Program Analysis (CO470/97128/97146)
Probabilistic Abstract Interpretation

Herbert Wiklicky

Department of Computing
Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2020
Galois Connections

Definition
Let $\mathcal{C} = (\mathcal{C}, \leq_\mathcal{C})$ and $\mathcal{D} = (\mathcal{D}, \leq_\mathcal{D})$ be two partially ordered sets with two order-preserving functions $\alpha : \mathcal{C} \mapsto \mathcal{D}$ and $\gamma : \mathcal{D} \mapsto \mathcal{C}$. Then $(\mathcal{C}, \alpha, \gamma, \mathcal{D})$ form a Galois connection iff

(i) $\alpha \circ \gamma$ is reductive i.e. $\forall d \in \mathcal{D}, \alpha \circ \gamma(d) \leq_\mathcal{D} d$,

(ii) $\gamma \circ \alpha$ is extensive i.e. $\forall c \in \mathcal{C}, c \leq_\mathcal{C} \gamma \circ \alpha(c)$.
Galois Connections

Definition
Let \(C = (C, \leq_C) \) and \(D = (D, \leq_D) \) be two partially ordered sets with two order-preserving functions \(\alpha : C \rightarrow D \) and \(\gamma : D \rightarrow C \). Then \((C, \alpha, \gamma, D)\) form a Galois connection iff

(i) \(\alpha \circ \gamma \) is reductive i.e. \(\forall d \in D, \alpha \circ \gamma(d) \leq_D d \),

(ii) \(\gamma \circ \alpha \) is extensive i.e. \(\forall c \in C, c \leq_C \gamma \circ \alpha(c) \).

Proposition
Let \((C, \alpha, \gamma, D)\) be a Galois connection. Then \(\alpha \) and \(\gamma \) are quasi-inverse, i.e.

(i) \(\alpha \circ \gamma \circ \alpha = \alpha \) and (ii) \(\gamma \circ \alpha \circ \gamma = \gamma \)
General Construction

The general construction of correct (and optimal) abstractions $f\#$ of concrete function f is as follows:
General Construction

The general construction of correct (and optimal) abstractions $f\#$ of concrete function f is as follows:

```
A ←α→ A#
|     |     |
f ↓ γ ↓ f#

B ←α'→ B#
|     |     |
γ' ↓     
```

Correct approximation: $\alpha' \circ f \leq f\# \circ \alpha$.

Induced semantics: $f\# = \alpha' \circ f \circ \gamma$.
General Construction

The general construction of correct (and optimal) abstractions $f#$ of concrete function f is as follows:

\[\begin{array}{ccc}
A & \xrightarrow{\alpha} & A^#
\\
\downarrow{f} & & \downarrow{f^#}
\\
B & \xrightarrow{\alpha'} & B^#
\end{array} \]

Correct approximation:

\[\alpha' \circ f \leq # f^# \circ \alpha. \]
The general construction of correct (and optimal) abstractions $f\#$ of concrete function f is as follows:

![Diagram of general construction]

Correct approximation:

$$\alpha' \circ f \leq \# f\# \circ \alpha.$$

Induced semantics:

$$f\# = \alpha' \circ f \circ \gamma.$$
A probabilistic domain is essentially a vector space which represents the distributions $\text{Dist}(\text{State}) \subseteq \mathcal{V}(\text{State})$ on the state space State of a probabilistic transition system, i.e. for finite state spaces.
A probabilistic domain is essentially a vector space which represents the distributions \(\text{Dist}(\text{State}) \subseteq \mathcal{V}(\text{State}) \) on the state space \(\text{State} \) of a probabilistic transition system, i.e. for finite state spaces

\[
\mathcal{V}(\text{State}) = \{ (v_s)_{s \in \text{State}} \mid v_s \in \mathbb{R} \}.
\]
Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which represents the distributions $\text{Dist}(\text{State}) \subseteq \mathcal{V}(\text{State})$ on the state space State of a probabilistic transition system, i.e. for finite state spaces

$$\mathcal{V}(\text{State}) = \{ (v_s)_{s \in \text{State}} \mid v_s \in \mathbb{R} \}.$$

In the infinite setting we can identify $\mathcal{V}(\text{State})$ with the Hilbert space $\ell^2(\text{State}).$
A probabilistic domain is essentially a vector space which represents the distributions $\text{Dist} (\text{State}) \subseteq \mathcal{N} (\text{State})$ on the state space State of a probabilistic transition system, i.e. for finite state spaces

$$\mathcal{N} (\text{State}) = \{ (v_s)_{s \in \text{State}} \mid v_s \in \mathbb{R} \}.$$

In the infinite setting we can identify $\mathcal{N} (\text{State})$ with the Hilbert space $\ell^2 (\text{State})$.

The notion of norm (distance) is essential for our treatment; we will consider normed vector spaces.
A norm on a vector space \mathcal{V} is a map $\| \cdot \| : \mathcal{V} \to \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \geq 0$,
- $\|v\| = 0 \iff v = o$,
- $\|cv\| = |c|\|v\|$,
- $\|v + w\| \leq \|v\| + \|w\|$.

Note: The structural similarities between distances and partial orders can be made precise (cf. Category Theory).
Norm and Distance

A norm on a vector space \mathcal{V} is a map $\| \cdot \| : \mathcal{V} \to \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \geq 0$,
A norm on a vector space \(\mathcal{V} \) is a map \(\| . \| : \mathcal{V} \to \mathbb{R} \) such that for all \(v, w \in \mathcal{V} \) and \(c \in \mathbb{C} \):

- \(\| v \| \geq 0 \),
- \(\| v \| = 0 \iff v = o \),
Norm and Distance

A norm on a vector space \mathcal{V} is a map $\| \cdot \| : \mathcal{V} \to \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\| v \| \geq 0$,
- $\| v \| = 0 \iff v = 0$,
- $\| cv \| = |c| \| v \|$,
- with $o \in \mathcal{V}$ the zero vector.

We can always use a norm to define a metric topology on a vector space via the distance function $d(v, w) = \| v - w \|$.

Note: The structural similarities between distances and partial orders can be made precise (cf. Category Theory).
Norm and Distance

A norm on a vector space \mathcal{V} is a map $\| \cdot \| : \mathcal{V} \to \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\| v \| \geq 0$,
- $\| v \| = 0 \iff v = o$,
- $\| cv \| = |c| \| v \|$,
- $\| v + w \| \leq \| v \| + \| w \|$,

with $o \in \mathcal{V}$ the zero vector.
A norm on a vector space V is a map $\| \cdot \| : V \mapsto \mathbb{R}$ such that for all $v, w \in V$ and $c \in \mathbb{C}$:

- $\| v \| \geq 0$,
- $\| v \| = 0 \iff v = o$,
- $\| cv \| = |c| \| v \|$,
- $\| v + w \| \leq \| v \| + \| w \|$,

with $o \in V$ the zero vector.
A norm on a vector space \mathcal{V} is a map $\|\cdot\| : \mathcal{V} \rightarrow \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

1. $\|v\| \geq 0$,
2. $\|v\| = 0 \iff v = o$,
3. $\|cv\| = |c|\|v\|$,
4. $\|v + w\| \leq \|v\| + \|w\|$,

with $o \in \mathcal{V}$ the zero vector.

We can always use a norm to define a metric topology on a vector space via the distance function $d(v, w) = \|v - w\|$.

Norm and Distance

A norm on a vector space \mathcal{V} is a map $\| \cdot \| : \mathcal{V} \to \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\| v \| \geq 0$,
- $\| v \| = 0 \iff v = o$,
- $\| cv \| = |c| \| v \|$,
- $\| v + w \| \leq \| v \| + \| w \|$,

with $o \in \mathcal{V}$ the zero vector.

We can always use a norm to define a metric topology on a vector space via the distance function $d(v, w) = \| v - w \|$.

Note: The structural similarities between distances and partial orders can be made precise (cf. Category Theory).
Moore-Penrose Generalised Inverse

Definition
Let \mathcal{C} and \mathcal{D} be two (finite-dimensional) vector (Hilbert) spaces and $A : \mathcal{C} \to \mathcal{D}$ a linear map. Then the linear map $A^\dagger = G : \mathcal{D} \to \mathcal{C}$ is the Moore-Penrose pseudo-inverse of A iff

\begin{align*}
(i) \quad & A \circ G = P_A, \\
(ii) \quad & G \circ A = P_G,
\end{align*}

where P_A and P_G denote orthogonal projections onto the ranges of A and G.
(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner product $\langle \cdot, \cdot \rangle$. This measures some kind of similarity of vectors but also allows to define a norm:

$$\|x\|_2 = \sqrt{\langle x, x \rangle}$$

It also allows us to define an adjoint via:

$$\langle A(x), y \rangle = \langle x, A^*(y) \rangle$$
On finite dimensional vector (Hilbert) spaces we have an inner product \(\langle ., . \rangle \).
This measures some kind of similarity of vectors but also allows to define a norm:
\[
\|x\|_2 = \sqrt{\langle x, x \rangle}
\]
It also allows us to define an adjoint via:
\[
\langle A(x), y \rangle = \langle x, A^*(y) \rangle
\]
(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner product $\langle ., . \rangle$.
This measures some kind of similarity of vectors but also allows to define a norm:
\[
\| x \|_2 = \sqrt{\langle x, x \rangle}
\]
It also allows us to define an adjoint via:
\[
\langle A(x), y \rangle = \langle x, A^*(y) \rangle
\]

- An operator A is self-adjoint if $A = A^*$.

(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner product $\langle ., . \rangle$.
This measures some kind of similarity of vectors but also allows to define a norm:

$$\|x\|_2 = \sqrt{\langle x, x \rangle}$$

It also allows us to define an adjoint via:

$$\langle A(x), y \rangle = \langle x, A^*(y) \rangle$$

- An operator A is self-adjoint if $A = A^*$.
- An (orthogonal) projection is a self-adjoint E with $EE = E$.
Least Squares Solutions

Corollary

Let \mathbf{P} be a orthogonal projection on a finite dimensional vector space \mathcal{V}. Then for any $\mathbf{x} \in \mathcal{V}$, $\mathbf{P}(\mathbf{x}) = \mathbf{x}\mathbf{P}$ is the unique closest vector in \mathcal{V} to \mathbf{x} wrt to the Euclidean norm $\|\cdot\|_2$.
Least Squares Solutions

Corollary

Let \mathbf{P} be a orthogonal projection on a finite dimensional vector space \mathcal{V}. Then for any $\mathbf{x} \in \mathcal{V}$, $\mathbf{P}(\mathbf{x}) = \mathbf{xP}$ is the unique closest vector in \mathcal{V} to \mathbf{x} wrt to the Euclidean norm $\| \cdot \|_2$.

Definition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then $\mathbf{u} \in \mathbb{R}^n$ is called a least squares solution to $\mathbf{Ax} = \mathbf{b}$ if

$$\| \mathbf{Au} - \mathbf{b} \| \leq \| \mathbf{Av} - \mathbf{b} \|, \text{ for all } \mathbf{v} \in \mathbb{R}^n.$$
Least Squares Solutions

Corollary
Let P be an orthogonal projection on a finite dimensional vector space V. Then for any $x \in V$, $P(x) = xP$ is the unique closest vector in V to x with respect to the Euclidean norm $\| \cdot \|_2$.

Definition
Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then $u \in \mathbb{R}^n$ is called a least squares solution to $Ax = b$ if

$$\|Au - b\| \leq \|Av - b\|, \text{ for all } v \in \mathbb{R}^n.$$

Theorem
Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then $A^\dagger b$ is the minimal least squares solution to $Ax = b$.

Vector Space Lifting

Free vector space construction on a set S:

$$\mathcal{V}(S) = \left\{ \sum x_s s \mid x_s \in \mathbb{R}, s \in S \right\}$$
Vector Space Lifting

Free vector space construction on a set S:

$$\mathcal{V}(S) = \left\{ \sum x_s s \mid x_s \in \mathbb{R}, s \in S \right\}$$

An obvious way to lift an extraction function to a linear map between vector spaces is to construct the free vector spaces on \mathcal{C} and \mathcal{D} and define:
Vector Space Lifting

Free vector space construction on a set S:

$$\mathcal{V}(S) = \left\{ \sum x_s s \mid x_s \in \mathbb{R}, s \in S \right\}$$

An obvious way to lift an extraction function to a linear map between vector spaces is to construct the free vector spaces on \mathcal{C} and \mathcal{D} and define:

Vector Space lifting: $\vec{\alpha} : \mathcal{V}(\mathcal{C}) \rightarrow \mathcal{V}(\mathcal{D})$

$$\vec{\alpha}(p_1 \cdot \vec{c}_1 + p_2 \cdot \vec{c}_2 + \ldots) = p_i \cdot \alpha(c_1) + p_2 \cdot \alpha(c_2) \ldots$$
Vector Space Lifting

Free vector space construction on a set S:

$$\mathcal{V}(S) = \left\{ \sum x_s s \mid x_s \in \mathbb{R}, s \in S \right\}$$

An obvious way to lift an extraction function to a linear map between vector spaces is to construct the free vector spaces on \mathcal{C} and \mathcal{D} and define:

Vector Space lifting: $\vec{\alpha} : \mathcal{V}(\mathcal{C}) \to \mathcal{V}(\mathcal{D})$

$$\vec{\alpha}(p_1 \cdot \vec{c}_1 + p_2 \cdot \vec{c}_2 + \ldots) = p_i \cdot \alpha(c_1) + p_2 \cdot \alpha(c_2) \ldots$$

Support Set: $\text{supp} : \mathcal{V}(\mathcal{C}) \to \mathcal{P}(\mathcal{C})$

$$\text{supp}(\vec{x}) = \left\{ c_i \mid \langle c_i, p_i \rangle \in \vec{x} \text{ and } p_i \neq 0 \right\}$$
Lemma

Let $\vec{\alpha}$ be a probabilistic abstraction function and let $\vec{\gamma}$ be its Moore-Penrose pseudo-inverse.

Then $\vec{\gamma} \circ \vec{\alpha}$ is extensive with respect to the inclusion on the support sets of vectors in $\mathcal{V}(\mathcal{C})$, i.e. $\forall \vec{x} \in \mathcal{V}(\mathcal{C})$,

$$\text{supp}(\vec{x}) \subseteq \text{supp}(\vec{\gamma} \circ \vec{\alpha}(\vec{x})).$$
Relation with Classical Abstractions

Lemma
Let $\widetilde{\alpha}$ be a probabilistic abstraction function and let $\widetilde{\gamma}$ be its Moore-Penrose pseudo-inverse. Then $\widetilde{\gamma} \circ \widetilde{\alpha}$ is extensive with respect to the inclusion on the support sets of vectors in $\mathcal{V}(C)$, i.e. $\forall \vec{x} \in \mathcal{V}(C)$,

$$\text{supp}(\vec{x}) \subseteq \text{supp}(\widetilde{\gamma} \circ \widetilde{\alpha}(\vec{x})).$$

Analogously we can show that $\widetilde{\alpha} \circ \widetilde{\gamma}$ is reductive. Therefore,
Relation with Classical Abstractions

Lemma
Let $\hat{\alpha}$ be a probabilistic abstraction function and let $\hat{\gamma}$ be its Moore-Penrose pseudo-inverse.

Then $\hat{\gamma} \circ \hat{\alpha}$ is extensive with respect to the inclusion on the support sets of vectors in $\mathcal{V}(\mathcal{C})$, i.e. $\forall \tilde{x} \in \mathcal{V}(\mathcal{C})$,

$$\text{supp}(\tilde{x}) \subseteq \text{supp}(\hat{\gamma} \circ \hat{\alpha}(\tilde{x})).$$

Analogously we can show that $\hat{\alpha} \circ \hat{\gamma}$ is reductive. Therefore,

Proposition
$(\hat{\alpha}, \hat{\gamma})$ form a Galois connection wrt the support sets of $\mathcal{V}(\mathcal{C})$ and $\mathcal{V}(\mathcal{D})$, ordered by inclusion.
Examples of Lifted Abstractions

Parity Abstraction operator on $\forall(\{1, \ldots, n\})$ (with n even):

$$A_p = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix}$$
Examples of Lifted Abstractions

Parity Abstraction operator on $\mathcal{V}(\{1, \ldots, n\})$ (with n even):

$$A_p = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{pmatrix} \quad A_p^\dagger = \begin{pmatrix}
\frac{2}{n} & 0 & \frac{2}{n} & 0 & \cdots & 0 \\
0 & \frac{2}{n} & 0 & \frac{2}{n} & \cdots & \frac{2}{n}
\end{pmatrix}$$
Examples of Lifted Abstractions

Sign Abstraction operator on $\mathcal{V}(\{-n, \ldots, 0, \ldots, n\})$:

\[
A_s = \begin{pmatrix}
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1
\end{pmatrix}
\]
Examples of Lifted Abstractions

Sign Abstraction operator on $\mathcal{V}(\{-n, \ldots, 0, \ldots, n\})$:

$$A_s = \begin{pmatrix}
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1 \\
\end{pmatrix} \quad A_s^\dagger = \begin{pmatrix}
\frac{1}{n} & \ldots & \frac{1}{n} & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \frac{1}{n} & \ldots & \frac{1}{n} \\
\end{pmatrix}$$
Concrete and abstract domain are step-functions on \([a, b]\).
Concrete and abstract domain are step-functions on \([a, b]\). The set of (real-valued) step-function \(\mathcal{T}_n\) is based on the sub-division of the interval into \(n\) sub-intervals.
Concrete and abstract domain are step-functions on \([a, b]\). The set of (real-valued) step-function \(T_n\) is based on the sub-division of the interval into \(n\) sub-intervals.
Concrete and abstract domain are step-functions on \([a, b]\). The set of (real-valued) step-function \(\mathcal{T}_n\) is based on the sub-division of the interval into \(n\) sub-intervals.

Each step function in \(\mathcal{T}_n\) corresponds to a vector in \(\mathbb{R}^n\), e.g.
Concrete and abstract domain are step-functions on \([a, b]\). The set of (real-valued) step-function \(\mathcal{T}_n\) is based on the sub-division of the interval into \(n\) sub-intervals.

Each step function in \(\mathcal{T}_n\) corresponds to a vector in \(\mathbb{R}^n\), e.g.

\[
\begin{pmatrix}
5 & 5 & 6 & 7 & 8 & 4 & 3 & 2 & 8 & 6 & 6 & 7 & 9 & 8 & 8 & 7
\end{pmatrix}
\]
Example: Abstraction Matrices

\[A_8 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \]
Example: Abstraction Matrices

\[G_8 = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\end{pmatrix} \]
Approximation Estimates

Compute the *least square error* as

$$\| f - f_{AG} \|.$$
Approximation Estimates

Compute the *least square error* as

\[\| f - fAG \|. \]

\[
\begin{align*}
\| f - fA_8G_8 \| &= 3.5355 \\
\| f - fA_4G_4 \| &= 5.3151 \\
\| f - fA_2G_2 \| &= 5.9896 \\
\| f - fA_1G_1 \| &= 7.6444
\end{align*}
\]
The tensor product of n linear operators A_1, A_2, \ldots, A_n is associative (but in general not commutative) and has e.g. the following properties:
Tensor Product Properties

The tensor product of \(n \) linear operators \(A_1, A_2, \ldots, A_n \) is associative (but in general not commutative) and has e.g. the following properties:

1. \((A_1 \otimes \ldots \otimes A_n) \cdot (B_1 \otimes \ldots \otimes B_n) = A_1 \cdot B_1 \otimes \ldots \otimes A_n \cdot B_n\)
Tensor Product Properties

The tensor product of n linear operators A_1, A_2, \ldots, A_n is associative (but in general not commutative) and has e.g. the following properties:

1. $(A_1 \otimes \ldots \otimes A_n) \cdot (B_1 \otimes \ldots \otimes B_n) =$
 $$= A_1 \cdot B_1 \otimes \ldots \otimes A_n \cdot B_n$$

2. $A_1 \otimes \ldots \otimes (\alpha A_i) \otimes \ldots \otimes A_n =$
 $$= \alpha (A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n)$$
Tensor Product Properties

The tensor product of n linear operators A_1, A_2, \ldots, A_n is associative (but in general not commutative) and has e.g. the following properties:

1. $(A_1 \otimes \ldots \otimes A_n) \cdot (B_1 \otimes \ldots \otimes B_n) =$
 \[= A_1 \cdot B_1 \otimes \ldots \otimes A_n \cdot B_n \]

2. $A_1 \otimes \ldots \otimes (\alpha A_i) \otimes \ldots \otimes A_n =$
 \[= \alpha (A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n) \]

3. $A_1 \otimes \ldots \otimes (A_i + B_i) \otimes \ldots \otimes A_n =$
 \[= (A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n) + (A_1 \otimes \ldots \otimes B_i \otimes \ldots \otimes A_n) \]
Tensor Product Properties

The tensor product of \(n \) linear operators \(A_1, A_2, \ldots, A_n \) is associative (but in general not commutative) and has e.g. the following properties:

1. \((A_1 \otimes \ldots \otimes A_n) \cdot (B_1 \otimes \ldots \otimes B_n) = A_1 \cdot B_1 \otimes \ldots \otimes A_n \cdot B_n \)
2. \(A_1 \otimes \ldots \otimes (\alpha A_i) \otimes \ldots \otimes A_n = \alpha (A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n) \)
3. \(A_1 \otimes \ldots \otimes (A_i + B_i) \otimes \ldots \otimes A_n = (A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n) + (A_1 \otimes \ldots \otimes B_i \otimes \ldots \otimes A_n) \)
4. \((A_1 \otimes \ldots \otimes A_i \otimes \ldots \otimes A_n)^\dagger = A_1^\dagger \otimes \ldots \otimes A_i^\dagger \otimes \ldots \otimes A_n^\dagger \)
Moore-Penrose Pseudo-Inverse of a Tensor Product is:

\[(A_1 \otimes A_2 \otimes \ldots \otimes A_n)^\dagger = A_1^\dagger \otimes A_2^\dagger \otimes \ldots \otimes A_n^\dagger\]
Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

\[(A_1 \otimes A_2 \otimes \ldots \otimes A_n)^\dagger = A_1^\dagger \otimes A_2^\dagger \otimes \ldots \otimes A_n^\dagger\]

Via linearity we can construct \(T^\#\) in the same way as \(T\), i.e

\[T^\#(P) = \sum_{\langle i, p_{ij}, j \rangle \in \mathcal{F}(P)} p_{ij} \cdot T^\#(\ell_i, \ell_j)\]

with local abstraction of individual variables:

\[T^\#(\ell_i, \ell_j) = (A_1^\dagger N_{i1} A_1) \otimes (A_2^\dagger N_{i2} A_2) \otimes \ldots \otimes (A_v^\dagger N_{iv} A_v) \otimes M_{ij}\]
Argument

\[T^\# = A^\dagger T A \]
\[T^\# = A^\dagger TA = A^\dagger \left(\sum_{i,j} T(i,j) \right) A \]
\[T^\# = A^\dagger TA = A^\dagger \left(\sum_{i,j} T(i,j) \right) A = \sum_{i,j} A^\dagger T(i,j) A \]
Argument

\[
T# = A^\dagger TA \\
= A^\dagger (\sum_{i,j} T(i,j))A \\
= \sum_{i,j} A^\dagger T(i,j)A \\
= \sum_{i,j} (\bigotimes_{k} A_k)^\dagger T(i,j)(\bigotimes_{k} A_k)
\]
\[T^\# = A^\dagger T A \]
\[= A^\dagger \left(\sum_{i,j} T(i,j) \right) A \]
\[= \sum_{i,j} A^\dagger T(i,j) A \]
\[= \sum_{i,j} \left(\bigotimes_k A_k \right)^\dagger T(i,j) \left(\bigotimes_k A_k \right) \]
\[= \sum_{i,j} \left(\bigotimes_k A_k \right)^\dagger \left(\bigotimes_k N_{ik} \right) \left(\bigotimes_k A_k \right) \]
\[
\begin{align*}
T^\# &= \mathbf{A}^\dagger \mathbf{T} \mathbf{A} \\
&= \mathbf{A}^\dagger \left(\sum_{i,j} T(i,j) \right) \mathbf{A} \\
&= \sum_{i,j} \mathbf{A}^\dagger T(i,j) \mathbf{A} \\
&= \sum_{i,j} \left(\bigotimes_k A_k \right)^\dagger T(i,j) \left(\bigotimes_k A_k \right) \\
&= \sum_{i,j} \left(\bigotimes_k A_k \right)^\dagger \left(\bigotimes_k N_{ik} \right) \left(\bigotimes_k A_k \right) \\
&= \sum_{i,j} \bigotimes_k \left(A_k^\dagger N_{ik} A_k \right)
\end{align*}
\]
Parity Analysis

Determine at each program point whether a variable is *even* or *odd*.
Determine at each program point whether a variable is *even* or *odd*.

Parity Abstraction operator on $\mathcal{V}(\{0, \ldots, n\})$ (with n even):

$$A_p = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} \quad \quad A^\dagger = \begin{pmatrix} \frac{2}{n} & 0 & \frac{2}{n} & 0 & \cdots & 0 \\ 0 & \frac{2}{n} & 0 & \frac{2}{n} & \cdots & \frac{2}{n} \end{pmatrix}$$
Example

1: \([m \leftarrow i]^1 \);
2: \textbf{while} \([n > 1]^2 \) \textbf{do}
3: \([m \leftarrow m \times n]^3 \);
4: \([n \leftarrow n - 1]^4 \)
5: \textbf{end while}
6: \[\text{stop}^5 \]
Example

1: \[m \leftarrow i\]^1;
2: while \[n > 1\]^2 do
3: \[m \leftarrow m \times n\]^3;
4: \[n \leftarrow n - 1\]^4
5: end while
6: [stop]^5

\[
T = U(m \leftarrow i) \otimes E(1, 2) + P(n > 1) \otimes E(2, 3) + P(n \leq 1) \otimes E(2, 5) + U(m \leftarrow m \times n) \otimes E(3, 4) + U(n \leftarrow n - 1) \otimes E(4, 2) + I \otimes E(5, 5)
\]
Example

1: $[m ← i]^1$;
2: while $[n > 1]^2$ do
3: $[m ← m × n]^3$;
4: $[n ← n − 1]^4$
5: end while
6: [stop]5

\[T# = U#(m ← i) ⊗ E(1, 2) + P#(n > 1) ⊗ E(2, 3) + P#(n ≤ 1) ⊗ E(2, 5) + U#(m ← m × n) ⊗ E(3, 4) + U#(n ← n − 1) ⊗ E(4, 2) + I# ⊗ E(5, 5) \]
Abstract Semantics

Abstraction: \(A = A_p \otimes I \), i.e. \(m \) abstract (parity) but \(n \) concrete.

\[
\begin{align*}
T^\# & = U^\# (m \leftarrow 1) \otimes E(1, 2) \\
& + P^\# (n > 1) \otimes E(2, 3) \\
& + P^\# (n \leq 1) \otimes E(2, 5) \\
& + U^\# (m \leftarrow m \times n) \otimes E(3, 4) \\
& + U^\# (n \leftarrow n - 1) \otimes E(4, 2) \\
& + I^\# \otimes E(5, 5)
\end{align*}
\]
Abstract Semantics

\[U^\#(m \leftarrow 1) = \]

\[= \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & 1 \end{pmatrix} \]
Abstract Semantics

\[\mathbf{U}^\#(n \leftarrow n - 1) = \]
\[= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \]
Abstract Semantics

$$P^\#(n > 1) =$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$
Abstract Semantics

\(P^\#(n \leq 1) = \)

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\otimes
\begin{pmatrix}
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0
\end{pmatrix}
\]
Abstract Semantics

\[U^\#(m \leftarrow m \times n) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{pmatrix} \]
Implementation

Implementation of concrete and abstract semantics of Factorial using octave. Ranges: $n \in \{1, \ldots, d\}$ and $m \in \{1, \ldots, d!\}$.
Implementation of concrete and abstract semantics of Factorial using octave. Ranges: $n \in \{1, \ldots, d\}$ and $m \in \{1, \ldots, d!\}$.

<table>
<thead>
<tr>
<th>d</th>
<th>dim($T(F)$)</th>
<th>dim($T^#(F)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>140</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>625</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>3630</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>25235</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>201640</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>1814445</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>18144050</td>
<td>100</td>
</tr>
</tbody>
</table>

Using uniform initial distributions d_0 for n and m.
Scalablity

The abstract probabilities for m being even or odd when we execute the abstract program for various d values are:

<table>
<thead>
<tr>
<th>d</th>
<th>even</th>
<th>odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.81818</td>
<td>0.18182</td>
</tr>
<tr>
<td>100</td>
<td>0.98019</td>
<td>0.019802</td>
</tr>
<tr>
<td>1000</td>
<td>0.99800</td>
<td>0.0019980</td>
</tr>
<tr>
<td>10000</td>
<td>0.99980</td>
<td>0.00019998</td>
</tr>
</tbody>
</table>
Define a partial order on self-adjoint operators and projections as follows: $H \sqsubseteq K$ iff $K - H$ is positive, i.e. there exists a B such that $K - H = B^*B$.

Alternatively, order projections by inclusion of their image spaces, i.e. $E \sqsubseteq F$ iff $Y_E \subseteq Y_F$.
Define a \textbf{partial order} on self-adjoint operators and projections as follows: \(H \sqsubseteq K \) iff \(K - H \) is positive, i.e. there exists a \(B \) such that \(K - H = B^*B \).

Alternatively, order projections by inclusion of their image spaces, i.e. \(E \sqsubseteq F \) iff \(Y_E \subseteq Y_F \).
Define a partial order on self-adjoint operators and projections as follows: $H \sqsubseteq K$ iff $K - H$ is positive, i.e. there exists a B such that $K - H = B^*B$.

Alternatively, order projections by inclusion of their image spaces, i.e. $E \sqsubseteq F$ iff $Y_E \subseteq Y_F$.

The orthogonal projections form a complete (ortho)lattice.

The range of the intersection $E \cap F$ is to the closure of the intersection of the image spaces of E and F.

The union $E \sqcup F$ corresponds to the union of the images.
Associate to every Probabilistic Abstract Interpretation \((A, G)\) a projection, similar to so-called “upper closure operators” (uco):

\[E = AG = AA^\dagger. \]
Computing Intersections/Unions

Associate to every Probabilistic Abstract Interpretation \((A, G)\) a projection, similar to so-called “upper closure operators” (uco):

\[E = AG = AA^\dagger. \]

A general way to construct \(E \cap F\) and (by exploiting de Morgan’s law) also \(E \cup F = (E^\perp \cap F^\perp)^\perp\) is via an infinite approximation sequence and has been suggested by Halmos:

\[E \cap F = \lim_{n \to \infty} (EFE)^n. \]
Commutative Case

The concrete construction of $E \sqcup F$ and $E \sqcap F$ is in general not trivial. Only for commuting projections we have:

$$E \sqcup F = E + F - EF \text{ and } E \sqcap F = EF.$$
The concrete construction of $E \boxplus F$ and $E \sqcap F$ is in general not trivial. Only for commuting projections we have:

$$E \boxplus F = E + F - EF \text{ and } E \sqcap F = EF.$$

Example

Consider a finite set Ω with a probability structure. For any (measurable) subset A of Ω define the characteristic function χ_A with $\chi_A(x) = 1$ if $x \in A$ and 0 otherwise.
Commutative Case

The concrete construction of $E \sqcup F$ and $E \sqcap F$ is in general not trivial. Only for commuting projections we have:

$$E \sqcup F = E + F - EF \quad \text{and} \quad E \sqcap F = EF.$$

Example

Consider a finite set Ω with a probability structure. For any (measurable) subset A of Ω define the characteristic function χ_A with $\chi_A(x) = 1$ if $x \in A$ and 0 otherwise. The characteristic functions are (commutative) projections on random variables using pointwise multiplication, i.e. $X\chi_A\chi_A = X\chi_A$. We have $\chi_{A \cap B} = \chi_A\chi_B$ and $\chi_{A \cup B} = \chi_A + \chi_B - \chi_A\chi_B.$
The Moore-Penrose pseudo-inverse is also useful for computing the $E \sqcap F$ and $E \sqcup F$ of general, non-commuting projections via the parallel sum

$$A : B = A(A + B)^\dagger B$$

The intersection of projections is given by:

$$E \sqcap F = 2(E : F) = E(E + F)^\dagger F + F(E + F)^\dagger E$$

Consider a "duel" between two cowboys:

- Cowboy A – hitting probability a
- Cowboy B – hitting probability b
Consider a "duel" between two cowboys:

- Cowboy A – hitting probability a
- Cowboy B – hitting probability b

1. Choose (non-deterministically) whether A or B starts.
Consider a "duel" between two cowboys:

- Cowboy A – hitting probability a
- Cowboy B – hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:
Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A – hitting probability \(a \)
- Cowboy B – hitting probability \(b \)

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:
 - If it is A’s turn he will hit/shoot B with probability \(a \);
 If B is shot then A is the winner, otherwise it’s B’s turn.

Question: What is the life expectancy of A or B?

Question: What happens if A is learning to shoot better during the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012/14)
Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A – hitting probability a
- Cowboy B – hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:
 - If it is A’s turn he will hit/shoot B with probability a;
 If B is shot then A is the winner, otherwise it’s B’s turn.
 - If it is B’s turn he will hit/shoot A with probability b;
 If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?

Question: What happens if A is learning to shoot better during the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012/14)
Consider a "duel" between two cowboys:

- Cowboy A – hitting probability a
- Cowboy B – hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:
 - If it is A’s turn he will hit/shoot B with probability a;
 If B is shot then A is the winner, otherwise it’s B’s turn.
 - If it is B’s turn he will hit/shoot A with probability b;
 If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012/14)
Consider a "duel" between two cowboys:

- Cowboy \(A \) – hitting probability \(a \)
- Cowboy \(B \) – hitting probability \(b \)

1. Choose (non-deterministically) whether \(A \) or \(B \) starts.
2. Repeat until winner is known:
 - If it is \(A \)'s turn he will hit/shoot \(B \) with probability \(a \);
 If \(B \) is shot then \(A \) is the winner, otherwise it’s \(B \)’s turn.
 - If it is \(B \)’s turn he will hit/shoot \(A \) with probability \(b \);
 If \(A \) is shot then \(B \) is the winner, otherwise it’s \(A \)’s turn.

Question: What is the life expectancy of \(A \) or \(B \)?

Question: What happens if \(A \) is learning to shoot better during the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012/14)
Example: Duelling Cowboys

begin
who’s first turn
choose 1:{t:=0} or 1:{t:=1} ro;
continue until ...
c := 1;
while c == 1 do
 if (t==0) then
 choose ak:{c:=0} or am:{t:=1} ro
 else
 choose bk:{c:=0} or bm:{t:=0} ro
 fi;
end;
stop; # terminal loop
Example: Duelling Cowboys

The survival chances, i.e. winning probability, for A.
References

References

References

References

References

Herbert Wiklicky: *On Dynamical Probabilities, or: How to learn to shoot straight*. Coordinations, LNCS 9686, 2016.