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Quantum Postulates

» The state of an (isolated) quantum system is represented
by a (normalised) vector in a complex Hilbert space H.
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The state of an (isolated) quantum system is represented
by a (normalised) vector in a complex Hilbert space H.

An observable is represented by a self-adjoint matrix
(operator) A acting on the Hilbert space #.

The expected result (average) when measuring observable
A of a system in state |x) € #H is given by:

(Ax = (X[ A]x) = (x]|Ax)

The only possible results are eigen-values A; of A.
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Quantum Postulates

» The expected result (average) when measuring observable
A of a system in state |x) € #H is given by:

(Ax = (X[ A]x) = (x]|Ax)

» The only possible results are eigen-values \; of A.
» The probability of measuring A, in state |x) is given by:

Pr(A = A\p|x) = (x| Py |x) = (X| |Ppx)

with P, = |\p)(An| the orthogonal projection onto the space
generated by eigen-vector |\p) = |n) of A.



Basic Measurement Principle

The values « and § describing a qubit are often called
probability amplitudes. If we measure a qubit

o) =al0)+5in = )

in the computational basis {|0), |1)} then we observe state
|0) with probability |«|? and 1) with probability |3|2.
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Basic Measurement Principle

The values « and § describing a qubit are often called
probability amplitudes. If we measure a qubit

o) =al0)+5in = )

in the computational basis {|0), |1)} then we observe state
|0) with probability |«|? and 1) with probability |3|2.

Furthermore, the state |¢) changes: it collapses into state |0)
with probability || or [1) with probability | 3|2, respectively.
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Self Adjoint Operators
An operator A is called self-adjoint or hermitian iff
A=A

The postulates of Quantum Mechanics require that a quantum
observable A is represented by a self-adjoint operator A.

Possible measurement results are eigenvalues \; of A (always
real for self-adjoint operators) defined as

A |I> =\ |l> or Aé,‘ = )\,’é,‘ or Aa; = \a;
Probability to observe A\, in state |x) =, ;i) is
Pr(A= Ak |x)) = axl?

Physicist refer to a as probability amplitude.
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The set of eigen-values {1, Ao, ...} of an operator T is called
its spectrum o(T).

o(T) ={X| A\l =T is not invertible }

It is possible that for an eigen-value ); in the equation
Tiy = Aili)

we may have more than one eigen-vector |i) for an eigen-value
Aj, i.e. the dimension of the eigen-space d(i) > 1.
We will not consider these degenerate cases here.
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Spectrum

The set of eigen-values {1, Ao, ...} of an operator T is called
its spectrum o(T).

o(T) ={X| A\l =T is not invertible }

It is possible that for an eigen-value ); in the equation
Tiy = Aili)

we may have more than one eigen-vector |i) for an eigen-value
Aj, i.e. the dimension of the eigen-space d(i) > 1.
We will not consider these degenerate cases here.

Terminology: “eigen” means “self” or “own” in German (cf also
ltalian “auto-valore”), it characterises a matrix/operator.
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Orthogonal Projection
An operator P on C" is called (orthogonal) projection iff

P2=P=Pf

We say that an (orthogonal) projection P projects onto its
image space P(C"), which is always a linear sub-spaces of C".
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Projections

Projections
An operator P on C" is called projection (or idempotent) iff

P2=PP=P

Orthogonal Projection
An operator P on C" is called (orthogonal) projection iff

P2=P=Pf
We say that an (orthogonal) projection P projects onto its

image space P(C"), which is always a linear sub-spaces of C".

Birkhoff-von Neumann: Projections on Hilbert space form an
(ortho-)lattice which gives rise to non-classical “quantum logic”.
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Outer Product

The outer product |x)(y| for vectors |x) = (x4,...,x,)" and
(¥l = (1,--.,yn) is an operator/matrix (actually: |x) ® (y|):

() (¥ = xiy;

eg. 10><1\—(;)(0 1>—(8 8)

It could be treated just as a formal combination, e.g. we can
express the identity as | = |0)(0| + |1)(1| because

(10)401 + [1)(11) |4) (10){01 + [1)(1[)(r|0) + 5 1))
= a[0)(0[[0) + [1)(1]|0) +
£10){0[[1) + 5 [1)(1[[1)
= al0)+5|1)
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sub-space generated by |x) by the outer product Py = |x) (x]|.



Spectral Theorem

In the bra-ket notation we can represent a projection onto the
sub-space generated by |x) by the outer product Py = |x) (x]|.

Theorem
A self-adjoint operator A (on a finite dimensional Hilbert space,

e.g. C") can be represented uniquely as a linear combination
A=> )P
i

with \; € R and P; the (orthogonal) projection onto the
eigen-space generated by the eigen-vector |i), i.e.

Pi = [i){i]



Measurement Process

If we perform a measurement of the observable represented by:
A= Nl
i

with eigen-values \; and eigen-vectors |i) in a state |x) we have
to decompose the state according to the observable, i.e.

0= P11 = 2100 = 30 1) = Sl
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Measurement Process

If we perform a measurement of the observable represented by:
A= Nl
i

with eigen-values \; and eigen-vectors |i) in a state |x) we have
to decompose the state according to the observable, i.e.

0= P11 = 2100 = 30 1) = Sl

With probability |a;|2 = | (i|x) |? two things happen
» The measurement instrument will the display ;.
» The state |x) collapses to |/).

22



Do-lt-Yourself Observable
We can take any (orthonormal) basis {|i)}3 of C"* to act as

computational basis. We are free to choose (different)
measurement results \; to indicate different states in {|/)}.
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Do-lt-Yourself Observable
We can take any (orthonormal) basis {|i)}3 of C"* to act as

computational basis. We are free to choose (different)
measurement results \; to indicate different states in {|/)}.

[(n]x)[2 )

An

— |
(0x) ] 0)

The “display” values \; are essential for physicists, in a
quantum computing context they are just side-effects.

) = 22 U1y —— A= 32 A i) (]
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Reversibility

Quantum Dynamics

For unitary transformations describing qubit dynamics:

U =u'

The quantum dynamics is invertible or reversible
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Reversibility

Quantum Dynamics
For unitary transformations describing qubit dynamics:

U =u-'
The quantum dynamics is invertible or reversible

Quantum Measurement

For projection operators in quantum measurement (typically):

PT £ P!
i.e. the quantum measurement is not reversible. However
P2 =P

i.e. the quantum measurement is idempotent.

11/22



Beyond Qubits — Quantum Registers

Operations on a single Qubit are nice and interesting but don’t
give us much computational power.
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Beyond Qubits — Quantum Registers

Operations on a single Qubit are nice and interesting but don’t
give us much computational power.

We need to consider “larger” computational states which
contain more information. There could be two options:

» Quantum Systems with a larger number of freedoms.
» Quantum Registers as a combination of several Qubits.

Though it might one day be physically more realistic/cheaper to
build quantum devices based on not just binary basic states,
even then it will be necessary to combine these larger “Qubits”.

12/22



Free Vector Spaces

In the theory of formal languages we have the construction of
words out of some (finite) set of letters, i.e. alphabet * or S.
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Free Vector Spaces

In the theory of formal languages we have the construction of
words out of some (finite) set of letters, i.e. alphabet * or S.

For vector spaces there is similar construction: Take any (finite)
set of objects B and “declare” it a base. The free vector space

is the set of all linear combinations of elements in
B= {b1 , bg, .. .}, ie.

V(B) = {ZA,-b,- |A\ieCandb; e B}
i

or
V(B) = {Z Ailiy | A€ Cand |i) € B}
i
with the obvious algebraic operations (incl. inner product).
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Multi Qubit State

We encountered already the state space of a single qubit with
B = {0,1} but also with B = {+, —}.
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Multi Qubit State

We encountered already the state space of a single qubit with
B = {0,1} but also with B = {+, —}.

The state space of a two qubit system is given by

V({0,1} x {0,1}) or V({+,—} x {+,-1})

i.e. the base vectors are (in the standard base):

B, = {(07 0)’ (1 ) 0)? (07 1)7 (17 1)}

or we use a “short-hand” notation B, = {00,01,10,11}
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Multi Qubit State

We encountered already the state space of a single qubit with
B = {0,1} but also with B = {+, —}.

The state space of a two qubit system is given by
V({0,1} x {0,1}) or V({+,—} x {+,-})
i.e. the base vectors are (in the standard base):
B, = {(0,0),(1,0),(0,1),(1,1)}
or we use a “short-hand” notation B, = {00,01,10,11}

Issue: What about V(B x B x B)? What is its dimension, or
how many base vectores are there in B3?
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Tensor Product
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Tensor Product
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Tensor Product

Given a n x m matrix A and a k x [ matrix B:
a1 ... a@m by ... by
A= P B = : .o
ant ... anm bk1 - bk/

The tensor or Kronecker product A ® B is a nk x ml matrix:

antB ... anB
AgB=| : ..
an1B ant

Special cases are square matrices (n = mand k = /) and
vectors (rown=k =1,column m=1=1).
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Tensor Product of Vectors

The tensor product of (ket) vectors fulfils a number of nice
algebraic properties, such as

1. The bilinearity property:

(av+a'V) @ (W + B'W') =
— af(V W) + af (VE W) + a/ BV & W) + /B (V & W)

with o, o/, 3,8 € C, and v,V € Ck, w,w’ e C/.
2. Forv,v' € Ckand w,w’ € C! we have:
(voaw, v eaw)=(v,v)(ww)

3. We denote by b!" € By, C C™ the /'th basis vector in C™
then

bjf © b//' - bé('!—1)/+j
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Tensor Product of Matrices

For the tensor product of square matrices we also have:
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Tensor Product of Matrices
For the tensor product of square matrices we also have:

1. The bilinearity property:

(aM + a/M') & (BN + F'N') =
= aB(M®N) + af (M N) + o/B(M @ N) + o/8/(M @ N)
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Tensor Product of Matrices
For the tensor product of square matrices we also have:

1. The bilinearity property:

(aM + a/M') & (BN + F'N') =
= aB(M®N) + af (M N) + o/B(M @ N) + o/8/(M @ N)

a, o, 3,6 € C, MM m x mmatrices N,N’' n x n matrices.
2. We have, withve C"andw ¢ C™:

(M@ N)(vew) = (Mv) @ (Nw)
(M@ N)(M' @ N') = (MM') ® (NN')

17/22



Tensor Product of Matrices
For the tensor product of square matrices we also have:

1. The bilinearity property:

(aM + a/M') & (BN + F'N') =
= aB(M®N) + af (M N) + o/B(M @ N) + o/8/(M @ N)

a, o, 3,6 € C, MM m x mmatrices N,N’' n x n matrices.
2. We have, withve C"andw ¢ C™:

(M@ N)(vew) = (Mv) @ (Nw)
(M@ N)(M' @ N') = (MM') ® (NN')

3. If M and N are unitary (or invertible) so is M ® N, and:

MeoN)" =M" @ N7 and (M N)! = Mf @ N

17/22



The Two Qubit States

Given two Hilbert spaces 4 with basis B; and #H, with basis
B> we can define the tensor product of spaces as

H ®7‘[2=V({b,'®bj|bi€B1,bj€Bg})
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Given two Hilbert spaces 4 with basis B; and #H, with basis
B> we can define the tensor product of spaces as

H ®7‘[2=V({b/®bj|b;€B1,bj€Bg})

Using the notation |/) @ |j) = |/) |/) = |ij) the standard base of
the state space of a two qubit system C* = C? ® C? are:

|00) = |01) = ,|10) =

0
0
0
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The Two Qubit States

Given two Hilbert spaces 4 with basis B; and #H, with basis
B> we can define the tensor product of spaces as

H+ ®7‘[2=V({b/®bj|b;€B1,bj€Bg})

Using the notation |/) @ |j) = |/) |/) = |ij) the standard base of
the state space of a two qubit system C* = C? ® C? are:

|00) = |01) = ,|10) =

0
0
0

- O OO

1 0
0 1
0]’ 0
0 0

Often one also represents them using a “decimal” notation, i.e.
|00) = |0), |01) = |1), |[10) = |2), and |11) = |3).
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Entanglement

The important relation between V(B), e.g. V({0,1}), and
V(B"), e.g. V({0,1}") is given by V(B") = (V(B))®", i.e.:

V(BxBx...x B)y=V(B)®V(B) ... V(B)
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Entanglement

The important relation between V(B), e.g. V({0,1}), and
V(B"), e.g. V({0,1}") is given by V(B") = (V(B))®", i.e.:

V(BxBx...x B)y=V(B)®V(B) ... V(B)

Every n qubit state in C2" can be represented as a linear
combination of the base vectors [0...00),(0...10),...,
[1...11) ordecimal |0),[1),]2),...,...,[2" = 1).

A two-qubit quantum state |¢)) € C? is said to be separable iff
there exist two single-qubit states |+1) and |+/») in C2 such that

V) = 1) ® [ah2)

If |¢)) is not separable then we say that |¢) is entangled.

19/22



Entanglement and Classical Probabilities

In quantum physics the state is given by a vector in a complex
Hilbert space. Instead of probability amplitudes in C" let us
consider probability distributions in a real vector space, i.e. R,
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Entanglement and Classical Probabilities

In quantum physics the state is given by a vector in a complex
Hilbert space. Instead of probability amplitudes in C" let us
consider probability distributions in a real vector space, i.e. R,

All the normalised (using the 1-norm, i.e. ||(pi)ill1 = >_; pi])
elements p in RY represent probability distributions on a d
element probability space Qg = {w1, w2, ... ,wq} i.€.

p = (pi) € D(Qq) with p; = P(w;) € [0,1].

The normalised elements in R% @ R% correspond to the joint
probability distributions on Qq, x Qg,, with p; = P(w; A wj), i.e.

D(Qq, x Qq,) = D(Qg,) ® D(Qq,)

20/22



Classical Correlations
If the events in g, and Q4, are independent (“uncorrelated”)
then their joint distribution is given as a product of distributions
on Qd1 and Qd1, i.e. p=p1 & psor P(w; /\wj) = P(wj) - P(wj).
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Classical Correlations
If the events in g, and Q4, are independent (“uncorrelated”)
then their joint distribution is given as a product of distributions
on Qd1 and Qd1, i.e. p=p1 & psor P(w; /\UJ/’) = P(wj) - P(wj).

If there is a “correlation” or “dependency” then it is impossible
to express a certain joint distribution as a simple (tensor
product) but only as a sum of (tensor) products.

Consider, for example, two coins which “miraculously” always
fall on the same side, i.e. a joint distribution:

1 1
pz5(1,0)(5<>(1,0)T+§(0,1)@<>(0,1)T7Ap1 ® pa

21/22



Relational Program Analysis [*]

11 =1
nt = n-(n-1)
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Relational Program Analysis [*]

11 = 1 arity(m) = even if m=2k
n = n-(n=1)! PAMYLIM) =\ odd  otherwise.

Consider random input n € {1,2, 3} to the factorial, i.e.
P(n=1)= P(n=2)= P(n=3) = . Determine the
probability that n! is even or odd.

P(parity(n!) = even) = g and P(parity(n') = odd) = %

However — the probabilities are not independent — we have, e.g.

0= P(even(n') A n=1)+# P(even(n!))-P(n=1) = =

Entanglement represents correlation (non-independence):
P(parity(n!) | n) # P(parity(n')) @ P(n).
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