Overview

Topics we will cover in this part will include:

1. Language PWHILE
2. Operational Semantics
3. Tensor Products
4. Linear Operator Semantics
5. Probabilistic Abstract Interpretation
Probabilistic Problem I: Guards and Conditionals

1: \[m := 1 \] \[\downdownarrows (p_1, p_2, p_3, \ldots) \rightarrow \left(\frac{1}{2}, \frac{1}{2}, \ldots \right) \]
2: \textbf{while} \[n > 1 \] \textbf{do}
3: \[m := m \times n \]
4: \[n := n - 1 \]
5: \textbf{end while}
6: \[\text{stop} \]

Concrete Probabilities
Perhaps better this way? Correct? How to justify this?

Probabilistic Problem II: Abstract Evaluation

1: \[m := 1 \] \[\downdownarrows (p_e, p_o) \rightarrow \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots \right) \]
2: \textbf{while} \[n > 1 \] \textbf{do}
3: \[m := m \times n \]
4: \[n := n - 1 \]
5: \textbf{end while}
6: \[\text{stop} \]

Abstract Probabilities
Correct? How to justify this?
Probabilistic Problem III: Relational Dependency

Given an (input) distribution \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots \right) \) for \(n \) one would expect an (output) distribution \(\left(\frac{2}{3}, \frac{1}{3} \right) \) for even\((m)\) and odd\((m)\).

For every pair \((m, n)\) we can write the probabilities to observe it as \(P(m = i \land n = j) = P(m = i)P(n = j) \) – assume perhaps that \(n \) does not change.

The available data thus suggest this probability distribution:

<table>
<thead>
<tr>
<th>(\text{even}(m))</th>
<th>(n = 1)</th>
<th>(n = 2)</th>
<th>(n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{3} \cdot \frac{2}{3})</td>
<td>(\frac{1}{3} \cdot \frac{2}{3})</td>
<td>(\frac{1}{3} \cdot \frac{2}{3})</td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{3} \cdot \frac{2}{3})</td>
<td>(\frac{1}{3} \cdot \frac{2}{3})</td>
<td>(\frac{1}{3} \cdot \frac{2}{3})</td>
<td></td>
</tr>
</tbody>
</table>

Problems in Probabilistic Program Analysis

1: \([m := 1]^1;\) \(\triangleright (p_e, p_o) \rightarrow \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots \right)\)
2: while \([n > 1]^2\) do \(\triangleright (0, 1) \rightarrow \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots \right)\)
3: \([m := m \times n]^3;\) \(\triangleright (0, 1) \rightarrow \left(0, \frac{1}{3}, \frac{1}{3}, \ldots \right)\)
4: \([n := n - 1]^4\) \(\triangleright (1, 0) \rightarrow \left(0, 0, \frac{1}{3}, \ldots \right)\)
5: end while \(\triangleright (0, 1) \rightarrow \left(0, 0, 0, \ldots \right)\)
6: [stop]5

Splitting: How to distribute information along branches?
Transforming: How computing changes the information?
Joining: How to combine information along branches?
Commonly, computations are understood to follow a well-defined (deterministic) set of rules as to obtain a certain result.

There are **randomised** algorithms which involve an element of chance or randomness.

Las Vegas Algorithms are randomised algorithms that always give correct results (with non-deterministic running time), e.g. QuickSort (with random pivoting).

Monte Carlo Algorithms produce (with deterministic running time) an output which may be incorrect with a certain probability, e.g. Buffon’s Needle.

(Georges-Louis Leclerc, Comte de) Buffon’s Needle

\[
\Pr(\text{cross}) = \frac{2}{\pi} \quad \text{or} \quad \pi = \frac{2}{\Pr(\text{cross})}
\]
The Monty Hall Problem

- The game show proceeds as follows: First the contestant is invited to pick one of three doors (behind one is the prize) but the door is not yet opened.
- Instead, the host – legendary Monty Hall – opens one of the other doors which is empty.
- After that the contestant is given a last chance to stick with his/her door or to switch to the other closed one.
- Note that the host (knowing where the prize is) has always at least one door he can open.

Optimal Strategy: To Switch or not to Switch

\[w_i = \text{win behind } i \quad p_i = \text{pick door } i \quad o_i = \text{Monty opens door } i \]
Certainty, Possibility, Probability

Certainty — Determinism
Model: Definite Value
e.g. \(2 \in \mathbb{N}\)

Possibility — Non-Determinism
Model: Set of Values
e.g. \(\{2, 4, 6, 8, 10\} \in \mathcal{P}(\mathbb{N})\)

Probability — Probabilistic Non-Determinism
Model: Distribution (Measure)
e.g. \((0, 0, \frac{1}{5}, 0, \frac{1}{5}, 0, \ldots) \in \mathcal{V}(\mathbb{N})\)

Structures: Power Sets

Given a finite set (universe) \(\Omega\) (of states) we can construct the power set \(\mathcal{P}(\Omega)\) of \(\Omega\) easily as:

\[
\mathcal{P}(\Omega) = \{X \mid X \subseteq \Omega\}
\]

Ordered by inclusion “\(\subseteq\)” this is the example of a lattice/order.

It can also be seen as the set of functions from \(S\) into a two element set, thus \(\mathcal{P}(\Omega) = 2^\Omega:\)

\[
\mathcal{P}(\Omega) = \{\chi : \Omega \to \{0, 1\}\}
\]

A priori, no major problems when \(\Omega\) is (un)countable infinite.
Vector Spaces = Abelian Additive Group + Quantities

Given a finite set Ω we can construct the (free) vector space $\mathcal{V}(\Omega)$ of Ω as a tuple space (with K a field like \mathbb{R} or \mathbb{C}):

$$\mathcal{V}(\Omega) = \{ \langle \omega, x_\omega \rangle \mid \omega \in \Omega, x_\omega \in K \} = \{(x_\omega)_{\omega \in \Omega} \mid x_\omega \in K\}$$

As function spaces $\mathcal{V}(\Omega)$ and $\mathcal{P}(\Omega)$ are not so different:

$$\mathcal{V}(\Omega) = \{ \nu : \Omega \rightarrow K \}$$

However, there are major topological problems when Ω is (un)countable infinite.

Tuple Spaces

Theorem

All finite dimensional vector spaces are isomorphic to the (finite) Cartesian product of the underlying field K^n (e.g. \mathbb{R}^n or \mathbb{C}^m).

Finite dimensional vectors can always be represented via their coordinates with respect to a given base, e.g.

$$x = (x_1, x_2, x_3, \ldots, x_n)$$
$$y = (y_1, y_2, y_3, \ldots, y_n)$$

Algebraic Structure

$$\alpha x = (\alpha x_1, \alpha x_2, \alpha x_3, \ldots, \alpha x_n)$$
$$x + y = (x_1 + y_1, x_2 + y_2, x_3 + y_3, \ldots, x_n + y_n)$$
Introducing Probability in Programs

Various ways for introducing probabilities into programs:

Random Assignment The value a variable is assigned to is chosen randomly (according to some, e.g. uniform, probability distribution) from a set:

\[x \in \{1, 2, 3, 4\} \]

Probabilistic Choice There is a probabilistic choice between different instructions:

\[\textbf{choose} \; 0.5 : (x := 0) \; \textbf{or} \; 0.5 : (x := 1) \; \textbf{ro} \]

Syntactic Sugar One can show that a single “coin flipping” is enough.

Random choices and assignments can be interchanged:

\[x \in \{0, 1\} \]

is equivalent to (assuming a uniform distribution):

\[\textbf{choose} \; 0.5 : (x := 0) \; \textbf{or} \; 0.5 : (x := 1) \; \textbf{ro} \]

Alternatively we also have

\[\textbf{choose} \; 0.5 : S_1 \; \textbf{or} \; 0.5 : S_2 \; \textbf{ro} \]

is equivalent to (also with other probability distributions):

\[x \in \{0, 1\}; \; \textbf{if} \; (x > 0) \; \textbf{then} \; S_1 \; \textbf{else} \; S_2 \; \textbf{fi} \]
Probabilities as Ratios

Consider integer “weights” to express relative probabilities, e.g.

\[
\text{choose } \frac{1}{3} : S_1 \text{ or } \frac{2}{3} : S_2 \text{ ro}
\]

is expressed equivalently as:

\[
\text{choose } 1 : (x := 0) \text{ or } 2 : (x := 1) \text{ ro}
\]

In general, for constant "weights" \(p \) and \(q \) (\text{int}), we translate

\[
\text{choose } p : S_1 \text{ or } q : S_2 \text{ ro}
\]

(by exploiting an implicit normalisation) into

\[
\text{choose } \frac{p}{p+q} : S_1 \text{ or } \frac{q}{p+q} : S_2 \text{ ro}
\]

PWHILE – Concrete Syntax

The syntax of statements \(S \) is as follows:

\[
S : ::= \begin{aligned}
\text{stop} \\
\text{skip} \\
x := e \\
x \neq r \\
S_1 ; S_2 \\
\text{choose } p_1 : S_1 \text{ or } p_2 : S_2 \text{ ro} \\
\text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi} \\
\text{while } b \text{ do } S \text{ od}
\end{aligned}
\]

We also allow for boolean expressions, i.e. \(e \) is an arithmetic expression \(a \) or a boolean expression \(b \). The \textbf{choose} statement can be generalised to more than two alternatives.
PWHILE – Labelled Syntax

\[
S ::= \quad \text{[stop]}^\ell \\
 \quad \text{[skip]}^\ell \\
 \quad [x := e]^\ell \\
 \quad [x \not= r]^\ell \\
 \quad S_1; \ S_2 \\
 \quad \text{choose}^\ell \ p_1 : S_1 \ \text{or} \ p_2 : S_2 \ \text{ro} \\
 \quad \text{if} \ [b]^\ell \ \text{then} \ S_1 \ \text{else} \ S_2 \ \text{fi} \\
 \quad \text{while} \ [b]^\ell \ \text{do} \ S \ \text{od}
\]

Where the \(p_i \) are constants, representing choice probabilities. By \(r \) we denote a range/set, e.g. \(\{-1, 0, 1\} \), from which the value of \(x \) is chosen (based on a uniform distribution).

Evaluation of Expressions

\[
\sigma \ni \text{State} = (\text{Var} \rightarrow \mathbb{Z} \cup \mathbb{B})
\]

Evaluation \(\mathcal{E} \) of expressions \(e \) in state \(\sigma \):

\[
\begin{align*}
\mathcal{E}(n)_{\sigma} &= n \\
\mathcal{E}(x)_{\sigma} &= \sigma(x) \\
\mathcal{E}(a_1 \odot a_2)_{\sigma} &= \mathcal{E}(a_1)_{\sigma} \odot \mathcal{E}(a_2)_{\sigma} \\
\mathcal{E}(\text{true})_{\sigma} &= \text{tt} \\
\mathcal{E}(\text{false})_{\sigma} &= \text{ff} \\
\mathcal{E}(\text{not} \ b)_{\sigma} &= \neg \mathcal{E}(b)_{\sigma} \\
\ldots &= \ldots
\end{align*}
\]
pWhile – SOS Semantics I

\[
\begin{align*}
R0 & \quad \langle \text{skip}, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma \rangle \\
R1 & \quad \langle \text{stop}, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma \rangle \\
R2 & \quad \langle x := e, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma \rangle \left[x \mapsto \mathcal{E}(e)\sigma \right] \\
R3' & \quad \langle x \neq r, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma \rangle \left[x \mapsto r_i \in r \right] \\
R3_1 & \quad \frac{\langle S_1, \sigma \rangle \Rightarrow_1 \langle S'_1, \sigma' \rangle}{\langle S_1; S_2, \sigma \rangle \Rightarrow_1 \langle S'_1; S_2, \sigma' \rangle} \\
R3_2 & \quad \frac{\langle S_1, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma' \rangle}{\langle S_1; S_2, \sigma \rangle \Rightarrow_1 \langle S_2, \sigma' \rangle}
\end{align*}
\]

pWhile – SOS Semantics II

\[
\begin{align*}
R4_1 & \quad \langle \text{choose } p_1 : S_1 \text{ or } p_2 : S_2, \sigma \rangle \Rightarrow_1 \langle S_1, \sigma \rangle \\
R4_2 & \quad \langle \text{choose } p_1 : S_1 \text{ or } p_2 : S_2, \sigma \rangle \Rightarrow_1 \langle S_2, \sigma \rangle \\
R5_1 & \quad \langle \text{if } b \text{ then } S_1 \text{ else } S_2, \sigma \rangle \Rightarrow_1 \langle S_1, \sigma \rangle \quad \text{if } \mathcal{E}(b)\sigma = \text{tt} \\
R5_2 & \quad \langle \text{if } b \text{ then } S_1 \text{ else } S_2, \sigma \rangle \Rightarrow_1 \langle S_2, \sigma \rangle \quad \text{if } \mathcal{E}(b)\sigma = \text{ff} \\
R6_1 & \quad \langle \text{while } b \text{ do } S, \sigma \rangle \Rightarrow_1 \langle S; \text{ while } b \text{ do } S, \sigma \rangle \quad \text{if } \mathcal{E}(b)\sigma = \text{tt} \\
R6_2 & \quad \langle \text{while } b \text{ do } S, \sigma \rangle \Rightarrow_1 \langle \text{stop}, \sigma \rangle \quad \text{if } \mathcal{E}(b)\sigma = \text{ff}
\end{align*}
\]
DTMC Semantics

Given a PWHILE program, consider any enumeration of all its configurations (= pairs of statements and state) \(C_1, C_2, C_3, \ldots \in \text{Conf} \). Then

\[
(T)_{ij} = \begin{cases}
 p & \text{if } C_i = \langle S, \sigma \rangle \Rightarrow p \ C_j = \langle S', \sigma' \rangle \\
 0 & \text{otherwise}
\end{cases}
\]

is the generator of a Discrete Time Markov Chain.

Transitions are implemented as

\[
d_n \cdot T = \sum_i (d_n)_i \cdot T_{ij} = d_{n+1}
\]

where \(d_i \) is the probability distribution over \(\text{Conf} \) at the \(i \)th step.

Example Program

Let us investigate the possible transitions of the following labelled program (with \(x \in \{0, 1\} \)):

\[
\text{if } [x == 0]^1 \text{ then} \\
\quad [x := 0]^2; \\
\text{else} \\
\quad [x := 1]^3; \\
\text{end if;} \\
[\text{stop}]^4
\]
Example DTMC

\[\langle x \mapsto 0, [x := 0] \rangle \quad \ldots \quad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]

\[\langle x \mapsto 1, [x := 0] \rangle \quad \ldots \quad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]

Example Transition

\[
\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
\]

We get: \((0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1)\).

This represents the (deterministic) transition step:

\[\langle x \mapsto 0, [x := 1] \rangle \Rightarrow \langle x \mapsto 1, [\text{stop}] \rangle \]
The matrix representation of the SOS semantics of a PWHILE program is not 'compositional'.

In order to be able to analyse programs by analysing its parts, a more useful semantics is one resulting from the composition of different linear operators each expressing a particular operation contributing to the overall behaviour of the program.

The Space of Configurations

For a PWHILE program S we can identify configurations with elements in

$$\text{Dist}(\text{State} \times \text{Lab}) \subseteq \mathcal{V}(\text{State} \times \text{Lab}).$$

Assuming $v = |\text{Var}|$ finite,

$$\text{State} = (Z + B)^v = \text{Value}_1 \times \text{Value}_2 \ldots \times \text{Value}_v$$

with $\text{Value}_i = Z(=Z)$ or Value_i.

Thus, we can represent the space of configurations as

$$\text{Dist}(\text{Value}_1 \times \ldots \times \text{Value}_v \times \text{Lab}) \subseteq$$

$$\subseteq \mathcal{V}(\text{Value}_1 \times \ldots \times \text{Value}_v \times \text{Lab})$$

$$= \mathcal{V}(\text{Value}_1) \otimes \ldots \otimes \mathcal{V}(\text{Value}_v) \otimes \mathcal{V}(\text{Lab}).$$
Tensor Product

Given a $n \times m$ matrix A and a $k \times l$ matrix B:

$$A = \begin{pmatrix} a_{11} & \ldots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \ldots & a_{nm} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & \ldots & b_{1l} \\ \vdots & \ddots & \vdots \\ b_{k1} & \ldots & b_{kl} \end{pmatrix}$$

The tensor product $A \otimes B$ is a $nk \times ml$ matrix:

$$A \otimes B = \begin{pmatrix} a_{11}B & \ldots & a_{1m}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \ldots & a_{nm}B \end{pmatrix}$$

Special cases are square matrices ($n = m$ and $k = l$) and vectors (row $n = k = 1$, column $m = l = 1$).

Tensor Product Properties

For tensor product of square matrices (linear operators):

1. The bilinearity property:

$$(\alpha M + \alpha' M') \otimes (\beta N + \beta' N') = \alpha \beta (M \otimes N) + \alpha \beta' (M \otimes N') + \alpha' \beta (M' \otimes N) + \alpha' \beta' (M' \otimes N')$$

 $\alpha, \alpha', \beta, \beta' \in \mathbb{R}, M, M' m \times m$ matrices $N, N' n \times n$ matrices.

2. We have, with $v \in \mathbb{R}^m$ and $w \in \mathbb{R}^n$:

 $$(M \otimes N)(v \otimes w) = (M(v)) \otimes (N(w))$$
 $$(M \otimes N)(M' \otimes N') = (MM') \otimes (NN')$$

3. If M and N are invertible so is $M \otimes N$, and:

 $$(M \otimes N)^{-1} = M^{-1} \otimes N^{-1}$$
Transitions and Generator of DTMC (1) - Deterministic

\[
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
\end{pmatrix} = T
\]

Transitions and Generator of DTMC (2) - Probabilistic

\[
\begin{pmatrix}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 1 \\
\end{pmatrix} = T
\]
Transitions and Generator of DTMC (3)

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}^t \begin{pmatrix}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Transitions and Generator of DTMC (4)

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}^t \begin{pmatrix}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
0 \\
1 \\
\frac{1}{3} \\
\frac{2}{3} \\
3
\end{pmatrix}^t
\]
Transitions and Generator of DTMC (5)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}^t = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

Combination of Steps

We can combine single steps to construct a transition graph.

\[
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
\end{pmatrix} = T = \left\{ \begin{array}{l}
\text{E}(1, 2) \\
\text{E}(1, 3) \\
\text{E}(2, 4) \\
\text{E}(3, 4) \\
\text{E}(3, 3) \\
\text{E}(4, 4) \\
\end{array} \right.
\]

\[
(E(m, n))_{ij} = \begin{cases}
1 & \text{if } m = i \land n = j \\
0 & \text{otherwise.}
\end{cases}
\]
Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

\[
\begin{pmatrix}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1 \\
\end{pmatrix} = T
\]

\[
T = \frac{1}{3}E(1, 2) + \frac{2}{3}E(1, 3) + E(2, 4) + \frac{1}{2}E(3, 4) + \frac{1}{2}E(3, 3) + E(4, 4)
\]

"Turtle" Graphics

Consider a "(probabilistic) turtle graphics" with up/down and left/right moves done simultaneously and probabilistically.

The (classical) configuration space is \(\{1, \ldots, 8\} \times \{1, \ldots, 4\}\).

To describe any probabilistic situation, i.e. joint distribution, we need \(8 \times 4 = 32\) probabilities, not just \(8 + 4 = 12\).

We consider \(\mathbb{R}^8 \otimes \mathbb{R}^4 = \mathbb{R}^{32}\) as probabilistic configuration space rather than \(\mathbb{R}^8 \oplus \mathbb{R}^4 = \mathbb{R}^{12}\), i.e. just the marginal distributions.
Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.

![Diagram of eight possible positions]

Move from 1 to 2: \(E(1, 2) \)
Move from 3 to 7: \(E(3, 7) \)
Move from 2 to 7 or 8: \(E(2, 7) + E(2, 8) \) or \(\frac{1}{2} E(2, 7) + \frac{1}{2} E(2, 8) \)

Similar representation also for vertical moves.

"Parallel" Execution: \(x \in \{1, \ldots, 8\} \) and \(y \in \{1, \ldots, 4\} \)

![Diagram of 8x4 grid with arrows]

Describe the effect \(M \) on \(x \) and the change of \(y \) described by \(N \), then the combined effect on \((x, y) \) is given by \(M \otimes N \).

From \((1, 1)\) move 1 left and 3 up: \(E(1, 2) \otimes E(1, 4) \)
From \((7, 3)\) move \((4, 2)\): \(E(7, 4) \otimes E(3, 2) \)
From \((7, 3)\) to \((4, 2)/(7, 2)\): \(E(7, 4) \otimes E(3, 2) + E(7, 7) \otimes E(3, 1) \)
From \((5, 2)\) move to all one right: \(E(5, 6) \otimes (\sum_{i=1}^{4} E(2, i)) \)
Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, \ldots, 8$; How do statements change its value?

$x := 4$ gives $U(x \leftarrow 4) = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}

Thus, the LOS of the statement is $\llbracket x := 4 \rrbracket = U(x \leftarrow 4)$.

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, \ldots, 8$; How do statements change its value?

$x := x + 1$ gives $U(x \leftarrow x + 1) = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}

The LOS of the statement is $\llbracket x := x + 1 \rrbracket = U(x \leftarrow x + 1)$.
To avoid “overflow”: actually $\llbracket x := ((x - 1) + 1 \mod 8) + 1 \rrbracket$.
Transfer Functions (Edge Effects): Random Assign

Assume \(x \in 1, \ldots, 8 \); How do statements change its value?

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{bmatrix}
\]

\(x \, ? = \{4, 5\} \) gives

So the LOS is \(\lfloor x \, ? = \{4, 5\} \rfloor = \frac{1}{2} U(x \leftarrow 4) + \frac{1}{2} U(x \leftarrow 5) \).

Using the Linear Operators

We have now as states probability distributions over possible values \(\sigma \in \mathcal{D}(\text{Value}) \) rather than classical states \(s \in \text{Value} \)

We can compute what happens to classical states, e.g.

\[
(0, 1, 0, 0, 0, 0, 0, 0) \cdot \lfloor x := 4 \rfloor = (0, 0, 0, 1, 0, 0, 0, 0)
\]
\[
(0, 1, 0, 0, 0, 0, 0, 0) \cdot \lfloor x ? = \{4, 5\} \rfloor = (0, 0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, 0)
\]

but also what happens with distributions, e.g.

\[
(0, \frac{2}{3}, 0, 0, \frac{1}{3}, 0, 0, 0) \cdot \lfloor x := x + 1 \rfloor = (0, 0, \frac{2}{3}, 0, 0, \frac{1}{3}, 0, 0)
\]

and we can combine effects (to the same variable), e.g.

\[
\lfloor x ? = \{4, 5\} \rfloor = \frac{1}{2} \lfloor x := 4 \rfloor + \frac{1}{2} \lfloor x := 5 \rfloor
\]
Putting Things Together

We can use the tensor product construction to combine the effects on different variables. For \(x \in \{1..8\} \) and \(y \in \{1,..4\} \)

\[
[x? = \{2, 4, 6, 8\}] = \frac{1}{4} \sum_{k=1}^{4} U(x \leftarrow 2k) \otimes I
\]

\[
[y := 3] = I \otimes U(y \leftarrow 3)
\]

The execution of “\(x? = \{2, 4, 6, 8\}; y := 3 \)” is implemented by

\[
[x? = \{2, 4, 6, 8\}; y := 3] = \left(\frac{1}{4} \sum_{k=1}^{4} U(x \leftarrow 2k) \otimes I \right) (I \otimes U(y \leftarrow 3))
\]

\[
= \frac{1}{4} \sum_{k=1}^{4} U(x \leftarrow 2k) \otimes U(y \leftarrow 3)
\]

"Turtle" Execution

\[
[x? = \{2, 4, 6, 8\}; y := 3] = \\
= \frac{1}{4} \sum_{k=1}^{4} U(x \leftarrow 2k) \otimes U(y \leftarrow 3)
\]

\[
= \frac{1}{4} \left(\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{array} \right) \otimes \left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\end{array} \right)
\]

45 / 99

46 / 99
Conditionals
Consider conditional jumps or statements, e.g.
\[
\text{if } \text{even}(x) \text{ then } x := x/2 \text{ else } y := y + 1 \text{ fi}
\]
The branches have the following LOS:
\[
[x := x/2] = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix} \otimes I
\]
\[
y := y + 1] = I \otimes \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
\end{pmatrix}
\]
Note: To avoid errors \(a/b = \lceil a/b \rceil \) and \(a + b = a + b \mod n \).

Tests and Distribution Splitting
We represent the filter for testing if \(x \) is even by a projection:
\[
P(\text{even}(x)) = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix} \otimes I
\]
Its negation is represented by:
\[
P(\neg\text{even}(x)) = P(\text{even}(x))^\perp = I - P(\text{even}(x)).
\]
Using Tests

The semantics of a conditional is given by applying the semantics of the branches to the filtered (probabilistic) states and to combine the results. In our example:

\[
\text{[if even}(x)\text{ then } x := x/2 \text{ else } y + 1 \text{ fi}] = \\
= P(\text{even}(x)) \cdot [x := x/2] + P(\text{even}(x))^\perp \cdot [y := y + 1]
\]

Given state where \(x \) has with probability \(\frac{1}{2} \) values 3 and 6, and \(y \) value 2, i.e. \(\sigma_0 = (0, 0, \frac{1}{2}, 0, 0, \frac{1}{2}, 0, 0) \otimes (0, 1, 0, 0) \) then

\[
\sigma_0 \cdot P(\text{even}(x)) = (0, 0, 0, 0, 0, \frac{1}{2}, 0, 0) \otimes (0, 1, 0, 0) \\
= \frac{1}{2} \cdot (0, 0, 0, 0, 0, 1, 0, 0) \otimes (0, 1, 0, 0)
\]

\[
\sigma_0 \cdot P(\text{even}(x))^\perp = (0, 0, \frac{1}{2}, 0, 0, 0, 0, 0) \otimes (0, 1, 0, 0) \\
= \frac{1}{2} \cdot (0, 0, 1, 0, 0, 0, 0, 0) \otimes (0, 1, 0, 0)
\]

Semantics of Conditionals

Applying the semantics of both branches gives us:

\[
\sigma_0 \cdot P(\text{even}(x)) \cdot [x := x/2] = \\
= (0, 0, \frac{1}{2}, 0, 0, 0, 0) \otimes (0, 1, 0, 0)
\]

\[
\sigma_0 \cdot P(\text{even}(x))^\perp \cdot [y := y + 1] = \\
= (0, 0, \frac{1}{2}, 0, 0, 0, 0, 0) \otimes (0, 0, 1, 0)
\]

The sum of both branches is now, maybe somewhat surprising:

\[
\sigma = (0, 0, 1, 0, 0, 0, 0, 0) \otimes (0, \frac{1}{2}, \frac{1}{2}, 0)
\]

Though we have started with a definitive value for \(y \) and a distribution for \(x \), the opposite is now the case.
Consider the following labelled program:

1: \textbf{while} \ [z < 100] \textbf{do} \\
2: \textbf{choose} \ \frac{1}{3} : \ [x := 3] \textbf{ or } \frac{2}{3} : \ [x := 1] \textbf{ ro} \\
3: \textbf{end while} \\
4: \textbf{[stop]} \\

Its probabilistic control flow is given by:

\[\text{flow}(P) = \{ \langle 1, 1, 2 \rangle, \langle 1, 1, 5 \rangle, \langle 2, \frac{1}{3}, 3 \rangle, \langle 2, \frac{2}{3}, 4 \rangle, \langle 3, 1, 1 \rangle, \langle 4, 1, 1 \rangle \}. \]

\textbf{Init Label}

\[\begin{align*}
\text{init([skip]}^\ell) & = \ell \\
\text{init([stop]}^\ell) & = \ell \\
\text{init([x:=e]}^\ell) & = \ell \\
\text{init([x?=e]}^\ell) & = \ell \\
\text{init}(S_1; S_2) & = \text{init}(S_1) \\
\text{init(choose}^\ell p_1 : S_1 \textbf{ or } p_2 : S_2) & = \ell \\
\text{init(if } [b] \textbf{ then } S_1 \textbf{ else } S_2) & = \ell \\
\text{init(while } [b] \textbf{ do } S) & = \ell
\end{align*} \]
Final Labels

\[
\begin{align*}
 \text{final}([\text{skip}]^\ell) &= \{\ell\} \\
 \text{final}([\text{stop}]^\ell) &= \{\ell\} \\
 \text{final}([x:=e]^\ell) &= \{\ell\} \\
 \text{final}([x?=e]^\ell) &= \{\ell\} \\
 \text{final}(S_1; S_2) &= \text{final}(S_2) \\
 \text{final}(\text{choose}^\ell p_1 : S_1 \text{ or } p_2 : S_2) &= \text{final}(S_1) \cup \text{final}(S_2) \\
 \text{final}(\text{if } [b]^\ell \text{ then } S_1 \text{ else } S_2) &= \text{final}(S_1) \cup \text{final}(S_2) \\
 \text{final}(\text{while } [b]^\ell \text{ do } S) &= \{\ell\}
\end{align*}
\]

Flow I — Control Transfer

The probabilistic control flow is defined by the function:

\[
\text{flow} : \text{Stmt} \rightarrow \mathcal{P}(\text{Lab} \times [0, 1] \times \text{Lab})
\]

\[
\begin{align*}
 \text{flow}([\text{skip}]^\ell) &= \emptyset \\
 \text{flow}([\text{stop}]^\ell) &= \{(\ell, 1, \ell)\} \\
 \text{flow}([x:=e]^\ell) &= \emptyset \\
 \text{flow}([x?=e]^\ell) &= \emptyset \\
 \text{flow}(S_1; S_2) &= \text{flow}(S_1) \cup \text{flow}(S_2) \cup \\
 &\quad \cup \{(\ell, 1, \text{init}(S_2)) | \ell \in \text{final}(S_1)\}
\end{align*}
\]
A Linear Operator Semantics (LOS) based on \textit{flow}

Using the \textit{flow}(S) we construct a linear operator/matrix/DTMC
generator in a compositional way, essentially as:

\[
T(S) = \sum_{\langle i, p_{ij}, j \rangle \in \text{flow}(S)} p_{ij} \cdot T(\langle \ell_i, p_{ij}, \ell_j \rangle),
\]

where

\[
T(\langle \ell_i, p_{ij}, \ell_j \rangle) = N_{\ell_i} \otimes E(\ell_j, \ell_j),
\]

With N_{ℓ_i} the operator representing a state update (change of
variable values) at the block with label ℓ_i and the second factor
implementing the transfer of control from label ℓ_i to label ℓ_j.
Transfer Operators

For all the blocks in S we have transfer operators which change the state and (then/simultaneously) perform a control transfer to another block or program points:

- $T((\ell_1, p, \ell_2)) = I \otimes E(\ell_1, \ell_2)$ for $[\text{skip}]^{\ell_1}$
- $T((\ell_1, p, \ell_2)) = U(x \leftarrow a) \otimes E(\ell_1, \ell_2)$ for $[x \leftarrow a]^{\ell_1}$
- $T((\ell_1, p, \ell_2)) = \sum_{i \in r} U(x \leftarrow i) \otimes E(\ell_1, \ell_2)$ for $[x \leftarrow r]^{\ell_1}$
- $T((\ell, p, \ell_t)) = P(b = \text{true}) \otimes E(\ell, \ell_t)$ for $[b]^\ell$
- $T((\ell, p, \ell_f)) = P(b = \text{false}) \otimes E(\ell, \ell_f)$ for $[b]^\ell$
- $T((\ell, p, \ell_k)) = I \otimes E(\ell, \ell_k)$ for $[\text{choose}]^\ell$
- $T((\ell, p, \ell)) = I \otimes E(\ell, \ell)$ for $[\text{stop}]^\ell$

For $[b]^\ell$ the label ℓ_t denotes the label to the ‘true’ situation (e.g. then branch) and ℓ_f the situation where b is ‘false’.

In the case of a choose statement the different alternatives are labeled with (initial) label ℓ_k.

Tests and Filters

Select a value $c \in \text{Value}_k$ for variable x_k (with $k = 1, \ldots, v$):

$$(P(c))_{ij} = \begin{cases} 1 & \text{if } i = c = j \\ 0 & \text{otherwise} \end{cases}$$

Select a certain classical state $\sigma \in \text{State} = \text{Value}^v$:

$$P(\sigma) = \bigotimes_{i=1}^{v} P(\sigma(x_i))$$

Select states where expression $e = a | b$ evaluates to c:

$$P(e = c) = \sum_{\varepsilon(e)\sigma = c} P(\sigma)$$
Updates

Modify the value of variable x_k to a constant $c \in \text{Value}_k$:

$$(U(c))_{ij} = \begin{cases}
1 & \text{if } j = c \\
0 & \text{otherwise}.
\end{cases}$$

Set value of variable $x_k \in \text{Var}$ to constant $c \in \text{Value}$:

$$U(x_k \leftarrow c) = \left(\bigotimes_{i=1}^{k-1} I \right) \otimes U(c) \otimes \left(\bigotimes_{i=k+1}^v I \right)$$

Set value of variable $x_k \in \text{Var}$ to value given by $e = a | b$:

$$U(x_k \leftarrow e) = \sum_c P(e = c) U(x_k \leftarrow c)$$

An Example

if $[x == 0]^1$ then

$[x \leftarrow 0]^2$;

else

$[x \leftarrow 1]^3$;

end if;

[stop]4

$$T(S) = P(x = 0) \otimes E(1, 2) + P(x \neq 0) \otimes E(1, 3) + U(x \leftarrow 0) \otimes E(2, 4) + U(x \leftarrow 1) \otimes E(3, 4) + I \otimes E(4, 4)$$

$$T(S) = \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix} \otimes E(1, 2) + \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix} \otimes E(1, 3) +$$

$$+ \begin{pmatrix}
1 & 0 \\
1 & 0
\end{pmatrix} \otimes E(2, 3) + \begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix} \otimes E(3, 4) +$$

$$+ (I \otimes E(4, 4))$$
An Example

\[
T(S) = \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix} \otimes \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} + \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix} \otimes \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} + \begin{pmatrix}
1 & 0 \\
1 & 0
\end{pmatrix} \otimes \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} + \begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix} \otimes \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} + \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \otimes \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

LOS and DTMC

We can compare this \(T(S) \) with the directly extracted operator, and indeed the two coincide.

\[
\langle x \mapsto 0, [x == 0]^1 \rangle \ldots \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\]

\[
\langle x \mapsto 0, [x == 0]^2 \rangle \ldots \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\]

\[
\langle x \mapsto 0, [x == 1]^3 \rangle \ldots \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\]

\[
\langle x \mapsto 0, [\text{stop}]^4 \rangle \ldots \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\]
Research Tool: A **pWHILE** Compiler \texttt{pwc}

Written in OCaml produces an \texttt{octave} file \texttt{c.m} which specify the LOS matrices \texttt{U}, \texttt{P}, etc. for a pWhile program \texttt{c.pw}.

\begin{figure}[h]
\centering
\begin{tikzpicture}[node distance=2cm,auto,>=latex,]
 \node (c_pw) {\texttt{c.pw}};
 \node[blue, right of=c_pw] (ocaml) {OCaml} edge[blue, ->] (c_pw); \node[below of=ocaml, yshift=-1cm] (pwc) {\texttt{pwc}} edge[blue, ->] (ocaml);
 \node[red, right of=ocaml] (octave) {\texttt{octave}} edge[red, ->] (c_pw); \node[below of=octave, yshift=-1cm] (cm) {\texttt{c.m}} edge[red, ->] (octave);
 \node[green, right of=octave] (los_m) {LOS.m};
 \draw[->] (cm) -- node[above] {\texttt{c.m}} (octave);
 \end{tikzpicture}
\end{figure}

We can use the interactive interface of \texttt{octave} and definitions of standard operations in \texttt{LOS.m} to analyse matrices in \texttt{c.m}.

Exploiting sparse matrix representation to handle programs with about 3 to 5 variables, up to 10 values and program fragments with something like 20 lines/labels.

Factorial

Consider the program \texttt{F} for calculating the factorial of \texttt{n}:

```ocaml
var
  m : {0..2};
  n : {0..2};

begin
  m := 1;
  while (n>1) do
    m := m * n;
    n := n-1;
  od;
stop; # looping
end
```

63 / 99

64 / 99
Control Flow and LOS for F

\[\text{flow}(F) = \{(1, 1, 2), (2, 1, 3), (3, 1, 4), (4, 1, 2), (2, 1, 5), (5, 1, 5)\} \]

\[
\begin{align*}
T(F) &= U(m \leftarrow 1) \otimes E(1, 2) + \\
&\quad P((n > 1)) \otimes E(2, 3) + \\
&\quad U(m \leftarrow (m \ast n)) \otimes E(3, 4) + \\
&\quad U(n \leftarrow (n - 1)) \otimes E(4, 2) + \\
&\quad P((n <= 1)) \otimes E(2, 5) + \\
&\quad I \otimes E(5, 5)
\end{align*}
\]

Introducing PAI

The matrix $T(F)$ is very big already for small n.

<table>
<thead>
<tr>
<th>n</th>
<th>$\dim(T(F))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>45×45</td>
</tr>
<tr>
<td>3</td>
<td>140×140</td>
</tr>
<tr>
<td>4</td>
<td>625×625</td>
</tr>
<tr>
<td>5</td>
<td>3630×3630</td>
</tr>
<tr>
<td>6</td>
<td>25235×25235</td>
</tr>
<tr>
<td>7</td>
<td>201640×201640</td>
</tr>
<tr>
<td>8</td>
<td>1814445×1814445</td>
</tr>
<tr>
<td>9</td>
<td>18144050×18144050</td>
</tr>
</tbody>
</table>

We will show how we can drastically reduce the dimension of the LOS by using Probabilistic Abstract Interpretation.
Galois Connections

Definition
Let \(C = (\mathcal{C}, \leq_{\mathcal{C}}) \) and \(D = (\mathcal{D}, \leq_{\mathcal{D}}) \) be two partially ordered sets with two order-preserving functions \(\alpha : \mathcal{C} \to \mathcal{D} \) and \(\gamma : \mathcal{D} \to \mathcal{C} \). Then \((C, \alpha, \gamma, D)\) form a Galois connection iff

(i) \(\alpha \circ \gamma \) is reductive i.e. \(\forall d \in D, \alpha \circ \gamma(d) \leq_{\mathcal{D}} d \),
(ii) \(\gamma \circ \alpha \) is extensive i.e. \(\forall c \in C, c \leq_{\mathcal{C}} \gamma \circ \alpha(c) \).

Proposition
Let \((C, \alpha, \gamma, D)\) be a Galois connection. Then \(\alpha \) and \(\gamma \) are quasi-inverse, i.e.

\[
\begin{align*}
(i) \quad & \alpha \circ \gamma \circ \alpha = \alpha \\
(ii) \quad & \gamma \circ \alpha \circ \gamma = \gamma
\end{align*}
\]

General Construction
The general construction of correct (and optimal) abstractions \(f^\# \) of concrete function \(f \) is as follows:

\[
\begin{array}{ccc}
A & \xrightarrow{\alpha} & A^# \\
\downarrow f & & \downarrow f^# \\
B & \xleftarrow{\alpha'} & B^#
\end{array}
\]

Correct approximation:
\[
\alpha' \circ f \leq_{\#} f^\# \circ \alpha.
\]

Induced semantics:
\[
f^\# = \alpha' \circ f \circ \gamma.
\]
A probabilistic domain is essentially a vector space which represents the distributions \(\text{Dist}(\text{State}) \subseteq \mathcal{V}(\text{State}) \) on the state space \(\text{State} \) of a probabilistic transition system, i.e. for finite state spaces

\[
\mathcal{V}(\text{State}) = \{ (v_s)_{s \in \text{State}} \mid v_s \in \mathbb{R} \}.
\]

In the infinite setting we can identify \(\mathcal{V}(\text{State}) \) with the Hilbert space \(\ell^2(\text{State}) \).

The notion of norm (distance) is essential for our treatment; we will consider normed vector spaces.

Norm and Distance

A norm on a vector space \(\mathcal{V} \) is a map \(\| \cdot \| : \mathcal{V} \mapsto \mathbb{R} \) such that for all \(v, w \in \mathcal{V} \) and \(c \in \mathbb{C} \):

- \(\| v \| \geq 0 \),
- \(\| v \| = 0 \Leftrightarrow v = 0 \),
- \(\| cv \| = |c| \| v \| \),
- \(\| v + w \| \leq \| v \| + \| w \| \),

with \(o \in \mathcal{V} \) the zero vector.

We can always use a norm to define a metric topology on a vector space via the distance function \(d(v, w) = \| v - w \| \).

Note: The structural similarities between distances and partial orders can be made precise (cf. Category Theory).
Moore-Penrose Generalised Inverse

Definition
Let \mathcal{C} and \mathcal{D} be two (finite-dimensional) vector (Hilbert) spaces and $A : \mathcal{C} \to \mathcal{D}$ a linear map. Then the linear map $A^\dagger = G : \mathcal{D} \to \mathcal{C}$ is the Moore-Penrose pseudo-inverse of A iff

(i) $A \circ G = P_A$,
(ii) $G \circ A = P_G$,

where P_A and P_G denote orthogonal projections onto the ranges of A and G.

(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner product $\langle \cdot, \cdot \rangle$. This measures some kind of similarity of vectors but also allows to define a norm:

$$\|x\|_2 = \sqrt{\langle x, x \rangle}$$

It also allows us to define an adjoint via:

$$\langle A(x), y \rangle = \langle x, A^*(y) \rangle$$

- An operator A is self-adjoint if $A = A^*$.
- An (orthogonal) projection is a self-adjoint E with $EE = E$.
Least Squares Solutions

Corollary
Let \(P \) be a orthogonal projection on a finite dimensional vector space \(\mathcal{V} \). Then for any \(x \in \mathcal{V} \), \(P(x) = xP \) is the unique closest vector in \(\mathcal{V} \) to \(x \) wrt to the Euclidean norm \(\| \cdot \|_2 \).

Definition
Let \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \). Then \(u \in \mathbb{R}^n \) is called a least squares solution to \(Ax = b \) if
\[
\| Au - b \| \leq \| Av - b \|, \text{ for all } v \in \mathbb{R}^n.
\]

Theorem
Let \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \). Then \(A^\dagger b \) is the minimal least squares solution to \(Ax = b \).

Vector Space Lifting

Free vector space construction on a set \(S \):
\[
\mathcal{V}(S) = \left\{ \sum x_s s \mid x_s \in \mathbb{R}, s \in S \right\}
\]

An obvious way to lift an extraction function to a linear map between vector spaces is to construct the free vector spaces on \(\mathcal{C} \) and \(\mathcal{D} \) and define:

Vector Space lifting: \(\bar{\alpha} : \mathcal{V}(\mathcal{C}) \rightarrow \mathcal{V}(\mathcal{D}) \)
\[
\bar{\alpha}(p_1 \cdot \bar{c}_1 + p_2 \cdot \bar{c}_2 + \ldots) = p_i \cdot \alpha(c_1) + p_2 \cdot \alpha(c_2) \ldots
\]

Support Set: \(\text{supp} : \mathcal{V}(\mathcal{C}) \rightarrow \mathcal{P}(\mathcal{C}) \)
\[
\text{supp}(\bar{x}) = \left\{ c_i \mid \langle c_i, p_i \rangle \in \bar{x} \text{ and } p_i \neq 0 \right\}
\]
Relation with Classical Abstractions

Lemma
Let α be a probabilistic abstraction function and let γ be its Moore-Penrose pseudo-inverse.

Then $\gamma \circ \alpha$ is extensive with respect to the inclusion on the support sets of vectors in $\mathcal{V}(\mathcal{C})$, i.e. $\forall \vec{x} \in \mathcal{V}(\mathcal{C})$,

$$\text{supp}(\vec{x}) \subseteq \text{supp}(\gamma \circ \alpha(\vec{x})).$$

Analogously we can show that $\alpha \circ \gamma$ is reductive. Therefore,

Proposition
(α, γ) form a Galois connection wrt the support sets of $\mathcal{V}(\mathcal{C})$ and $\mathcal{V}(\mathcal{D})$, ordered by inclusion.

Examples of Lifted Abstractions

Parity Abstraction operator on $\mathcal{V}({1, \ldots, n})$ (with n even):

$$A_p = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{pmatrix} \quad A_p^\dagger = \begin{pmatrix}
\frac{2}{n} & 0 & \frac{2}{n} & 0 & \cdots & 0 \\
0 & \frac{2}{n} & 0 & \frac{2}{n} & \cdots & \frac{2}{n}
\end{pmatrix}$$

Sign Abstraction operator on $\mathcal{V}({-n, \ldots, 0, \ldots, n})$:

$$A_s = \begin{pmatrix}
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1
\end{pmatrix} \quad A_s^\dagger = \begin{pmatrix}
\frac{1}{n} & \cdots & \frac{1}{n} & 0 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & \frac{1}{n} & \cdots & \frac{1}{n}
\end{pmatrix}$$
Concrete and abstract domain are step-functions on \([a, b]\). The set of (real-valued) step-function \(T_n\) is based on the sub-division of the interval into \(n\) sub-intervals.

Each step function in \(T_n\) corresponds to a vector in \(\mathbb{R}^n\), e.g.

\[
(5\ 5\ 6\ 7\ 8\ 4\ 3\ 2\ 8\ 6\ 6\ 7\ 9\ 8\ 8\ 7)
\]

Example: Abstraction Matrices

\[
A_8 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
G_8 = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
Approximation Estimates

Compute the *least square error* as

\[\| f - f_{AG} \|. \]

\[\| f - f_{A_8 G_8} \| = 3.5355 \]
\[\| f - f_{A_4 G_4} \| = 5.3151 \]
\[\| f - f_{A_2 G_2} \| = 5.9896 \]
\[\| f - f_{A_1 G_1} \| = 7.6444 \]

Tensor Product Properties

The tensor product of \(n \) linear operators \(A_1, A_2, \ldots, A_n \) is associative (but in general not commutative) and has e.g. the following properties:

1. \((A_1 \otimes \ldots \otimes A_n) \cdot (B_1 \otimes \ldots \otimes B_n) = A_1 \cdot B_1 \otimes \ldots \otimes A_n \cdot B_n \)

2. \(A_1 \otimes \ldots \otimes (\alpha A_i) \otimes \ldots \otimes A_n = \alpha (A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n) \)

3. \(A_1 \otimes \ldots \otimes (A_i + B_i) \otimes \ldots \otimes A_n = (A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n) + (A_1 \otimes \ldots \otimes B_i \otimes \ldots \otimes A_n) \)

4. \((A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n)^\dagger = A_1^\dagger \otimes \ldots \otimes A_i^\dagger \otimes \ldots \otimes A_n^\dagger \)
Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

$$(A_1 \otimes A_2 \otimes \ldots \otimes A_n)^\dagger = A_1^\dagger \otimes A_2^\dagger \otimes \ldots \otimes A_n^\dagger$$

Via linearity we can construct $T^\#$ in the same way as T, i.e

$$T^\#(P) = \sum_{\langle i, p_{ij} j \rangle \in F(P)} p_{ij} \cdot T^\#(\ell_i, \ell_j)$$

with local abstraction of individual variables:

$$T^\#(\ell_i, \ell_j) = (A_1^\dagger N_{i1} A_1) \otimes (A_2^\dagger N_{i2} A_2) \otimes \ldots \otimes (A_v^\dagger N_{iv} A_v) \otimes M_{ij}$$

Argument

\[
T^\# = A^\dagger T A
\]

\[
= A^\dagger \left(\sum_{i,j} T(i,j) \right) A
\]

\[
= \sum_{i,j} A^\dagger T(i,j) A
\]

\[
= \sum_{i,j} (\bigotimes_k A_k)^\dagger T(i,j) (\bigotimes_k A_k)
\]

\[
= \sum_{i,j} (\bigotimes_k A_k)^\dagger (\bigotimes_k N_{ik}) (\bigotimes_k A_k)
\]

\[
= \sum_{i,j} \bigotimes_k (A_k^\dagger N_{ik} A_k)
\]
Parity Analysis

Determine at each program point whether a variable is *even* or *odd*.

Parity Abstraction operator on $\mathcal{V}(\{0, \ldots, n\})$ (with n even):

$$A_p = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{pmatrix} \quad A^\dagger = \begin{pmatrix}
\frac{2}{n} & 0 & \frac{2}{n} & 0 & \cdots & 0 \\
0 & \frac{2}{n} & 0 & \frac{2}{n} & \cdots & \frac{2}{n}
\end{pmatrix}$$

Example

1: $[m \leftarrow i]^1$
2: while $[n > 1]^2$ do
3: $[m \leftarrow m \times n]^3$
4: $[n \leftarrow n - 1]^4$
5: end while
6: [stop]5

$$T^\# = U^\#(m \leftarrow i) \otimes E(1, 2) + P^\#(n > 1) \otimes E(2, 3) + P^\#(n \leq 1) \otimes E(2, 5) + U^\#(m \leftarrow m \times n) \otimes E(3, 4) + U^\#(n \leftarrow n - 1) \otimes E(4, 2) + I^\# \otimes E(5, 5)$$
Abstract Semantics

\[U^#(m \leftarrow 1) = \]
\[= \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & 1 \end{pmatrix} \]

Abstract Semantics

\[U^#(n \leftarrow n - 1) = \]
\[= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & 0 & 0 & \ldots & 0 \\ 1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & 0 \end{pmatrix} \]
Abstract Semantics

\[
\mathbf{P}^\#(n > 1) = \\
= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & 1 \end{pmatrix}
\]

Abstract Semantics

\[
\mathbf{P}^\#(n \leq 1) = \\
= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & 0 \end{pmatrix}
\]
Abstract Semantics

\[\mathbf{U^\#}(m \leftarrow m \times n) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{pmatrix} \]

Implementation

Implementation of concrete and abstract semantics of Factorial using \texttt{octave}. Ranges: \(n \in \{1, \ldots, d\} \) and \(m \in \{1, \ldots, d!\} \).

\[
\begin{array}{c|cc}
\text{d} & \text{dim(}T(F)\text{)} & \text{dim(}T^\#(F)\text{)} \\
\hline
2 & 45 & 30 \\
3 & 140 & 40 \\
4 & 625 & 50 \\
5 & 3630 & 60 \\
6 & 25235 & 70 \\
7 & 201640 & 80 \\
8 & 1814445 & 90 \\
9 & 18144050 & 100 \\
\end{array}
\]

Using uniform initial distributions \(d_0 \) for \(n \) and \(m \).
The abstract probabilities for m being even or odd when we execute the abstract program for various d values are:

<table>
<thead>
<tr>
<th>d</th>
<th>even</th>
<th>odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.81818</td>
<td>0.18182</td>
</tr>
<tr>
<td>100</td>
<td>0.98019</td>
<td>0.019802</td>
</tr>
<tr>
<td>1000</td>
<td>0.99800</td>
<td>0.0019980</td>
</tr>
<tr>
<td>10000</td>
<td>0.99980</td>
<td>0.00019998</td>
</tr>
</tbody>
</table>

Ortholattice of Projection Operators

Define a partial order on self-adjoint operators and projections as follows: $H \sqsubseteq K$ iff $K - H$ is positive, i.e. there exists a B such that $K - H = B^*B$.

Alternatively, order projections by inclusion of their image spaces, i.e. $E \sqsubseteq F$ iff $Y_E \subseteq Y_F$.

The orthogonal projections form a complete (ortho)lattice.

The range of the intersection $E \cap F$ is to the closure of the intersection of the image spaces of E and F.

The union $E \sqcup F$ corresponds to the union of the images.
Computing Intersections/Unions

Associate to every Probabilistic Abstract Interpretation \((A, G)\) a projection, similar to so-called “upper closure operators” (uco):

\[
E = AG = AA^\dagger.
\]

A general way to construct \(E \cap F\) and (by exploiting de Morgan’s law) also \(E \cup F = (E^\perp \cap F^\perp)^\perp\) is via an infinite approximation sequence and has been suggested by Halmos:

\[
E \cap F = \lim_{n \to \infty} (EFE)^n.
\]

Commutative Case

The concrete construction of \(E \cup F\) and \(E \cap F\) is in general not trivial. Only for commuting projections we have:

\[
E \cup F = E + F - EF \quad \text{and} \quad E \cap F = EF.
\]

Example

Consider a finite set \(\Omega\) with a probability structure. For any (measurable) subset \(A\) of \(\Omega\) define the characteristic function \(\chi_A\) with \(\chi_A(x) = 1\) if \(x \in A\) and 0 otherwise. The characteristic functions are (commutative) projections on random variables using pointwise multiplication, i.e. \(X\chi_A\chi_A = \chi_A\chi_A\). We have \(\chi_{A \cap B} = \chi_A\chi_B\) and \(\chi_{A \cup B} = \chi_A + \chi_B - \chi_A\chi_B\).
Non-Commutative Case

The Moore-Penrose pseudo-inverse is also useful for computing the $E \cap F$ and $E \cup F$ of general, non-commuting projections via the parallel sum

$$A : B = A(A + B)^\dagger B$$

The intersection of projections is given by:

$$E \cap F = 2(E : F) = E(E + F)^\dagger F + F(E + F)^\dagger E$$

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A – hitting probability a
- Cowboy B – hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:
 - If it is A’s turn he will hit/shoot B with probability a;
 If B is shot then A is the winner, otherwise it’s B’s turn.
 - If it is B’s turn he will hit/shoot A with probability b;
 If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?

Question: What happens if A is learning to shoot better during the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012/14)
begin
 # who’s first turn
 choose 1:{t:=0} or 1:{t:=1} ro;
 # continue until ...
 c := 1;
 while c == 1 do
 if (t==0) then
 choose ak:{c:=0} or am:{t:=1} ro
 else
 choose bk:{c:=0} or bm:{t:=0} ro
 fi;
 od;
 stop; # terminal loop
end

Example: Duelling Cowboys

The survival chances, i.e. winning probability, for A.
References

Herbert Wiklicky: On Dynamical Probabilities, or: How to learn to shoot straight. Coordinations, LNCS 9686, 2016.