Overview

Topics we will cover in this part will include:

1. Language PWHILE
2. Operational Semantics
3. Tensor Products
4. Linear Operator Semantics
5. Probabilistic Abstract Interpretation
Probabilistic Problem I: Guards and Conditionals

1: \[m := 1\]¹;
2: \[\text{while } [n > 1]² \text{ do}\]
3: \[m := m \times n\]³;
4: \[n := n - 1\]⁴
5: \[\text{end while}\]
6: \[\text{stop}\]⁵

\[\triangleright (p₁, p₂, p₃, \ldots) \rightarrow (\frac{1}{2}, \frac{1}{2}, \ldots)\]
\[\triangleright (1, 0, 0, \ldots) \rightarrow (\frac{1}{2}, \frac{1}{2}, \ldots)\]
\[\triangleright (0, 1, 0, \ldots) \rightarrow (0, \frac{1}{2}, \ldots)\]
\[\triangleright (1, 1, 0, \ldots) \rightarrow (1, 0, \ldots)\]

Concrete Probabilities
Perhaps better this way? Correct? How to justify this?

Abstract Probabilities
Correct? How to justify this?

Probabilistic Problem II: Abstract Evaluation

1: \[m := 1\]¹;
2: \[\text{while } [n > 1]² \text{ do}\]
3: \[m := m \times n\]³;
4: \[n := n - 1\]⁴
5: \[\text{end while}\]
6: \[\text{stop}\]⁵

\[\triangleright (pₐ, p₀) \rightarrow (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots)\]
\[\triangleright (0, 1) \rightarrow (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots)\]
\[\triangleright (0, 1) \rightarrow (0, \frac{1}{3}, \frac{1}{3}, \ldots)\]
\[\triangleright (1, 0) \rightarrow (0, \frac{1}{3}, \frac{1}{3}, \ldots)\]
\[\triangleright (0, 1) \rightarrow (1, 0, \ldots)\]
\[\triangleright (1, 0) \rightarrow (1, 0, \ldots)\]
\[\triangleright (1, 0) \rightarrow (\frac{1}{3}, 0, 0, \ldots)\]
\[\triangleright (1, 0) \rightarrow (\frac{1}{3}, 0, 0, \ldots)\]

Abstract Probabilities
Correct? How to justify this?
Probabilistic Problem III: Relational Dependency

Given an (input) distribution \((\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots)\) for \(n\) one would expect an (output) distribution \((\frac{2}{3}, \frac{1}{3})\) for even\((m)\) and odd\((m)\).

For every pair \((m, n)\) we can write the probabilities to observe it as \(P(m = i \land n = j) = P(m = i)P(n = j)\) – assume perhaps that \(n\) does not change.

The available data thus suggest this probability distribution:

<table>
<thead>
<tr>
<th></th>
<th>(n = 1)</th>
<th>(n = 2)</th>
<th>(n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>even((m))</td>
<td>(\frac{1}{3} \cdot \frac{2}{3})</td>
<td>(\frac{1}{3} \cdot \frac{2}{3})</td>
<td>(\frac{1}{3} \cdot \frac{2}{3})</td>
</tr>
<tr>
<td>odd((m))</td>
<td>(\frac{3}{3} \cdot \frac{3}{3})</td>
<td>(\frac{3}{3} \cdot \frac{3}{3})</td>
<td>(\frac{3}{3} \cdot \frac{3}{3})</td>
</tr>
</tbody>
</table>

Problems in Probabilistic Program Analysis

1: \([m := 1]^1\); \(\triangleright (p_e, p_o) — (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots)\)
2: \(\textbf{while} \ [n > 1]^2 \textbf{do}\) \(\triangleright (0, 1) — (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots)\)
3: \([m := m \times n]^3\); \(\triangleright (0, 1) — (0, \frac{1}{3}, \frac{1}{3}, \ldots)\)
4: \([n := n - 1]^4\) \(\triangleright (1, 0) — (0, \frac{1}{3}, \frac{1}{3}, \ldots)\)
5: \(\textbf{end while}\) \(\triangleright (0, 1) — (\frac{1}{3}, 0, 0, \ldots)\)
6: \([\textbf{stop}]^5\)

\textbf{Splitting:} How to distribute information along branches?
\textbf{Transforming:} How computing changes the information?
\textbf{Joining:} How to combine information along branches?
Commonly, computations are understood to follow a well defined (deterministic) set of rules as to obtain a certain result.

There are **randomised** algorithms which involve an element of chance or randomness.

Las Vegas Algorithms are randomised algorithms that always give correct results (with non-deterministic running time), e.g. QuickSort (with random pivoting).

Monte Carlo Algorithms produce (with deterministic running time) an output which may be incorrect with a certain probability, e.g. Buffon’s Needle.

\[
\Pr(\text{cross}) = \frac{2}{\pi} \quad \text{or} \quad \pi = \frac{2}{\Pr(\text{cross})}
\]
The Monty Hall Problem

- The game show proceeds as follows: First the contestant is invited to pick one of three doors (behind one is the prize) but the door is not yet opened.
- Instead, the host — legendary Monty Hall — opens one of the other doors which is empty.
- After that the contestant is given a last chance to stick with his/her door or to switch to the other closed one.
- Note that the host (knowing where the prize is) has always at least one door he can open.

Optimal Strategy: To Switch or not to Switch

\[
\begin{align*}
\text{w}_i &= \text{win behind } i \\
\text{p}_i &= \text{pick door } i \\
\text{o}_i &= \text{Monty opens door } i
\end{align*}
\]
Certainty, Possibility, Probability

Certainty — Determinism
Model: Definite Value
e.g. $2 \in \mathbb{N}$

Possibility — Non-Determinism
Model: Set of Values
e.g. $\{2, 4, 6, 8, 10\} \in \mathcal{P}(\mathbb{N})$

Probability — Probabilistic Non-Determinism
Model: Distribution (Measure)
e.g. $(0, 0, \frac{1}{5}, 0, \frac{1}{5}, 0, \ldots) \in \mathcal{V}(\mathbb{N})$

Structures: Power Sets

Given a finite set (universe) Ω (of states) we can construct the power set $\mathcal{P}(\Omega)$ of Ω easily as:

$$\mathcal{P}(\Omega) = \{X \mid X \subseteq \Omega\}$$

Ordered by inclusion “\subseteq” this is the example of a lattice/order.

It can also be seen as the set of functions from S into a two element set, thus $\mathcal{P}(\Omega) = 2^\Omega$:

$$\mathcal{P}(\Omega) = \{\chi : \Omega \rightarrow \{0, 1\}\}$$

A priori, no major problems when Ω is (un)countable infinite.
Vector Spaces = Abelian Additive Group + Quantities

Given a finite set Ω we can construct the (free) vector space $V(\Omega)$ of Ω as a tuple space (with K a field like \mathbb{R} or \mathbb{C}):

$$V(\Omega) = \{ \langle \omega, x_\omega \rangle \mid \omega \in \Omega, x_\omega \in K \} = \{ (x_\omega)_{\omega \in \Omega} \mid x_\omega \in K \}$$

As function spaces $V(\Omega)$ and $P(\Omega)$ are not so different:

$$V(\Omega) = \{ \nu : \Omega \to K \}$$

However, there are major topological problems when Ω is (un)countable infinite.

Tuple Spaces

Theorem

All finite dimensional vector spaces are isomorphic to the (finite) Cartesian product of the underlying field K^n (e.g. \mathbb{R}^n or \mathbb{C}^m).

Finite dimensional vectors can always be represented via their coordinates with respect to a given base, e.g.

$$x = (x_1, x_2, x_3, \ldots, x_n)$$

$$y = (y_1, y_2, y_3, \ldots, y_n)$$

Algebraic Structure

$$\alpha x = (\alpha x_1, \alpha x_2, \alpha x_3, \ldots, \alpha x_n)$$

$$x + y = (x_1 + y_1, x_2 + y_2, x_3 + y_3, \ldots, x_n + y_n)$$
Introducing Probability in Programs

Various ways for introducing probabilities into programs:

Random Assignment The value a variable is assigned to is chosen randomly (according to some, e.g. uniform, probability distribution) from a set:

\[x \sim \{1, 2, 3, 4\} \]

Probabilistic Choice There is a probabilistic choice between different instructions:

\[
\text{choose } 0.5 : (x := 0) \text{ or } 0.5 : (x := 1) \text{ ro}
\]

Syntactic Sugar

One can show that a single “coin flipping” is enough.

Random choices and assignments can be interchanged:

\[x \sim \{0, 1\} \]

is equivalent to (assuming a uniform distribution):

\[
\text{choose } 0.5 : (x := 0) \text{ or } 0.5 : (x := 1) \text{ ro}
\]

Alternatively we also have

\[
\text{choose } 0.5 : S_1 \text{ or } 0.5 : S_2 \text{ ro}
\]

is equivalent to (also with other probability distributions):

\[x \sim \{0, 1\}; \text{ if } (x > 0) \text{ then } S_1 \text{ else } S_2 \text{ fi} \]
Probabilities as Ratios

Consider integer “weights” to express relative probabilities, e.g.

\[
\text{choose } \frac{1}{3} : S_1 \text{ or } \frac{2}{3} : S_2 \text{ ro}
\]

is expressed equivalently as:

\[
\text{choose } 1 : (x := 0) \text{ or } 2 : (x := 1) \text{ ro}
\]

In general, for constant "weights" \(p\) and \(q\) (int), we translate

\[
\text{choose } p : S_1 \text{ or } q : S_2 \text{ ro}
\]

(by exploiting an implicit normalisation) into

\[
\text{choose } \frac{p}{p+q} : S_1 \text{ or } \frac{q}{p+q} : S_2 \text{ ro}
\]

PWHILE – Concrete Syntax

The syntax of statements \(S\) is as follows:

\[
S \quad ::= \quad \text{stop} \quad \mid \quad \text{skip} \quad \mid \quad x := e \quad \mid \quad x \neq r \quad \mid \quad S_1; \quad S_2 \quad \mid \quad \text{choose } p_1 : S_1 \text{ or } p_2 : S_2 \text{ ro} \quad \mid \quad \text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi} \quad \mid \quad \text{while } b \text{ do } S \text{ od}
\]

We also allow for boolean expressions, i.e. \(e\) is an arithmetic expression \(a\) or a boolean expression \(b\). The \textbf{choose} statement can be generalised to more than two alternatives.
PWHILE – Labelled Syntax

\[S ::= [\text{stop}]^\ell \]
\[[\text{skip}]^\ell \]
\[[x := e]^\ell \]
\[[x := r]^\ell \]
\[S_1; S_2 \]
\[\text{choose}^\ell p_1 : S_1 \text{ or } p_2 : S_2 \text{ ro} \]
\[\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2 \text{ fi} \]
\[\text{while } [b]^\ell \text{ do } S \text{ od} \]

Where the \(p_i \) are constants, representing choice probabilities. By \(r \) we denote a range/set, e.g. \((-1, 0, 1)\), from which the value of \(x \) is chosen (based on a uniform distribution).

Evaluation of Expressions [Not for Exam]

\[\sigma \ni \text{State} = (\text{Var} \rightarrow \mathbb{Z} \cup \mathbb{B}) \]

Evaluation \(E \) of expressions \(e \) in state \(\sigma \):

\[E(n)\sigma = n \]
\[E(x)\sigma = \sigma(x) \]
\[E(a_1 \odot a_2)\sigma = E(a_1)\sigma \odot E(a_2)\sigma \]
\[E(\text{true})\sigma = \text{tt} \]
\[E(\text{false})\sigma = \text{ff} \]
\[E(\text{not } b)\sigma = \neg E(b)\sigma \]
\[\ldots = \ldots \]
pWhile – SOS Semantics I [Not for Exam]

R0 \(\langle \text{skip}, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma \rangle \)

R1 \(\langle \text{stop}, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma \rangle \)

R2 \(\langle x := e, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma[x \mapsto E(e)] \rangle \)

R3' \(\langle x \in r, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma[x \mapsto r | r \in r] \rangle \)

R3_1 \(\langle S_1, \sigma \rangle \Rightarrow_1 \langle S_1', \sigma' \rangle \)

R3_2 \(\langle S_1; S_2, \sigma \rangle \Rightarrow_1 \langle S_1', S_2, \sigma' \rangle \)

R4_1 \(\langle \text{choose} \ p_1 : S_1 \ or \ p_2 : S_2, \sigma \rangle \Rightarrow_1 \langle S_1, \sigma \rangle \)

R4_2 \(\langle \text{choose} \ p_1 : S_1 \ or \ p_2 : S_2, \sigma \rangle \Rightarrow_1 \langle S_2, \sigma \rangle \)

R5_1 \(\langle \text{if} \ b \ \text{then} \ S_1 \ \text{else} \ S_2, \sigma \rangle \Rightarrow_1 \langle S_1, \sigma \rangle \) if \(E(b)\sigma = \text{tt} \)

R5_2 \(\langle \text{if} \ b \ \text{then} \ S_1 \ \text{else} \ S_2, \sigma \rangle \Rightarrow_1 \langle S_2, \sigma \rangle \) if \(E(b)\sigma = \text{ff} \)

R6_1 \(\langle \text{while} \ b \ \text{do} \ S, \sigma \rangle \Rightarrow_1 \langle S; \text{while} \ b \ \text{do} \ S, \sigma \rangle \) if \(E(b)\sigma = \text{tt} \)

R6_2 \(\langle \text{while} \ b \ \text{do} \ S, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma \rangle \) if \(E(b)\sigma = \text{ff} \)
DTMC Semantics

Given a PWHILE program, consider any enumeration of all its configurations (= pairs of statements and state) \(C_1, C_2, C_3, \ldots \in \text{Conf} \). Then

\[
(T)_{ij} = \begin{cases}
p & \text{if } C_i = \langle S, \sigma \rangle \implies_p C_j = \langle S', \sigma' \rangle \\
0 & \text{otherwise}
\end{cases}
\]

is the generator of a Discrete Time Markov Chain.

Transitions are implemented as

\[
d_n \cdot T = \sum_i (d_n)_i \cdot T_{ij} = d_{n+1}
\]

where \(d_i \) is the probability distribution over \(\text{Conf} \) at the \(i \)th step.

Example Program

Let us investigate the possible transitions of the following labelled program (with \(x \in \{0, 1\} \)):

\[
\begin{align*}
\text{if} & \ [x == 0]^1 \ \text{then} \\
& \ [x := 0]^2; \\
\text{else} & \\
& \ [x := 1]^3; \\
\text{end if}; \\
& \ [\text{stop}]^4
\end{align*}
\]
Example DTMC

\[
\begin{align*}
\langle x \mapsto 0, [x == 0]^1 \rangle & \quad \cdots \\
\langle x \mapsto 0, [x:=0]^2 \rangle & \quad \cdots \\
\langle x \mapsto 0, [x:=1]^3 \rangle & \quad \cdots \\
\langle x \mapsto 0, [\text{stop}]^4 \rangle & \quad \cdots \\
\langle x \mapsto 1, [x == 0]^1 \rangle & \quad \cdots \\
\langle x \mapsto 1, [x:=0]^2 \rangle & \quad \cdots \\
\langle x \mapsto 1, [x:=1]^3 \rangle & \quad \cdots \\
\langle x \mapsto 1, [\text{stop}]^4 \rangle & \quad \cdots
\end{align*}
\]

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\]

Example Transition

\[
\begin{pmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

We get: \(\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \).

This represents the (deterministic) transition step:

\[
\langle x \mapsto 0, [x:=1]^3 \rangle \Rightarrow_1 \langle x \mapsto 1, [\text{stop}]^4 \rangle
\]
The matrix representation of the SOS semantics of a \texttt{PWHILE} program is not \textit{`compositional'}.

In order to be able to analyse programs by analysing its parts, a more useful semantics is one resulting from the composition of different \textbf{linear operators} each expressing a particular operation contributing to the overall behaviour of the program.

\section*{The Space of Configurations}

For a \texttt{PWHILE} program \(S\) we can identify configurations with elements in

\[\text{Dist}(\text{State} \times \text{Lab}) \subseteq \mathcal{V}(\text{State} \times \text{Lab}). \]

Assuming \(v = |\text{Var}|\) finite,

\[\text{State} = (\mathbb{Z} + \mathbb{B})^v = \text{Value}_1 \times \text{Value}_2 \ldots \times \text{Value}_v \]

with \(\text{Value}_i = \mathbb{Z}(= \mathbb{Z})\) or \(\text{Value}_i\).

Thus, we can represent the space of configurations as

\[
\begin{align*}
\text{Dist}(\text{Value}_1 \times \ldots \times \text{Value}_v \times \text{Lab}) & \subseteq \\
& \subseteq \mathcal{V}(\text{Value}_1 \times \ldots \times \text{Value}_v \times \text{Lab}) \\
& = \mathcal{V}(\text{Value}_1) \otimes \ldots \otimes \mathcal{V}(\text{Value}_v) \otimes \mathcal{V}(\text{Lab}).
\end{align*}
\]
Tensor Product

Given a $n \times m$ matrix A and a $k \times l$ matrix B:

$$
A = \begin{pmatrix}
a_{11} & \ldots & a_{1m} \\
\vdots & \ddots & \vdots \\
a_{n1} & \ldots & a_{nm}
\end{pmatrix} \quad B = \begin{pmatrix}
b_{11} & \ldots & b_{1l} \\
\vdots & \ddots & \vdots \\
b_{k1} & \ldots & b_{kl}
\end{pmatrix}
$$

The tensor product $A \otimes B$ is a $nk \times ml$ matrix:

$$
A \otimes B = \begin{pmatrix}
a_{11}B & \ldots & a_{1m}B \\
\vdots & \ddots & \vdots \\
a_{n1}B & \ldots & a_{nm}B
\end{pmatrix}
$$

Special cases are square matrices ($n = m$ and $k = l$) and vectors (row $n = k = 1$, column $m = l = 1$).

Tensor Product Properties

For tensor product of square matrices (linear operators):

1. The **bilinearity** property:

$$
(\alpha M + \alpha' M') \otimes (\beta N + \beta' N') = \\
= \alpha \beta (M \otimes N) + \alpha \beta' (M \otimes N') + \alpha' \beta (M' \otimes N) + \alpha' \beta' (M' \otimes N')
$$

 $\alpha, \alpha', \beta, \beta' \in \mathbb{R}$, $M, M' \ m \times m$ matrices $N, N' \ n \times n$ matrices.

2. We have, with $v \in \mathbb{R}^m$ and $w \in \mathbb{R}^n$:

$$
(M \otimes N)(v \otimes w) = (M(v)) \otimes (N(w)) \\
(M \otimes N)(M' \otimes N') = (MM') \otimes (NN')
$$

3. If M and N are invertible so is $M \otimes N$, and:

$$
(M \otimes N)^{-1} = M^{-1} \otimes N^{-1}
$$
Transitions and Generator of DTMC (1) - Deterministic

\[
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix} = T
\]

Transitions and Generator of DTMC (2) - Probabilistic

\[
\begin{pmatrix}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{pmatrix} = T
\]
Transitions and Generator of DTMC (3)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{pmatrix}^t
\begin{pmatrix}
1 \\
0 \\
0 \\
0
\end{pmatrix}
\]

Transitions and Generator of DTMC (4)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{pmatrix}^t
\begin{pmatrix}
1 \\
0 \\
0 \\
0
\end{pmatrix}
= \begin{pmatrix}
0 \\
\frac{1}{3} \\
\frac{2}{3} \\
0
\end{pmatrix}^t
Combination of Steps

We can combine single steps to construct a transition graph.

\[
(E(m, n))_{ij} = \begin{cases}
1 & \text{if } m = i \land n = j \\
0 & \text{otherwise.}
\end{cases}
\]
Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

\[
\begin{pmatrix}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{pmatrix} = T
\]

\[
T = \frac{1}{3} E(1, 2) + \frac{2}{3} E(1, 3) + E(2, 4) + \frac{1}{2} E(3, 4) + \frac{1}{2} E(3, 3) + E(4, 4)
\]

"Turtle" Graphics

Consider a "(probabilistic) turtle graphics" with up/down and left/right moves done simultaneously and probabilistically.

The (classical) configuration space is \(\{1, \ldots, 8\} \times \{1, \ldots, 4\}\). To describe any probabilistic situation, i.e. joint distribution, we need \(8 \times 4 = 32\) probabilities, not just \(8 + 4 = 12\). We consider \(\mathbb{R}^8 \otimes \mathbb{R}^4 = \mathbb{R}^{32}\) as probabilistic configuration space rather than \(\mathbb{R}^8 \oplus \mathbb{R}^4 = \mathbb{R}^{12}\), i.e. just the marginal distributions.
Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.

Move from 1 to 2: \(E(1, 2) \)
Move from 3 to 7: \(E(3, 7) \)
Move from 2 to 7 or 8: \(E(2, 7) + E(2, 8) \) or \(\frac{1}{2}E(2, 7) + \frac{1}{2}E(2, 8) \)

Similar representation also for vertical moves.

"Parallel" Execution: \(x \in \{1, \ldots, 8\} \) and \(y \in \{1, \ldots, 4\} \)

Describe the effect \(M \) on \(x \) and the change of \(y \) described by \(N \), then the combined effect on \(\langle x, y \rangle \) is given by \(M \otimes N \).

From \((1, 1)\) move 1 left and 3 up: \(E(1, 2) \otimes E(1, 4) \)
From \((7, 3)\) move \((4, 2)\): \(E(7, 4) \otimes E(3, 2) \)
From \((7, 3)\) to \((4, 2)/(7, 2)\): \(E(7, 4) \otimes E(3, 2) + E(7, 7) \otimes E(3, 1) \)
From \((5, 2)\) move to all one right: \(E(5, 6) \otimes (\sum_{i=1}^{4} E(2, i)) \)
Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, \ldots, 8$; How do statements change its value?

$$x := 4 \quad \text{gives} \quad U(x \leftarrow 4) = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Thus, the LOS of the statement is $[x := 4] = U(x \leftarrow 4)$.

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, \ldots, 8$; How do statements change its value?

$$x := x + 1 \quad \text{gives} \quad U(x \leftarrow x + 1) = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

The LOS of the statement is $[x := x + 1] = U(x \leftarrow x + 1)$.
To avoid “overflow”: actually $[x := ((x - 1) + 1 \mod 8) + 1]$.
Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, \ldots, 8$; How do statements change its value?

$x ? = \{4, 5\}$ gives

\[
\begin{pmatrix}
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
\end{pmatrix}
\]

So the LOS is $\llbracket x ? = \{4, 5\} \rrbracket = \frac{1}{2} \mathbf{U}(x \leftarrow 4) + \frac{1}{2} \mathbf{U}(x \leftarrow 5)$.

Using the Linear Operators

We have now as states probability distributions over possible values $\sigma \in \mathcal{D}(\text{Value})$ rather than classical states $s \in \text{Value}$.

We can compute what happens to classical states, e.g.

\[
(0, 1, 0, 0, 0, 0, 0, 0) \cdot \llbracket x := 4 \rrbracket = (0, 0, 0, 1, 0, 0, 0, 0)
\]

\[
(0, 1, 0, 0, 0, 0, 0, 0) \cdot \llbracket x ? = \{4, 5\} \rrbracket = (0, 0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, 0)
\]

but also what happens with distributions, e.g.

\[
(0, \frac{2}{3}, 0, 0, \frac{1}{3}, 0, 0, 0) \cdot \llbracket x := x + 1 \rrbracket = (0, 0, \frac{2}{3}, 0, 0, \frac{1}{3}, 0, 0)
\]

and we can combine effects (to the same variable), e.g.

\[
\llbracket x ? = \{4, 5\} \rrbracket = \frac{1}{2} \llbracket x := 4 \rrbracket + \frac{1}{2} \llbracket x := 5 \rrbracket
\]
Putting Things Together

We can use the tensor product construction to combine the effects on different variables. For $x \in \{1..8\}$ and $y \in \{1..4\}$

\[
[x? = \{2, 4, 6, 8\}] = \frac{1}{4} \sum_{k=1}^{4} U(x \leftarrow 2k) \otimes I
\]

\[
[y := 3] = I \otimes U(y \leftarrow 3)
\]

The execution of “$x? = \{2, 4, 6, 8\}; y := 3$” is implemented by

\[
[x? = \{2, 4, 6, 8\}; y := 3] = (\frac{1}{4} \sum_{k=1}^{4} U(x \leftarrow 2k) \otimes I)(I \otimes U(y \leftarrow 3))
\]

\[
= \frac{1}{4} \sum_{k=1}^{4} U(x \leftarrow 2k) \otimes U(y \leftarrow 3)
\]

"Turtle" Execution

\[
[x? = \{2, 4, 6, 8\}; y := 3] =
\]

\[
= \frac{1}{4} \sum_{k=1}^{4} U(x \leftarrow 2k) \otimes U(y \leftarrow 3)
\]

\[
= \frac{1}{4} \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}
\]
Conditionals
Consider conditional jumps or statements, e.g.

\[
\text{if } \textit{even}(x) \text{ then } x := x/2 \text{ else } y := y + 1 \text{ fi}
\]

The branches have the following LOS:

\[
[x := x/2] = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix} \otimes I
\]

\[
[y := y + 1] = I \otimes \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix}
\]

Note: To avoid errors \(a/b = \lceil a/b \rceil\) and \(a + b = a + b \mod n\).

Tests and Distribution Splitting

We represent the filter for testing if \(x\) is even by a projection:

\[
\textbf{P(} \textit{even}(x)\textbf{)} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \otimes I
\]

Its negation is represented by:

\[
\textbf{P(} \neg \textit{even}(x)\textbf{)} = \textbf{P}(\textit{even}(x))^{\perp} = I - \textbf{P}(\textit{even}(x)).
\]
Using Tests

The semantics of a conditional is given by applying the semantics of the branches to the filtered (probabilistic) states and to combine the results. In our example:

\[
[\text{if even}(x) \text{ then } x := x/2 \text{ else } y + 1 \text{ fi}] =
\]

\[
P(\text{even}(x)) \cdot [x := x/2] + P(\text{even}(x)) \perp \cdot [y := y + 1]
\]

Given state where \(x \) has with probability \(\frac{1}{2} \) values 3 and 6, and \(y \) value 2, i.e. \(\sigma_0 = (0, 0, \frac{1}{2}, 0, 0, \frac{1}{2}, 0, 0) \otimes (0, 1, 0, 0) \) then

\[
\sigma_0 \cdot P(\text{even}(x)) = (0, 0, 0, 0, 0, \frac{1}{2}, 0, 0) \otimes (0, 1, 0, 0)
\]

\[
= \frac{1}{2} \cdot (0, 0, 0, 0, 0, 1, 0, 0) \otimes (0, 1, 0, 0)
\]

\[
\sigma_0 \cdot P(\text{even}(x)) \perp = (0, 0, \frac{1}{2}, 0, 0, 0, 0, 0) \otimes (0, 1, 0, 0)
\]

\[
= \frac{1}{2} \cdot (0, 0, 1, 0, 0, 0, 0, 0) \otimes (0, 1, 0, 0)
\]

Semantics of Conditionals

Applying the semantics of both branches gives us:

\[
\sigma_0 \cdot P(\text{even}(x)) \cdot [x := x/2] =
\]

\[
= (0, 0, \frac{1}{2}, 0, 0, 0, 0) \otimes (0, 1, 0, 0)
\]

\[
\sigma_0 \cdot P(\text{even}(x)) \perp \cdot [y := y + 1] =
\]

\[
= (0, 0, \frac{1}{2}, 0, 0, 0, 0, 0) \otimes (0, 0, 1, 0)
\]

The sum of both branches is now, maybe somewhat surprising:

\[
\sigma = (0, 0, 1, 0, 0, 0, 0, 0) \otimes (0, \frac{1}{2}, \frac{1}{2}, 0)
\]

Though we have started with a definitive value for \(y \) and a distribution for \(x \), the opposite is now the case.
Consider the following labelled program:

1: while \([z < 100]\) do
2: \(\text{choose}^{\frac{2}{3}}: [x:=3] \text{ or } \frac{1}{3} : [x:=1] \) ro
3: end while
4: [stop]

Its probabilistic control flow is given by:

\[
flow(P) = \{\langle 1, 1, 2 \rangle, \langle 1, 1, 5 \rangle, \langle 2, \frac{1}{3}, 3 \rangle, \langle 2, \frac{2}{3}, 4 \rangle, \langle 3, 1, 1 \rangle, \langle 4, 1, 1 \rangle\}.
\]
Final Labels

\[
\begin{align*}
\text{final}([\text{skip}]^\ell) &= \{\ell\} \\
\text{final}([\text{stop}]^\ell) &= \{\ell\} \\
\text{final}([x:=e]^\ell) &= \{\ell\} \\
\text{final}([x?=e]^\ell) &= \{\ell\} \\
\text{final}(S_1; S_2) &= \text{final}(S_2) \\
\text{final}(\text{choose}^\ell p_1 : S_1 \text{ or } p_2 : S_2) &= \text{final}(S_1) \cup \text{final}(S_2) \\
\text{final}(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) &= \text{final}(S_1) \cup \text{final}(S_2) \\
\text{final}(\text{while } [b]^\ell \text{ do } S) &= \{\ell\}
\end{align*}
\]

Flow I — Control Transfer

The probabilistic control flow is defined by the function:

\[
\text{flow} : \text{Stmt} \to \mathcal{P}(\text{Lab} \times [0, 1] \times \text{Lab})
\]

\[
\begin{align*}
\text{flow}([\text{skip}]^\ell) &= \emptyset \\
\text{flow}([\text{stop}]^\ell) &= \{(\ell, 1, \ell)\} \\
\text{flow}([x:=e]^\ell) &= \emptyset \\
\text{flow}([x?=e]^\ell) &= \emptyset \\
\text{flow}(S_1; S_2) &= \text{flow}(S_1) \cup \text{flow}(S_2) \cup \\
&\quad \cup \{(\ell, 1, \text{init}(S_2)) | \ell \in \text{final}(S_1)\}
\end{align*}
\]
Flow II — Control Transfer

\[\text{flow(choose}^\ell p_1 : S_1 \text{ or } p_2 : S_2) = \text{flow}(S_1) \cup \text{flow}(S_2) \cup \{ (\ell, p_1, \text{init}(S_1)), (\ell, p_2, \text{init}(S_2)) \} \]

\[\text{flow(if } [b]^{\ell} \text{ then } S_1 \text{ else } S_2) = \text{flow}(S_1) \cup \text{flow}(S_2) \cup \{ (\ell, 1, \text{init}(S_1)), (\ell, 1, \text{init}(S_2)) \} \]

\[\text{flow(while } [b]^{\ell} \text{ do } S) = \text{flow}(S) \cup \{ (\ell, 1, \text{init}(S)) \} \cup \{ (\ell', 1, \ell) | \ell' \in \text{final}(S) \} \]

A Linear Operator Semantics (LOS) based on \textit{flow}

Using the \textit{flow}(S) we construct a linear operator/matrix/DTMC generator in a compositional way, essentially as:

\[
T(S) = \sum_{(i,p_{ij},j) \in \text{flow}(S)} p_{ij} \cdot T(\langle \ell_i, p_{ij}, \ell_j \rangle),
\]

where

\[
T(\langle \ell_i, p_{ij}, \ell_j \rangle) = N_{\ell_i} \otimes E(\ell_i, \ell_j),
\]

With \(N_{\ell_i}\) the operator representing a state update (change of variable values) at the block with label \(\ell_i\) and the second factor implementing the transfer of control from label \(\ell_i\) to label \(\ell_j\).
Transfer Operators

For all the blocks in S we have transfer operators which change the state and (then/simultaneously) perform a control transfer to another bloc/ or program points:

$$
T(\langle \ell_1, p, \ell_2 \rangle) = I \otimes E(\ell_1, \ell_2) \quad \text{for } [\text{skip}]^{\ell_1}
$$

$$
T(\langle \ell_1, p, \ell_2 \rangle) = U(x \leftarrow a) \otimes E(\ell_1, \ell_2) \quad \text{for } [x \leftarrow a]^\ell
$$

$$
T(\langle \ell_1, p, \ell_2 \rangle) = \sum_{i \in r} \frac{1}{|r|} U(x \leftarrow i) \otimes E(\ell_1, \ell_2) \quad \text{for } [x ?= r]^\ell
$$

$$
T(\langle \ell, p, \ell_t \rangle) = P(b = \text{true}) \otimes E(\ell, \ell_t) \quad \text{for } [b]^{\ell}
$$

$$
T(\langle \ell, p, \ell_f \rangle) = P(b = \text{false}) \otimes E(\ell, \ell_f) \quad \text{for } [b]^\ell
$$

$$
T(\langle \ell, p_k, \ell_k \rangle) = I \otimes E(\ell, \ell_k) \quad \text{for } [\text{choose}]^\ell
$$

$$
T(\langle \ell, p \rangle) = I \otimes E(\ell, \ell) \quad \text{for } [\text{stop}]^\ell
$$

For $[b]^\ell$ the label ℓ_t denotes the label to the ‘true’ situation (e.g. \textbf{then} branch) and ℓ_f the situation where b is ‘false’.

In the case of a \textbf{choose} statement the different alternatives are labeled with (initial) label ℓ_k.

Tests and Filters

Select a value $c \in \text{Value}_k$ for variable x_k (with $k = 1, \ldots, \nu$):

$$
(P(c))_{ij} = \begin{cases}
1 & \text{if } i = c = j \\
0 & \text{otherwise.}
\end{cases}
$$

Select a certain classical state $\sigma \in \text{State} = \text{Value}^\nu$:

$$
P(\sigma) = \bigotimes_{i=1}^{\nu} P(\sigma(x_i))
$$

Select states where expression $e = a \mid b$ evaluates to c:

$$
P(e = c) = \sum_{\varepsilon(e)\sigma = c} P(\sigma)
$$
Updates

Modify the value of variable x_k to a constant $c \in \text{Value}_k$:

$$(U(c))_{ij} = \begin{cases}
1 & \text{if } j = c \\
0 & \text{otherwise.}
\end{cases}$$

Set value of variable $x_k \in \text{Var}$ to constant $c \in \text{Value}$:

$$U(x_k \leftarrow c) = \bigotimes_{i=1}^{k-1} I \otimes U(c) \otimes \bigotimes_{i=k+1}^{v} I$$

Set value of variable $x_k \in \text{Var}$ to value given by $e = a \cup b$:

$$U(x_k \leftarrow e) = \sum_c P(e = c)U(x_k \leftarrow c)$$

An Example

if $[x == 0]^1$ then $[x \leftarrow 0]^2$;
else $[x \leftarrow 1]^3$;
end if;
[stop]4

$$T(S) = P(x = 0) \otimes E(1, 2) + P(x \neq 0) \otimes E(1, 3) + U(x \leftarrow 0) \otimes E(2, 4) + U(x \leftarrow 1) \otimes E(3, 4) + I \otimes E(4, 4)$$

$$T(S) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes E(1, 2) + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes E(1, 3) +$$
$$+ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \otimes E(2, 3) + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes E(3, 4) +$$
$$+ (I \otimes E(4, 4))$$
An Example

\[
T(S) = \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \right) \otimes \left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \right)
\]

\[+ \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \right) \otimes \left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \right)
\]

\[+ \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \right) \otimes \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\end{array} \right)
\]

\[+ \left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \right) \otimes \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{array} \right)
\]

\[+ \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \right) \otimes \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\end{array} \right)
\]

LOS and DTMC

We can compare this \(T(S)\) with the directly extracted operator, and indeed the two coincide.

\[
\begin{align*}
\langle x \mapsto 0, [x \equiv 0]^1 \rangle & \quad \ldots \quad \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \\
\langle x \mapsto 0, [x \equiv 0]^2 \rangle & \quad \ldots \quad \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \\
\langle x \mapsto 0, [x \equiv 1]^3 \rangle & \quad \ldots \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \\
\langle x \mapsto 0, [\text{stop}]^4 \rangle & \quad \ldots \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \\
\langle x \mapsto 1, [x \equiv 0]^1 \rangle & \quad \ldots \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \\
\langle x \mapsto 1, [x \equiv 0]^2 \rangle & \quad \ldots \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \\
\langle x \mapsto 1, [x \equiv 1]^3 \rangle & \quad \ldots \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \\
\langle x \mapsto 1, [\text{stop}]^4 \rangle & \quad \ldots \quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\end{align*}
\]
Written in OCaml produces an *octave* file *c.m* which specify the LOS matrices *U*, *P*, etc. for a pWhile program *c.pw*.

![Flowchart](image)

We can use the interactive interface of *octave* and definitions of standard operations in *LOS.m* to analyse matrices in *c.m*.

Exploiting sparse matrix representation to handle programs with about 3 to 5 variables, up to 10 values and program fragments with something like 20 lines/labels.

Factorial

Consider the program *F* for calculating the factorial of *n*:

```plaintext
var
  m : {0..2};
  n : {0..2};

begin
  m := 1;
  while (n>1) do
    m := m*n;
    n := n-1;
  od;
  stop; # looping
end
```
Control Flow and LOS for F

\[\text{flow}(F) = \{(1, 1, 2), (2, 1, 3), (3, 1, 4), (4, 1, 2), (2, 1, 5), (5, 1, 5)\} \]

\[T(F) = U(m \leftarrow 1) \otimes E(1, 2) + P((n > 1)) \otimes E(2, 3) + U(m \leftarrow (m \ast n)) \otimes E(3, 4) + U(n \leftarrow (n - 1)) \otimes E(4, 2) + P((n \leq 1)) \otimes E(2, 5) + I \otimes E(5, 5) \]

Introducing PAI

The matrix $T(F)$ is very big already for small n.

<table>
<thead>
<tr>
<th>n</th>
<th>$\dim(T(F))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>45×45</td>
</tr>
<tr>
<td>3</td>
<td>140×140</td>
</tr>
<tr>
<td>4</td>
<td>625×625</td>
</tr>
<tr>
<td>5</td>
<td>3630×3630</td>
</tr>
<tr>
<td>6</td>
<td>25235×25235</td>
</tr>
<tr>
<td>7</td>
<td>201640×201640</td>
</tr>
<tr>
<td>8</td>
<td>1814445×1814445</td>
</tr>
<tr>
<td>9</td>
<td>18144050×18144050</td>
</tr>
</tbody>
</table>

We will show how we can drastically reduce the dimension of the LOS by using Probabilistic Abstract Interpretation.
Galois Connections

Definition
Let $\mathcal{C} = (\mathcal{C}, \leq_{\mathcal{C}})$ and $\mathcal{D} = (\mathcal{D}, \leq_{\mathcal{D}})$ be two partially ordered sets with two order-preserving functions $\alpha : \mathcal{C} \leftrightarrow \mathcal{D}$ and $\gamma : \mathcal{D} \leftrightarrow \mathcal{C}$. Then $(\mathcal{C}, \alpha, \gamma, \mathcal{D})$ form a Galois connection iff

(i) $\alpha \circ \gamma$ is reductive i.e. $\forall d \in \mathcal{D}, \alpha \circ \gamma(d) \leq_{\mathcal{D}} d$,
(ii) $\gamma \circ \alpha$ is extensive i.e. $\forall c \in \mathcal{C}, c \leq_{\mathcal{C}} \gamma \circ \alpha(c)$.

Proposition
Let $(\mathcal{C}, \alpha, \gamma, \mathcal{D})$ be a Galois connection. Then α and γ are quasi-inverse, i.e.

(i) $\alpha \circ \gamma \circ \alpha = \alpha$ and (ii) $\gamma \circ \alpha \circ \gamma = \gamma$

General Construction
The general construction of correct (and optimal) abstractions $f^\#$ of concrete function f is as follows:

Correct approximation:

$\alpha' \circ f \leq^\# f^\# \circ \alpha$.

Induced semantics:

$f^\# = \alpha' \circ f \circ \gamma$.
A probabilistic domain is essentially a vector space which represents the distributions \(\text{Dist} \text{(State)} \subseteq \mathcal{V} \text{(State)} \) on the state space \(\text{State} \) of a probabilistic transition system, i.e. for finite state spaces

\[
\mathcal{V} \text{(State)} = \{ (v_s)_{s \in \text{State}} \mid v_s \in \mathbb{R} \}.
\]

In the infinite setting we can identify \(\mathcal{V} \text{(State)} \) with the Hilbert space \(\ell^2 \text{(State)} \).

The notion of norm (distance) is essential for our treatment; we will consider normed vector spaces.

Norm and Distance [Not for Exam]

A norm on a vector space \(\mathcal{V} \) is a map \(\| \cdot \| : \mathcal{V} \rightarrow \mathbb{R} \) such that for all \(\nu, \omega \in \mathcal{V} \) and \(c \in \mathbb{C} \):

- \(\| \nu \| \geq 0 \),
- \(\| \nu \| = 0 \iff \nu = o \),
- \(\| c \nu \| = |c| \| \nu \| \),
- \(\| \nu + \omega \| \leq \| \nu \| + \| \omega \| \),

with \(o \in \mathcal{V} \) the zero vector.

We can always use a norm to define a metric topology on a vector space via the distance function \(d(\nu, \omega) = \| \nu - \omega \| \).

Note: The structural similarities between distances and partial orders can be made precise (cf. Category Theory).
Moore-Penrose Generalised Inverse

Definition
Let \(\mathcal{C} \) and \(\mathcal{D} \) be two (finite-dimensional) vector (Hilbert) spaces and \(A : \mathcal{C} \to \mathcal{D} \) a linear map. Then the linear map \(A^\dagger = G : \mathcal{D} \to \mathcal{C} \) is the **Moore-Penrose pseudo-inverse** of \(A \) iff

(i) \(A \circ G = P_A \),

(ii) \(G \circ A = P_G \),

where \(P_A \) and \(P_G \) denote orthogonal projections onto the ranges of \(A \) and \(G \).

(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner product \(\langle ., . \rangle \).
This measures some kind of similarity of vectors but also allows to define a norm:
\[
\|x\|_2 = \sqrt{\langle x, x \rangle}
\]
It also allows us to define an adjoint via:
\[
\langle A(x), y \rangle = \langle x, A^*(y) \rangle
\]

- An operator \(A \) is **self-adjoint** if \(A = A^* \).
- An **(orthogonal) projection** is a self-adjoint \(E \) with \(EE = E \).
Least Squares Solutions

Corollary
Let \(P \) be an orthogonal projection on a finite dimensional vector space \(\mathcal{V} \). Then for any \(x \in \mathcal{V} \), \(P(x) = xP \) is the unique closest vector in \(\mathcal{V} \) to \(x \) wrt to the Euclidean norm \(\| \cdot \|_2 \).

Definition
Let \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \). Then \(u \in \mathbb{R}^n \) is called a least squares solution to \(Ax = b \) if
\[
\|Au - b\| \leq \|Av - b\|, \text{ for all } v \in \mathbb{R}^n.
\]

Theorem
Let \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \). Then \(A^\dagger b \) is the minimal least squares solution to \(Ax = b \).

Vector Space Lifting
Free vector space construction on a set \(S \):
\[
\mathcal{V}(S) = \left\{ \sum x_s s \mid x_s \in \mathbb{R}, s \in S \right\}
\]

An obvious way to lift an extraction function to a linear map between vector spaces is to construct the free vector spaces on \(\mathcal{C} \) and \(\mathcal{D} \) and define:

Vector Space lifting: \(\bar{\alpha} : \mathcal{V}(\mathcal{C}) \to \mathcal{V}(\mathcal{D}) \)
\[
\bar{\alpha}(p_1 \cdot \bar{c}_1 + p_2 \cdot \bar{c}_2 + \ldots) = p_i \cdot \alpha(c_1) + p_2 \cdot \alpha(c_2) \ldots
\]

Support Set: \(\text{supp} : \mathcal{V}(\mathcal{C}) \to \mathcal{P}(\mathcal{C}) \)
\[
\text{supp}(\bar{x}) = \left\{ c_i \mid \langle c_i, p_i \rangle \in \bar{x} \text{ and } p_i \neq 0 \right\}
\]
Relation with Classical Abstractions

Lemma
Let $\vec{\alpha}$ be a probabilistic abstraction function and let $\vec{\gamma}$ be its Moore-Penrose pseudo-inverse.

Then $\vec{\gamma} \circ \vec{\alpha}$ is extensive with respect to the inclusion on the support sets of vectors in $\mathcal{V}(\mathcal{C})$, i.e. $\forall \vec{x} \in \mathcal{V}(\mathcal{C}),$

$$\text{supp}(\vec{x}) \subseteq \text{supp}(\vec{\gamma} \circ \vec{\alpha}(\vec{x})).$$

Analogously we can show that $\vec{\alpha} \circ \vec{\gamma}$ is reductive. Therefore,

Proposition
$(\vec{\alpha}, \vec{\gamma})$ form a Galois connection wrt the support sets of $\mathcal{V}(\mathcal{C})$ and $\mathcal{V}(\mathcal{D})$, ordered by inclusion.

Examples of Lifted Abstractions

Parity Abstraction operator on $\mathcal{V}(\{1, \ldots, n\})$ (with n even):

$$A_p = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{pmatrix}, \quad A_p^\dagger = \begin{pmatrix}
\frac{2}{n} & 0 & \frac{2}{n} & 0 & \ldots & 0 \\
0 & \frac{2}{n} & 0 & \frac{2}{n} & \ldots & \frac{2}{n}
\end{pmatrix}$$

Sign Abstraction operator on $\mathcal{V}(\{-n, \ldots, 0, \ldots, n\})$:

$$A_s = \begin{pmatrix}
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1
\end{pmatrix}, \quad A_s^\dagger = \begin{pmatrix}
\frac{1}{n} & \ldots & \frac{1}{n} & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \frac{1}{n} & \ldots & \frac{1}{n}
\end{pmatrix}$$
Example: Function Approximation (ctd.)

Concrete and abstract domain are **step-functions on** \([a, b]\).
The set of (real-valued) step-function \(T_n\) is based on the
sub-division of the interval into \(n\) sub-intervals.

Each step function in \(T_n\) corresponds to a vector in \(\mathbb{R}^n\), e.g.

\[
\begin{pmatrix}
5 & 5 & 6 & 7 & 8 & 4 & 3 & 2 & 8 & 6 & 6 & 7 & 9 & 8 & 8 & 7
\end{pmatrix}
\]

Example: Abstraction Matrices

\[
A_8 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
G_8 = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
Approximation Estimates

Compute the *least square error* as

\[\| f - fA \| \]

\[\| f - fA_8G_8 \| = 3.5355 \]
\[\| f - fA_4G_4 \| = 5.3151 \]
\[\| f - fA_2G_2 \| = 5.9896 \]
\[\| f - fA_1G_1 \| = 7.6444 \]

Tensor Product Properties

The tensor product of \(n \) linear operators \(A_1, A_2, \ldots, A_n \) is associative (but in general not commutative) and has e.g. the following properties:

1. \((A_1 \otimes \ldots \otimes A_n) \cdot (B_1 \otimes \ldots \otimes B_n) = A_1 \cdot B_1 \otimes \ldots \otimes A_n \cdot B_n\)
2. \(A_1 \otimes \ldots \otimes (\alpha A_i) \otimes \ldots \otimes A_n = \alpha (A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n)\)
3. \(A_1 \otimes \ldots \otimes (A_i + B_i) \otimes \ldots \otimes A_n = (A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n) + (A_1 \otimes \ldots \otimes B_i \otimes \ldots \otimes A_n)\)
4. \((A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n)^\dagger = A_1^\dagger \otimes \ldots \otimes A_i^\dagger \otimes \ldots \otimes A_n^\dagger\)
Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

$$(A_1 \otimes A_2 \otimes \ldots \otimes A_n)^\dagger = A_1^\dagger \otimes A_2^\dagger \otimes \ldots \otimes A_n^\dagger$$

Via linearity we can construct $T^\#$ in the same way as T, i.e

$$T^\#(P) = \sum_{(i,p_{ij},j) \in \mathcal{F}(P)} p_{ij} \cdot T^\#(\ell_i, \ell_j)$$

with local abstraction of individual variables:

$$T^\#(\ell_i, \ell_j) = (A_1^\dagger N_{i1} A_1) \otimes (A_2^\dagger N_{i2} A_2) \otimes \ldots \otimes (A_v^\dagger N_{iv} A_v) \otimes M_{ij}$$

Argument [Not for Exam]

$$T^\# = A^\dagger TA$$
$$= A^\dagger (\sum_{i,j} T(i,j)) A$$
$$= \sum_{i,j} A^\dagger T(i,j) A$$
$$= \sum_{i,j} (\bigotimes_k A_k)^\dagger T(i,j) (\bigotimes_k A_k)$$
$$= \sum_{i,j} (\bigotimes_k A_k)^\dagger (\bigotimes_k N_{ik}) (\bigotimes_k A_k)$$
$$= \sum_{i,j} \bigotimes_k (A_k^\dagger N_{ik} A_k)$$
Parity Analysis

Determine at each program point whether a variable is even or odd.

Parity Abstraction operator on $\mathcal{V}(\{0, \ldots, n\})$ (with n even):

$$A_p = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix}$$

$$A^\dagger = \begin{pmatrix} \frac{2}{n} & 0 & \frac{2}{n} & 0 & \cdots & 0 \\ 0 & \frac{2}{n} & 0 & \frac{2}{n} & \cdots & \frac{2}{n} \end{pmatrix}$$

Example

1: \[m \leftarrow i\]^{1};
2: \textbf{while} \ [n > 1]^2 \ \textbf{do}
3: \ [m \leftarrow m \times n]^3;
4: \ [n \leftarrow n - 1]^4
5: \textbf{end while}
6: \textbf{stop}^{5}

$$T^\# = U^\#(m \leftarrow i) \otimes E(1, 2) + P^\#(n > 1) \otimes E(2, 3) + P^\#(n \leq 1) \otimes E(2, 5) + U^\#(m \leftarrow m \times n) \otimes E(3, 4) + U^\#(n \leftarrow n - 1) \otimes E(4, 2) + I^\# \otimes E(5, 5)$$
Abstract Semantics

\[U^\#(m \leftarrow 1) = \]
\[= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \]

Abstract Semantics

\[U^\#(n \leftarrow n - 1) = \]
\[= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \]
Abstract Semantics

\[P^\#(n > 1) = \]

\[= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & 1 \end{pmatrix} \]

Abstract Semantics

\[P^\#(n \leq 1) = \]

\[= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & 0 \end{pmatrix} \]
Abstract Semantics

\[
U^\#(m \leftarrow m \times n) = \left(\begin{array}{c} 1 0 \\ 0 0 \end{array} \right) \otimes \left(\begin{array}{cccc} 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 1 \end{array} \right) +
\left(\begin{array}{c} 0 0 \\ 1 0 \end{array} \right) \otimes \left(\begin{array}{cccc} 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 1 \end{array} \right) +
\left(\begin{array}{c} 0 0 \\ 1 0 \end{array} \right) \otimes \left(\begin{array}{cccc} 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 1 \end{array} \right) +
\left(\begin{array}{c} 0 1 \\ 0 0 \end{array} \right) \otimes \left(\begin{array}{cccc} 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 1 \end{array} \right)
\]

Implementation

Implementation of concrete and abstract semantics of Factorial using **octave**. Ranges: \(n \in \{1, \ldots, d\} \) and \(m \in \{1, \ldots, d!\} \).

<table>
<thead>
<tr>
<th>d</th>
<th>\text{dim}(T(F))</th>
<th>\text{dim}(T^#(F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>140</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>625</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>3630</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>25235</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>201640</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>1814445</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>18144050</td>
<td>100</td>
</tr>
</tbody>
</table>

Using **uniform** initial distributions \(d_0 \) for \(n \) and \(m \).
Scalability

The abstract probabilities for \(m \) being \textbf{even} or \textbf{odd} when we execute the abstract program for various \(d \) values are:

<table>
<thead>
<tr>
<th>(d)</th>
<th>even</th>
<th>odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.81818</td>
<td>0.18182</td>
</tr>
<tr>
<td>100</td>
<td>0.98019</td>
<td>0.019802</td>
</tr>
<tr>
<td>1000</td>
<td>0.99800</td>
<td>0.0019980</td>
</tr>
<tr>
<td>10000</td>
<td>0.99980</td>
<td>0.00019998</td>
</tr>
</tbody>
</table>

Ortholattice of Projection Operators [Not for Exam]

Define a \textit{partial order} on self-adjoint operators and projections as follows: \(H \sqsubseteq K \) iff \(K - H \) is \textbf{positive}, i.e. there exists a \(B \) such that \(K - H = B^*B \).

Alternatively, order projections by inclusion of their image spaces, i.e. \(E \sqsubseteq F \) iff \(Y_E \subseteq Y_F \).

The orthogonal projections form a complete (ortho)lattice.

The range of the \textit{intersection} \(E \cap F \) is to the closure of the intersection of the image spaces of \(E \) and \(F \).

The \textit{union} \(E \sqcup F \) corresponds to the union of the images.
Associate to every Probabilistic Abstract Interpretation \((A, G)\) a projection, similar to so-called “upper closure operators” (uco):

\[
E = AG = AA^\dagger.
\]

A general way to construct \(E \sqcap F\) and (by exploiting de Morgan’s law) also \(E \sqcup F = (E^\perp \sqcap F^\perp)^\perp\) is via an infinite approximation sequence and has been suggested by Halmos:

\[
E \sqcap F = \lim_{n \to \infty} (EFE)^n.
\]

Commutative Case

The concrete construction of \(E \sqcup F\) and \(E \sqcap F\) is in general not trivial. Only for commuting projections we have:

\[
E \sqcup F = E + F - EF\text{ and }E \sqcap F = EF.
\]

Example

Consider a finite set \(\Omega\) with a probability structure. For any (measurable) subset \(A\) of \(\Omega\) define the characteristic function \(\chi_A\) with \(\chi_A(x) = 1\) if \(x \in A\) and 0 otherwise. The characteristic functions are (commutative) projections on random variables using pointwise multiplication, i.e. \(X \chi_A \chi_A = X \chi_A\). We have \(\chi_A \cap B = \chi_A \chi_B\) and \(\chi_A \cup B = \chi_A + \chi_B - \chi_A \chi_B\).
Non-Commutative Case [Not for Exam]

The Moore-Penrose pseudo-inverse is also useful for computing the $E \cap F$ and $E \cup F$ of general, non-commuting projections via the parallel sum

$$A : B = A(A + B)^\dagger B$$

The intersection of projections is given by:

$$E \cap F = 2(E : F) = E(E + F)^\dagger F + F(E + F)^\dagger E$$

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A – hitting probability a
- Cowboy B – hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:
 - If it is A's turn he will hit/shoot B with probability a; If B is shot then A is the winner, otherwise it’s B's turn.
 - If it is B’s turn he will hit/shoot A with probability b; If A is shot then B is the winner, otherwise it’s A's turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012/14)
Example: Duelling Cowboys

begin
who’s first turn
choose 1:{t:=0} or 1:{t:=1} ro;
continue until ...
c := 1;
while c == 1 do
 if (t==0) then
 choose ak:{c:=0} or am:{t:=1} ro
 else
 choose bk:{c:=0} or bm:{t:=0} ro
 fi;
 od;
stop; # terminal loop
end

Example: Duelling Cowboys [Not for Exam]
The survival chances, i.e. winning probability, for A.
References

Herbert Wiklicky: *On Dynamical Probabilities, or: How to learn to shoot straight*. Coordinations, LNCS 9686, 2016.