Exercises

Program Analysis

Sheet 4

Exercise 1

Consider the following Fun expression

\[\begin{align*}
\text{let } f_1 & = (\text{fn } x_1 \Rightarrow x_1) \\
\text{in } & \text{let } f_2 = (\text{fn } x_2 \Rightarrow x_2) \\
& \text{in } ((f_1 f_2) (\text{fn } y \Rightarrow y)))
\end{align*}\]

1. Label this Fun expression.
2. Write down the constraints that are generated for the Control Flow Analysis of this function.
3. Give a walkthrough of the algorithm to develop a solution to the constraints.

Exercise 2

Consider the (labelled) Fun expression \(e\):

\[\begin{align*}
\text{let } f & = (\text{fn } x \Rightarrow (\text{if } x^1 > 0^2) \text{ then } (\text{fn } y \Rightarrow y^4)^5 \\
& \text{else } (\text{fn } z \Rightarrow 2^6)^7)^8)^9 \\
\text{in } & ((f^{10^{311}})^{12^{0^{13^{14^{15}}}}})
\end{align*}\]

Write down the constraints that get generated by the combined Control and Data Flow. Solve them to show that the identity is the only closure that is produced at label 12.

Exercise 3

We consider the language (i.e. the pure \(\lambda\) calculus):

\[L := x | \lambda x.L | L_1L_2\]

where \(\lambda x.L\) represents a function with a single bound variable \(x\) and \(L_1L_2\) denotes application of \(L_1\) to \(L_2\). You are asked to develop a 0-CFA for this language by the following steps:

- Write down a suitably labelled version of the syntax and define the components needed (e.g. cache) for your 0-CFA specification.
- Write down the specification of the 0-CFA.
- Hence or otherwise, write down the results of the 0-CFA of:

\((\lambda x.xx)(\lambda y.y)\)