
Efficient Top-KQuery Processing on Massively Parallel
Hardware

Anil Shanbhag
MIT

anil@csail.mit.edu

Holger Pirk
Imperial College London
pirk@imperial.ac.uk

Samuel Madden
MIT

madden@csail.mit.edu

ABSTRACT
A common operation in many data analytics workloads is to find
the top-k items, i.e., the largest or smallest operations according to
some sort order (implemented via LIMIT or ORDER BY expressions
in SQL). A naive implementation of top-k is to sort all of the items
and then return the first k, but this does much more work than
needed. Although efficient implementations for top-k have been
explored on traditional multi-core processors, there has been no
prior systematic study of top-k implementations on GPUs, despite
open requests for such implementations in GPU-based frameworks
like TensorFlow1 and ArrayFire2. In this work, we present several
top-k algorithms for GPUs, including a new algorithm based on
bitonic sort called bitonic top-k. The bitonic top-k algorithm is up
to a factor of 15x faster than sort and 4x faster than a variety of
other possible implementations for values of k up to 256. We also
develop a cost model to predict the performance of several of our
algorithms, and show that it accurately predicts actual performance
on modern GPUs.

CCS CONCEPTS
• Information systems→ Query operators; • Theory of com-
putation → Massively parallel algorithms; • Computer sys-
tems organization → Heterogeneous (hybrid) systems;

KEYWORDS
Top-K Algorithms for GPU; Bitonic Top-K
ACM Reference format:
Anil Shanbhag, Holger Pirk, and Samuel Madden. 2018. Efficient Top-K
Query Processing on Massively Parallel Hardware. In Proceedings of 2018
International Conference on Management of Data, Houston, TX, USA, June
10–15, 2018 (SIGMOD/PODS ’18), 14 pages.
https://doi.org/10.1145/3183713.3183735

1 INTRODUCTION
A common type of analytical SQL query involves running a top-k ,
i.e., finding the highest (or lowest) k of n tuples given a ranking
function. Examples of top-k queries include asking for the most
1https://github.com/tensorflow/tensorflow/issues/5719
2https://groups.google.com/d/topic/arrayfire-users/oDtQcI7afZQ

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3183735

Heapsort Bitonic
Sort

Priority
Queues ???

ParallelSequential
Sort

Top-K

Figure 1: The Duality of Top-K and Sorting

expensive products on an e-commerce site, the best-rated restau-
rants in a review site, or the worst performing queries in a query
log. Top-k is a well studied problem in computer science in gen-
eral and data management in particular since top-k calculation
(order-by/limit clauses) is supported by virtually every data analyt-
ics system. There are many instances of the problem and a diversity
of efficient solutions (see [13] for a survey).

A naïve method for finding the top-k elements is to sort them and
return the first k . However, sorting does more work than necessary,
as there is no need to sort the elements beyond the top-k. A better
approach is to maintain a priority-queue (a.k.a. max-heap) of size
k and inserting greater elements while removing lesser ones. The
runtime of this approach is in the order of n log (k). This algorithm
can be parallelized acrossm processors by logically partitioning the
data, having each processor compute a per-partition top-k and com-
puting the global top-k from them per-partition heaps. While this
method can be efficiently implemented on multi-core processors
(see Section 6.7), it is not suited to the Single-Instruction-Multiple-
Threads execution model of massively parallel systems3. With the
recent interest in GPU-based query processing [3, 12, 14, 16, 19, 23],
there is an obvious need for a efficient, massively parallel algo-
rithm to solve the top-k problem. In fact, we found that two of the
most mainstream GPU programming frameworks (Tensorflow and
Arrayfire) [1, 2] have open feature requests to add a top-k operator.

One way to develop an intuition for the existence and even the
characteristics of a solution to this problem is to consider the duality
of top-k and sorting algorithms.We illustrate this duality in Figure 1:
the corresponding sort algorithm to priority queues is heapsort.
In fact, one may view heapsort as the construction of a priority
queue with k = n and the subsequent extraction of the elements in
sorted order. This, of course, hides many implementations details
but helps to form an intuition. When thinking about sorting and
top-k in the context of massively parallel architectures, one finds
that the textbook massively parallel sorting algorithm is bitonic
sorting. Yet, there is no known corresponding top-k algorithm to
bitonic-sort. We can, however, hypothesize that, like bitonic sort, it
3the unpredictable execution flow leads to high branch divergence overhead

https://doi.org/10.1145/3183713.3183735
https://doi.org/10.1145/3183713.3183735

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Anil Shanbhag, Holger Pirk, and Samuel Madden

is likely to be based on bitonic merges and needs to incorporate a
number of low-level optimizations to make it compute- as well as
bandwidth-efficient.

In this work, we systematically develop this intuition into a work-
ing algorithm by extensively studying existing top-k solutions on
GPUs and developing a novel solution targeted towards massively
parallel architectures. We found that it is in fact based on bitonic
merges and called it bitonic top-k. We investigate the character-
istics of a number of other potential top-k algorithms for GPUs,
including sorting and heap-based algorithms, as well as radix-based
algorithms that use the high-order bits to find the top items. In the
end, we find that bitonic top-k is up to 4 times faster than other
top-k approaches and upto 15x faster than sorting for k up to 256.

These new algorithms have the potential to directly impact the
performance of modern GPU-based database systems: all of the sys-
tems we are aware of (PG Strom, Ocelot, and MapD) currently use
sort or transfer the entire dataset to the CPU for top-k calculation.
They could, thus, directly obtain the benefits of our approach by
integrating our algorithm. While we do not explicitly study means
of mitigating the PCI-E bottleneck, having an efficient GPU-based
top-k operator will allow these system to transfer less data through
the PCI-E bus and, thus, achieve higher performance.

In summary, we make the following contributions:
• We study the performance characteristics of a variety of
different top-k algorithms on a variety benchmarks, varying
the data-set size, the value of k , the type of data (ints vs
floats), and the initial distribution of data.
• We develop a novel, massively parallel, algorithm for the
efficient evaluation of top-k queries.
• Wedevise a number of optimizations (in part based on known
techniques, in part entirely novel) and show that our new
bitonic top-k algorithm generally outperforms all other al-
gorithms, often by a factor of 4x or more, for values of k up
to 256. Furthermore, we demonstrate its robustness against
skewed input data distributions.
• We demonstrate that the algorithm is able to be integrated
into existing systems (specifically, MapD.)
• Finally, we develop detailed cost models for our bitonic top-k
as well as other algorithms, and show that these cost models
can accurately predict runtimes, which is valuable when a
query planner needs to choose a top-k implementation.

Before describing the details of our algorithms, optimizations,
and experiments, we begin with a discussion of GPU performance,
and existing sorting and top-k algorithms on them.

2 BACKGROUND
2.1 GPU Data Access
Many database operations written on the GPU are still performance
bound by the memory subsystem (shared or global memory) [23].
In order to characterize the performance of different algorithms
on the GPU, it is, thus, critical to properly understand its memory
hierarchy.

Figure 2 shows a simplified hierarchy of a modern GPU. The
lowest and largest memory in the hierarchy is the global memory.
The global memory is off-chip and has a memory bandwidth of 150-
920 GBps on modern GPUs. Each GPU has a number of compute

SM-1

Registers

L1 SMEM

SM-2

Registers

L1 SMEM

SM-N

Registers

L1 SMEM

L2	Cache

Global	Memory
Off chip
On chip

Figure 2: GPU Memory Hierarchy

units called StreamingMultiprocessors(SMs). Each SMhas a number
of cores and a fixed set of registers. Each SM also has a shared
memory which can be accessed by all the cores and an L1 cache to
cache requests to global memory. Accesses to global memory from
the SM are cached in the L2 cache. The L2 cache is shared across
all streaming multiprocessors(SM) and is on-chip.

Work on the GPU is done by large number of threads organised
into thread blocks (each run by one SM). Thread blocks are further
divided into warps (usually 32 threads). The threads of a warp
execute in a Single Instruction Multiple Threads (SIMT) model.
The device coalesces global memory loads and stores from a single
warp. Maximum bandwidth can be achieved when warps coalesce
access to global memory, resulting in neighboring locations being
accessed.

The programmingmodel allows users to explicitly allocate global
memory and shared memory in each thread block. Shared memory
is an order of magnitude faster than global memory. On the Nvidia
Titan X Maxwell GPU, the global memory bandwidth is around 250
GBps while the shared memory bandwidth is around 3 TBps. At the
same time, GPUs only have a few MBs of shared memory spread
across the SMs compared to GBs of global memory. To maximize
performance, shared memory is organized into 32 banks, so that
threads in a warp can access different memory banks in parallel.
However, if two threads in a warp access the same memory bank, a
bank conflict occurs, and accesses to the bank are serialized.

Finally, registers are the fastest layer of the memory hierarchy. If
a thread block needs more registers than available, register values
spill to thread-local memory. Despite its name, local memory only
means it is only accessible by the thread – it is stored off the SM in
slow global memory.

2.2 Sorting on the GPU
Many sorting algorithms have been proposed over the years. The
early implementations were often based on bitonic sort [6, 10, 17].
Later, radix-based sort algorithms were proposed which perform
better than bitonic sort [15, 21, 22].

Bitonic Sort Bitonic sort is based on bitonic sequences, i.e.
concatenations of two subsequences sorted in opposite directions.
Given a bitonic sequence S with length l = 2r , S can be sorted ascend-
ing (or descending) in r steps. In the first step the pairs of elements
(S[0], S[l/2]), (S[1], S[l/2 + 1]), ..., (S[l/2 − 1], S[l − 1]) are com-
pared and exchanged if the second element is smaller than the first
element. This results in two bitonic sequences, (S[0], ..S[l/2 − 1])
and (S[l/2], ...S[l − 1]) where all the elements in the first subse-
quence are smaller than any element in the second subsequence.

Efficient Top-KQuery Processing on Massively Parallel Hardware SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

Phase
Step

1
1 2 1

2 3
4 2 1

0
1
2
3
4
5
6
7

(a) Algorithm.

Unsorted Input After Phase 1 After Phase 2 After Phase 3

(b) Example Data (red bars sorted increasing, blue decreasing)

Figure 3: Bitonic Sorting Network

In the second step, the same procedure is applied to both the sub-
sequences, resulting in four bitonic sequences. All elements in the
first subsequence are smaller than any element in the second, all
elements in the second subsequence are smaller than any element
in the third and all elements in the third subsequence are smaller
than any element in the fourth subsequence. The third, fourth, ...,
r-th step follow similarly. Processing the r-th step results in 2r
subsequences of length 1, thus the sequence S is sorted.

Let A be the input array to sort and let n = 2k be the length
of A. The process of sorting A consists of k phases. The subse-
quences of length 2 (A[0],A[1]), (A[2],A[3]), ..., (A[n− 2],A[n− 1])
are bitonic sequences by definition. In the first phase these sub-
sequences are sorted (as described above) alternating ascending
and descending. This creates bitonic subsequences of length 4,
(A[0],A[1],A[2],A[3]), ..., (A[n − 4],A[n − 3],A[n − 2],A[n − 1]). In
the second phase these subsequences of length 4 are sorted alternat-
ing ascending and descending, resulting in subsequences of length
8 being bitonic sequences. In the i-th phase of bitonic sort the total
number of subsequences being sorted is 2k−i and the length of
each of these subsequences is 2i , thus the i-th phase consists of i
steps. After the (k-1)-th phase the array A is a bitonic sequence. A
is sorted in the last phase k.

In every step n/2 compare/exchange operations are processed.
There are loдn phases, with the i-th phase having i steps. Thus, the
number of comparisons is O (nloд2n). Hence, bitonic sort is slower
than other O (nloдn) sort algorithms on a serial CPU. The advan-
tage of bitonic sort is that it can be easily parallelized on SIMT and
SIMD architectures and requires less inter-process communication.
Figure 3a shows the bitonic sorting network for an arbitrary se-
quence of size 8. There loд28 = 3 phases, where phase i has i steps.
Every step consists of 8/2 = 4 comparisons. Sorting in Figure 3a(a)
follows the process described above: in phase 1, elements 0 and 1
are compared and sorted in asscending order; elements 2 and 3 are
sorted descending; elements 4 and 5 ascending, and so on. Each of
these comparisons can be done in parallel on separate threads. At
the end phase 1, there are 4 sorted sequences of length 2. In phase 2,
with step size 2, first elements 0 and 2 and 1 and 3 are compared and
sorted descending, while 4 and 6 and 5 and 7 are sorted ascending.

These comparisons can also be done in parallel. Then, phase 2 with
step size 1 is executed, such that elements 0 and 1 and 2 and 3 are
sorted descending, and 4 and 5 and 6 and 7 are sorted ascending.
Again these comparisons are parallelized. At the end of phase 2, we
are left with two length 4 sorted lists. Finally, phase 3 merges these
two lists using decreasing step sizes from 3 to 1.

The fastest implementation of bitonic sort is the one proposed by
Peters et al.[17]. The bitonic top-k algorithm discussed later re-uses
some of the ideas from their paper.

Radix Sort Radix sorting is based on the reinterpretation of a
k-bit key as a sequence of d-bit digits, which are considered one
a time. The basic idea is, that splitting the k-bit digits into smaller
d-bit digits results in a small enough radix r = 2d , such that keys can
be partitioned into r distinct buckets. As sorting of each digit can be
done with an effort that is linear in the number of keys n, the whole
sorting process has a time complexity of O (⌈k/d⌉n). Iterating over
the keys’ digits can be performed from the most-significant to the
least significant digit (MSD radix sort [22]) or vice versa (LSD radix
sort [15, 21]).

In either case, the first step is to compute a histogram of the input
values in a sequential scan. As the histogram reflects the number
of keys that shall be put into each of the r buckets, computing the
exclusive prefix-sum over these counts yields thememory offsets for
each of the buckets. Finally, the keys are scattered into the buckets
according to their digit value. Recursively repeating these steps on
subsequent digits for the resulting buckets ultimately yields the
sorted sequence. The best performing sort algorithm today is based
on MSD radix sort [22].

2.3 K-Selection
The k-selection problem asks one to find the k-th largest value in
a list of n elements. Having a solution to the k-selection problem,
one can easily find the top-k elements by possibly making one
additional pass over the data. Alabi et.al [5] studied this problem
extensively. Apart from the sort and choose the k-th element, they
studied two other algorithms: Radix Select and Bucket Select.

Radix Select: Radix select follows from the MSD radix sort
algorithm. Like the MSD radix sort, it operates as a sequence of
steps, each of which processes a d-bit digit. It performs the same
histogram and prefix sum steps. However, instead of writing out all
the entries partitioned into buckets, radix select uses the histogram
to find the bucket B containing the kth -largest entry. It then writes
out only the entries of B and continues to examine the next d-bit
digit of the elements in only the matched bucket.

Bucket Select: Instead of creating the buckets based on radix
bits, bucket select tries to be more robust by computing the buckets
based on the min-max values. The algorithm makes an explicit first
pass over the dataset to calculate the min and max values. Subse-
quently we execute a series of passes. Each pass is three step: create
multiple buckets equally spaced out between min and max and,
compute the number of entries in each bucket per thread. Second,
do a prefix sum and find the bucket with the kth largest element. Fi-
nally, read the input and write out elements of the matched bucket.
We run the next pass on the entries of the matched bucket.

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Anil Shanbhag, Holger Pirk, and Samuel Madden

Algorithm 1: Per-Thread Top-K
Input : List L of length n; const int k
Output : List O of the top-k elements per thread

1 int t← getGlobalThreadId();
2 int nt← numThreads();
3 MinHeap heap;
4 for i← t; i < n; i += nt do
5 T xi = L[i]; // T is the key type
6 if xi > heap.min() then
7 heap.pop(); heap.push(xi);

8 for j← 0; j < k; j++ do
9 O[t + j*nt] = heap.pop();

3 ALGORITHMS
Based on the discussion so far, we have 3 algorithms to find top-k:
• Sort and Choose: Use radix sort to sort the entire vector and
select the top-k elements from it.
• Using Radix Select: We can use the radix-based selection
algorithm to get the kth largest element and use that to find
the top-k by making one additional pass over the input array.
• Using Bucket Select: We can do the same as above, this time
using Bucket Select instead of Radix Select.

In this section, we describe two new algorithms for finding the
top-k elements. In the first algorithm, each thread independently
maintains the top-k elements it has seen so-far and finds the global
top-k amongst the local (per thread) top-ks. Second, we present
the bitonic top-k algorithm which is based on bitonic sorting. For
ease of presentation, our description assumes tuples consisting only
of a key. Of course, real applications may need to perform top-k
on other settings, including (key,value) pairs, multiple keys, and
different data types and distributions; our evaluation shows that
our algorithms cover all of these cases (Section 6).

3.1 Per-Thread Top-K
A single-threaded version of top-k would maintain the top-k el-
ements in a min-heap and update it for every new element seen.
The natural way to parallelize is to partition the input, calculate
the top-k per partition and calculate the global top-k from those
as a final reduction step. Algorithm 1 shows the pseudocode that
would run in parallel in each thread (nt threads are run in paral-
lel). We use a min-heap per thread to maintain the top-k elements
seen by that thread so far. After initializing the heap, we iterate
over the elements starting from t in steps of number of threads.
This (coalesced) memory access pattern has been shown to benefit
memory access on the GPUs [11]. We check if the current element
is larger than the minimum value among the top-k seen. If so, we
pop the minimum and add the current element. Finally, we write
out the top-k values to O in a coalesced manner. This approach is
efficient in terms of memory usage. It makes one full read pass over
the global memory and writes significantly less data. However, it
suffers from thread divergence and occupancy issues, discussed in
greater detail in Section 4.1.

Algorithm 2: Bitonic Top-K Local Sort
Input : List L of length n
Output :L with sorted sequences of length k

1 int t = getGlobalThreadId();
2 for len← 1; len < k; len← len≪ 1 do
3 dir← len≪ 1;
4 for inc← len; inc > 0; inc← inc≫ 1 do
5 int low← t & (inc − 1);
6 int i← (t≪ 1) − low;
7 bool reverse← ((dir & i) == 0);
8 x0, x1← L[i], L[i + inc];
9 bool swap← reverse ⊕ (x0 < x1) ;

10 if swap: x0, x1← x1, x0;
11 L[i], L[i + inc]← x0, x1;

3.2 Bitonic Top-K
While a full bitonic sort is a solution to the top-k problem, it per-
forms a significant amount of unnecessary work in sorting the
entire input, just as heap sort is much less efficient than using a
priority queue to select the top-k.

In bitonic sort, we start from an unsorted array which is equiv-
alent to sorted sequences of length 1 and construct longer sorted
sequences of length 2,4, ... up to n, at which point the entire list is
sorted. Our basic approach is to develop an algorithm that performs
as little unnecessary work as possible but maintains the massively
parallel nature as bitonic sort. To achieve this, we decompose the
complex bitonic sort operation into a series of parallel steps with
different comparison distances. We carefully reassemble the steps
into three operators that, in combination, allow the efficient fully
parallel calculation of the top-k elements of a vector. These opera-
tors are local (bitonic) sort, merge and rebuild.

In local sort, we generate sorted sequences of size k using (par-
tial) bitonic sort. In the merge, we bitonically merge two sorted
sequences of size k , thus creating two bitonic sequences, where
the first sequence contains the k greatest (w.l.o.g) and the sec-
ond sequence contains the k least elements. In rebuild we sort the
sequence containing the greatest (w.l.o.g.) elements; the second
sequence containing the smaller k elements is discarded. While
sorting, we exploit the fact that the output of the second operator
already satisfies the bitonic property. At this point, we have effec-
tively halved the problem size. We recursively apply the merge and
rebuild operators to the (halved) sequence until we are left with
only k elements which form the top-k. The resulting algorithm
performs no unnecessary work and has the massive parallelism of
bitonic sort. In the rest of this section, we describe the individual
operators in more detail.

(1) Local Sort. The goal of this operator is to generate sorted
runs of length k alternating between ascending and descending,
starting from an unsorted array. Algorithm 2 shows the pseudocode.
The unsorted sequence is equivalent to sorted sequence of length
len = 1. Starting from len = 1, we generate sorted sequences of
length len = 2, 4 ... k . When len = k , we are done. This is the outer
loop on line 3. When len = x , two neighboring sorted sequences

Efficient Top-KQuery Processing on Massively Parallel Hardware SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

(a) Before Top-KMerge (b) After Top-K Merge

Figure 4: Top-K Merge

Algorithm 3: Bitonic Top-K Merge
Input : List L with sorted sequences of length k
Output :List L2 of size |L|/2 with bitonic sequences of length k

1 int t← getGlobalThreadId();
2 int low← t & (k-1);
3 int i← (t≪ 1) - low;
4 L2[t]← max(L[i], L[i+k]);

of length x form a bitonic sequence of length 2x and can be sorted
in loд(x) + 1 steps. This is handled by the inner loop on line 4.
In the first step, when inc = len, we compare pairs of elements
(L[0],L[len]), (L[1],L[1 + len]), ... (L[len − 1],L[2len − 1]). This is
done in parallel, and each thread compares one pair of elements.
In general, thread t compares element L[i] to L[i + len] where the
index i is calculated as a function of t and inc as shown in lines
5− 6. The elements are compared and exchanged (12-13) (if needed)
and written back to the original array (14-15). The direction of
exchange is determined by len. When len = x , we want to generate
alternating ascending descending sorted sequences of length 2x ,
i.e.: the direction changes every dir = 2 ∗ len elements (Line 3). The
actual direction of comparison is determined by whether (i/dir) is
odd or even (Line 7). Phase 1 in Figure 5 illustrates the accesses of
Local Sort operator to generate find the top-4 of 16 elements.

(2) Merge. At the end of the local sort, we have alternating as-
cending descending sorted (i.e., bitonic) sequences of length k . We
compare neighboring sequences pair-wise and select the larger
element in each pair. While we do not know how many elements of
each of the sequences are selected, we know that the top-k elements
were selected and that they form a bitonic sequence. This is the
key insight of our work. To illustrate it, consider Figure 4 which
illustrates the calculation of a top-8: in Figure 4b (after the merge
step), all elements on the left are amongst the top-8 because they
are greater than their comparison partner which implies that they
are greater than all elements to the left (or right, respectively) of
their comparison partner (due to the bitonic property). This step
halves the top-k candidate set. Algorithm 3 shows the pseudocode.

(3) Rebuild. The input to rebuild is a list L with bitonic sequences
of length k instead of an unsorted sequence in the local sort operator.
As a result, we can generate sorted sequences of length k in loд(k)
steps by applying the inner loop of the local sort starting with
len = k/2. For completeness, Algorithm 4 in Appendix A shows the
pseudocode. The flow is the same as in local sort. A combination of
merge and rebuild reduces a list of length n with sorted sequences
of length k to a list of length n/2 with sorted sequences of length k .
Merge and rebuild are repeated till we have a list of length k .

Len
Inc

1
1 2 1

2

2 1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

v

2 1

Phase 2 Phase 3

v

Phase 1 Phase 3

v

Phase 2
2 2

(a) Algorithm

Unsorted Input After Phase 1 After Phase 2

After Phase 3 After Phase 2 (2) After Phase 3 (2)

(b) Visualisation (gray: inactive, orange: candidates)

Figure 5: Bitonic Top-K (K=4)

Analysis. In local sort, every step does n/2 comparisons. There
are loдk outer loop iterations, with the i-th one having i steps. In
merge, we do n/2 comparisons. In rebuild, we have loдk steps of
n/2 comparisons. Each time merge runs, the list size halves. Merge
and rebuild run multiple times till we get a list of size k. The total
number of comparisons are O (nloд2k). The runtime of bitonic top-
k, like that of the bitonic sorting network is independent of the data
distribution and depends only on |L| and k .

4 OPTIMIZATION & IMPLEMENTATION
In this section, we describe a number of optimizations – at both
logical and implementation levels – that we applied to the different
methods to optimize performance. All the performance numbers
in this section are from running algorithms on a dataset of 229
floating point values generated from a uniform distribution U (0, 1)
on a Nvidia Titan X Maxwell GPU (see Section 6.1 for details about
the hardware setup). Numbers on more diverse data are given in
Section 6.

4.1 Per-Thread Top-K
To implement the per-thread top-k algorithm (Algorithm 1) effi-
ciently, we use shared memory to store the heap. Each thread block
allocates an array of size k ∗wд in shared memory wherewд is size
of the thread block. Each thread maintains its own heap in shared
memory using an array of size k . In order to avoid bank conflicts,
we store the array striped, where thread t uses entries sdata[t +
wg*i] where sdata is the shared memory array used by the thread

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Anil Shanbhag, Holger Pirk, and Samuel Madden

block, and, i varies from 0...k . Sincewд is always a multiple of 32,
each thread’s array maps to one shared memory bank and multiple
threads in a warp updating their respective arrays does not cause
shared memory bank conflicts.

The implementations suffer from two problems:
Thread Divergence: Heap updates are data dependent. On the
GPU, a warp (32 threads) runs in a SIMT model. As a result, even if
one thread wants to update its entries, all the other threads in the
warp have to follow the same instruction path, leading to slowdown.
Occupancy: The shared memory used per thread increases with
k. As the shared memory used by a block increases, the number of
concurrent warps that can be run (occupancy) reduces. Beyond a
point, the occupancy reduction leads to the GPU not having enough
active warps to saturate the global memory bandwidth. For k ≥ 512,
even using the minimum thread block size of 32, we would need
64KB of shared memory, which is greater than 48KB available per
thread block on our GPU.

We also implemented the per-thread top-k algorithm using regis-
ters and found its performance to be inferior. Appendix B contains
a more detailed discussion and performance comparison of the
register-based version.

4.2 Selection-based Top-K
The radix select and bucket select implementations used come from
the GGKS package [4]. We revised the implementation of radix
select to use 8-bit digits (based on MSD radix sort [22]) instead of
4-bit digits in the original code. This results in 4 passes for 32 bit
(int and float) keys. Each pass can reduce the data size. However,
if after the prefix sum we see no data reduction, the clustering
step is skipped and we simply re-use the input in the next pass.
Bucket select also divides the data into 16 buckets at a time and
selects one bucket containing the k-th element. The interested
reader can refer to [5] for more implementation details. The radix
select implementation would write out the entire input array after
each pass and then update the array pointer to point to the bucket
containing kth element. We fixed this inefficiency to only write out
the right bucket.

Given the kth highest element X , we can make an additional
pass over the data to find the top-k elements. However this is not
necessary. Once we select the bucket containing X , when scanning
the array the second time to write out the tuples that fall into the
bucket, we can also write out the elements in the higher buckets
to a separate result array. In the last pass, we copy over all the
elements in the identified bucket with value less than X to result
and pad result with X to make it of size k . This eliminates the last
pass we previously had to find the top-k elements given X .

4.3 Optimizing Bitonic Top-K
In this section we discuss a number of optimizations we devised to
achieve close-to-optimal performance with our new bitonic top-k
algorithm.While some of these are inspired by similar optimizations
for other algorithms, to the best of our knowledge, none of them
are applied in the context of top-k calculation. However, since our
optimizations may be applicable to other problems, we include a
paragraph on novelty and applicability in the description of each
optimization. To give an impression of the importance of each

optimization, we end every subsection with a graph indicating the
the effect of optimization on the runtime for the case of finding
top-32 elements in the dataset described at the start of this section.

Operating in Shared Memory. The first optimization can be ap-
plied to each of the three operators individually: instead of read-
ing/writing data after eachmassively parallel step to global memory,
we do it once per operation. The data required is loaded into shared
memory at the beginning of the operation. All the operation’s in-
termediate steps happen in shared memory. At the end, the result is
written back to global memory. For example, the local sort operation
in Figure 5a has 3 intermediate steps. With this optimization, each
threadblock would read the required data to shared memory, run
the 3 steps within shared memory and then write back results at
the end. Recall that the shared memory is an order of magnitude
faster than global memory. This optimization shifts global memory
reads/writes to shared memory reads/writes, thereby improving
performance.

��� ��

��� ��

�� �� ��� ��� ���

�����

������

���� �� ��

This results in a significant performance improvement from
521ms to 122ms. The local sort operator becomes shared memory
bound while the merge and rebuild are still global memory bound.

Note that this optimization is contingent on k being less than or
equal to 2∗max thread block size (= 2048 on modern GPUs). It also
cannot be applied to all steps of a general bitonic sort algorithm
with steps with inc up to n/2, because this would require loading
the entire array into shared memory, but this is not a limitation
in our bitonic top-k alogorithm as long as k is small enough. This
optimization has been applied to bitonic sort to minimize accesses
to the global memory [17].

Merging Operators. As discussed in Section 3.2, our bitonic top-
k algorithm can be broken into three operations: (1) local sort to
create sorted sequences of length k , (2)merge two sorted sequences
of length k to create a bitonic sequence of length k and (3) rebuild
a bitonic sequence of length k after a merge. While the local sort
operation is only executed once in the beginning, the merge and
rebuild phase are alternated until the result is found.

The naive implementation would run a kernel per operator. How-
ever, there are no cross thread block dependencies across each of the
kernels. This leads to a significant optimization potential: multiple
operators can be fused into a single kernel and shared memory can
be used to communicate results between operators. In addition to
reducing kernel invocation overhead, this optimization eliminates
global memory traffic due to intermediate results.

Each merge halves the number of elements. In order to ensure
that each thread in the last operation in the fused kernel has work
to do, we need to ensure that number of data items per thread is
atleast 2x where x is the number ofmerge phases in the fused kernel.
We found the optimal number of processed of data items per thread
to be 8. Beyond that, doubling the number of elements per thread
doubles the number of shared memory bank conflicts and yields no
performance improvement. Since each merge halves the number of
elements per thread, processing 8 elements per thread allows us to
have three (i.e., ld (8)) merge phases per kernel. This leads to two
separate kernels: the first performing local sort followed by two

Efficient Top-KQuery Processing on Massively Parallel Hardware SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

4

(a) Single step

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

4 2

(b) Combining 2 Steps

4 2 1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(c) Combining 3 Steps

Figure 6: Combining Multiple Steps

merge-rebuild operators and a single merge (SortReducer). The
second kernel performs three rebuild-merge operator sequences
(BitonicReducer). To the best of our knowledge, this is a novel
optimization.

This optimization reduces the runtime of top-32 from 122ms to
48.15ms. Both kernels (and as a result the entire application) are
now shared memory bandwidth bound. The SortReducer kernel
and BitonicReducer kernel achieve shared memory bandwidth of
2.75TBps and 2.7TBps respectively. This is greater than 90% utiliza-
tion of the 2.9TBps peak bandwidth of shared memory observed on
repeated read workload. We, therefore, shift our attention towards
optimizing shared memory accesses.

���� ��

��� ��

�� �� ��� ��� ���

�����

������

���� �� ��

Combining/Sequentializing Multiple Steps. For the next optimiza-
tion, we rearrange the assignment of data items to threads to reduce
the amount of memory traffic. Figure 6a shows the default assign-
ment (threads are color-coded), each thread reads two values from
shared memory, compares them and writes them back to shared
memory. As each thread is responsible for 8 elements, it does the
same for 3 other pairs. If, however, we process more than two values
per thread per round, the read and write operations can be shared.
In Figure 6b, e.g., the orange thread reads the values at positions
0, 2, 4 and 6 and performs two comparisons on each. This halves
the shared memory traffic and can be generalized to more elements
(see Figure 6c). While this (partially) serializes the processing (from
three fully parallel steps with four operations each to 12 sequential
operations) it does not increase the overall number of comparisons.
This optimization is similar to optimization 1 which combines mul-
tiple steps that read and write to global memory to read and write
to shared memory. Instead here, we combine multiple steps that
read and write to shared memory to work in registers. This reduces
the runtime to 33.7ms.

���� ��

���� ��

�� �� ��� ��� ���

�����

������

���� �� ��

0 1

2 3

4 5

6 7

Memory Bank
1 82 3 4 5 6 7

…

Thread
access

Ad
dr

es
s

Unused
Cell

Figure 7: Avoiding BankConflicts with Padding (numbers in
boxes designate the accessing thread’s ID)

Do work before writing. Conventional wisdom is to copy a chunk
of data from global to shared memory in a coalesced manner and
processing data only in shared memory. However, by rejecting
this common wisdom, we can reduce shared memory accesses.
Each thread loads 8 consecutive elements from global memory into
registers, perform all intermediate steps required to create local
sorted sequence of length 8without hitting sharedmemory and then
write to shared memory. Note that as a result of this optimization,
accesses to global memory are no longer coalesced because threads
access data elements at a stride of 8. However, this does not lead
to any noticeable performance difference on modern GPUs due to
their data caches. This optimization is likely to be widely applicable.
In our experiments, it yields an effective reduction of the runtime
to 27.1ms.

���� ��

���� ��

�� �� ��� ��� ���

�����

������

���� �� ��

Breaking Conflicts with Padding. In this and the following subsec-
tion, we introduce three optimizations that help avoiding memory
bank conflicts. While most current GPUs have 32 shared memory
banks and warps of 32 threads, illustrating the effects of our opti-
mizations on 32 memory banks would unnecessarily inflate the size
of our figures. For that reason, we assume 8 memory banks (and
warps of size 8) for the illustrations (note that the experiments are
conducted on a real GPU with 32 memory banks).

The first optimization is an instance of a widely known tech-
nique: padding arrays to avoid memory conflicts. A shared memory
array of size n can be viewed as a 2D array of dimensions [n8 , 8]
(where 8 is the number of banks). The key idea is to allocate slightly
more memory to create a larger array of dimensions [n8 , 9]. The
extra column added does not store any elements, however, it helps
break shared memory conflicts. Figure 7 shows the accesses per-
formed by a combined step combining inc = 2, 1 at time step 0 after
padding. The grayed out cells do not hold any values and are simply
space overhead. Each thread wants to read 4 contiguous elements.
Thread 0 wants to read entries 0-3, thread 2 wants to read 8-12.
Without padding these two threads would conflict (0 and 8 are in
the same bank). The figure illustrates how the padding prevents
the conflicts (thread 0 and 2, access different memory banks after
padding). This decreases the runtime of top-32 to 22.3ms. Note
that padding does not help bitonic sorting due to its global mem-
ory bandwidth boundness. In contrast, the bitonic top-k is shared
memory bandwidth bound.

Padding also has a second benefit: it allows us to merge more
operators into a kernel. Recall that processing more than 8 elements

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Anil Shanbhag, Holger Pirk, and Samuel Madden

���� ��

���� ��

�� �� ��� ��� ���

�����

������

���� �� ��

caused conflicts (discussed with operator merging earlier in this
section) and that this effect limited us to merge only three operators.

With padding, this is no longer true which allows us to merge
four or evenmore steps (processing 16 or more elements per thread).
However, beyond 16, the number of allocated registers forces the
compiler to reduce occupancy leading to a performance penalty:
Figure 8 shows the performance when varying the number of pro-
cessed elements (B). There is virtually no benefit when increasing
B from 16 to 32 and a detriment when increasing B to 64. We, thus,
fixed B to 16.

1 2 4 8 16 32 64 128 256

K

8

16

32

64

T
im

e
 T

a
ke

n
 (

in
 m

s)

B=8

B=16

B=32

B=64

Figure 8: Varying the number of elements per thread

Chunk Permutation. Figure 9 illustrates the shared memory ac-
cess pattern of the local sort operation after applying the opti-
mizations discussed so far. Here, each outlined shape represents
an operation with no accesses to shared memory (shared memory
access is performed at the edges of each shape), the axes represent
iterations of sequential loops within the kernel, and the numbers
the distance in the input array of the compared elements. While
most of the kernels are bank-conflict-free, we observe that, when
the comparison distance is four, the memory accesses cause bank
conflicts. To illustrate this, consider Figure 10a: it illustrates the
comparisons that are performed in the red box in Figure 9 (a pair-
wise comparison of elements with a distance of four). The figure
indicates the memory accesses of the threads in a warp: each ar-
row represents the comparison performed in one thread with the
colors indicating the time (and thus the order) of the accesses. We
observe that, despite padding, the memory accesses at clock time 0
overlap with respect to their memory bank. We can avoid this by
changing the memory locations each thread reads from (and writes
to). We call this optimization Chunk Permutation and illustrate it
in Figure 10b: instead of reading from conflicting banks at clock 0,
each thread accesses a different memory bank. One may notice that
there is still overlap between the accessed values. However, these
accesses are performed at different times. As is obvious the figure,
there are no conflicts by observing that there are no two identically
colored boxes in a column.

While we illustrated the chunk permutation optimization using
the example of the last step in the local sort, the problem occurs
whenever the comparison distance of a combined step is greater
than 1. This makes it widely applicable for our case and even more
broadly (e.g., for bitonic sort). For our application it removes all the
remaining memory bank conflicts in the local sort operator for all
k ≤ 256 and improves the performance of top-32 from 17.8ms to
16ms. The effect is more pronounced at higherk , e.g., improving top-
128 performance by roughly 20 percent. This optimization is novel.

1 2 4

1 2

1

No Conflict
2-way Conflict

Outer Loop Iteration

In
ne

r L
oo

p
Ite

ra
tio

n

Figure 9: Comparison distance for local Sort k = 8,x = 4

Memory Bank
1 82 3 4 5 6 7

(a) W/o Chunk Permutation

Legend

Memory Bank
1 82 3 4 5 6 7

Accessed at Clock 0 Accessed at Clock 1

(b) W/ Chunk Permutation

Figure 10: Bank-conflicts when comparing elements

The broader idea of re-arranging chunks to avoid bank conflicts
could be applied to other algorithms that suffer from sharedmemory
bank conflicts.

Reassigning Partitions. The last optimization we developed is
targets the assignment of data items to threads after the first re-
duction: since the reduction halves the number of elements but the
number of threads remains the same, there is less work per thread.
This leads to fewer steps being merged because the number of steps
that can be merged is the logarithm of the number of input data
items per thread. To maintain the same number of input data items
per thread after the reduction, we have half the threads perform all
the work. While this leaves half of the threads without work, the
reduction in shared memory traffic due to larger combined steps
outweighs that cost. This optimization further improves the perfor-
mance to 15.4ms. This optimization is novel and maybe applicable
to kernels that reduce input data in phases.
Discussion:

Memory Usage. Memory usage is of critical importance for GPU-
based data management systems. For a dataset of size n, out-of-
place bitonic top-k uses one additional buffer of size n/8. This is
significantly less than sort and selection-based methods which
require an additional buffer of size n.

Data larger than GPU memory. When data is larger than can fit
in GPU memory, data needs to moved to the GPU via the PCI bus.
There is a significant amount of research on reducing pressure on
that bottleneck using asynchronous transfers [10, 22], approxima-
tion [18], compression [9, 20] and cost-aware device selection [7].
While we do not explicitly address the PCI-bottleneck in this paper,
the reductive nature of top-k queries makes it trivial to process the
data in memory-size chunks and overlap computation with transfer
(similar what is done for sorting [22]).

Bitonic Top-K on CPU. The bitonic top-k algorithm described can
also be implemented on the CPU. We describe our implementation
in Appendix C. Bitonic top-k after applying all the optimization
described in this section comes close to being compute bound on
the GPU. When the same algorithm is run on the CPU, it is strictly
compute bound due to lower compute to bandwidth ratio of CPU.

Efficient Top-KQuery Processing on Massively Parallel Hardware SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

5 DATABASE INTEGRATION
Having developed a highly optimized massively parallel top-k im-
plementation, we were naturally interested in its usability in a full
system. As a proof of concept, we integrated the bitonic top-k ker-
nel into MapD, an open source GPU database [16]. In this section,
we discuss two optimization opportunities that can we used in the
context of database analytics to improve performance.

Fusing with filter. A common query template is to find the top-k
items in a subset of the data satisfying a selection predicate. The
easy way to execute this is to have a seperate kernel execute the
filter and have the subsequent top-k kernel uses the output to find
the top-k items. GPU-based databases end up doing this currently
as they treat the top-k kernel(done using sort) as a blackbox. We
can optimize this by fusing the select into the bitonic top-k routine.

Each thread block running the SortReducer kernel reads in 16nt
elements and writes out nt elements where nt is the number of
threads in the thread block. One way to fuse the kernels is to read
in 16nt elements, apply the filter predicate and run the SortReducer
on the matched elements. However, the SortReducer kernel is then
effectively running on s ∗ 16nt where s is the selectivity. As shown
in previous section, having 16 elements per thread is crucial to
the performance of SortReducer as it enables it to run combined
steps. The FusedSortReducer instead uses the selection step as a
buffer filler. It reads in nt elements at a time into shared memory,
applies the filter predicate to find the number of matches elements,
computes a prefix sum and then writes it out into a shared memory
buffer of size 16nt . It then reads in the next batch of nt elements till
we have more than 15nt elements matched. The rest of the entries
are padded with min/max value so that they never show up in the
top-k results. The SortReducer then works on the buffer of 16nt
elements and writes out nt elements contain the top-k.

Custom Ranking Function A custom ranking function is an order
by clause of the form f (A1,A2,A3..) where f is any function and
A1,A2, .. are columns of A. The ranking function can be evaluated
at the start of SortReducer kernel instead of running it as a separate
project step which outputs the value of the function.

6 EVALUATION
In this section, we compare the performance of the five different
algorithms we presented in Section 3:

(1) Sort: Sorting to find top-k
(2) PerThread TopK: Using a heap per thread to find top-k
(3) Radix Select: Adapting radix select to find top-k
(4) Bucket Select: Adapting bucket select to find top-k
(5) Bitonic TopK: Using the bitonic top-k algorithm

after applying the optimizations in Section 4 varying the following
parameters: (1) the value of K (2) the key data type (3) the data dis-
tribution (4) the data size (5) the number of key and value columns
and finally (6) the device (CPU vs. GPU). After that, we show the
performance achieved by integrating BitonicTopK in the MapD
database by evaluating top-k queries on a twitter dataset.

6.1 Setup
All the results are averages of 3 runs on a single socket Intel i7-
6900 @ 3.20GHz (Skylake with 8 Cores, 16 hardware threads) with

Nvidia GTX Titan XMaxwell GPU running on Ubuntu 15.10 (Kernel
4.2.0-30) and CUDA 8.0.

6.2 Performance with Varying K
We generate 229 random uniformly distributed (U (0, 1)) floats and
observe the performance of the different algorithms with K varying
from 1 to 1024 in powers of 2. Figure 11a shows the results.

Memory Bandwidth shows the time taken to read the entire data
from global memory. Since all of the data needs to be read at-least
once, this constitutes a lower bound on the runtime of any algo-
rithm. In reality, most algorithms would write/read intermediate
data and have other overheads. We observe that the runtime of the
Sort method is virtually constant across k since it has to sort the
entire input irrespective of K.

Radix Select and Bucket Select take almost the same time
across K as expected. The latter does worse than the former due to
the use of more expensive atomic operations. When k = 1, Bucket
Select is fast as it terminates after finding the min-max of the
array and directly returns it as the result.

PerThread TopK line has steep slope rising from k = 32, this
is due to reduced occupancy and thread divergence as explained
earlier in Section 4.1. The approach fails for K > 256 due to the
required amount of shared memory. For K = 512, even with the
minimum thread block size 32, we need 512 ∗ 32 ∗ 4 = 64KB (each
key is 4 bytes) which exceeds the available 48KB per thread block.

Finally, Bitonic does better than all the other algorithms for
K ≤ 256. For K > 256, the Radix Select method does better.

6.3 Dependence on Data Type
Next, we run the algorithms on a dataset with 229 unsigned in-
tegers drawn from U (0, 231 − 1) (see Figure 11b). The time taken
by all methods except Radix Select is virtualy identical to that
observed with f loat data type. Radix Select does better because
with uniformly distributed data, the number of eliminated tuples
per scan is maximal (a reduction of 256× assuming 8-bit radices).

Second, we run the algorithms on 228 doubles drawn fromU (0, 1).
The size of the data is the same, however the word size of each
key has increased. Figure 11c shows the results. The Sort-based
approach has to perform twice as many scans (since the number
of digits has doubled) but scan fewer values. However, processing
64-bit values is significantly more expensive than 32-bit values on
most GPUs which explains the cost increase. Radix Select has the
same issue, however, this effect is less pronounced as the algorithm
operates on a smaller number of elements in subsequent passes.
Bucket Select ends up being slightly faster than with floats as
the number of keys has reduced resulting in smaller number of
atomic operations. The PerThread TopK line is similar to line seen
with f loat shifted to the left and slightly lower: this is natural
since there less processing needs to be performed for every read
byte. For each K , the method uses twice as much shared memory
when processing doubles compared to processing floats. Thus, the
approach fails earlier (for K > 128). Finally, Bitonic TopK remains
largely unchanged as the data size is the same and the cost are
dominated by the memory bandwidth.

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Anil Shanbhag, Holger Pirk, and Samuel Madden

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)
Sort

Bucket Select

Radix Select

PerThread TopK

Bitonic TopK

Memory Bandwidth

(a) With float keys

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Bucket Select

Radix Select

PerThread TopK

Bitonic TopK

Memory Bandwidth

(b) With unsigned integers keys

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Bucket Select

Radix Select

PerThread TopK

Bitonic TopK

Memory Bandwidth

(c) With double keys

Figure 11: Time taken with different k

1 2 4 8 16 32 64 128 256 512 1024

K

(a) Increasing

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

1 2 4 8 16 32 64 128 256 512 1024

K

(b) Bucket Killers

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort Radix Select Bucket Select PerThread TopK Bitonic TopK Mem. Bandwidth

Figure 12: Performance across different distribution

6.4 Dependence on Data Distribution
Keeping the data size fixed at 229, we examine the performance of
algorithms with varying k on 2 distributions:
• Increasing: Sorted floating point numbers fromU (0, 1)
• Bucket Killer : Contains all 1s(floats) except 4 numbers, each
of which differ from 1.0 in one 8-bit digit. This minimizes
the reduction achieved in a single radix-scan.

Figure 12 shows the results. The only algorithms that do not
change based on the distribution of elements are Sort and Bitonic
TopK. Both perform precisely the same operations.

The increasing (figure 12(a)) distribution leads to PerThread
TopK performing up to 3x worse while the other algorithms see no
change. This is because PerThread TopK’s performance is depen-
dent on number of heap inserts. With increasing distribution, each
element causes a heap insert making it a near worst case for the
algorithm.

For most selection algorithms, it is relatively easy to identify dis-
tributions which will cause worst case behaviour for the algorithms.
Bucket killer is the adversarial distribution for Radix Select. With
bucket killer (figure 12(b)), Radix Select ends up taking the same
time as Sort because each radix pass leads to only one number
being removed from consideration (the one which differs from 1 at
that 8-bit digit). Each pass ends up reading and writing the entire
dataset like in Sort. Bucket Select also experiences a 2x slow-
down due to less data reduction in the intermediate steps. Note
that, due to the predictable pattern of the bitonic merges, there is
no adversarial input distribution for the Bitonic TopK approach
making it a very robust option.

6.5 Dependence on Data Size
To show the performance of the algorithms across different data
sizes, we run them with a fixed k = 64 and choose a data set of
random floats drawn fromU (0, 1) with varying data sizes ranging
from 221 to 229. Figure 13 shows the results. Bitonic TopK and

221 222 223 224 225 226 227 228 229

Data Size

0.2
0.5

1
2
4
8

16
32
64

128
256
512

T
im

e
 T

a
ke

n
 (

in
 m

s)

Sort

Bucket Select

Radix Select

PerThread TopK

Bitonic TopK

Figure 13: Performance with varying size

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Radix KKKV

Radix KKV

Radix KV

Bitonic KKKV

Bitonic KKV

Bitonic KV

Figure 14: Different number of keys

Sort grow linearly with input size. PerThread TopK maintains
top-k per thread and runs a fixed number of threads to keep all the
GPU cores busy. With larger data sizes, the number of elements
processed by each thread increases. Also, for uniform distribution
the probability of a heap insert decreases as more and more data is
seen. This results in the initial outward bulge. Radix Select and
Bucket Select grow linearly for larger data sizes. At data sizes
below 224, the time taken by prefix sum (which is a constant across
data sizes) becomes significant leading to flattening of the lines.

6.6 Key(s)+Value
So far, we used tuples with just a key. However, many applications
would require key+value or multiple keys+value. In this section,
we show the performance of Radix Select and Bitonic TopK
with key + value (KV), two keys + value (KKV) and, three keys +
value (KKKV). Each key is a float drawn fromU (0, 1) and value is a
4 byte integer. Size of the elements in the dataset is 228. Figure 14
shows the results. Both the methods show a linear increase in the
runtime due to increased data sizes as we go from KV to KKKV.
The cut-off point remains the same across the different key counts.
We do not show the results for the other methods for readability.

We do not show experiments with larger value payloads as it
is always better to pass around the tuple id and construct the full
tuple at the end of top-k. For example, consider a dataset with 10
million tuples of 4 byte key, 12 byte payload. Running top-k on
(key,id) instead of (key,payload) halves the data size moving around.
Assembling the result at the end takes virtually no time.

Efficient Top-KQuery Processing on Massively Parallel Hardware SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

6.7 Comparison against CPU
In this section, we compare the performance of CPU-based top-k
to the GPU-based top-k. For CPU-based top-k, we have two heap-
based methods: one using C++ STL priority queue as a min-heap
(STL PQ) and, second a hand-optimized min-heap (Hand PQ). For
each element, we check it against the heap minimum by comparing
with the root of the heap. If its greater, we pop the root (the mini-
mum) and insert the new element. We also show the CPU version
of bitonic top-k. For GPU-based top-k, we show Bitonic TopK and
Radix Select.

1 2 4 8 16 32 64 128 256 512 1024

K

(a) Uniform

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

1 2 4 8 16 32 64 128 256 512 1024

K

(b) Increasing

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

Radix Select Bitonic TopK Hand PQ STL PQ Bitonic TopK CPU

Figure 15: Comparing against CPU Top-K

First, we compare them on a dataset of 229 floats drawn from
uniform distribution U (0, 1). Figure 15(a) shows the results. As the
data is uniformly distributed, most of the elements get discarded
when checked against the heap minimum and very few trigger a
heap insertion. To illustrate this note that, for this dataset, with k =
32, each core looks at 671k elements and ends up doing about 500
insertions (including the first 32 elements that always get inserted).
The performance is, thus, likely to be memory bound. Bitonic
TopK does 3x better than Hand PQ when k = 32. Bitonic top-k
on the CPU does signficantly worse than heap-based methods as
it does significantly more computation than heap-based methods
which do just 500 insertions.

Next, we consider the same dataset but sorted in increasing
order. Figure 15(b) shows the results. Since the data is sorted, each
element causes a heap pop/insert. This is close to the worst case.
Bitonic TopK and Radix Select take the same time while the
CPU algorithms do significantly worse. Bitonic TopK does 60x
better than Hand PQ and 120x better than STL PQ when k = 32.
Time taken by bitonic top-k on the CPU is close to that of Hand PQ
despite doing more comparisons. This is due to the use of SIMD
instructions.

As empirically demonstrated in this section, Bitonic TopK is
the best performing approach for smaller K (K ≤ 256) and Radix
Select for larger K. To provide an analytical argument in support of
these findings and to predict the performance on different hardware,
we develop a hardware-conscious cost model in Section 7.

6.8 MapD Integration
To evaluate the performance improvement got from Bitonic TopK
in a real world setting, we evaluate the system on a twitter dataset
consisting of 250 million tweets from May 2017. We evaluate four
queries:
1) SELECT id FROM tweets WHERE tweet_time < X ORDER BY
retweet_count DESC LIMIT 50

0.0 0.2 0.4 0.6 0.8 1.0

Selectivity of time range

0

50

100

150

200

250

T
im

e
 T

a
ke

n
 (

in
 m

s)

Filter+Sort

Filter+Bitonic TopK

Combined Bitonic TopK

(a) Get top-k most retweeted
tweets in a time range

16 32 64 128 256

K

0

50

100

150

200

250

T
im

e
 T

a
ke

n
 (

in
 m

s)

Project+Sort

Project+Bitonic TopK

Combined Bitonic TopK

(b) Find top-k most popular
tweets

Figure 16: MapD Experiments

The query finds the top 50 most retweeted tweets in a specified time
range.We vary the time range to have selectivity from 0 to 1 in steps
of 0.1. MapD by default runs the filter on the time range followed by
sort on the GPU. It then copies the top-k tweet ids and assembles the
tweet (Filter+Sort). We evaluate two alternatives: 1) replace the
sort by bitonic top-k (Filter+Bitonic TopK), 2) combined kernel
that runs filter and bitonic top-k together (Combined Bitonic
TopK). Figure 16a shows the results. Bitonic top-k based methods
out-perform the existing methods. The filter fusion optimization
saves the time to write out to and read in from global memory of
the filtered id,retweet count entries. At selectivity 1, the filter fusion
optimization reduces the total kernel runtime (time spent on GPU)
by 30% and the end-to-end runtime by 23%.
2) SELECT id FROM tweets ORDER BY retweet_count + 0.5 *
likes_count DESC LIMIT K
The query finds the most popular tweets based on a complex rank-
ing function. MapD by default runs a projection step that com-
putes the value of the ranking function followed by a sort step
(Project+Sort). We evaluate two alternatives: 1) replace sort with
bitonic top-k (Project+Bitonic TopK), 2) a combined kernel that
computes the value of the ranking function inside the SortReducer
(Combined Bitonic TopK). Figure 16b shows the results. The com-
bined kernel saves on having to having to write out and read in
the projected rank value. This reduces the runtime of the combined
method by 10ms compared to Project+Bitonic TopK.
3) SELECT id FROM tweets WHERE lang=’en’ OR lang=’es’
ORDER BY retweet_count DESC LIMIT K
The query finds the top K tweets by retweet count in english or
spanish language.We evaluate the same 3methods used in query (1).
The filter has a set selectivity of around 80%. We see the same trend
as in the previous query. The combined kernel saves on having
to read/write filtered id,retweet count entries. This reduces the
runtime by 16ms compared to Filter+Bitonic TopK across all K.
4) SELECT uid, COUNT() AS num_tweets FROM tweets GROUP
BY uid ORDER BY num_tweets DESC LIMIT 50 The query finds
the top 50 users by tweet count. There are about 57 million unique
users in the dataset. By default in MapD, the query execution takes
97ms of which the sort step takes 44ms. Using bitonic top-k reduces
the runtime by 39% as it reduces the time taken by the sort step
by 38ms. A query which finds say the 50 most popular hash tags
would not benefit as much from bitonic top-k as the most of the
time is spent in the group by step.

7 COST MODEL
Due to space constraints, we limit our modeling efforts to the two
best-performing algorithms (see last section): Radix Select and

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Anil Shanbhag, Holger Pirk, and Samuel Madden

Bitonic TopK. We model them using hardware parameters we de-
termined empirically using benchmarks provided by Nvidia. The pa-
rameters are (1) the global memory bandwidth (BG), (2) the shared
memory bandwidth (BS), (3) the key size in bytes (w), (4) the the
input data size in bytes (D) and (5) the total number of threads (nt).

7.1 Radix-based Top-K
Radix-based top-k (Radix Select) operates as a series of passes,
each pass looking at one digit of 8 bits. Each pass reduces the data
size and the total number of passes is at mostw/8. Pass i involves:
• Read the input for the pass from global memory to write
out the number of entries per digit value per thread (total:
16 integers per thread). Di I is the input size for the pass in
bytes. Di I = D for the first pass.

Ti1 =
Di I
BG
+
16 ∗ 4 ∗ nt

BG

• Calculate the prefix sum to find the digit value d containing
the k-th value.

Ti2 =
2 ∗ 16 ∗ 4 ∗ nt

BG

• Scan the input and write out entries with digit value d to
another array in global memory. Let ηi be the fraction of
entries with digit value d . Note that this step is skipped if
ηi = 1.

Ti3 =
Di I
BG
+ ηi

Di I
BG

The total time of pass i is Ti = Ti1 +Ti2 +Ti3. The total cost is the
sum of the time taken by the individual passes.

7.2 Bitonic Top-K
Bitonic top-k runs a sequence of kernels: first the SortReducer
kernel, followed by a series of BitonicReducer kernels. Let x be
the number of elements per thread. Each kernel reduces the problem
size by a factor of x . For every kernel, there are two components
that can dominate performance depending on K : global memory
access or shared memory access. Due to the high parallelism and the
low overhead of context switches, the GPU will effectively hide the
cost of the less expensive of these two behind the more expensive.
The cost is, thus, the maximum of the two.

We start with the global memory access cost of the SortReducer
kernel. The kernel makes one scan of the input from global memory
and writes out 1/x of the input back (to global memory). The global
memory data access time thus straight forward to model:

Tд =
D

BG
+

1
x

D

BG
The shared memory data access time is harder to estimate: in

addition to the number of accesses, we need to take the number of
shared memory bank conflicts into account. Since bank conflicts
occur whenever two values on the same bank are accessed, we need
to take the specific addresses of memory accesses into account.

The time taken if the kernel is bound by shared memory band-
width is the sum of the time taken by each combined step:

Ts = Σiδi
DI i + DOi

Bs

1 2 4 8 16 32 64 128 256 512 1024

K

4

8

16

32

64

128

256

T
im

e
 T

a
ke

n
 (

in
 m

s)

Radix Real

Radix Predicted

Bitonic Real

Bitonic Predicted

Figure 17: Estimated vs real runtimes

where δi is the number of shared memory bank conflicts for one
warp and, DI i and DOi are size of data read and written by the
phase respectively. Applying this to findTs for SortReducer finding
the top-32, we get Ts = 17.5D/Bs .

The estimated time taken by the SortReducer kernel is
max (Tд ,Ts). For the Titan X Maxwell, BS = 2.9TBps and BG =
251GBps . The estimated total time is max (8.96ms, 12.1ms) =
12.1ms which is close to the actual runtime of 14.2ms . The cost
for BitonicReducer can be estimated in a very similar way except
that it directly starts with len = k/2.

Figure 17 compares the actual time of the methods versus the
predicted time based on the models for finding top-k on a dataset
with 229 floating point numbers drawn fromU (0, 1) with varying K.
The predicted times show the same trends as the observed times and
the cutoff point remains the same. Both the models underestimate
the time taken. This is because a kernel bound by global or shared
memory may not achieve the maximum possible bandwidth. For
example, the first kernel of radix-based top-k should take 8.6ms
based on model while in reality it takes 9.8ms and, the effective
shared memory bandwidth used by the SortReducer kernel for
k = 32 is around 2.5TBps versus the maximum 2.9TBps .

As demonstrated in this section, bitonic top-k is not only experi-
mentally faster but also theoretically more efficient than the best
alternative we evaluated.

8 CONCLUSION
Data analytics on GPUs is increasingly common, and a frequently
analytics task is to rank a set of data items according to some at-
tribute and extract the top-k values. In this paper, we presented
many algorithms to efficiently compute top-k on GPUs, including a
new algorithm based on bitonic sort. Through an extensive perfor-
mance evaluation of a number of different algorithms, we showed
that our bitonic-top-k algorithm is an order of magnitude faster
than the fastest algorithms based on fully sorting a list of elements,
and, depending on the value of k, several times faster than several
other algorithms for efficiently computing top-k. We also presented
a cost model that accurately predicts the performance of several
algorithms with respect to k, allowing a query optimizer to choose
the best top-k implementation for a particular query.

We believe there is still room for innovation in this space. While
we have intensively studied existing and proposed novel algorithms,
we have consciously excluded hybrid and adaptive solutions from
the scope of this paper. Such hybrid solutions could either involve
multiple devices (CPUs and GPUs) as well as hybrids of the pre-
sented algorithms.

Efficient Top-KQuery Processing on Massively Parallel Hardware SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] [n. d.]. Arrayfire discussion on top-k. http://bit.ly/2lLuFS1. ([n. d.]).
[2] [n. d.]. Issue to add gpu verion of top-k to tensorflow. https://github.com/

tensorflow/tensorflow/issues/5719. ([n. d.]).
[3] Martín Abadi et al. 2016. TensorFlow: A system for large-scale machine learning.

In OSDI.
[4] Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. 2010.

GGKS: Grinnell GPU k-selection. http://code.google.com/p/ggks/. (2010).
[5] Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. 2012. Fast

k-selection algorithms for graphics processing units. Journal of Experimental
Algorithmics (JEA) (2012).

[6] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings
of the spring joint computer conference.

[7] Sebastian Breß, Henning Funke, and Jens Teubner. 2016. Robust query processing
in co-processor-accelerated databases. In SIGMOD. ACM.

[8] Jatin Chhugani, Anthony D Nguyen, Victor W Lee, William Macy, Mostafa
Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey.
2008. Efficient implementation of sorting on multi-core SIMD CPU architecture.
PVLDB (2008).

[9] Wenbin Fang, Bingsheng He, and Qiong Luo. 2010. Database compression on
graphics processors. PVLDB (2010).

[10] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. 2006. GPUT-
eraSort: high performance graphics co-processor sorting for large database man-
agement. In SIGMOD.

[11] Mark Harris. 2007. Optimizing cuda. SC07: High Performance Computing With
CUDA (2007).

[12] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.
2013. Hardware-oblivious parallelism for in-memory column-stores. PVLDB
(2013).

[13] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. 2008. A survey of top-k
query processing techniques in relational database systems. CSUR (2008).

[14] James Malcolm et al. 2012. ArrayFire: a GPU acceleration platform. In SPIE.
[15] Duane Merrill and Andrew Grimshaw. 2011. High performance and scalable radix

sorting: A case study of implementing dynamic parallelism for GPU computing.
Parallel Processing Letters (2011).

[16] Todd Mostak. 2013. An overview of MapD (massively parallel database). White
paper, Massachusetts Institute of Technology (2013).

[17] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. 2010. Fast
in-place sorting with cuda based on bitonic sort. Parallel Processing and Applied
Mathematics (2010), 403–410.

[18] Holger Pirk, Stefan Manegold, and Martin Kersten. 2014. Waste notâĂę Efficient
co-processing of relational data. In ICDE. IEEE.

[19] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo-a vector
algebra for portable database performance on modern hardware. PVLDB (2016).

[20] Eyal Rozenberg and Peter Boncz. 2017. Faster across the PCIe bus: a GPU li-
brary for lightweight decompression: including support for patched compression
schemes. In DaMoN. ACM.

[21] Nadathur Satish, Mark Harris, and Michael Garland. 2009. Designing efficient
sorting algorithms for manycore GPUs. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on. IEEE, 1–10.

[22] Elias Stehle and Hans-Arno Jacobsen. 2017. A Memory Bandwidth-Efficient
Hybrid Radix Sort on GPUs. In SIGMOD. ACM.

[23] Yuan Yuan, Rubao Lee, andXiaodong Zhang. 2013. The Yin and Yang of processing
data warehousing queries on GPU devices. PVLDB (2013).

A REBUILD-ALGORITHM
Algorithm A shows the pseudocode for the bitonic top-k rebuild
operation.

B PER-THREAD TOP-K USING REGISTERS
Registers are the fastest layer of the memory hierarchy. However, as
noted in Section 2.1, current generation GPUs do not have thread-
local memory. A thread-local array can be made to use registers
only if all its accesses are statically known. Without it, the compiler
is forced to allocate the array in local memory which is off-chip
and has a severe negative impact on performance. This prevents us
from implementing a heap using registers as array accesses made
during heap updates cannot be statically determined. We found that
we can still maintain top-k per thread in registers by maintaining a

Algorithm 4: Bitonic Top-K Rebuild
Input : List L with bitonic sequences of length k
Output :L with sorted sequences of length k

1 int t = getGlobalThreadId();
2 int len← k≫ 1;
3 int dir← len≪ 1;
4 for inc← len; inc > 0; inc← inc≫ 1 do
5 int low← t & (inc − 1);
6 int i← (t≪ 1) − low;
7 bool reverse← ((dir & i) == 0);
8 x0, x1← L[i], L[i + inc];
9 bool swap← reverse ⊕ (x0 < x1) ;

10 if swap: x0, x1← x1, x0;
11 L[i], L[i + inc]← x0, x1;

list of top-k seen so far as a list and, keeping the index and value of
the minimum value.
T buf[k];
T minValue; int minIndex;

If the element seen is greater than minValue, we update minIndex
and find the new minIndex, minValue as follows:
minValue = xi
for j in range(0,k):

if j == minIndex: buf[j] = xi
if buf[j] < minValue:

minIndex, minValue = j, buf[j]

While iterating over the elements of the buffer array creates over-
head in the order of k, it allows the compiler to place the elements
of buf in registers. The faster data accesses counteract the over-
head for low values of k. For high values of k, the limited number
of available registers forces the compiler to allocate some of the
entries of buf in local memory even if the access is implemented
in the manner described.

Figure 18 compares the time taken by the register-based version
to the shared memory-based version to find the top-k from 229
floating point numbers with varying k. We vary the distribution:
(a) Uniform: numbers drawn from a uniform distribution U (0, 1),
(b) Increasing: numbers fromU (0, 1) sorted increasing and, (c) De-
creasing: numbers fromU (0, 1) sorted decreasing.

The register-based top-k is slower than the equivalent shared-
memory based top-k method for larger k because the register-based
method starts spilling registers to local memory, which leads to
significant slowdown. This is evident in the sharp slope going from
k = 32 to k = 64 in the graph. Comparing the increasing and
decreasing distribution, we see that the gap between the methods
widens. This is because increasing has every number updating the
top-k. Updates are more expensive in the list compared to the heap.
In decreasing, there are no heap updates after inserting the first k
elements.

C BITONIC TOP-K ON CPU
The bitonic top-k algorithm presented in the paper can be adapted
to run on the CPU as well. The bitonic top-k algorithm is reductive,

http://bit.ly/2lLuFS1
https://github.com/tensorflow/tensorflow/issues/5719
https://github.com/tensorflow/tensorflow/issues/5719
http://code.google.com/p/ggks/

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Anil Shanbhag, Holger Pirk, and Samuel Madden

1 2 4 8 16 32 64 128 256 512

K

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

Registers+List

Shared Memory+Heap

Memory Band. Limit

(a) Uniform

1 2 4 8 16 32 64 128 256 512

K

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

Registers+List

Shared Memory+Heap

Memory Band. Limit

(b) Increasing

1 2 4 8 16 32 64 128 256 512

K

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
 T

a
ke

n
 (

in
 m

s)

Registers+List

Shared Memory+Heap

Memory Band. Limit

(c) Decreasing

Figure 18: Different Per-Thread Top-K Approaches

Algorithm 5: CPU Bitonic Top-K Thread
Input : Input Parititon S of length n; int k
Output : List O of the top-k elements per thread

1 int numElements← n;
2 int numVectors← numElements / vectorSize;
3 int temp[2][n/16];
4 int current← 0;
5 for i← 0; i < numVectors; i += 1 do
6 SortReducer(S, temp[current], i, k)
7 numElements← numElements / 16;
8 while numElements >= vectorSize do
9 for i← 0; i < numVectors; i += 1 do

10 BitonicReducer(temp[current], temp[1-current], i, k);
11 numElements← numElements / 16;
12 numVectors← numElements / vectorSize;
13 current← 1 - current;
14 O← sort(temp[current], numElements);

it reduces an array of size n to an array of size k containing the
top-k elements. To make use of all the cores available, we parti-
tion the input array into equal sized partitions and let each core
independently process the partition to emit the top-k. The top-k
elements emitted by the individual core are combined in a final
global step to find the global top-k.

On each core, we further break down the input partition into
vectors of fixed size (in the implementation we use 2048 elements as
the vector size). We process the input partition in phases. The first
phase does the function of the SortReducer. It reads in the unsorted
input paritition, one vector at a time and outputs (1/16)th of the
input containing bitonic sequences of length k. The subsequent
phases do the function of BitonicReducer. They read in the input
containing bitonic sequences of length k, one vector at a time, and
outputs (1/16)th of the input containing bitonic sequences of length
k. Algorithm 5 shows the pseudocode.

On the GPU, each vector is processed in parallel by a thread block.
Each thread of the thread block reads in 16 elements from shared
memory and runs a combined step and outputs it back to shared
memory. However, on the CPU, on each core, we process the vector
in a single threaded fashion. The thread reads in 16 elements at a
time from main memory and runs a combined step and outputs it

back to shared memory. The reason we process small sized vectors
(here of size 2048) is so that the data is cached in L1 cache. This
allows random accesses in the vector to not incur latency of main
memory read.

Modern CPUs also have support for Single Input Multiple
Data(SIMD) instructions. The bitonic sorting network used to pro-
cess a combined step can be implemented using SIMD instructions
for improved performance. In the implementation we use 128-bit
SSE-based implementation of [8]. Also, some of the optimzations
details in Section 4.3 are not needed on the CPU. In particular,
padding and chunk permutation are not useful on the CPU as there
is no notion of bank conflict.

The bitonic top-k algorithm is not work-efficient. It does
O (n(loдk)2) number of comparisons as shown in Section 3.2. This
is strictly worse than heap-based methods which doO (nloдk) num-
ber of comparisons. However, bitonic top-k can leverage SIMD
instructions to improve performance. Overall, in the case when
lots of heap insertions occur (e.g.: when the input data is sorted)
, the performance of bitonic top-k is close to that of heap-based
methods despite the larger number of comparisons. Further, bitonic
top-k could be better on platforms with wider vector instruction
support like AVX-512 in Intel Knights Landing processors. We plan
to explore this in the future.

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Data Access
	2.2 Sorting on the GPU
	2.3 K-Selection

	3 Algorithms
	3.1 Per-Thread Top-K
	3.2 Bitonic Top-K

	4 Optimization & Implementation
	4.1 Per-Thread Top-K
	4.2 Selection-based Top-K
	4.3 Optimizing Bitonic Top-K

	5 Database Integration
	6 Evaluation
	6.1 Setup
	6.2 Performance with Varying K
	6.3 Dependence on Data Type
	6.4 Dependence on Data Distribution
	6.5 Dependence on Data Size
	6.6 Key(s)+Value
	6.7 Comparison against CPU
	6.8 MapD Integration

	7 Cost Model
	7.1 Radix-based Top-K
	7.2 Bitonic Top-K

	8 Conclusion
	References
	A Rebuild-Algorithm
	B Per-Thread Top-K Using Registers
	C Bitonic Top-K on CPU

