Models of Computation II, Exercises 1: Register Machines

1. (a) The graphical representation looks like:

\[\text{START} \rightarrow R_1^{-} \leftarrow R_3^{-} \]
\[R_0^{+} \rightarrow R_2^{-} \rightarrow R_2^{+} \]
\[R_0^{+} \leftarrow R_3^{+} \]

It is very easy to forget to label the start state, but it is essential to do so — otherwise how would you know where to begin? **Always label the start state!**

(b) The computation is: (0,0,2,0,0), (1,0,1,0,0), (2,1,1,0,0), (5,1,1,0,0), (6,1,1,1,0), (0,1,1,1,0), (1,1,1,0,1), (2,2,0,1,0), (3,2,0,0,0), (4,2,0,0,1), (1,3,0,0,1), (2,4,0,0,1), (5,4,0,0,1), (6,4,0,1,1), (5,4,0,1,0), (6,4,0,2,0), (0,4,0,2,0), (7,4,0,2,0).

This register machine computes the sum of the first \(x \) odd numbers, this is equivalent to \(x^2 \), so:

\[f(x) = \sum_{k=0}^{x-1} (1 + 2k) = x^2 \]

Register \(R_0 \) is used for the accumulator and final result, \(R_1 \) is the input and used for termination of the machine, \(R_2 \) is used for the loop that calculates \(2k \), and \(R_3 \) stores a copy of \(R_2 \) whilst it is destructively used by the loop.

States \(L_1 \) to \(L_4 \) compute \(1 + 2k \) and copies \(R_2 \) into \(R_3 \) whilst \(R_2 \) is decremented. \(L_5 \) and \(L_6 \) moves \(R_3 \) back into \(R_2 \) and increments the value of \(R_2 \) by 1 (this is equivalent to the \(\Sigma \) operation incrementing \(k \) for the next addition).

2. (a) i. The following register machine computes \(f \):

\[L_0 : R_2^{-} \rightarrow L_1, L_2 \]
\[L_1 : R_1^{-} \rightarrow L_0, L_4 \]
\[L_2 : R_1^{-} \rightarrow L_3, L_4 \]
\[L_3 : R_0^{+} \rightarrow L_2 \]
\[L_4 : \text{HALT} \]

The machine first reduces \(R_1 \) (which has initial value \(x_1 \)) by the amount in \(R_2 \) (initially \(x_2 \)): this is the loop between instructions \(L_0 \) and \(L_1 \). If it cannot reduce
R_1 that far, it means x_2 > x_1, and so the machine halts at L_4, with R_0 still at its initial value of 0 (which is f(x_1, x_2)). If R_1 can be reduced that far, its contents is then x_1 - x_2, which is copied into R_0 by the loop between L_2 and L_3. When this loop exits, the machine will halt with R_0 = x_1 - x_2 = f(x_1, x_2).

ii. Graphically, the register machine looks like:

![Graph of register machine](image)

(Variations are possible, but this is the simplest that always halts successfully.)

(b) i. Recall what it means for register machine M to compute g(x_1, x_2):

The computation of M starting with R_0 = 0, R_1 = x_1, R_2 = x_2 and all other registers set to 0 halts with R_0 = y if and only if g(x_1, x_2) = y.

Since g(x_1, x_2) is undefined when x_2 > x_1, there is no y with g(x_1, x_2) = y. Therefore the machine cannot halt. Instead, it must run forever.

ii. The simplest way to make the machine run forever if x_2 > x_1 is to have L_1 loop back on itself when R_1 = 0:

![Graph of modified register machine](image)

3. (a) One possible coding is the following:

L_0 : R_1^- \rightarrow L_1, L_2
L_1 : R_1^- \rightarrow L_0, L_1
L_2 : R_1^- \rightarrow L_3, L_4
L_3 : R_0^+ \rightarrow L_2
L_4 : HALT

Other codings are possible by renaming L_1, L_2 and L_3 consistently. L_0 cannot be renamed, because it is the start state.
(b) The machine computes the remainder of x divided by 2. That is, the function

$$f(x) \overset{\text{def}}{=} \begin{cases} 0 & \text{if } x \text{ is even} \\ 1 & \text{if } x \text{ is odd} \end{cases}$$

To see why, consider that whenever the machine is in state L_0, register R_1 has been decreased by an even amount from its initial value of x. (At the start, R_1 has been decreased by 0, which is even.) If $R_1 = 0$, it must be that x was even, and so the machine halts with $R_0 = 0$. Whenever the machine is in state L_1, register R_1 has been decreased by an odd amount from its initial value. Therefore, if $R_1 = 0$ it must be that x was odd, so by incrementing R_0 then halting the machine halts with $R_0 = 1$. If $R_1 > 0$ in state L_0, it can be decremented by 1 so that it has been decremented an odd number of times when the machine enters state L_1. Similarly, if $R_1 > 0$ in state L_1, it can be decremented by 1 so that it has been decremented an even number of times when the machine enters state L_0. Finally, since R_1 is decreased on every loop, we can conclude that the machine always halts eventually.
4. (a) add R_1 to R_2:

\[
\begin{align*}
R_2^+ &\rightarrow R_1^- \\
S^+ &\leftarrow \downarrow \\
S^- &\rightarrow R_1^+
\end{align*}
\]

(b) It would be enough for us to add R_1 to R_2 if R_2 was set to 0. So let’s zero R_2 first! copy R_1 to R_2:

\[
\begin{align*}
\text{zero } R_2 \\
\text{add } R_1 \text{ to } R_2
\end{align*}
\]

(c) We can implement multiplication by repeated addition. multiply R_1 by R_2 to R_0:

\[
\begin{align*}
\text{zero } R_0 \\
\text{add } R_2 \text{ to } R_0
\end{align*}
\]

(d) test $R_1 < R_2$:
(e) The register machine computes the greatest value $f(x)$ such that $(f(x))^2 \leq x$. That is, it computes the floor of the positive square-root of x: $f(x) = \lfloor \sqrt{x} \rfloor$. The machine loops testing whether $(1 + R_0)^2$ is greater than R_1, incrementing R_0 until it is.