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Abstract

Non-interactive proofs of knowledge allow us to publicly demonstrate
the faithful execution of arbitrary computations. SNARKs have the
additional property of succinctness, meaning that the proofs are short
and fast to verify even when the computations involved are large. This
property raises the prospect of recursive proof composition: proofs
that verify other proofs. All previously known realizations of recursive
proof composition have required a trusted setup and cycles of expensive
pairing-friendly elliptic curves.

We obtain the first practical example of recursive proof composition
without a trusted setup, using only ordinary cycles of elliptic curves.
Our primary contribution is a novel technique for amortizing away
expensive verification procedures from within the proof verification
cycle so that we could obtain recursion using a composition of existing
protocols and techniques. We devise a technique for amortizing the
cost of verifying multiple inner product arguments which may be of
independent interest.

1 Introduction

Proofs of knowledge [GMR89], introduced by Goldwasser, Micali and Rackoff,
allow us to demonstrate knowledge of a satisfying witness to some NP
statement. If these proofs also do not reveal anything about the witness we
refer to them as zero-knowledge proofs of knowledge. Kilian [Kilian92], and
later Micali [Micali00], showed that these non-interactive [BFM88] proofs
could be smaller than the statement being proved. In the decades since,
significant reductions in the size and verification time of these proofs have
been made, culminating in succinct non-interactive arguments of knowledge,
or SNARKs for short. Today, the most efficient SNARKs require pairing-
friendly elliptic curves and trusted setup assumptions [Groth2016].

However, protocols based on standard assumptions still have either linear-
time verifiers or large constants. As a recent example of the state of the art in
group-theoretic constructions, Bulletproofs [BBBPWM17] have logarithmic
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size proofs but have linear-time verifiers, owing this partly to a linear-size
group multiscalar multiplication. The alternative of relying on a trusted
setup, which for many is unpalatable, still leaves the difficult logistical
problems and expenses surrounding such setups as a barrier for the use of
pairing-based SNARKs.

Recursive Proof Composition Besides being an efficient mechanism
for constructing zero-knowledge proofs, SNARKs imply the practicality
of verifiable computation: the ability to outsource large computations to
untrusted third parties and receive strong assurances about the correctness
of their alleged outputs. In parallel with the development of efficient proof
systems has been an interest in recursive proof composition – that is, proofs
that are capable of verifying other instances of themselves.

As an introduction to this concept, consider a blockchain network that
requires all participants in the network to download the entire history of
the blockchain and validate each individual state transition merely in order
to validate and process new state changes. SNARKs allow us to partially
address this scalability problem by outsourcing some of these verification
steps to a third party. However, the participant still must download and
check each proof.

Valiant [Val08] suggested the idea of “incrementally verifiable computa-
tion” by considering proofs that could themselves verify the correctness of
other proofs, allowing a single proof to inductively demonstrate the correct-
ness of many previous proofs. This idea resolves our hypothetical problem:
the participant in the blockchain network must now only download the
current state of the network as well as a single (recursive) proof that this
state is correct. Further proofs of state changes need only reference the latest
proof, allowing old history to be discarded forever.

Unfortunately there have been numerous practical and theoretical obsta-
cles to achieving recursive proof composition. On the theory side, arbitrary
depths of the recursion seem to degrade the security of the construction by
progressively increasing the size of the extractor needed to extract the initial
witness at the base of the recursion. This can be addressed, as shown in
[BCCT2012], by assuming only a constant depth of the recursion. In practice
there are no known attacks and we will not make these theoretical problems
a focus of our work.

On the practical side, the obstacles to recursive proof composition are
daunting. [BCTV2014] provided the first setting in which a proof could
recursively attest to the correctness of another proof. They provide a cycle of
elliptic curves such that proofs constructed using one of the curves can feasibly
reason about proofs constructed using the other. However, their techniques
in practice require proofs of knowledge that have very efficient verifiers, of
which the only realistic choices require trusted setups and pairing-friendly
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curves. These curves must also be built over very large (roughly 780-bit)
fields in order to achieve adequate security due to their low embedding
degrees.

1.1 Our Contributions

We present the first realization of recursive proof composition without a
trusted setup. As in [BCTV2014], we use a cycle of elliptic curves such
that proofs constructed with one curve can reason about proofs constructed
over the other. However, neither curve is pairing-friendly; the cycle consists
of normal 255-bit prime-order curves that are conjectured to approach the
128-bit security level. Such cycles are easy to construct, as discussed in §5
‘Cycles of Curves’. Our proof sizes and verification times do not increase
even as proofs are continually nested.

Our achievement is based on two novel techniques. First, we present a
method for amortizing the cost of verifying an inner product argument such
that the marginal cost of verifying such an argument is logarithmic in the
problem size, without requiring cooperation from the original prover(s). This
technique is likely of independent interest. Second, we apply this technique
over a cycle of elliptic curves in order to defer the full verification of each
nested proof until the end of the cycle, allowing proofs to efficiently verify
each other without the need for a fully succinct proving system.

Our intention is to explore the practical application of our amortization
technique, and so we do not make any formal security claims about our
demonstration protocol. However, we have attempted to construct a plausibly
knowledge-sound construction to demonstrate the feasibility of our approach
so as to inspire future improvements. Further, we propose many such future
avenues for improving on our techniques.

1.2 Related Work

As we discuss in more detail in §5.1 ‘Motivation for Cycles’, a critical design
issue for protocols using recursive composition is to efficiently support the
operations, including elliptic curve arithmetic, needed for verification of
another proof. Several previous works have attempted to address similar
issues (not all in a recursive proof context).

CØCØ [KZM+2015] provides a library of cryptographic primitives op-
timized for use in arithmetic circuits. Its elliptic curve primitives make
effective use of the SNARK-friendly curve approach, in which an “embedded”
Montgomery curve is defined over the field for which circuit arithmetic is
efficient.

The Sapling upgrade of the Zcash cryptocurrency protocol [Zcash] takes
this approach further and achieves significant advances in concrete effi-
ciency. It defines a pairing-friendly BLS12 curve [BLS2002], called BLS12-
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381 [Bowe2017] that has an embedded curve called Jubjub [Hopw2018]. A
birational equivalence between twisted Edwards and Montgomery forms of
Jubjub [BL2017] is used to optimize the curve arithmetic in the Sapling
circuits [HBHW2019, Appendix A]. This curve structure does not support
efficient recursion.

In Zexe [BCG+2019], two pairing-friendly curves are used in order to
support recursive proof verification. The larger curve is constructed “on
top of” the smaller curve using the Cocks–Pinch method [FST2009, §4.1].
However, only one layer of recursion is used in Zexe.

[BCTV2014] aims to support “scalable zero-knowledge”, using two
pairing-friendly MNT curves (of embedding degrees 4 and 6) that form
a cycle. The Coda block chain [MS2018] is an example of a deployed protocol
using this approach. However, due to the low embedding degrees (and recent
progress on the Discrete Logarithm Problem in extension fields used as the
target group of pairings) the MNT4/MNT6 construction requires curves of
size approaching 800 bits for the 128-bit security level. To date there is
no other known construction for pairing-friendly cycles, and there is some
evidence that more efficient constructions either do not exist or will be
difficult to find [CCW2018].

All of the systems mentioned above use proof systems that require a
trusted setup [Groth2010; PHGR2013; BCTV2014a; Groth2016], i.e. there
must exist a trusted party (or a simulation of such a party via an MPC
protocol) to generate the system parameters. This trusted party (or all of
the MPC participants colluding together) would be able to break soundness
of the proof system. In recent years new proof systems have appeared
without this drawback [BBHR2018; WTS+2017; Setty2019]. These systems
also avoid pairing-based cryptography, which eliminates potential concerns
about improvements in cryptanalysis of pairings. Unfortunately, although
asymptotically succinct, these systems all have large constants.

Our approach is similar to [BCTV2014], except that we do not require
either curve to be pairing-friendly. This allows a significant reduction in the
size of curves needed.

2 Preliminaries

We use the notation G for a prime-order abelian group (in practice instan-
tiated as the group of points on a prime-order elliptic curve), and F for its
scalar field.

We use uppercase letters to denote group elements, and lowercase letters
to denote scalars. We write group operations in additive notation; scalar
multiplication is denoted by aG for a ∈ F and G ∈ G. We use boldface
variable names for vectors, such that a is a vector of scalars and G is a vector
of group elements.
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We write the inner product a1b1 + a2b2 + · · · + anbn of scalar vectors
a,b ∈ Fn, as 〈a,b〉. Similarly we write the multiscalar multiplication a1G1 +
a2G2 + · · ·+ anGn of a scalar vector a ∈ Fn with a vector of group elements
G ∈ Gn, as 〈a,G〉.

3 Amortized Succinctness

Consider a prover that wishes to convince a verifier that they know a witness w
for a statement φ1, such that (w, φ1) ∈ R for some polynomial-time decidable
relation R. The prover will send a non-interactive proof of knowledge π1 to
the verifier such that given φ1 the verifier accepts with high probability only
if the proof demonstrates knowledge of the witness.

Suppose that the verifier must perform some linear-time operation f
to check the proof, but that the verifier expects to receive another proof
π2 for a (different) statement φ2 in the future. Instead of performing this
procedure, the verifier could ask the prover to supply v1 = f(x1) (for some
input x1 derived from the verification of π1) so that the verifier can perform
the remaining (sublinear-time) operations for checking π1. This initially
requires the verifier to take the prover’s word. After the next proof π2 is
supplied, the verifier does not evaluate f but again asks the prover to provide
v2 = f(x2) similarly. Now, instead of checking the correctness of the prover’s
supplied values v1, v2 by evaluating f , the verifier and prover will engage in
a public coin argument that convinces the verifier that v1 and v2 are correct
with high probability so long as v3 = f(x3) for some new values v3 and x3.
The verifier can now check this by evaluating f only once.

This strategy for amortizing the cost of verifying proofs is central to our
technique for achieving recursive proof composition. Consider a proof π2 that
additionally verifies a proof π1, but again does not perform some requisite
procedure f to fully check π1; instead, the claimed inputs and outputs for
f are embedded in the statement that π2 proves. The verifier of π2, which
may, due to the recursion, actually be simulated by a prover of another
proof π3, can use the aforementioned technique to encode one instance (not
two!) of checking an evaluation of f into the statement for π3. This acts to
continually amortize the cost of evaluating f such that it is never evaluated
directly by any particular proof, but instead once at the end of the cycle.
We refer to this concept as nested amortization.

Of course, in order to exploit this to achieve recursive proof composition,
we first must actually devise a proving system employing procedures that
can be amortized in this fashion.

3.1 Amortized Polynomial Commitments

Polynomial commitment schemes are a central tool of several recent proving
systems [MBKM2019; WTS+2017; Setty2019]. We will focus on univariate
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polynomial commitment schemes. These schemes allow a prover to commit
to a polynomial p(X) =

∑n−1
i=0 aiX

i, and then later open this committed
polynomial at arbitrary points such that a verifier will be convinced that the
evaluation is correct; that the prover knows the polynomial; and that the
polynomial is of degree at most n− 1.

We will leverage the inner product argument from [BCC+2016], which
allows a prover to commit to vectors a,b ∈ Fn and then to provably eval-
uate their inner product 〈a,b〉 for a verifier. This is a generalization of a
polynomial commitment scheme, if we fix b = (x0, x1, x2, ..., xn−1) for some
point x at which we wish a prover to evaluate the committed polynomial
defined as before by the coefficients a. The inner product argument can be
easily adapted to a fixed b, and in fact this variant of the argument can be
made zero-knowledge [WTS+2017, Appendix A.3].

In our adaptation of the inner product argument a polynomial commit-
ment is constructed with the vector commitment 〈a,G〉 for some vector
G ∈ Gn of random group elements. At the conclusion of the argument,
in order to convince the verifier of the correct evaluation of a committed
polynomial, the verifier must evaluate G = 〈s,G〉 and b = 〈s,b〉 where for
some k = log2(n) challenges u1, u2, ..., uk ∈ F we have

s = (u−11 u−12 · · ·u
−1
k ,

u1 u−12 · · ·u
−1
k ,

u−11 u2 · · ·u−1k ,

u1 u2 · · ·u−1k ,
...

u1 u2 · · ·uk )

Observe that the verifier can compute b as
∏k

i=1(ui + u−1i x2
i−1

), with work
only logarithmic in n. This reveals that G itself can be interpreted as a
commitment to a polynomial that the verifier can efficiently evaluate at
arbitrary points. Thus, the verifier could check the correctness of multiple
values of G (constructed with different challenges) by evaluating them at
a random point using our polynomial commitment scheme. Given a large
enough field, a prover that provides a dishonest value of G is unlikely to
satisfy this test due to the degree bound on the committed polynomials.
Additionally, the polynomial commitments can be opened simultaneously
by using the fact that the commitments are additively homomorphic, or by
running two openings in parallel to share challenges. In any case this allows
the verifier to reduce the cost of evaluating two values of G to the cost of
computing just one, and as described before this technique can be continued
repeatedly across the cycle such that only one computation of G is needed
for checking all nested proofs.
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Batch Verification It is worth contrasting this technique with the conven-
tional technique of “batch verification”. Batch verification takes advantage
of the fact that multiple equations involving (mostly) the same fixed group
generators can be checked simultaneously by probabilistically combining the
checks into a single equation; this can vastly reduce the marginal cost of
verifying additional inner product arguments. However, this technique still
requires a marginal amount of work (scalar arithmetic) that is linear in the
size of the problem. Our technique requires only a logarithmic marginal
amount of work and communication, and so it can be seen as a kind of prob-
abilistically accelerated batch verification. Furthermore, it does so without
requiring the original provers of each individual inner product argument to
cooperate.

3.2 Amortized Commitment Checks

In the protocol we describe later the verifier will need to evaluate a multi-
variate polynomial s(X,Y ) at some point (x, ycur). Instead, we will have
the prover commit to s(X, ycur) and then evaluate it (using our polynomial
commitment scheme) at x. This requires the verifier to check that the commit-
ment is to the correct polynomial. We leverage the same technique described
before where the verifier does not immediately check the correctness of the
commitment but rather continually folds this check together with another
check of the commitment s(X, yold) for some other yold. In particular, we use
a technique from Sonic [MBKM2019] where the prover is asked to provide a
commitment to s(x′, Y ) for some random challenge x′. The commitments are
checked for consistency, which shows that if the commitment to s(x′, Y ) was
correct then it holds (with high probability) that the former commitments
were also to the correct polynomials, as low-degree polynomials cannot agree
at most points. This subprotocol is played again with a new challenge ynew
to obtain a purported commitment to s(X, ynew), restoring the problem to
its original form.

4 Recursive Arguments of Knowledge

We will now use the techniques described in §3 ‘Amortized Succinctness’ to
obtain a recursive argument of knowledge. Our protocol is a variation of Sonic
[MBKM2019] that is adjusted to leverage our nested amortization technique
and for the polynomial commitment scheme we described earlier. Due to the
similarity of our protocol with Sonic and our only minor adjustments to the
inner product argument of [BCC+2016] we claim our protocol is plausibly
knowledge sound, but we do not argue this formally. Our focus is entirely
on the practicality of the nested amortization technique, so we leave these
details for future work.
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Observe that in Sonic the only operations the verifier must perform are
polynomial commitment openings and a signature of correct computation. As
we described, a polynomial commitment scheme amenable to nested amorti-
zation can be constructed using the inner product argument of [BCC+2016],
and this can serve as a substitute for the commitment scheme used in Sonic.
Further, we leverage a technique described in Section 8 of [MBKM2019]
(which we reviewed in §3.2 ‘Amortized Commitment Checks’ ) to amortize
the cost of multivariate polynomial commitment checks.

Briefly, let us review the Sonic proof of knowledge. The prover will
demonstrate knowledge of a witness a,b, c ∈ FN that satisfies a system of
constraints that consists of N multiplication constraints where the ith such
constraint is of the form

ai · bi = ci

and Q linear constraints where the qth such constraint is of the form

( N∑
i=1

ai · (uq)i

)
+
( N∑

i=1

bi · (vq)i

)
+
( N∑

i=1

ci · (wq)i

)
= kq

for some fixed uq,vq,wq ∈ FN and for the statement k ∈ FQ. This system
of constraints generalizes arithmetic circuits and so by demonstrating a
satisfying assignment the prover will demonstrate the faithful execution of
some circuit.

The prover accomplishes this by committing to a polynomial r(X,Y )
with their witness, obtaining a random challenge y from the verifier, and
then demonstrating that a second polynomial t(X, y) has a zero constant
term.

r(X,Y ) =
N∑
i=1

aiX
iY i +

N∑
i=1

biX
−iY −i +

N∑
i=1

ciX
−i−NY −i−N

s(X,Y ) =
N∑
i=1

ui(Y )X−i +
N∑
i=1

vi(Y )Xi +
N∑
i=1

wi(Y )Xi+N

s′(X,Y ) = Y Ns(X,Y )−
N∑
i=1

(Y i + Y −i)Xi+N

t(X,Y ) = r(X, 1)(r(X,Y ) + s′(X,Y ))− Y Nk(Y )

Given that the prover’s commitment to r(X,Y ) is degree bounded at N ,
then if the constant term of t(X, y) is zero then with high probability the
constraint system is satisfied. Note that we differ from Sonic in that we
have rearranged the definition of s(X,Y ) (and some other polynomials) to
reduce the degree of s(X,Y ) and to leverage the fact that the verifier can
efficiently compute

∑N
i=1(Y i + Y −i)Xi+N itself, though this has no effect on
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the argument. We compensate by redefining the polynomials

ui(Y ) =
Q∑

q=1
Y q(uq)i vi(Y ) =

Q∑
q=1

Y q(vq)i

wi(Y ) =
Q∑

q=1
Y q(wq)i k(Y ) =

Q∑
q=1

Y qkq

Observe that r(X,Y ) is designed such that r(X,Y ) = r(XY, 1), and so the
prover can commit to this polynomial with only a univariate polynomial
commitment scheme. However, observe also that these polynomials are
Laurent polynomials. We will address this by scaling the polynomials before
committing to them, and rescaling the openings to obtain the correct results.

4.1 Basic Protocol

In all of the following, let k be an integer such that our polynomial commit-
ment scheme bounds the degree of our committed polynomials at 2k− 1, and
let N = 2k−2. Further, let Q < 2k − 1.

The prover begins by sending the commitment

R = Commit(r(X, 1)X3N−1)

which allows us later to demonstrate our degree bound for r(X,Y ). The
verifier samples random challenge ycur ∈ F and asks the prover to commit
to t(X, ycur) while establishing that t(X, ycur) has a zero constant term. We
accomplish this by having the prover send two commitments T+ and T− to
polynomials t+(X) and t−(X) such that

t(X, ycur) = t+(X)X + t−(X)X−4N

which, due to the degree bound for the polynomial commitment scheme gives
us that the committed polynomial has a zero constant term. The verifier now
selects random challenge x and asks the prover to open their commitments
to v1 = r(x, 1), v2 = r(x, ycur), v3 = t(x, ycur) and checks that

v3 = v1 · (v2 + s′(x, ycur))− k(ycur)

which demonstrates that the commitment to t(X, y) was correct with high
probability, and so the polynomial t(X, y) has a zero constant term, and
therefore that the constraint system is satisfied with high probability.

4.2 Amortizing the Evaluation of s′(x, ycur)

In order to avoid the need for the verifier to evaluate s′(x, ycur) itself, which
is a multivariate polynomial with a linear number of terms (in the size
of the circuit) we will instead borrow a technique described in Section 8
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of [MBKM2019]. The prover will supply, prior to the sampling of x, the
commitment

Scur = Commit(s′(X, ycur)X
N )

which the verifier will ask the prover to also open at x. This requires
the verifier to check that Scur is a commitment to the correct polynomial.
Consider that a previous proof (in our recursive cycle) produced a similar
claimed Sold for some yold but for the same polynomial s(X,Y ). (The
polynomial s(X,Y ) is fixed for a given circuit.) The verifier will now ask the
prover to supply a commitment

C = Commit(s′(x, Y )xN )

and check that it opens at yold and ycur to the same values that Sold and
Scur open at x. Since Sold, Scur were committed prior to the choice of x, if C
is a commitment to the correct polynomial then we have that Sold and Scur
are as well with high probability. The verifier now samples ynew and asks
the prover to commit to

Snew = Commit(s′(X, ynew)XN )

for which we check that Snew opens at x to the same value that C opens at
ynew. These new values (Snew, ynew) play the role of (Sold, yold) in the next
proof. Thus, the verifier only checks the correctness of Snew once due to
nested amortization.

4.3 Commitments to k(Y )

It is necessary for the prover (and verifier) to compute a commitment K =
Commit(k(Y )) prior to the choice of ycur for two reasons. First, the statement
k that derives k(Y ) contains values such as Sold, yold which we must commit
to prior to the choice of x for the soundness of our amortization to hold
anyway. More importantly, however, is that the verifier for our protocol
will be simulated by the (adversarial) prover, who could otherwise choose
a statement k after learning ycur to falsely convince the verifier that their
commitment to t(X, ycur) was correct, violating soundness.

Because we are already evaluating the commitment C at ycur, the evalua-
tion of the commitment K is nearly free due to the fact that these commit-
ments are additively homomorphic.

4.4 Commitments to G

Recall that during the polynomial opening argument the verifier must com-
pute a group element G ∈ G given challenges u1, u2, ..., uk ∈ F in order to
fully verify the proof. As described before, these values will be brought in as
part of the statement and we will engage in the technique described in §3
‘Amortized Succinctness’ to amortize away the cost of checking this value.
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The previous proof (in the cycle) will be said to have produced Gold

from challenges u1, u2, ..., uk. We will compute the expected opening of the
polynomial commitment that Gold represents, using the challenges, and open
it at the point x to see that it is correct.

4.5 Shared Evaluations

After the various commitments are sent to the verifier, the prover and verifier
will engage in our modified inner product argument. The prover begins by
providing the claimed openings consistent with the descriptions above. Then,
leveraging the fact that the commitments are additively homomorphic the
verifier will sample a random z ∈ F and both parties will compute

P = R+ zSold + z2Scur + z3T+ + z4T− + z5Snew + z6Gold

which will be opened at x, and similarly they will compute

U = C + zK

which will be opened at ycur. Also, C will be opened at yold and ynew, and R
will be opened at x · ycur. These 5 polynomial opening protocols are run in
parallel to share challenges so that only a single value of G (from the inner
product argument) must be witnessed. This value of G serves the role of
Gold for the next proof in the cycle.

4.6 Delegated Computations

Due to our use of curve cycles, the simulated verifier will not be able to
efficiently perform the required scalar arithmetic to check e.g. Equation
4.1, and so our proofs will expose the openings of the various commitments
involved as part of their statements so that proofs on the other curve (for
which these equations operate over the native scalar field) can efficiently
perform the checks for us.

5 Cycles of Curves

5.1 Motivation for Cycles

Statements for recent efficient proving systems are usually expressed in some
variation of arithmetic circuits; that is, circuits using operations over a large
field Fq (of size suitable for a discrete-logarithm-based cryptosystem).

Simulating field arithmetic in a different similarly large field, Fp, in a
circuit over Fq, is highly inefficient. The main difficulty is with reduction of
products modulo p. The best approach known to the authors is a “sum-of-
residues” algorithm [Zcash-4093]: convert the value needing to be reduced
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from a multilimb representation to binary, and then for each set bit of
weight 2k, add up the values 2k mod p expressed in the desired multilimb
representation for the output. With careful attention to the range of each
limb, the result will be suitable for another multiplication or squaring even
though it is not fully reduced. However, for each reduction, the conversion
to binary would require a number of boolean constraints at least equal to
the total width, in bits, of the partial products. Even taking into account
possibilities for delayed reduction, the overhead is considerable. Well-known
techniques such as Barett or Montgomery reduction do not provide any
improvement over this sum-of-residues algorithm, because they are designed
under the assumption that division is costly compared to multiplication,
but that splitting a value into ranges of bits is cheap. Neither of these
assumptions hold in arithmetic circuits.

So, while it may be feasible to implement a small number of operations
in the “wrong” field, we must ensure that the vast majority of operations
are in the “right” field in order to obtain circuits of practical sizes. This
motivates the use of amicable pairs of elliptic curves, as in [BCTV2014].

5.2 Constructing amicable pairs

Given primes p and q, we call the elliptic curves Ep/Fp and Eq/Fq an amicable
pair [SS2011] if it holds that #Ep = q and #Eq = p.

Due to the Hasse bound, curves that form an amicable pair are neces-
sarily prime-order (this is proven independently of pairing-friendliness in
[CCW2018, Proposition 7]). This limits the curve types that can be used.
Nevertheless, it turns out that such cycles are common and easy to find at
all cryptographically relevant curve sizes.

The security of the overall system is limited by the hardness of the
Discrete Logarithm Problem on each curve. Because both curves are prime-
order, the field sizes and group orders will in practice all have the same bit
length, and for k-bit security, this bit length must be at least 2k bits in order
to resist Pollard rho and Pollard lambda attacks.

We also wish to use primes that allow for efficient FFT-based polynomial
multiplications, as proposed in [BCG+2013, Appendix E.2]. This requires
that the multiplicative groups F×p and F×q have high 2-adicity. Let z be a
desired lower bound on this 2-adicity, i.e. we will search for curves such that
p, q ≡ 1 (mod 2z).

Any prime p > 3 is congruent to either 1 or 5 (mod 6). We will use primes
that are congruent to 1 (mod 6), since that allows for a straightforward and
efficient algorithm to construct amicable pairs via Complex Multiplication,
as follows.

Let D = 3 be the absolute value of the CM discriminant of Ep. The
norm equation of Ep is 4p = DV 2 + t2 for integers V and t.
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Choose V and t so that
DV 2

4
is approximately the desired bit length for

p and q, and so that
V − 1

2
and

t− 1

2
are both multiples of 2z. We also choose

t to be 1 (mod 6). Then we have

4p = 3(V − 1)2 + 6(V − 1) + (t− 1)2 + 2(t− 1) + 4

p = 3
(
V − 1

2

)2
+ 3

V − 1

2
+
(
t− 1

2

)2
+

t− 1

2
+ 1

So p− 1 will be a multiple of 2z, and so will (p+ 1− t)− 1 = (p− 1)− (t− 1).

p + 1 − t is one of six possible orders for a curve satisfying the norm
equation 3V 2 = 4p−t2 (the others are p+1+t and p+1± t± 3V

2
) [BN2005, §2]

[IEEE2000, §A.14.2.3, item 6]. Thus, we only need to check that q = p+1−t
is prime (which occurs with high enough probability to make the search
for suitable V and t efficient), find parameters for the resulting curves, and
verify that they form a cycle. At this point we can also check other desired
criteria such as large embedding degree.

As a consequence of p and q being congruent to 1 (mod 6), the cube
maps x 7→ x3 are not permutations on Fp and Fq. This means that we
cannot use the most efficient choice of α = 3 for Rescue [AABDS2019], which
we use to instantiate the hash needed for the Fiat-Shamir heuristic (see §6
‘Implementation’ ). Instead we search for curves for which the next most
efficient choice, α = 5, can be used. That is, we ensure that gcd(p− 1, 5) 6= 1
and gcd(q − 1, 5) 6= 1, so that the maps x 7→ x5 are permutations on Fp and
Fq.

The cycle found by this method that is used by our demonstration
software is described in §6.1 ‘Tweedledum and Tweedledee’.

5.3 A note on CM discriminants

Let D be the absolute value of a curve’s Complex Multiplication discriminant.
The above constructions always produce curves with D = 3 (this is mainly
for simplicity of ensuring the 2-adicity requirement, and is not a necessary
condition for finding a cycle).

Given that the influential “Safe Curves” criteria prohibit curves with low
D [BL2013] (and a similar condition on the class number, that indirectly
rules out low D, is included in the “Brainpool” criteria [RFC-5639]), this
may raise a question in practitioners’ minds over the security of the curves
so constructed.

The reason why Safe Curves and Brainpool prohibit curves with low
D, is that these curves have additional endomorphisms that may be used
for optimization of the Pollard rho algorithm [BL2013] [DGM1999]. The
improvement to the cost of Pollard rho may be precisely calculated and
taken into account when choosing curve sizes. A conservative estimate of
the available improvement is that on a group of prime order q with an
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endomorphism ring of order 3, the cost of Pollard rho is
√
πq

12

√
, as compared

to
√
πq

4

√
using only the negation map as described in [BLS2011]. That is,

the maximum speed-up is only a factor of
√
3
√
≈ 1.732 (for a given success

probability) [DGM1999].

To the authors’ knowledge, there is no other reason not to use curves
with D = 3. Such curves are in common use in deployed protocols that do
not use pairings (for example, secp256k1 in Bitcoin [BitcoinCore]); also, all
BN curves have D = 3 [BN2005].

5.4 Completeness and side-channel attacks

All curves used in our protocols are short Weierstrass curves of the form
y2 = x3 + b, and are prime-order. Use of prime-order curves simplifies
protocols and security analysis, avoiding error-prone techniques such as
cofactor multiplication that may be applied incorrectly. However, the most
efficient addition formulae for these curves are incomplete: they do not work
correctly when adding two points with the same x-coordinate.

In our circuits, we pay careful attention to this issue and specify the
necessary additional checks. In curve arithmetic performed outside the
circuit, or if the same curves are used elsewhere in an application protocol,
close attention to this issue is needed from implementors. Suitable complete,
constant-time formulae for prime-order short Weierstrass curves are given in
[RCB2016] or [SM2017].

6 Implementation

In order to demonstrate the practicality of our techniques, we have written
an implementation of the protocol from Section 4. We sampled a cycle
of ordinary (non-pairing friendly) elliptic curves which have high 2-adicity,
meaning that their scalar fields are equipped with a large 2k root of unity
for accelerating the computation of t(X, y) in our protocol.

We instantiate the protocol non-interactively by appling the Fiat-Shamir
heuristic [FS1986] with a duplex sponge construction [BDPV2012]. We
absorb openings of the protocol commitments into the transcript, and sample
challenges as the low 128 bits of squeezed field elements. (We set bit 128 of
each challenge because that is useful for optimizing scalar multiplication in
the circuit.) We instantiate the duplex sponge with the Rescue algebraic
symmetric primitive for prime-order groups [AABDS2019].

14



6.1 Tweedledum and Tweedledee

Our implementation uses a specific amicable pair of curves found using the
algorithm give in Section 5.2, which we call Tweedledum and Tweedledee
[Carroll1872]:

• Ep/Fp : y2 = x3 + 5 of order q is called Tweedledum;

• Eq/Fq : y2 = x3 + 5 of order p is called Tweedledee;

where p and q are 255-bit primes:

• p = 2255 − 645235455213118257855826419037610442751;

• q = 2255 − 645235455213134028071702838855757463551.

The software used to generate these curves and to test various security
properties is available at [Hopw2019]. Its documentation describes how to
reproduce this generation.

The following additional properties hold:

• p− 1, q − 1 ≡ 1 (mod 6);

• p − 1, q − 1 ≡ 1 (mod 234) (that is, both curves have multiplicative
2-adicity of at least 34);

• gcd(p− 1, 5) = gcd(q − 1, 5) = 1;

• Ep and Eq have large embedding degrees:– (q − 1)/4 and (p − 1)/2
respectively.

We use the base points (p− 1, 2) on Ep and (q − 1, 2) on Eq.

7 Future Work

Another possible approach, not explored in this paper, would be to use a “half-
pairing cycle” in which one curve is pairing-friendly and the other is not. This
would be at the expense of requiring a trusted setup (for currently available
choices of pairing-based proof systems), but could potentially provide greater
concrete efficiency than the use of MNT curves. Such cycles can be found
easily by adapting the procedure for searching for a Barreto-Naehrig curve
in [BN2005].
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