Computable Functions

In this part of the course, we study several formal definitions of algorithm. These definitions are equivalent, providing different ways of describing the notion of \textit{computable function}.

\begin{center}
\textbf{Algorithms, informally}
\end{center}

People tried to find an algorithm to solve Hilbert’s Entscheidungsproblem, without success.

A natural question was then to ask whether it was possible to \textbf{prove} that such an algorithm did not exist. To ask this question properly, it was necessary to provide a \textbf{formal} definition of algorithm.

Common features of the (historical) examples of algorithms:

- \textbf{finite} description of the procedure in terms of elementary operations;
- \textbf{deterministic}, next step is uniquely determined if there is one;
- procedure may not terminate on some input data, but we can recognise when it does terminate and \textbf{what the result} will be.

So far, we have studied the operational and denotational semantics of a simple while language, \textit{While}. The denotational semantics of \textit{While} gives mathematical meaning to while programs as special functions (actually, the so-called continuous functions) over special sets (domains). We have given an indication of this world of denotational semantics, by providing an interpretation (meaning) of while programs as state transformers $ST = [\Sigma \to \Sigma_{\bot}]$ where Σ is the set of all states. However, although the denotational semantics provides a \textit{fundamental} mathematical meaning to programs, it does not provide us with a direct definition of what it means to compute something.

Meanwhile, the operational semantics of \textit{While} does provide us with a formal description of what it means to compute something. Given an initial state, we know precisely how a while program computes: it either computes forever, gets stuck, or terminates yielding a final state (the result). Although the commands in \textit{While} are important programming constructs, the language does not seem right as a \textit{fundamental} definition of algorithm. Instead, we
will initially explore definitions of algorithm which are closer to how machines compute. We first give a formal definition of register machine, which provides a simple description of a computing machine. We then give a definition of Turing machine, which is more complicated description of a computing machine. Although more complicated, every computer scientist should know about Turing machines! Finally, we give a definition of Church’s lambda-calculus. This provides a completely different way of describing computation which is much nearer to the notion of function rather than the notion of computing machine. What is amazing is that these different definitions are actually equivalent.

In the Compilers course, you have seen the translation of a while language into register machines. Each course uses slightly different definitions, because the different courses are emphasising different points. Despite this, ideas from each course transfer. Can you define a translation from While to the register machines described in this course?

Algorithms as Special Functions

Turing and Church’s equivalent definitions of algorithm capture the notion of computable function: an algorithm expects some input, does some calculation and, if it terminates, returns a unique result.

We first study register machines, which provide a simple definition of algorithm. We describe the universal register machine and introduce the halting problem, which is probably the most famous example of a problem that is not computable.

We then move to Turing machines and Church’s \(\lambda \)-calculus.

Register Machines

The register machine gets its name from its one or more uniquely addressed registers, each of which holds a natural number. There are several versions of register machines. We are using the Minski register machines. The work
on register machines occurred in the 1950s and 1960s. One motivation was that people were trying to show that Hilbert’s 10th problem on Diophantine equations was undecidable. This was finally cracked in 1970s using Turing machines, and a simpler proof was given in the 1980s using register machines. Register machines are (apparently) particularly suited to constructing Diophantine equations [Matiyasevich].

Register Machines, informally

Register machines operate on natural numbers \(\mathbb{N} = \{0, 1, 2, \ldots \} \) stored in (idealized) registers using the following “elementary operations”:

- add 1 to the contents of a register
- test whether the contents of a register is 0
- subtract 1 from the contents of a register if it is non-zero
- jumps ("goto")
- conditionals ("if_then_else_")
Register Machines

Definition

A register machine (sometimes abbreviated to RM) is specified by:

- finitely many registers R_0, R_1, \ldots, R_n, each capable of storing a natural number;
- a program consisting of a finite list of instructions of the form label : body where, for $i = 0, 1, 2, \ldots$, the $(i + 1)^{\text{th}}$ instruction has label L_i. The instruction body takes the form:

- $R^+ \rightarrow L'$: add 1 to contents of register R and jump to instruction labelled L'
- $R^- \rightarrow L', L''$: if contents of R is > 0, then subtract 1 and jump to L', else jump to L''
- HALT: stop executing instructions

Example

Registers
\[R_0, R_1, R_2 \]

Program
\[
\begin{align*}
L_0 : R_1^- & \rightarrow L_1, L_2 \\
L_1 : R_0^+ & \rightarrow L_0 \\
L_2 : R_2^- & \rightarrow L_3, L_4 \\
L_3 : R_0^+ & \rightarrow L_2 \\
L_4 : \text{HALT} &
\end{align*}
\]

Example Computation
\[
\begin{array}{cccc}
L_i & R_0 & R_1 & R_2 \\
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
2 & 1 & 0 & 2 \\
3 & 1 & 0 & 1 \\
2 & 2 & 0 & 1 \\
3 & 2 & 0 & 0 \\
2 & 3 & 0 & 0 \\
4 & 3 & 0 & 0 \\
\end{array}
\]
Exercise Consider the following program, acting on registers R_0, R_1, R_2, R_3:

Program

$L_0 : R_1^- \rightarrow L_1, L_6$
$L_1 : R_2^- \rightarrow L_2, L_4$
$L_2 : R_0^+ \rightarrow L_3$
$L_3 : R_3^+ \rightarrow L_1$
$L_4 : R_3^- \rightarrow L_5, L_0$
$L_5 : R_2^+ \rightarrow L_4$
$L_6 : HALT$

Give the example computation starting from initial configuration $(0, 2, 3, 0)$.

Register Machine Configuration

A register machine configuration has the form:

$$c = (\ell, r_0, \ldots, r_n)$$

where ℓ = current label and r_i = current contents of R_i.

Notation “$R_i = x$ [in configuration c]” means $c = (\ell, r_0, \ldots, r_n)$ with $r_i = x$.

Initial configurations

$$c_0 = (0, r_0, \ldots, r_n)$$

where r_i = initial contents of register R_i.
Register Machine Computation

A computation of a RM is a (finite or infinite) sequence of configurations

\[c_0, c_1, c_2, \ldots\]

where

- \(c_0 = (0, r_0, \ldots, r_n)\) is an initial configuration;
- each \(c = (\ell, r_0, \ldots, r_n)\) in the sequence determines the next configuration in the sequence (if any) by carrying out the program instruction labelled \(L_\ell\) with registers containing \(r_0, \ldots, r_n\).

Halting Computations

For a finite computation \(c_0, c_1, \ldots, c_m\), the last configuration \(c_m = (\ell, r, \ldots)\) is a halting configuration: that is, the instruction labelled \(L_\ell\) is

- either \(HALT\) (a ‘proper halt’)
- or \(R^+ \rightarrow L\), or \(R^- \rightarrow L, L'\) with \(R > 0\), or \(R^- \rightarrow L', L\) with \(R = 0\) and there is no instruction labelled \(L\) in the program (an ‘erroneous halt’)

For example, the program

\[
L_0 : R_1^+ \rightarrow L_2 \\
L_1 : HALT
\]

halts erroneously.
Notice that it is always possible to modify programs (without affecting their computations) to turn all erroneous halts into proper halts by adding extra $HALT$ instructions to the list with appropriate labels.

Non-halting Computations

There are computations which never halt. For example, the program

\[
\begin{align*}
L_0 : R_1^+ & \to L_0 \\
L_1 : HALT
\end{align*}
\]

only has infinite computation sequences

\[(0, r), (0, r + 1), (0, r + 2), \ldots\]
Graphical representation

- One node in the graph for each instruction \(\text{label : body} \), with the node labelled by the register of the instruction body; notation \([L]\) denotes the register of the body of label \(L\).
- Arcs represent jumps between instructions.
- Initial instruction \(\text{START}\).

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^+ \rightarrow L)</td>
<td>(R^+ \rightarrow [L])</td>
</tr>
<tr>
<td>(R^- \rightarrow L, L')</td>
<td>(R^- \rightarrow [L]) (R^- \rightarrow [L'])</td>
</tr>
<tr>
<td>(\text{HALT})</td>
<td>(\text{HALT})</td>
</tr>
<tr>
<td>(L_0)</td>
<td>(\text{START} \rightarrow [L_0])</td>
</tr>
</tbody>
</table>

Example

Registers

\(R_0 \quad R_1 \quad R_2\)

Program

\(L_0 : R_1^- \rightarrow L_1, L_2\)
\(L_1 : R_0^+ \rightarrow L_0\)
\(L_2 : R_2^- \rightarrow L_3, L_4\)
\(L_3 : R_0^+ \rightarrow L_2\)
\(L_4 : \text{HALT}\)

Claim: starting from initial configuration \((0, 0, x, y)\), this machine’s computation halts with configuration \((4, x + y, 0, 0)\).
The graphical representation is a bit confusing. There is one node in the graph for each instruction label: body. However, the nodes are only labelled with the registers of the instruction bodies. For example, in slide 10, we have two nodes labelled R_0^+. The top node corresponds to the instruction $L_1 : R_0^+ \rightarrow L_0$, and the bottom node to $L_3 : R_0^+ \rightarrow L_2$. The initial instruction $START$ is essential, as the graphical representation loses the sequential ordering of instructions.

Exercise Recall the following program acting on registers R_0, R_1, R_2, R_3:

<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_0 : R_1^- \rightarrow L_1, L_6$</td>
</tr>
<tr>
<td>$L_1 : R_2^- \rightarrow L_2, L_4$</td>
</tr>
<tr>
<td>$L_2 : R_0^+ \rightarrow L_3$</td>
</tr>
<tr>
<td>$L_3 : R_3^+ \rightarrow L_1$</td>
</tr>
<tr>
<td>$L_4 : R_3^- \rightarrow L_5, L_0$</td>
</tr>
<tr>
<td>$L_5 : R_2^- \rightarrow L_4$</td>
</tr>
<tr>
<td>$L_6 : HALT$</td>
</tr>
</tbody>
</table>

What is the graphical representation of this program?

Partial functions

Register machine computation is **deterministic**: in any non-halting configuration, the next configuration is uniquely determined by the program.

So the relation between initial and final register contents defined by a register machine program is a **partial function**…

Definition A **partial function** from a set X to a set Y is specified by any subset $f \subseteq X \times Y$ satisfying

$$(x, y) \in f \text{ and } (x, y') \in f \text{ implies } y = y'.$$
Partial Functions

Notation

- “$f(x) = y$” means $(x, y) \in f$
- “$f(x) \downarrow$” means $\exists y \in Y \ (f(x) = y)$
- “$f(x) \uparrow$” means $\neg \exists y \in Y \ (f(x) = y)$
- $X \rightarrow Y$ = set of all partial functions from X to Y
- $X \rightarrow Y$ = set of all (total) functions from X to Y

Definition. A partial function from a set X to a set Y is total if it satisfies

$$f(x) \downarrow$$

for all $x \in X$.

Computable functions

Definition. The partial function $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is (register machine) computable if there is a register machine M with at least $n + 1$ registers R_0, R_1, \ldots, R_n (and maybe more) such that for all $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and all $y \in \mathbb{N}$,

the computation of M starting with $R_0 = 0, R_1 = x_1, \ldots, R_n = x_n$ and all other registers set to 0, halts with $R_0 = y$

if and only if $f(x_1, \ldots, x_n) = y$.
The I/O convention is somewhat arbitrary: in the initial configuration, registers R_1, \ldots, R_n store the function’s arguments (with all others zeroed); in the halting configuration, register R_0 stores its value (if any). Notice that there may be many different register machines that compute the same partial function f.

Example

<table>
<thead>
<tr>
<th>Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0 R_1 R_2</td>
</tr>
</tbody>
</table>

Program

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

Graphical Representation

- **START**
- $R_1^- \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow R_0^+$
- $R_2^- \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow R_0^+$
- **HALT**

If the machine starts with registers $(R_0, R_1, R_2) = (0, x, y)$, then it halts with registers $(R_0, R_1, R_2) = (x + y, 0, 0)$.

The notation is a little confusing. The slide states that, if the machine starts with registers $(R_0, R_1, R_2) = (0, x, y)$, then it halts with registers $(R_0, R_1, R_2) = (x + y, 0, 0)$. This description focuses on registers, and demonstrates that $f(x, y) \triangleq x + y$ is computable. (The notation $f(x, y) \triangleq x + y$ means that $f(x, y)$ ‘is defined to be equal to’ $x + y$.) Compare this description with the description using configurations in slide 11: starting from initial configuration $(0, 0, x, y)$, this machine’s computation halts with configuration $(4, x + y, 0, 0)$. This description also gives information about the initial and final labels. The configuration $(0, 0, x, y)$ means that the first component is the initial label 0, the second component is initially set to zero and will eventually give the final answer when the computation halts, and the third and fourth components provide the two input values of the function. From configuration $(0, 0, x, y)$, this machine’s computation halts with configuration $(4, x + y, 0, 0)$.
Multiplication $f(x, y) \triangleq xy$ is computable

If the machine starts with registers $(R_0, R_1, R_2, R_3) = (0, x, y, 0)$, then it halts with registers $(R_0, R_1, R_2, R_3) = (xy, 0, y, 0)$.

Exercise Construct a register machine that computes the function $f(x, y) \triangleq x + y$.

The following arithmetic functions are all computable. The proofs are left as exercises.

1. Projection: $p(x, y) \triangleq x$

2. Constant: $c(x) \triangleq n$

3. Truncated subtraction: $x \cdot\!\!\!−\!\!\!y \triangleq \begin{cases} x - y & \text{if } y \leq x \\ 0 & \text{if } y > x \end{cases}$

4. Integer division: $x \div y \triangleq \begin{cases} \text{integer part of } x/y & \text{if } y > 0 \\ 0 & \text{if } y = 0 \end{cases}$

5. Integer remainder: $x \mod y \triangleq x \cdot\!\!\!−\!\!\!y(x \div y)$

6. Exponentiation base 2: $e(x) \triangleq 2^x$

7. Logarithm base 2: $\log_2(x) \triangleq \begin{cases} \text{greatest } y \text{ such that } 2^y \leq x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$
Coding Programs as Numbers

So far, we have only seen how to write simple arithmetical operations as register-machine programs. The Turing/Church solution of the Entscheidungsproblem and the Halting problem uses the fundamentally important idea that (formal descriptions of) algorithms can be the data on which algorithms act. Recall the following slide from lecture 1.

The Halting Problem

The Halting Problem is the decision problem with

- the set S of all pairs (A, D), where A is an algorithm and D is some input datum on which the algorithm is designed to operate;
- the property $A(D) \downarrow$ holds for $(A, D) \in S$ if algorithm A when applied to D eventually produces a result: that is, eventually halts.

Turing and Church’s work shows that the Halting Problem is unsolvable (undecidable): that is, there is no algorithm H such that, for all $(A, D) \in S$,

$$H(A, D) = \begin{cases} 1 & A(D) \downarrow \\ 0 & \text{otherwise} \end{cases}$$

To realise this idea of algorithms being used as input data in the context of Register Machines, we have to be able to code register-machine programs as numbers. (In general, such codings are often called Gödel numberings.) To do this, first we have to code pairs of numbers and lists of numbers as numbers. There are many ways to do this. We fix upon one way.
Numerical Coding of Pairs

Definition

For \(x, y \in \mathbb{N} \), define

\[
\langle \langle x, y \rangle \rangle \triangleq 2^x (2^y + 1)
\]

\[
\langle x, y \rangle \triangleq 2^x (2^y + 1) - 1
\]

Example \(27 = 0b11011 = \langle \langle 0, 13 \rangle \rangle = \langle 2, 3 \rangle \)

Result

\(\langle \langle - \rangle \rangle \) gives a bijection between \(\mathbb{N} \times \mathbb{N} \) and \(\mathbb{N}^+ = \{ n \in \mathbb{N} \mid n \neq 0 \} \).

\(\langle - \rangle \) gives a bijection between \(\mathbb{N} \times \mathbb{N} \) and \(\mathbb{N} \).

Recall the definition of bijection from discrete maths.

The notation \(0b11011 \) is sometimes used to emphasise that the number, in this case \(11011 \), is in binary. We will also use the notation \(0b x \) for \(x \in \mathbb{N} \) to denote the binary number of \(x \). We investigate a few examples of \(\langle \langle x, y \rangle \rangle \) for small examples of \(x \) and \(y \):

\[
\begin{align*}
\langle 0, 0 \rangle &= 1 & \langle 1, 0 \rangle &= 2 & \langle 2, 0 \rangle &= 4 & \langle 3, 0 \rangle &= 8 \\
\langle 0, 1 \rangle &= 3 & \langle 1, 1 \rangle &= 6 & \langle 2, 1 \rangle &= 12 & \ldots \\
\langle 0, 2 \rangle &= 5 & \langle 1, 2 \rangle &= 10 & \langle 2, 2 \rangle &= 20 & \ldots \\
\langle 0, 3 \rangle &= 7 & \ldots
\end{align*}
\]
Numerical Coding of Pairs

Definition
For $x, y \in \mathbb{N}$, define
\[
\begin{align*}
\langle x, y \rangle &\triangleq 2^x(2y + 1) \\
\langle x, y \rangle &\triangleq 2^x(2y + 1) - 1
\end{align*}
\]

Sketch Proof of Result
It is enough to observe that
\[
\begin{align*}
0^b\langle x, y \rangle &= 0^b y 1 \ldots 0 \\
0^b\langle x, y \rangle &= 0^b y 0 1 \ldots 1
\end{align*}
\]
where $0^b x \triangleq x$ in binary. \triangleq means 'is defined to be'.

To show that
\[
0^b\langle x, y \rangle = 0^b y 1 0 \ldots 0
\]
observe that $\langle x, y \rangle \triangleq 2^x(2y + 1) = 2^{x+1}y + 2^x$.

To show $\langle -, - \rangle : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}^+$ is one-to-one, assume that $\langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle$, and either $x_1 \neq x_2$ or $y_1 \neq y_2$ or both. Since $\langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle$, we have $0^b\langle x_1, y_1 \rangle = 0^b\langle x_2, y_2 \rangle$ and hence
\[
\begin{align*}
0^b y_1 1 0 \ldots 0_{x_1 0s} &= 0^b y_2 1 0 \ldots 0_{x_2 0s}
\end{align*}
\]
which cannot hold as either $x_1 \neq x_2$ or $y_1 \neq y_2$ or both.

To show $\langle -, - \rangle : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}^+$ is onto, assume not. We know that $\langle 0, 0 \rangle = 1$. Hence, there must be a smallest $n \in \mathbb{N}^+$ such that $n = \langle u, v \rangle$ for some $u, v \in \mathbb{N}$ and $n + 1 \neq \langle x, y \rangle$ for all $x, y \in \mathbb{N}$. So,
\[
n = 0^b v 1 0 \ldots 0_{u 0s} \text{ and } 0^b(n + 1) = 0^b(n) + 1 = 0^b v 1 0 \ldots 0_{u 0s} + 1.
\]
If $u \neq 0$, then $n + 1 = \langle 0, w \rangle$ where $0^b w = 0^b v 1 0 \ldots 0$ if $u = 0$,
then $n + 1 = \langle x, y \rangle$ where x is one plus the number of zeros before the first one in $0b(v + 1)$ and y is the natural number obtained from the binary number after the first one.

Here’s another proof! To prove $\langle - , - \rangle$ is one-to-one, assume $\langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle$: that is,

$$2^{x_1}(2y_1 + 1) = 2^{x_2}(2y_2 + 1)$$

If $x_1 > x_2$, then $2^{x_1-x_2}(2y_1 + 1) = 2y_2 + 1$ which is impossible. A similar argument shows that $x_1 < x_2$ is impossible. Hence, $x_1 = x_2$ and $2y_1 + 1 = 2y_2 + 1$, which implies that $y_1 = y_2$ and $\langle - , - \rangle$ is one-to-one.

To prove $\langle - , - \rangle$ is onto, assume for contradiction that there is a smallest $n \in \mathbb{N}$ such that there is no $x, y \in \mathbb{N}$ with $\langle x, y \rangle = n$. If n is even, then $n = 2m$ with $m < n$. Hence, $m = 2^{x_1}(2y_1 + 1)$ for some $x_1, y_1 \in \mathbb{N}$. Then $n = 2^{x_1+1}(2y_1 + 1)$. If n is odd, then $n = 2m + 1 = \langle 0, m \rangle$.

Numerical Coding of Lists

Let $List \mathbb{N}$ be the set of all finite lists of natural numbers, defined by:

- **empty list**: $[]$
- **list cons**: $x :: \ell \in List \mathbb{N}$ if $x \in \mathbb{N}$ and $\ell \in List \mathbb{N}$

Notation: $[x_1, x_2, \ldots, x_n] \triangleq x_1 :: (x_2 :: (\cdots x_n :: [] \cdots))$
Numerical Coding of Lists

Let $\text{List } \mathbb{N}$ be the set of all finite lists of natural numbers.

For $\ell \in \text{List } \mathbb{N}$, define $\gamma \ell \in \mathbb{N}$ by induction on the length of the list ℓ:

$$
\begin{align*}
\gamma [] &\triangleq 0 \\
\gamma x :: \ell &\triangleq \langle \langle x, \gamma \ell \rangle \rangle = 2^x (2 \cdot \gamma \ell + 1)
\end{align*}
$$

Thus, $\gamma [x_1, x_2, \ldots, x_n] = \langle \langle x_1, \langle x_2, \ldots, \langle x_n, 0 \rangle \rangle \rangle$

Examples

$$
\begin{align*}
\gamma [3] &\triangleq \langle \langle 3, 0 \rangle \rangle = 2^3 (2 \cdot 0 + 1) = 8 \\
\gamma [1, 3] &\triangleq \langle \langle 1, \langle 3 \rangle \rangle \rangle = 2^3 (2 \cdot 1 + 1) = 34 \\
\gamma [2, 1, 3] &\triangleq \langle \langle 2, \langle 1, \langle 3 \rangle \rangle \rangle \rangle = 2^3 (2 \cdot 34) = 276
\end{align*}
$$
Numerical Coding of Lists

Let $\text{List } \mathbb{N}$ be the set of all finite lists of natural numbers.

For $\ell \in \text{List } \mathbb{N}$, define $\Gamma \ell \in \mathbb{N}$ by induction on the length of the list ℓ:

\[
\begin{align*}
\Gamma [] & \triangleq 0 \\
\Gamma x :: \ell & \triangleq \bigl\langle \langle x, \Gamma \ell \rangle \bigr\rangle = 2^x (2 \cdot \Gamma \ell + 1)
\end{align*}
\]

Result The function $\ell \mapsto \Gamma \ell$ gives a bijection from $\text{List } \mathbb{N}$ to \mathbb{N}.

Sketch Proof

The proof follows by observing that

\[
0b^\Gamma [x_1, x_2, \ldots, x_n] = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
\overbrace{x_n 0s}^{x_n} & \overbrace{1 \cdots 0}^{x_{n-1} 0s} & \cdots & \overbrace{1 \cdots 0}^{x_1 0s}
\end{pmatrix}
\]
To prove \(0b\overline{\alpha} [\overline{x_1, x_2, \ldots, x_n}] = \overline{1 0 \cdots 0 1 0 \cdots 0 \cdots} \), we use induction on the structure of \(L = [x_1, \ldots, x_n] \).

Base Case This is trivial as \(0b\overline{\alpha} [\overline{]}] = 0 \).

Inductive step Assume

\[
0b\overline{\alpha} [\overline{x_1, x_2, \ldots, x_k}] = \overline{1 0 \cdots 0 1 0 \cdots 0 \cdots}
\]

By the definitions, we have

\[
0b\overline{\alpha} [\overline{x, x_1, x_2, \ldots, x_k}] = 0b\overline{\langle \langle x, [\overline{x_1, \ldots, x_k}] \rangle \rangle} = 0b\overline{\alpha} [\overline{x_1, \ldots, x_n}] = 1 0 \cdots 0.
\]

The induction hypothesis now gives the result. Using this result, \(\overline{\alpha} L \) is clearly one-to-one and onto. To convince yourself of this, choose a few binary numbers \(n \) and give the corresponding list \(L_n \) such that \(0b\overline{\alpha} L_n = n \).

Recall Register Machines

Definition

A **register machine** (sometimes abbreviated to RM) is specified by:

- finitely many registers \(R_0, R_1, \ldots, R_n \), each capable of storing a natural number;
- a **program** consisting of a finite list of instructions of the form \(\text{label : body} \) where, for \(i = 0, 1, 2, \ldots \), the \((i + 1)^{\text{th}} \) instruction has label \(L_i \). The instruction **body** takes the form:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^+ \rightarrow L')</td>
<td>Add 1 to contents of register (R) and jump to instruction labelled (L')</td>
</tr>
<tr>
<td>(R^- \rightarrow L', L'')</td>
<td>If contents of (R) is > 0, then subtract 1 and jump to (L'), else jump to (L'')</td>
</tr>
<tr>
<td>HALT</td>
<td>Stop executing instructions</td>
</tr>
</tbody>
</table>
Numerical Coding of Programs

If P is the RM program

\[
L_0 : \text{body}_0
\]
\[
L_1 : \text{body}_1
\]
\[
\vdots
\]
\[
L_n : \text{body}_n
\]

then its numerical code is

\[
⌜P⌝ \triangleq ⌜[[\text{body}_0], \ldots, \text{body}_n]⌝
\]

where the numerical code $⌜\text{body}⌝$ of an instruction body is defined by:

\[
\begin{align*}
\Gamma R_i^+ \rightarrow L_j^- & \triangleq \langle 2i, j \rangle \\
\Gamma R_i^- \rightarrow L_j, L_k^- & \triangleq \langle 2i + 1, \langle j, k \rangle \rangle \\
\Gamma HALT^- & \triangleq 0
\end{align*}
\]

Since $\langle -, - \rangle : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}^+$, $\langle -, - \rangle : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ and $\Gamma -^- : \text{List}\mathbb{N} \rightarrow \mathbb{N}$ are bijections, the functions $\Gamma -^-$ from bodies to natural numbers and $\Gamma -^-$ from RM programs to \mathbb{N} are bijections.
Recall Addition $f(x, y) \triangleq x + y$ is Computable

<table>
<thead>
<tr>
<th>Registers</th>
<th>Graphical Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0 R_1 R_2</td>
<td>START</td>
</tr>
</tbody>
</table>

Program

$L_0 : R_1^- \rightarrow L_1, L_2$
$L_1 : R_0^+ \rightarrow L_0$
$L_2 : R_2^- \rightarrow L_3, L_4$
$L_3 : R_0^+ \rightarrow L_2$
$L_4 : HALT$

If the machine starts with registers $(R_0, R_1, R_2) = (0, x, y)$, it halts with registers $(R_0, R_1, R_2) = (x + y, 0, 0)$.

Coding of the RM for Addition

$\Gamma P \triangleq \Gamma [\Gamma B_0 \gamma, \ldots, \Gamma B_4 \gamma]$ where

$\Gamma B_0 \gamma = \Gamma R_1^- \rightarrow L_1, L_2 \gamma = \langle (2 \times 1) + 1, \langle 1, 2 \rangle \rangle$
$= \langle 3, 9 \rangle = 8 \times (18 + 1) = 152$

$\Gamma B_1 \gamma = \Gamma R_0^+ \rightarrow L_0 \gamma = \langle 2 \times 0, 0 \rangle = 1$

$\Gamma B_2 \gamma = \Gamma R_2^- \rightarrow L_3, L_4 \gamma = \langle (2 \times 2) + 1, \langle 3, 4 \rangle \rangle$
$= \langle 5, (8 \times 9) - 1 \rangle = \langle 5, 71 \rangle$
$= 2^5 \times ((2 \times 71) + 1) = 32 \times 143 = 4576$

$\Gamma B_3 \gamma = \Gamma R_0^+ \rightarrow L_2 \gamma = \langle 2 \times 0, 2 \rangle = 5$

$\Gamma B_4 \gamma = \Gamma HALT \gamma = 0$
In the next section, we will introduce the *Universal Register Machine*. The Universal Register Machine carries out the following computation:

starting with \(R_0 = 0, R_1 = e \) (the code of the program), \(R_2 = a \) (code of the list of arguments), and all other registers zeroed:

- decode \(e \) as a RM program \(P \)
- decode \(a \) as a list of register values \(a_1, \ldots, a_n \)
- carry out the computation of the RM program \(P \) starting with \(R_0 = 0, R_1 = a_1, \ldots, R_n = a_n \) (and any other registers occurring in \(P \) set to 0).

It is therefore important for you to understand what it means for a number \(x \in \mathbb{N} \) to decode to a unique instruction \(\text{body}(x) \), and for a number \(e \in \mathbb{N} \) to decode to a unique program \(\text{prog}(e) \).

Decoding Numbers as Bodies and Programs

Any \(x \in \mathbb{N} \) decodes to a unique instruction \(\text{body}(x) \):

if \(x = 0 \) then \(\text{body}(x) \) is \(\text{HALT} \),
else \((x > 0 \text{ and}) \) let \(x = \langle y, z \rangle \) in

if \(y = 2i \) is even, then \(\text{body}(x) \) is \(R_i^+ \rightarrow L_z \),
else \(y = 2i + 1 \) is odd, let \(z = \langle j, k \rangle \) in

\(\text{body}(x) \) is \(R_i^- \rightarrow L_j, L_k \)

So any \(e \in \mathbb{N} \) decodes to a unique program \(\text{prog}(e) \), called the register machine program with index \(e \):

\[
\text{prog}(e) \equiv \begin{array}{c}
L_0 : \text{body}(x_0) \\
\vdots \\
L_n : \text{body}(x_n)
\end{array}
\]

where \(e = \left\lceil [x_0, \ldots, x_n] \right\rceil \)
Example of $\text{prog}(e)$

- $786432 = 2^{19} + 2^{18} = 0\text{b}110\ldots0 = \Gamma[18,0]$
- $18 = 0\text{b}10010 = \langle 1, 4 \rangle = \langle 1, \langle 0, 2 \rangle \rangle = \Gamma R_0 \rightarrow L_0, L_2$
- $0 = \Gamma HALT$

So $\text{prog}(786432) =$

\[
\begin{array}{c}
L_0: R_0^- \rightarrow L_0, L_2 \\
L_1: HALT
\end{array}
\]

Notice that, when $e = 0$, we have $0 = \Gamma[]$ so $\text{prog}(0)$ is the program with an empty list of instructions, which by convention we regard as a RM that does nothing (i.e. that halts immediately). Also, notice in slide 26 the jump to a label with no body (an erroneous halt). Again, choose some numbers and see what the register-machine programs they correspond to.