Algorithms, informally

People tried to find an algorithm to solve Hilbert’s Entscheidungsproblem, without success.

A natural question was then to ask whether it was possible to prove that such an algorithm did not exist. To ask this question properly, it was necessary to provide a formal definition of algorithm.

Common features of the (historical) examples of algorithms:

- **finite** description of the procedure in terms of elementary operations;
- **deterministic**, next step is uniquely determined if there is one;
- procedure may not terminate on some input data, but we can recognise when it does terminate and what the result will be.
Turing and Church’s equivalent definitions of algorithm capture the notion of **computable function**: an algorithm expects some input, does some calculation and, if it terminates, returns a unique result.

We first study **register machines**, which provide a simple definition of algorithm. We describe the **universal register machine** and introduce the **halting problem**, which is probably the most famous example of a problem that is not computable.

We then move to **Turing machines** and **Church’s λ-calculus**.
Register Machines, informally

Register machines operate on natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$ stored in (idealized) registers using the following “elementary operations”:

- add 1 to the contents of a register
- test whether the contents of a register is 0
- subtract 1 from the contents of a register if it is non-zero
- jumps (“goto”)
- conditionals (“if_then_else_”)
Register Machines

Definition

A register machine (sometimes abbreviated to RM) is specified by:

- finitely many registers R_0, R_1, \ldots, R_n, each capable of storing a natural number;

- a program consisting of a finite list of instructions of the form $label : body$ where, for $i = 0, 1, 2, \ldots$, the $(i + 1)^{th}$ instruction has label L_i. The instruction $body$ takes the form:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^+ \rightarrow L'$</td>
<td>add 1 to contents of register R and jump to instruction labelled L'</td>
</tr>
<tr>
<td>$R^- \rightarrow L', L''$</td>
<td>if contents of R is > 0, then subtract 1 and jump to L', else jump to L''</td>
</tr>
<tr>
<td>$HALT$</td>
<td>stop executing instructions</td>
</tr>
</tbody>
</table>
Example

Registers

R_0 R_1 R_2

Program

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : HALT$

Example Computation

<table>
<thead>
<tr>
<th>L_i</th>
<th>R_0</th>
<th>R_1</th>
<th>R_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A register machine configuration has the form:

\[c = (\ell, r_0, \ldots, r_n) \]

where \(\ell \) = current label and \(r_i \) = current contents of \(R_i \).

Notation “\(R_i = x \) [in configuration \(c \)]” means \(c = (\ell, r_0, \ldots, r_n) \) with \(r_i = x \).

Initial configurations

\[c_0 = (0, r_0, \ldots, r_n) \]

where \(r_i \) = initial contents of register \(R_i \).
A computation of a RM is a (finite or infinite) sequence of configurations

\[c_0, c_1, c_2, \ldots \]

where

- \(c_0 = (0, r_0, \ldots, r_n) \) is an initial configuration;
- each \(c = (\ell, r_0, \ldots, r_n) \) in the sequence determines the next configuration in the sequence (if any) by carrying out the program instruction labelled \(L_\ell \) with registers containing \(r_0, \ldots, r_n \).
Halting Computations

For a finite computation c_0, c_1, \ldots, c_m, the last configuration $c_m = (\ell, r, \ldots)$ is a halting configuration: that is, the instruction labelled L_ℓ is

* either $HALT$ (a ‘proper halt’)

* or $R^+ \rightarrow L$, or $R^- \rightarrow L, L'$ with $R > 0$, or $R^- \rightarrow L', L$ with $R = 0$

and there is no instruction labelled L in the program (an ‘erroneous halt’)

For example, the program

\[
L_0 : R_1^+ \rightarrow L_2
\]

\[
L_1 : HALT
\]

halts erroneously.
Non-halting Computations

There are computations which never halt. For example, the program

\begin{align*}
L_0 : R_1^+ \rightarrow L_0 \\
L_1 : HALT
\end{align*}

only has infinite computation sequences

\((0, r), (0, r + 1), (0, r + 2), \ldots\)
Graphical representation

- One node in the graph for each instruction $label : body$, with the node labelled by the register of the instruction body; notation $[L]$ denotes the register of the body of label L
- Arcs represent jumps between instructions
- Initial instruction $START$.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^+ \rightarrow L$</td>
<td>$R^+ \rightarrow [L]$</td>
</tr>
<tr>
<td>$R^- \rightarrow L, L'$</td>
<td>$R^- \rightarrow [L]$</td>
</tr>
<tr>
<td>$HALT$</td>
<td>$HALT$</td>
</tr>
<tr>
<td>L_0</td>
<td>$START \rightarrow [L_0]$</td>
</tr>
</tbody>
</table>
Example

Registers

\[R_0 \quad R_1 \quad R_2 \]

Program

\[L_0 : R_1^- \to L_1, L_2 \]
\[L_1 : R_0^+ \to L_0 \]
\[L_2 : R_2^- \to L_3, L_4 \]
\[L_3 : R_0^+ \to L_2 \]
\[L_4 : HALT \]

Claim: starting from initial configuration \((0, 0, x, y)\), this machine’s computation halts with configuration \((4, x + y, 0, 0)\).
Partial functions

Register machine computation is **deterministic**: in any non-halting configuration, the next configuration is uniquely determined by the program.

So the relation between initial and final register contents defined by a register machine program is a **partial function**…

Definition A **partial function** from a set X to a set Y is specified by any subset $f \subseteq X \times Y$ satisfying

$$(x, y) \in f \text{ and } (x, y') \in f \text{ implies } y = y'.$$
Partial Functions

Notation

- “$f(x) = y$” means $(x, y) \in f$
- “$f(x)\downarrow$” means $\exists y \in Y \ (f(x) = y)$
- “$f(x)\uparrow$” means $\neg\exists y \in Y \ (f(x) = y)$
- $X \rightarrow Y = \text{set of all partial functions from } X \text{ to } Y$

 $X \rightarrow Y = \text{set of all (total) functions from } X \text{ to } Y$

Definition. A partial function from a set X to a set Y is total if it satisfies

$$f(x) \downarrow$$

for all $x \in X$.
Computable functions

Definition. The partial function \(f \in \mathbb{N}^n \to \mathbb{N} \) is \textit{(register machine) computable} if there is a register machine \(M \) with at least \(n + 1 \) registers \(R_0, R_1, \ldots, R_n \) (and maybe more) such that for all \((x_1, \ldots, x_n) \in \mathbb{N}^n \) and all \(y \in \mathbb{N} \),

the computation of \(M \) starting with \(R_0 = 0, R_1 = x_1, \ldots, R_n = x_n \) and all other registers set to 0, halts with \(R_0 = y \) if and only if \(f(x_1, \ldots, x_n) = y \).
Example

Registers

\[R_0 \quad R_1 \quad R_2 \]

Program

\[L_0 : R_1^- \rightarrow L_1, L_2 \]
\[L_1 : R_0^+ \rightarrow L_0 \]
\[L_2 : R_2^- \rightarrow L_3, L_4 \]
\[L_3 : R_0^+ \rightarrow L_2 \]
\[L_4 : HALT \]

Graphical Representation

\[\text{START} \]
\[\downarrow \]
\[R_1^- \quad \leftrightarrow \quad R_0^+ \]
\[\downarrow \]
\[R_2^- \quad \leftrightarrow \quad R_0^+ \]
\[\downarrow \]
\[HALT \]

If the machine starts with registers \((R_0, R_1, R_2) = (0, x, y)\), then it halts with registers \((R_0, R_1, R_2) = (x + y, 0, 0)\).
Multiplication \(f(x, y) \triangleq xy \) is computable.

If the machine starts with registers \((R_0, R_1, R_2, R_3) = (0, x, y, 0)\), then it halts with registers \((R_0, R_1, R_2, R_3) = (xy, 0, y, 0)\).
The Halting Problem

The Halting Problem is the decision problem with

- the set S of all pairs (A, D), where A is an algorithm and D is some input datum on which the algorithm is designed to operate;
- the property $A(D) \downarrow$ holds for $(A, D) \in S$ if algorithm A when applied to D eventually produces a result: that is, eventually halts.

Turing and Church’s work shows that the Halting Problem is **unsolvable (undecidable)**: that is, there is no algorithm H such that, for all $(A, D) \in S$,

$$H(A, D) = 1 \quad A(D) \downarrow$$

$$= 0 \quad \text{otherwise}$$
Definition

For $x, y \in \mathbb{N}$, define

$$
\begin{aligned}
\langle x, y \rangle & \triangleq 2^x (2y + 1) \\
\langle x, y \rangle & \triangleq 2^x (2y + 1) - 1
\end{aligned}
$$

Example

$$27 = 0b11011 = \langle 0, 13 \rangle = \langle 2, 3 \rangle$$

Result

$\langle - , - \rangle$ gives a bijection between $\mathbb{N} \times \mathbb{N}$ and $\mathbb{N}^+ = \{ n \in \mathbb{N} \mid n \neq 0 \}$.

$\langle - , - \rangle$ gives a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N}.

Recall the definition of bijection from discrete maths.
Numerical Coding of Pairs

Definition

For \(x, y \in \mathbb{N}\), define

\[
\langle x, y \rangle \triangleq 2^x (2y + 1)
\]

Sketch Proof of Result

It is enough to observe that

\[
\begin{align*}
0b \langle x, y \rangle &= 0by10 \cdots 0 \quad x \text{ number of } 0s \\
0b \langle x, y \rangle &= 0by01 \cdots 1 \quad x \text{ number of } 1s
\end{align*}
\]

where \(0bx \triangleq x\) in binary. \(\triangleq\) means ‘is defined to be’.
Numerical Coding of Lists

Let $List \mathbb{N}$ be the set of all finite lists of natural numbers, defined by:

- **empty list:** $[]$
- **list cons:** $x :: \ell \in List \mathbb{N}$ if $x \in \mathbb{N}$ and $\ell \in List \mathbb{N}$

Notation: $[x_1, x_2, \ldots, x_n] \triangleq x_1 :: (x_2 :: (\cdots x_n :: [] \cdots))$
Numerical Coding of Lists

Let $List \mathbb{N}$ be the set of all finite lists of natural numbers.

For $\ell \in List \mathbb{N}$, define $\llbracket \ell \rrbracket \in \mathbb{N}$ by induction on the length of the list $
\begin{align*}
\ell: & \quad \llbracket \emptyset \rrbracket \triangleq 0 \\
& \quad \llbracket x :: \ell \rrbracket \triangleq \langle x, \llbracket \ell \rrbracket \rangle = 2^x(2 \cdot \llbracket \ell \rrbracket + 1)
\end{align*}

Thus, $\llbracket [x_1, x_2, \ldots, x_n] \rrbracket = \langle x_1, \langle x_2, \ldots \langle x_n, 0 \rangle \rangle \rangle \rangle \rangle$
Numerical Coding of Lists

Let \(List \mathbb{N} \) be the set of all finite lists of natural numbers.

For \(\ell \in List \mathbb{N} \), define \(\llbracket \ell \rrbracket \in \mathbb{N} \) by induction on the length of the list \(\ell \):

\[
\begin{align*}
\llbracket \[] \rrbracket & \triangleq 0 \\
\llbracket x :: \ell \rrbracket & \triangleq \langle \langle x, \llbracket \ell \rrbracket \rangle \rangle = 2^x (2 \cdot \llbracket \ell \rrbracket + 1)
\end{align*}
\]

Examples

\[
\begin{align*}
\llbracket [3] \rrbracket &= \llbracket 3 :: [] \rrbracket = \langle \langle 3, 0 \rangle \rangle = 2^3 (2 \cdot 0 + 1) = 8 \\
\llbracket [1, 3] \rrbracket &= \langle \langle 1, \llbracket [3] \rrbracket \rangle \rangle = \langle \langle 1, 8 \rangle \rangle = 34 \\
\llbracket [2, 1, 3] \rrbracket &= \langle \langle 2, \llbracket [1, 3] \rrbracket \rangle \rangle = \langle \langle 2, 34 \rangle \rangle = 276
\end{align*}
\]
Numerical Coding of Lists

Let $\text{List } \mathbb{N}$ be the set of all finite lists of natural numbers.

For $\ell \in \text{List } \mathbb{N}$, define $\llbracket \ell \rrbracket \in \mathbb{N}$ by induction on the length of the list ℓ:

$$
\begin{align*}
\llbracket \emptyset \rrbracket & \triangleq 0 \\
\llbracket x :: \ell \rrbracket & \triangleq \langle x, \llbracket \ell \rrbracket \rangle = 2^x (2 \cdot \llbracket \ell \rrbracket + 1)
\end{align*}
$$

Result The function $\ell \mapsto \llbracket \ell \rrbracket$ gives a bijection from $\text{List } \mathbb{N}$ to \mathbb{N}.
Numerical Coding of Lists

Let \(\text{List} \mathbb{N} \) be the set of all finite lists of natural numbers.

For \(\ell \in \text{List} \mathbb{N} \), define \(\lceil \ell \rceil \in \mathbb{N} \) by induction on the length of the list \(\ell \):

\[
\begin{align*}
\lceil [] \rceil & \triangleq 0 \\
\lceil x :: \ell \rceil & \triangleq \langle \langle x, \lceil \ell \rceil \rangle \rangle = 2^x (2 \cdot \lceil \ell \rceil + 1)
\end{align*}
\]

Result The function \(\ell \mapsto \lceil \ell \rceil \) gives a bijection from \(\text{List} \mathbb{N} \) to \(\mathbb{N} \).

Sketch Proof

The proof follows by observing that

\[
0 \text{b} \lceil [x_1, x_2, \ldots, x_n] \rceil = \begin{array}{c}
1 \\
\overbrace{0 \cdots 0}^{x_n \text{ os}}
\end{array} \begin{array}{c}
1 \\
\overbrace{0 \cdots 0}^{x_{n-1} \text{ os}}
\end{array} \cdots \begin{array}{c}
1 \\
\overbrace{0 \cdots 0}^{x_1 \text{ os}}
\end{array}
\]
Recall Register Machines

Definition

A register machine (sometimes abbreviated to RM) is specified by:

- finitely many registers R_0, R_1, \ldots, R_n, each capable of storing a natural number;

- a program consisting of a finite list of instructions of the form $label : body$ where, for $i = 0, 1, 2, \ldots$, the $(i + 1)$th instruction has label L_i. The instruction $body$ takes the form:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^+ \rightarrow L'$</td>
<td>add 1 to contents of register R and jump to instruction labelled L'</td>
</tr>
<tr>
<td>$R^- \rightarrow L', L''$</td>
<td>if contents of R is > 0, then subtract 1 and jump to L', else jump to L''</td>
</tr>
<tr>
<td>HALT</td>
<td>stop executing instructions</td>
</tr>
</tbody>
</table>
Numerical Coding of Programs

If \(P \) is the RM program

\[
\begin{align*}
L_0 : \text{body}_0 \\
L_1 : \text{body}_1 \\
\vdots \\
L_n : \text{body}_n
\end{align*}
\]

then its numerical code is

\[
\langle \langle \text{body}_0, \ldots, \text{body}_n \rangle \rangle
\]

where the numerical code \(\langle \text{body} \rangle \) of an instruction body is defined by:

\[
\begin{align*}
\langle \langle R_i^+ \rightarrow L_j \rangle \rangle &\triangleq \langle \langle 2i, j \rangle \rangle \\
\langle \langle R_i^- \rightarrow L_j, L_k \rangle \rangle &\triangleq \langle \langle 2i + 1, \langle j, k \rangle \rangle \rangle \\
\langle HALT \rangle &\triangleq 0
\end{align*}
\]
Recall Addition \(f(x, y) \triangleq x + y \) is Computable

Registers

\(R_0 \ R_1 \ R_2 \)

Program

\[
\begin{align*}
L_0 & : R_1^- \rightarrow L_1, L_2 \\
L_1 & : R_0^+ \rightarrow L_0 \\
L_2 & : R_2^- \rightarrow L_3, L_4 \\
L_3 & : R_0^+ \rightarrow L_2 \\
L_4 & : HALT
\end{align*}
\]

If the machine starts with registers \((R_0, R_1, R_2) = (0, x, y)\), it halts with registers \((R_0, R_1, R_2) = (x + y, 0, 0)\).
Coding of the RM for Addition

\[P^{-} \triangleq \lceil [B_{0}^{-}, \ldots, B_{4}^{-}] \rceil \]

where

\[B_{0}^{-} = \lceil R_{1}^{-} \rightarrow L_{1}, L_{2}^{-} = \langle (2 \times 1) + 1, \langle 1, 2 \rangle \rangle \]
\[= \langle 3, 9 \rangle = 8 \times (18 + 1) = 152 \]

\[B_{1}^{-} = \lceil R_{0}^{+} \rightarrow L_{0}^{-} = \langle 2 \times 0, 0 \rangle \rceil = 1 \]

\[B_{2}^{-} = \lceil R_{2}^{-} \rightarrow L_{3}, L_{4}^{-} = \langle (2 \times 2) + 1, \langle 3, 4 \rangle \rangle \]
\[= \langle 5, (8 \times 9) - 1 \rangle = \langle 5, 71 \rangle \]
\[= 2^{5} \times ((2 \times 71) + 1) = 32 \times 143 = 4576 \]

\[B_{3}^{-} = \lceil R_{0}^{+} \rightarrow L_{2}^{-} = \langle 2 \times 0, 2 \rangle \rceil = 5 \]

\[B_{4}^{-} = \lceil HALT^{-} \rceil = 0 \]
Decoding Numbers as Bodies and Programs

Any $x \in \mathbb{N}$ decodes to a unique instruction $body(x)$:

if $x = 0$ then $body(x)$ is $HALT$,
else ($x > 0$ and) let $x = \langle y, z \rangle$ in
if $y = 2i$ is even, then $body(x)$ is $R_i^+ \rightarrow L_z$,
else $y = 2i + 1$ is odd, let $z = \langle j, k \rangle$ in
$body(x)$ is $R_i^- \rightarrow L_j, L_k$

So any $e \in \mathbb{N}$ decodes to a unique program $prog(e)$, called the register machine program with index e:

$$prog(e) \triangleq \begin{array}{c}
L_0 : body(x_0) \\
\vdots \\
L_n : body(x_n)
\end{array}$$

where $e = \lceil [x_0, \ldots, x_n] \rceil$
Example of $prog(e)$

- $786432 = 2^{19} + 2^{18} = 0b110\ldots0 = \langle [18, 0]^{-} \rangle$
- $18 = 0b10010 = \langle 1, 4 \rangle = \langle 1, \langle 0, 2 \rangle \rangle = \langle R_0^{-} \rightarrow L_0, L_2^{-} \rangle$
- $0 = [HALT]^{-}$

So $prog(786432) = \begin{cases} L_0: R_0^{-} \rightarrow L_0, L_2 \\ L_1: HALT \end{cases}$