[`]) 6v Analysis[`′] then

Analysis[`′] := Analysis[`′] t f`(Analysis[`]);
for all (`′, `′′) in F do W := cons((`′, `′′),W);

Step 3: Presenting the result (MFP◦ and MFP•)
for all ` in F or E do

MFP◦(`) := Analysis[`];
MFP•(`) := f`(Analysis[`])

48 / 55

MFP Termination

Given an instance of a Monotone Framework (L,F ,F ,E , ι, f·)
with a property lattice L fullfilling the ACC/DCC.

Starting from ⊥ and using iterative (approximation) methods
like Chaotic Iteration or the Worklist Algorithm (which optimses
the iterations by only considering updates when “necessary”)
we can compute solutions Analysis◦ and Analysis•.

Lemma: The iterative construction of a solution (using chaotic
iteration, worklist algorithm) always terminates and it computes
the least MFP solution (more precisely MFP◦ and MFP•) to the
instance of the framework.

49 / 55

MFP Termination

Given an instance of a Monotone Framework (L,F ,F ,E , ι, f·)
with a property lattice L fullfilling the ACC/DCC.

Starting from ⊥ and using iterative (approximation) methods
like Chaotic Iteration or the Worklist Algorithm (which optimses
the iterations by only considering updates when “necessary”)
we can compute solutions Analysis◦ and Analysis•.

Lemma: The iterative construction of a solution (using chaotic
iteration, worklist algorithm) always terminates and it computes
the least MFP solution (more precisely MFP◦ and MFP•) to the
instance of the framework.

49 / 55

MFP Complexity

Assume that the flow F is represented in such a way that all
(`′, `′′) emanating from `′ can be found in time proportional to
their number. Suppose that E and F contain at most b ≥ 1
distinct labels, that F contains at most e ≥ b pairs, and that L
has finite height at most h ≥ 1.

Then steps 1 and 3 perform at most O(b + e) basic operations.
In step 2 a pair is placed on the worklist at most O(h) times,
and each time it takes only a constant number of basic steps to
process it; this yields at most O(e · h) basic operations for step
2. Since h ≥ 1 and e ≥ b this gives at most O(e · h) basic
operations for the algorithm.

50 / 55

MFP Complexity

Assume that the flow F is represented in such a way that all
(`′, `′′) emanating from `′ can be found in time proportional to
their number. Suppose that E and F contain at most b ≥ 1
distinct labels, that F contains at most e ≥ b pairs, and that L
has finite height at most h ≥ 1.

Then steps 1 and 3 perform at most O(b + e) basic operations.
In step 2 a pair is placed on the worklist at most O(h) times,
and each time it takes only a constant number of basic steps to
process it; this yields at most O(e · h) basic operations for step
2. Since h ≥ 1 and e ≥ b this gives at most O(e · h) basic
operations for the algorithm.

50 / 55

RD Complexity

Consider the Reaching Definitions Analysis and suppose that
there are at most v ≥ 1 variables and b ≥ 1 labels in the
program, S?, being analysed. Since L = P(Var? × Lab?), it
follows that h ≤ v · b and thus we have an O(v · b3) upper
bound on the number of basic operations.

Better: If S? is label consistent then the variable of the pairs
(x , `) of P(Var? × Lab?) will always be uniquely determined by
the label ` so we get an O(b3) upper bound on the number of
basic operations. Furthermore, F is flow(S?) and inspection of
the equations for flow(S?) shows that for each label ` we
construct at most two pairs with ` in the first component. This
means that e ≤ 2 · b and we get an O(b2) upper bound on the
number of basic operations.

51 / 55

RD Complexity

Consider the Reaching Definitions Analysis and suppose that
there are at most v ≥ 1 variables and b ≥ 1 labels in the
program, S?, being analysed. Since L = P(Var? × Lab?), it
follows that h ≤ v · b and thus we have an O(v · b3) upper
bound on the number of basic operations.

Better: If S? is label consistent then the variable of the pairs
(x , `) of P(Var? × Lab?) will always be uniquely determined by
the label ` so we get an O(b3) upper bound on the number of
basic operations. Furthermore, F is flow(S?) and inspection of
the equations for flow(S?) shows that for each label ` we
construct at most two pairs with ` in the first component. This
means that e ≤ 2 · b and we get an O(b2) upper bound on the
number of basic operations.

51 / 55

MOP Solution: Paths

Consider an instance (L,F ,F ,E , ι, f·) of a Monotone
Framework.

We shall use the notation ~̀= [`1, · · · , `n] for a sequence of
n ≥ 0 labels.

The paths up to but not including ` are:

path◦(`) = {[`1, · · · , `n−1] | n ≥ 1 ∧ ∀i < n : (`i , `i+1) ∈ F ∧ `n = ` ∧ `1 ∈ E}

The paths up to and including ` are:

path•(`) = {[`1, · · · , `n] | n ≥ 1 ∧ ∀i < n : (`i , `i+1) ∈ F ∧ `n = ` ∧ `1 ∈ E}

52 / 55

MOP Solution: Paths

Consider an instance (L,F ,F ,E , ι, f·) of a Monotone
Framework.

We shall use the notation ~̀= [`1, · · · , `n] for a sequence of
n ≥ 0 labels.

The paths up to but not including ` are:

path◦(`) = {[`1, · · · , `n−1] | n ≥ 1 ∧ ∀i < n : (`i , `i+1) ∈ F ∧ `n = ` ∧ `1 ∈ E}

The paths up to and including ` are:

path•(`) = {[`1, · · · , `n] | n ≥ 1 ∧ ∀i < n : (`i , `i+1) ∈ F ∧ `n = ` ∧ `1 ∈ E}

52 / 55

MOP Solution: Paths

Consider an instance (L,F ,F ,E , ι, f·) of a Monotone
Framework.

We shall use the notation ~̀= [`1, · · · , `n] for a sequence of
n ≥ 0 labels.

The paths up to but not including ` are:

path◦(`) = {[`1, · · · , `n−1] | n ≥ 1 ∧ ∀i < n : (`i , `i+1) ∈ F ∧ `n = ` ∧ `1 ∈ E}

The paths up to and including ` are:

path•(`) = {[`1, · · · , `n] | n ≥ 1 ∧ ∀i < n : (`i , `i+1) ∈ F ∧ `n = ` ∧ `1 ∈ E}

52 / 55

MOP Solutions

For a path ~̀= [`1, · · · , `n] we define the transfer function

f~̀ = f`n ◦ · · · ◦ f`1 ◦ id

so that for the empty path we have f[] = id where id is the
identity function.

The MOP solutions are then given by:

MOP◦(`) =
⊔
{f~̀(ι) | ~̀ ∈ path◦(`)}

MOP•(`) =
⊔
{f~̀(ι) | ~̀ ∈ path•(`)}

53 / 55

MOP Solutions

For a path ~̀= [`1, · · · , `n] we define the transfer function

f~̀ = f`n ◦ · · · ◦ f`1 ◦ id

so that for the empty path we have f[] = id where id is the
identity function.

The MOP solutions are then given by:

MOP◦(`) =
⊔
{f~̀(ι) | ~̀ ∈ path◦(`)}

MOP•(`) =
⊔
{f~̀(ι) | ~̀ ∈ path•(`)}

53 / 55

MOP Solution: Termination

Unfortunately, the MOP solution sometimes cannot be
computable (meaning that it is undecidable what the solution is)
even though the MFP solution is always easily computable
(because of the property space satisfying the Ascending Chain
Condition); the following result establishes one such result:

Lemma: The MOP solution for the Constant Propagation
Analysis is undecidable.

54 / 55

MOP Solution: Termination

Unfortunately, the MOP solution sometimes cannot be
computable (meaning that it is undecidable what the solution is)
even though the MFP solution is always easily computable
(because of the property space satisfying the Ascending Chain
Condition); the following result establishes one such result:

Lemma: The MOP solution for the Constant Propagation
Analysis is undecidable.

54 / 55

MFP and MOP Solutions

Lemma: Consider the MFP and the MOP solutions to an
instance (L,F , F ,B, ι, f·) of a Monotone Framework; then:

MFP◦ w MOP◦ and MFP• w MOP•

If the framework is a Distributive Framework and if path◦(`) 6= ∅
for all ` in E and F then:

MFP◦ = MOP◦ and MFP• = MOP•

It is always possible to formulate the MOP solution as an MFP
solution over a different property space (like P(L)) and
therefore little is lost by focusing on the fixed point approach to
Monotone Frameworks.

55 / 55

MFP and MOP Solutions

Lemma: Consider the MFP and the MOP solutions to an
instance (L,F , F ,B, ι, f·) of a Monotone Framework; then:

MFP◦ w MOP◦ and MFP• w MOP•

If the framework is a Distributive Framework and if path◦(`) 6= ∅
for all ` in E and F then:

MFP◦ = MOP◦ and MFP• = MOP•

It is always possible to formulate the MOP solution as an MFP
solution over a different property space (like P(L)) and
therefore little is lost by focusing on the fixed point approach to
Monotone Frameworks.

55 / 55

MFP and MOP Solutions

Lemma: Consider the MFP and the MOP solutions to an
instance (L,F , F ,B, ι, f·) of a Monotone Framework; then:

MFP◦ w MOP◦ and MFP• w MOP•

If the framework is a Distributive Framework and if path◦(`) 6= ∅
for all ` in E and F then:

MFP◦ = MOP◦ and MFP• = MOP•

It is always possible to formulate the MOP solution as an MFP
solution over a different property space (like P(L)) and
therefore little is lost by focusing on the fixed point approach to
Monotone Frameworks.

55 / 55

	Property Lattices
	Monotone Frameworks
	Constant Propagation Analysis
	Constructing Solutions
	Execution Paths

