Models of Computation II, Exercises 2: The Universal RM

1.

\[\langle B_0 \rangle = \langle 2 \times 1 + 1, (1, 6) \rangle = \langle 3, 2^1(2 \times 6 + 1) - 1 \rangle = \langle 3, 25 \rangle = 2^3(2 \times 25 + 1) = 8 \times 51 = 408 \]

\[\langle B_1 \rangle = \langle 2 \times 2 + 1, (2, 4) \rangle = \langle 5, 2^2(2 \times 4 + 1) - 1 \rangle = \langle 5, 35 \rangle = 2^5(2 \times 35 + 1) = 32 \times 71 = 2272 \]

\[\langle B_2 \rangle = \langle 2 \times 0, 3 \rangle = \langle 0, 3 \rangle = 2^0(2 \times 3 + 1) = 7 \]

\[\langle B_3 \rangle = \langle 2 \times 3, 1 \rangle = \langle 6, 1 \rangle = 2^6(2 \times 1 + 1) = 192 \]

\[\langle B_4 \rangle = \langle 2 \times 3 + 1, (5, 0) \rangle = \langle 7, 2^5(2 \times 0 + 1) - 1 \rangle = \langle 7, 31 \rangle = 2^7(2 \times 31 + 1) = 8064 \]

\[\langle B_5 \rangle = \langle 2 \times 2, 4 \rangle = \langle 4, 4 \rangle = 2^4(2 \times 4 + 1) = 144 \]

\[\langle B_6 \rangle = \langle 2 \times 2, 2 \rangle = \langle 4, 4 \rangle = 2^4(2 \times 2 + 1) = 8 \]

2. (a) To decode the program, we first decode it as a list \(l \) and then decode each individual instruction. First, observe that

\[2^{216} \times 833 = 2^{216}(2 \times 416 + 1) = \langle 216, 416 \rangle \]

so \(l = 216 :: l_1 \) for some list \(l_1 \) with \(\langle l_1 \rangle = 416 \).

To decode \(l_1 \), we need to find \(x, y \) such that \(2^x(2y + 1) = 416 \). We should therefore work out what power of 2 divides 416, which we can do by repeatedly factoring out 2:

\[416 = 2 \times 208 = 2^2 \times 104 = 2^3 \times 52 = 2^4 \times 26 = 2^5 \times 13 \]

Now, 2 does not divide 13, but \(2 \times 6 + 1 = 13 \). Therefore \(\langle l_1 \rangle = 2^5(2 \times 6 + 1) = \langle 5, 6 \rangle \).

Consequently, \(l_1 = 5 :: l_2 \) for some list \(l_2 \) with \(\langle l_2 \rangle = 6 \).

To decode \(l_2 \), we need to find \(x, y \) such that \(2^x(2y + 1) = 6 \). It is easy to see that the solution is \(x = y = 1 \), so \(l_2 = 1 :: l_3 \) for some list \(l_3 \) with \(\langle l_3 \rangle = 1 \).

Now \(1 = 2^0(2 \times 0 + 1) \), so \(l_3 = 0 :: l_4 \) for some list \(l_4 \) with \(\langle l_4 \rangle = 0 \). It must be that \(l_4 = [] \).

Thus, we have

\[l = [216, 5, 1, 0] \]

Now we have to decode each instruction.
216 is non-zero, so it represents either an increment or decrement instruction. To find out which, we should decode it as $\langle\langle x, y \rangle\rangle = 2^x(2y + 1)$:

$$216 = 2 \times 108 = 2^2 \times 54 = 2^3 \times 27 = 2^3(2 \times 13 + 1) = \langle\langle 3, 13 \rangle\rangle$$

Now $3 = 2 \times 1 + 1$, so the instruction is a decrement to register 1. To determine which labels the instruction goes to, we need to decode 13 as $\langle j, k \rangle = 2^j(2k + 1) - 1$:

$$13 = 14 - 1 = 2 \times 7 - 1 = 2^1(2 \times 3 + 1) - 1 = \langle 1, 3 \rangle$$

We have determined that $216 = \langle\langle 2 \times 1 + 1, \langle 1, 3 \rangle \rangle\rangle\rangle$, so we have

$$L_0 : R_1^- \rightarrow L_1, L_3$$

5 is also non-zero.

$$5 = 2^0(2 \times 2 + 1) = \langle 0, 2 \rangle = \langle 2 \times 0, 2 \rangle$$

This therefore represents the instruction that increments R_0 and jumps to L_2:

$$L_1 : R_0^+ \rightarrow L_2$$

1 is also non-zero.

$$1 = 2^0(2 \times 0 + 1) = \langle 0, 0 \rangle = \langle 2 \times 0, 0 \rangle$$

This therefore represents the instruction that increments R_0 and jumps to R_0:

$$L_2 : R_0^+ \rightarrow L_0$$

0 represents the halting instruction:

$$L_3 : \text{HALT}$$

Consequently, the complete decoded program is:

$$L_0 : R_1^- \rightarrow L_1, L_3$$
$$L_1 : R_0^+ \rightarrow L_2$$
$$L_2 : R_0^+ \rightarrow L_0$$
$$L_3 : \text{HALT}$$

(b) The program increments R_0 by twice the initial value of R_1. If f is the function of one argument computed by the register machine with this program, $f(x)$ is the final value of R_0 when the machine is run from the initial state with $R_0 = 0$ and $R_1 = x$. Therefore $f(x) = 2x$ — the machine computes the doubling function.

3. (a) “test $L = 0$":

2
(b) "Z ← L":

(c) "L ← Z/2":

(d) "L ::= L/2":

\[L^− \rightarrow L^+ \]
\[L^− \rightarrow Z^+ \]
\[L^− \rightarrow Z^− \rightarrow \text{rem } 1 \]
\[L^+ \]
\[L^− \rightarrow \text{rem } 1 \]
\[L \leftarrow Z/2 \]
\[Z \leftarrow L \]
\[\text{rem } 0 \]
\[\text{rem } 0 \]
\[\text{rem } 0 \]
(e) "\(\langle X, L \rangle ::= L \)"

(f) If you have made the same design choices as here, you should get something like:

This should be familiar as the implementation of the "pop \(L \) to \(X \)" graph component from the lectures.

4. No solution, but a hint: it is possible to simulate three registers using two registers by representing the values \(x, y, z \) of the three registers as \(2^x3^y5^z \).