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Abstract. We prove strong completeness results for some modal logics with the universal modal-
ity, with respect to their topological semantics over 0-dimensional dense-in-themselves metric spaces.
We also use failure of compactness to show that, for some languages and spaces, no standard modal
deductive system is strongly complete.

§1. Introduction. Modal languages can be given semantics in a metric or topological
space, by interpreting � as the interior operator. This “topological semantics” predates
Kripke semantics and has a distinguished history. In a celebrated result, McKinsey & Tarski
(1944, 1948) showed that the logic of an arbitrary separable dense-in-itself metric space in
this semantics is the modal logic S4, whose chief axioms are �ϕ → ϕ and �ϕ → ��ϕ.
The separability assumption was removed by Rasiowa & Sikorski (1963).

So we can say two things. Fix any dense-in-itself metric space X and any set � ∪ {ϕ} of
modal formulas, and write “�” for S4-provability. First, � is sound over X: if � � ϕ then
ϕ is a semantic consequence of � over X. Second, � is complete over X: if ϕ is a semantic
consequence of � over X, and � is finite, then � � ϕ.

We say that a modal deductive system � is strongly complete over X if the second
statement above holds for arbitrary—even infinite—sets � of formulas.

1.1. Some history. Although McKinsey and Tarski’s result has been well known for a
long time, the study of strong completeness for modal languages in topological semantics
seems to have begun only quite recently. Gerhardt (Gerhardt, 2004, Theorem 3.8) proved
that S4 is strongly complete over the metric space Q of the rational numbers. (He proved
further results, in stronger languages, that imply our Theorem 4.7 below for this particular
space.) The field opened out when Kremer (2013) proved that S4 is strongly complete over
every dense-in-itself metric space, thereby strengthening McKinsey and Tarski’s theorem.

In Appendix I of McKinsey & Tarski (1944), the authors suggested studying the more
expressive “coderivative” operator [d]. In the modal language incorporating this operator,
different dense-in-themselves metric spaces have different logics and can need different
treatment. For this language and some stronger ones incorporating the modal mu-calculus

Received: September 17, 2018.
2010 Mathematics Subject Classification: Primary 03B45, Secondary 54E35.
Key words and phrases: dense in itself, Cantor set, coderivative operator, universal modality,

difference modality, graded modalities.

c© Association for Symbolic Logic, 2019

1 doi:10.1017/S1755020319000534



2 ROBERT GOLDBLATT AND IAN HODKINSON

or the equivalent “tangle” operators, soundness and strong completeness were shown by
Goldblatt & Hodkinson (2017) for some deductive systems over some dense-in-themselves
metric spaces, and by Goldblatt & Hodkinson (2016) for other deductive systems over all
0-dimensional dense-in-themselves metric spaces. More details will be given in §2.8.

None of these languages include the universal modality ∀. Indeed, in the presence of
∀, strong completeness cannot always be achieved. No modal deductive system for the
language with � and ∀ is sound and strongly complete over any compact locally connected
dense-in-itself metric space (Goldblatt & Hodkinson, 2017, Corollary 9.5).

1.2. The work of this article. Not covered by the last-mentioned result are the many
dense-in-themselves metric spaces that are not compact and locally connected. For exam-
ple, 0-dimensional dense-in-themselves metric spaces are almost never compact (the only
exception is the Cantor set) and never locally connected. So in this article, we study strong
completeness for 0-dimensional dense-in-themselves metric spaces in languages able to
express ∀. Sound and complete deductive systems for these spaces in languages with ∀were
given by Goldblatt & Hodkinson (2016), and for languages with the even more powerful
“difference operator” [�=] by Kudinov (2006). In this article, we ask whether the systems
are strongly complete.

The answer depends on both the language and the space, making for an interesting
variety as well as some novel techniques. Our main conclusions are outlined in Table 1.

In more detail, let X be a 0-dimensional dense-in-itself metric space.

1. In the language comprising ∀ and �, the system S4U is strongly complete over X
(Corollary 5.15).

2. If X is the Cantor set, then in the language comprising [ �=] and �, the system
S4DT1S is strongly complete over X (Corollary 5.14).

3. If X is not homeomorphic to the Cantor set, then in the language comprising ∀ and
[d], the system KD4U is strongly complete over X (Corollary 4.8).

We will not need details of these systems, but briefly, S4U comprises the basic modal
K axioms for � and ∀, the S4 axioms �ϕ → ϕ and �ϕ → ��ϕ, and the U axioms
∀ϕ → ϕ, ϕ → ∀∃ϕ, ∀ϕ → ∀∀ϕ, and ∀ϕ → �ϕ. In KD4U, �ϕ → ϕ is replaced by
the D axiom �	 (and � by [d] throughout). The inference rules are modus ponens and
universal generalisation. The axioms of S4DT1S boil down to the S4 axioms for �, the K
axioms for [�=], p → [ �=]〈�=〉p, ∀p → �p ∧ [ �=][ �=]p, and [ �=]p → �p ∧ [ �=]�p, where
∀ϕ = ϕ ∧ [ �=]ϕ; the rules are modus ponens, universal generalisation, and substitution.
Full definitions can be found in, e.g., (Goldblatt & Hodkinson, 2017, §8.1) and Goldblatt
& Hodkinson (2018), and (Kudinov, 2006, §2) for S4DT1S.

To prove these results, we will use completeness theorems from Goldblatt & Hodkinson
(2016) and Kudinov (2006). We lift them to strong completeness by methods similar to

Table 1. For which 0-dimensional dense-in-themselves metric spaces do we have strong
completeness?

∀ [�=]

� Yes for all Yes for Cantor set; open for others
[d] No for Cantor set; yes for others No for Cantor set; open for others
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those of Kremer (2013) for noncompact spaces, and first-order compactness for the Cantor
set.

Limitative results will also be given:

4. Let X be a dense-in-itself metric space. In any language able to express ∀ and
the tangle operators (or the mu-calculus), no modal deductive system is sound and
strongly complete over X (Corollary 3.2).

5. Let X be an infinite compact T1 topological space. In any language able to express
∀ and [d], no modal deductive system is sound and strongly complete over X (The-
orem 5.1).

One striking consequence is that for the language comprising ∀ and [d], KD4U is sound
and complete over every 0-dimensional dense-in-itself metric space X (by the discussion
following (Goldblatt & Hodkinson, 2016, Theorem 8.4)), but by (3) and (5), it is strongly
complete only when X is not compact. Over the Cantor set, no orthodox modal deductive
system for this language is strongly complete.

§2. Basic definitions. In this section, we give the main definitions and some notation.
We begin with some stock items. We will use boolean algebras sometimes, and ultrafilters
many times, and we refer the reader to, e.g., Givant & Halmos (2009) for information. Let
B = (B,+,−, 0, 1) be a boolean algebra. As usual, for elements a, b ∈ B we write a ≤ b
iff a + b = b, and a · b = −(−a + −b). An atom of B is a ≤-minimal nonzero element,
and B is said to be atomless if it has no atoms. An ultrafilter of B is a subset D ⊆ B such
that for every a, b ∈ B we have b ≥ a ∈ D ⇒ b ∈ D, a, b ∈ D ⇒ a · b ∈ D, and
a ∈ D ⇐⇒ −a /∈ D. We say that D is principal if it contains an atom, and nonprincipal
if not.

We denote the first infinite ordinal by ω. It is also a cardinal. For a set S, we write ℘(S)
for its power set (set of subsets), and |S| for its cardinality. We say that S is countable if
|S| ≤ ω, and countably infinite if |S| = ω. An ultrafilter on S is an ultrafilter of the boolean
algebra (℘ (S),∪,∼, ∅, S), where∼ denotes the unary complement operation (we call such
algebras, and subalgebras of them, boolean set algebras). The principal ultrafilters on S are
those of the form {T ⊆ S : s ∈ T} for s ∈ S.

2.1. Kripke frames. A (Kripke) frame is a pair F = (W,R), where W is a nonempty
set of “worlds” and R is a binary relation on W. For w ∈ W, we write R(w) for {v ∈ W :
R(w, v)}. We say that F is countable if W is countable, serial if R(w) �= ∅ for every w ∈ W,
and transitive if R is transitive.

For frames F = (W,R) and F ′ = (W ′,R′), a p-morphism from F to F ′ is a map
f : W → W ′ such that f (R(w)) = R′(f (w)) for every w ∈ W. See standard modal logic
texts such as Blackburn, de Rijke, & Venema (2001) and Chagrov & Zakharyaschev (1997)
for information about p-morphisms.

2.2. Topological spaces. We will assume some familiarity with topology, but we give
a rundown of the main definitions and notation used later. Other topological terms that
we use occasionally, and vastly more information, can be found in topology texts such as
Engelking (1989) and Willard (1970) (these two will be our main references).

A topological space is a pair (X, τ ), where X is a nonempty set and τ ⊆ ℘(X) satisfies:

1. if S ⊆ τ then
⋃S ∈ τ ,

2. if S ⊆ τ is finite then
⋂S ∈ τ , on the understanding that

⋂ ∅ = X.
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So τ is a set of subsets of X closed under unions and finite intersections. Such a set is
called a topology on X. By taking S = ∅, it follows that ∅,X ∈ τ . The elements of τ are
called open subsets of X, or just open sets. An open neighbourhood of a point x ∈ X is an
open set containing x. A subset C ⊆ X is called closed if X \ C is open, and clopen if it
is both closed and open. The set of closed subsets of X is closed under intersections and
finite unions. Writing Clop(X) for the set of clopen subsets of X, (Clop(X),∪,∼, ∅,X) is
a boolean set algebra. If O is open and C closed then O \ C is open and C \ O is closed.

We use the signs int, cl, 〈d〉 to denote the interior, closure, and derivative operators,
respectively. So for S ⊆ X,

• int S =⋃{O ∈ τ : O ⊆ S}—the largest open set contained in S,
• cl S = ⋂{C ⊆ X : C closed, S ⊆ C}—the smallest closed set containing S; we

have cl S = {x ∈ X : S ∩ O �= ∅ for every open neighbourhood O of x},
• 〈d〉S = {x ∈ X : S ∩ O \ {x} �= ∅ for every open neighbourhood O of x}.

For all subsets A,B of X, we have

cl(A ∪ B) = cl A ∪ cl B,
〈d〉(A ∪ B) = 〈d〉A ∪ 〈d〉B,
int(A ∩ B) = int A ∩ int B.

That is, closure and 〈d〉 are additive and interior is multiplicative. It follows that they are
all monotonic: if A ⊆ B then cl A ⊆ cl B, 〈d〉A ⊆ 〈d〉B, and int A ⊆ int B.

Fix a topological space (X, τ ). A subspace of (X, τ ) is a topological space of the form
(Y, τY) where ∅ �= Y ⊆ X and τY = {O ∩ Y : O ∈ τ }.

For a set τ0 ⊆ ℘(X), the closure τ of τ0 under arbitrary unions and finite intersections
is a topology on X, called the topology generated by τ0. A base for (the topology τ on)
(X, τ ) is a set τ0 ⊆ τ such that τ = {⋃S : S ⊆ τ0}.

An open cover of (X, τ ) is a subset S ⊆ τ with
⋃S = X. We say then that S is locally

finite if every x ∈ X has an open neighbourhood disjoint from all but finitely many sets
in S . An open cover S ′ of (X, τ ) is a subcover of S if S ′ ⊆ S , and a refinement of S if for
every S′ ∈ S ′ there is S ∈ S with S′ ⊆ S.

The following assorted topological properties are well known and much studied. We say
that (X, τ ) is dense in itself if no singleton subset of X is open; T1 if every singleton subset
of X is closed; T2 if every two distinct points of X have disjoint open neighbourhoods;
0-dimensional if it is T1 and has a base consisting of clopen sets; separable if X has a
countable subset D with X = cl D; Lindelöf if every open cover of X has a countable
subcover; compact if every open cover of X has a finite subcover; and paracompact if it
is T2 and every open cover of (X, τ ) refines to a locally finite open cover of (X, τ ). (Not
everyone requires that 0-dimensional spaces be T1 or that paracompact spaces be T2, and
some writers add extra conditions such as T2 or regularity to the definitions of compact
and Lindelöf. The spaces involved in this article meet all these conditions.) Easily, T2
implies T1.

We follow standard practice and identify (notationally) the space (X, τ ) with X.

2.3. Metric spaces. A metric space is a pair (X, d), where X is a nonempty set and
d : X×X → R is a “distance function” (having nothing to do with the operator 〈d〉 above)
satisfying, for all x, y, z ∈ X,

1. d(x, y) = d(y, x) ≥ 0,

2. d(x, y) = 0 iff x = y,

3. d(x, z) ≤ d(x, y)+ d(y, z) (the “triangle inequality”).
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Examples of metric spaces abound and include the real numbers R with the standard
distance function d(x, y) = |x− y|, Rn with Pythagorean distance, etc. As usual, we often
identify (notationally) (X, d) with X.

Let (X, d) be a metric space. A subspace of (X, d) is a metric space of the form (Y, d �
Y × Y), for nonempty Y ⊆ X. For x ∈ X define d(x, Y) = inf{d(x, y) : y ∈ Y}. We
leave d(x, ∅) undefined. For a real number ε > 0, we let Nε(x) denote the “open ball”
{y ∈ X : d(x, y) < ε}, and for S ⊆ X we put Nε(S) = ⋃{Nε(x) : x ∈ S}. A metric
space (X, d) gives rise to a topological space (X, τd) in which a subset O ⊆ X is declared
to be open (i.e., in τd) iff for every x ∈ O, there is some ε > 0 such that Nε(x) ⊆ O. In
other words, the open sets are the unions of open balls. We will say that a metric space
has a given topological property (such as being dense in itself) if its associated topological
space has the property. For example, it is known that every metric space is T2 (easy), and
paracompact (Stone (1948)).

2.4. Modal languages. We fix a countably infinite set Var of propositional variables,
or atoms. We will be considering a number of modal languages. The biggest of them is
denoted by L∀[�=]〈n〉

�[d]〈t〉 , which is a set of formulas defined as follows:

1. each p ∈ Var is a formula (of L∀[�=]〈n〉
�[d]〈t〉 ),

2. 	 is a formula,

3. if ϕ,ψ are formulas then so are ¬ϕ, (ϕ∧ψ), �ϕ, [d]ϕ, ∀ϕ, [ �=]ϕ, and 〈n〉ϕ for each
n < ω,

4. if 	 is a nonempty finite set of formulas then 〈t〉	 is a formula.

We use standard abbreviations: ⊥ denotes ¬	, (ϕ ∨ ψ) denotes ¬(¬ϕ ∧ ¬ψ), (ϕ → ψ)
denotes ¬(ϕ ∧ ¬ψ), (ϕ ↔ ψ) denotes ((ϕ → ψ) ∧ (ψ → ϕ)), �ϕ denotes ¬�¬ϕ,
〈d〉ϕ denotes ¬[d]¬ϕ, ∃ϕ denotes ¬∀¬ϕ, and 〈�=〉ϕ denotes ¬[ �=]¬ϕ. Parentheses will be
omitted where possible, by the usual methods. For a nonempty finite set 	 = {δ1, . . . , δn}
of formulas, we let

∧
	 denote δ1 ∧ · · · ∧ δn and

∨
	 denote δ1 ∨ · · · ∨ δn (the order and

bracketing of the conjuncts and disjuncts will always be immaterial). We set
∧ ∅ = 	 and∨ ∅ = ⊥.

The connective [d] is called the coderivative operator, and the connective 〈t〉 is called
the tangle connective or tangled closure operator. A more powerful tangle connective 〈dt〉
can also be considered (see, e.g., Goldblatt & Hodkinson (2016, 2017)) but we will not
need it here. The connectives ∀ and [ �=] are called the universal and difference modal-
ities, respectively, and the connectives 〈n〉 are sometimes called the counting or graded
modalities.

We will be using various sublanguages of L∀[�=]〈n〉
�[d]〈t〉 , and they will be denoted in the

obvious way by omitting prohibited operators from the notation. So for example, L∀�
denotes the set of all L∀[�=]〈n〉

�[d]〈t〉 -formulas that do not involve [d], 〈t〉, [ �=], or any 〈n〉.
2.5. Kripke semantics. An assignment or valuation into a frame F = (W,R) is a map

h : Var → ℘(W). A Kripke model is a triple M = (W,R, h), where (W,R) is a frame and
h an assignment into it. The frame of M is (W,R).

For every Kripke model M = (W,R, h) and every world w ∈ W, we define the notion
M,w |� ϕ of a formula ϕ of L∀[�=]〈n〉

�[d]〈t〉 being true at w in M. The definition is by induction
on ϕ, as follows:

1. M,w |� p iff w ∈ h(p), for p ∈ Var.
2. M,w |� 	.
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3. M,w |� ¬ϕ iff M,w �|� ϕ.

4. M,w |� ϕ ∧ ψ iff M,w |� ϕ and M,w |� ψ .

5. M,w |� �ϕ iff M, v |� ϕ for every v ∈ R(w).

6. The truth condition for [d]ϕ is exactly the same as for �ϕ.

7. M,w |� 〈t〉	 iff there are worlds w = w0,w1, . . . ∈ W with R(wn,wn+1) for
each n < ω and such that for each δ ∈ 	 there are infinitely many n < ω with
M,wn |� δ.

8. M,w |� ∀ϕ iff M, v |� ϕ for every v ∈ W.

9. M,w |� [ �=]ϕ iff M, v |� ϕ for every v ∈ W \ {w}.
10. M,w |� 〈n〉ϕ iff |{v ∈ W : M, v |� ϕ}| > n.

For a set � of formulas, we write M,w |� � if M,w |� γ for every γ ∈ �.

2.6. Topological semantics. Given a topological space X, an assignment (or valuation)
into X is a map h : Var → ℘(X). A topological model is a pair (X, h), where X is a
topological space and h an assignment into X. For every topological model (X, h) and
every point x ∈ X, we define (X, h), x |� ϕ, for a L∀[�=]〈n〉

�[d]〈t〉 -formula ϕ, by induction on ϕ:

1. (X, h), x |� p iff x ∈ h(p), for p ∈ Var.
2. (X, h), x |� 	.

3. (X, h), x |� ¬ϕ iff (X, h), x �|� ϕ.

4. (X, h), x |� ϕ ∧ ψ iff (X, h), x |� ϕ and (X, h), x |� ψ .

5. (X, h), x |� �ϕ iff there is an open neighbourhood O of x with (X, h), y |� ϕ for
every y ∈ O.

6. (X, h), x |� [d]ϕ iff there is an open neighbourhood O of x with (X, h), y |� ϕ for
every y ∈ O \ {x}.

7. For a nonempty finite set 	 of formulas for which we have inductively defined
semantics, write [[δ]] = {x ∈ X : (X, h), x |� δ} for each δ ∈ 	. Then:
(X, h), x |� 〈t〉	 iff there is some S ⊆ X such that x ∈ S ⊆⋂

δ∈	 cl([[δ]] ∩ S).

8. (X, h), x |� ∀ϕ iff (X, h), y |� ϕ for every y ∈ X.

9. (X, h), x |� [ �=]ϕ iff (X, h), y |� ϕ for every y ∈ X \ {x}.
10. (X, h), x |� 〈n〉ϕ iff |{y ∈ X : (X, h), y |� ϕ}| > n.

Writing [[ϕ]] = {x ∈ X : (X, h), x |� ϕ}, we have [[�ϕ]] = int([[ϕ]]), [[�ϕ]] = cl([[ϕ]]), and
[[〈d〉ϕ]] = 〈d〉([[ϕ]]) for each ϕ.

As with Kripke semantics, for a set � of formulas we write (X, h), x |� � if (X, h), x |�
γ for every γ ∈ �. We say that � is satisfiable in (X, h) if (X, h), x |� � for some x ∈ X;
and satisfiable in X if it is satisfiable in (X, h) for some assignment h into X. We say that
� is finitely satisfiable in (X, h) (respectively, X) if every finite subset of � is satisfiable in
(X, h) (respectively, X). Of course, we say that a formula ϕ is satisfiable in these ways if
{ϕ} is so satisfiable. We write � |�X ϕ if � ∪ {¬ϕ} is not satisfiable in X. For a language
L ⊆ L∀[�=]〈n〉

�[d]〈t〉 , the L-logic of X is the set {ϕ ∈ L : ∅ |�X ϕ}.
2.7. Weaker, stronger, and equivalent languages. We say that formulas ϕ,ψ are (topo-

logically) equivalent if (X, h), x |� ϕ ↔ ψ for every topological model (X, h) and every
x ∈ X. For languages L,L′ ⊆ L∀[�=]〈n〉

�[d]〈t〉 , we say that L is weaker than L′, and L′ is stronger
than L, if every formula of L is equivalent to a formula of L′. We say that L is equivalent
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to L′ if L is both weaker and stronger than L′, and that L is strictly weaker than L′, and L′
is strictly stronger than L, if L is weaker but not stronger than L′.

Some operators of L∀[�=]〈n〉
�[d]〈t〉 can express others. Clearly, �ϕ is (topologically) equivalent

to ϕ ∧ [d]ϕ and to ¬〈t〉{¬ϕ}, and ∀ϕ is equivalent to ¬〈0〉¬ϕ. It follows for example that
L∀�, L∀〈n〉�[d] are weaker than L〈n〉[d] , and in fact the first strictly so.

In the same vein, 〈�=〉ϕ is equivalent to (¬ϕ → ∃ϕ) ∧ (ϕ → 〈1〉ϕ), ∃ϕ is equivalent to
ϕ ∨ 〈�=〉ϕ, and 〈1〉ϕ is equivalent to ∃(ϕ ∧ 〈�=〉ϕ). So we can exchange {∀, 〈1〉} with [ �=],
preserving language equivalence; and the language L[�=]

ζ is weaker than L〈n〉ζ , for any ζ .

2.8. Strong completeness. This is the topic of the article. We assume familiarity, e.g.,
from Goldblatt & Hodkinson (2016) and (Goldblatt & Hodkinson, 2017, secs. 2.10, 2.12,
8.1), with (modal) deductive systems. They are Hilbert systems containing, at least, all
propositional tautologies as axioms and the modus ponens inference rule. For such a system
�, a theorem of � is a formula ϕ that is provable in �, in which case we write � ϕ; for a set
� of formulas, we write � � ϕ if there is some finite �0 ⊆ � such that � (∧�0)→ ϕ;
and � is said to be (�-)consistent if � �� ⊥. All deductive systems mentioned later in the
article are taken to be of this form. For such systems, though not for all deductive systems
in the world, consistency reduces to a property of the set of theorems, and � is consistent
iff each of its finite subsets is consistent.

A deductive system � for a language L ⊆ L∀[�=]〈n〉
�[d]〈t〉 is said to be sound over a topological

space X if for every L-formula ϕ, if � ϕ then ∅ |�X ϕ. Equivalently, every finitely
satisfiable (in X) set of L-formulas is �-consistent. We say that � is strongly complete
over X if for every set � ∪ {ϕ} of L-formulas, if � |�X ϕ then � � ϕ, and complete over
X if this holds when � is finite. It follows that � is (strongly) complete over X iff every
finite �-consistent set (respectively, every �-consistent set) of formulas is satisfiable in X.
Recall that Var is countable, so we are dealing always with countable sets of formulas.

For many topological spaces and sublanguages of L�[d]〈t〉, strongly complete deductive
systems are known.

• Kremer (2013) showed that for L�, the system S4 is strongly complete over every
dense-in-itself metric space. (It had long been known from the work of McKinsey
& Tarski (1944, 1948) that S4 is sound and complete over every such space.)

• In the language L�〈t〉, the system S4t is sound and strongly complete over every
dense-in-itself metric space (Goldblatt & Hodkinson, 2017, Theorem 9.3(1)).

• In the language L[d], the system KD4G1 is strongly complete over every dense-in-
itself metric space, and sound if the space has a property called ‘G1’ (Goldblatt &
Hodkinson, 2017, Theorem 9.2).

• The same holds for the system KD4G1t in a language expanding L[d] by the stronger
tangle operator 〈dt〉 already mentioned (Goldblatt & Hodkinson, 2017, Theorem
9.1).

• In this latter language, the system KD4t is sound and strongly complete over every
0-dimensional dense-in-itself metric space (Goldblatt & Hodkinson, 2016, Theo-
rem 8.5).

2.9. Compactness. For a language L ⊆ L∀[�=]〈n〉
�[d]〈t〉 and a topological space X, we say that

L is compact over X if every set of L-formulas that is finitely satisfiable in X is satisfiable
in X. Do not confuse this with compactness of the space X.

Obviously, if L is compact over X then so is every sublanguage of L, and every weaker
language. For example, if L〈n〉[d] is compact over X then so are L∀�, L∀〈n〉�[d], etc.



8 ROBERT GOLDBLATT AND IAN HODKINSON

Compactness is tightly connected to strong completeness. The following is well known
and easy to prove.

FACT 2.1. Let � be a deductive system for a language L ⊆ L∀[�=]〈n〉
�[d]〈t〉 , and let X be a

topological space. If � is complete over X and L is compact over X, then � is strongly
complete over X. The converse holds if � is sound over X.

So on the one hand, where a complete deductive system is known for a space, compactness,
if available, can be used to show that the system is actually strongly complete. Soundness
is not required. This is how the results of Goldblatt & Hodkinson (2016, 2017) mentioned
in §2.8 were proved.

On the other hand, failure of compactness kills any hope of finding a sound and strongly
complete deductive system. As we mentioned in §1, no deductive system for L∀� is sound
and strongly complete over a compact locally connected dense-in-itself metric space (Gold-
blatt & Hodkinson, 2017, Corollary 9.5), and this was proved using failure of compactness.

This article is about strong completeness over 0-dimensional dense-in-themselves metric
spaces in languages able to express ∀. Relevant sound and complete deductive systems
were given by Kudinov (2006) and Goldblatt & Hodkinson (2016), and we are therefore
interested in determining which sublanguages of L∀[�=]〈n〉

�[d]〈t〉 are compact over which 0-dimen-
sional dense-in-themselves metric spaces. The rest of the article is devoted to this question,
and the answers are varied and interesting.

§3. Strong completeness with ∀ and tangle fails always. The following is based on
an example in (Goldblatt & Hodkinson, 2018, §5) using �. Here we use ∀ instead.

THEOREM 3.1. Compactness fails for the language L∀〈t〉 over every dense-in-itself metric
space X.

Proof. Since L∀〈t〉 can express �ϕ, via ¬〈t〉{¬ϕ}, we can work in L∀�〈t〉. Fix pairwise
distinct atoms q, p0, p1, . . . ∈ Var, and define

� = {¬〈t〉{q,¬q}, p0, ∀(pn → �pn+1), ∀(p2n → q), ∀(p2n+1 → ¬q) : n < ω}.
For each n < ω, the subset �n of formulas in � using atoms p0, . . . , pn, q only is true at 0
in the Kripke model Mn = ({0, . . . , n},≤, h), with h(pi) = {i} for i ≤ n, and h(q) = {2i :
i < ω, 2i ≤ n}. The frame of Mn validates the axioms of the system S4t.UC of (Goldblatt
& Hodkinson, 2017, §8.1), so �n is S4t.UC-consistent. Now by (Goldblatt & Hodkinson,
2017, Theorem 8.4(2)), S4t.UC is complete over every dense-in-itself metric space, and
�n is finite, so �n is satisfiable in X. It follows that � is finitely satisfiable in X.

Suppose for contradiction that (X, h), x0 |� �, for some assignment h and some x0 ∈ X.
Below, we write x |� ϕ as short for (X, h), x |� ϕ. Let

S =
⋃
{h(pn) : n < ω} ⊆ X.

We show that S ⊆ cl(S ∩ h(q)) ∩ cl(S \ h(q)). Let x ∈ S. Pick n < ω such that x |� pn.
Suppose that n is even (the case where it is odd is similar). Since x0 |� ∀(pn → q), we have
x ∈ S ∩ h(q) already, so certainly x ∈ cl(S ∩ h(q)). Now let O be any open neighbourhood
of x. Since x0 |� ∀(pn → �pn+1), and x |� pn, there is y ∈ O with y |� pn+1. So y ∈ S,
and also y |� ¬q as x0 |� ∀(pn+1 → ¬q) because n + 1 is odd. As O was arbitrary,
x ∈ cl(S \ h(q)). As x was arbitrary, S ⊆ cl(S ∩ h(q)) ∩ cl(S \ h(q)) as required.

By semantics of tangle (§2.6), every point in S satisfies 〈t〉{q,¬q}. Since x0 ∈ h(p0) ⊆ S,
x0 |� 〈t〉{q,¬q}, contradicting that x0 |� �. �
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The proof applies to any language able to express ∀, �, and 〈t〉{ϕ,¬ϕ}. The following is
immediate via Fact 2.1.

COROLLARY 3.2. Let X be a dense-in-itself metric space. No deductive system for L∀〈t〉
or any stronger language is sound and strongly complete over X.

One such stronger language comprises �, ∀ and the modal mu-calculus (Goldblatt &
Hodkinson, 2017, Lemma 4.2).

By Corollary 3.2, in the presence of ∀ we can forget about tangle.

§4. Noncompact 0-dimensional spaces with ∀ and [d]. We now aim to show that
L∀[d] is compact over every noncompact 0-dimensional dense-in-itself metric space. This

will have consequences for strong completeness in the languages L∀[d] and L∀�.

4.1. Topology. We will need some topology. Fix a dense-in-itself metric space (X, d).

FACT 4.1. First we quote some basic results, some of which are true much more gener-
ally. They are easy to prove.

1. (Goldblatt & Hodkinson, 2017, Lemma 5.3) Every nonempty open subset of X is
infinite.

2. If S ⊆ X then int S ⊆ S ∩ 〈d〉S and cl S = S ∪ 〈d〉S.

3. 〈d〉 is additive: if S, T ⊆ X then 〈d〉(S∪ T) = 〈d〉S∪ 〈d〉T (as already mentioned).

4. (Goldblatt & Hodkinson, 2017, Lemma 5.1(2)) If N ⊆ X has empty interior and
O ⊆ X is open, then cl(O \ N) = cl O.

The following will be useful. For a real number ε > 0, we say that a subset S ⊆ X is
ε-sparse if d(x, y) ≥ ε for every distinct x, y ∈ S. In that case, 〈d〉S = ∅.

LEMMA 4.2. Let G ⊆ X be open and let I be a countable index set. Then there are
pairwise disjoint sets Ii ⊆ G (i ∈ I) such that

1. 〈d〉Ii = clG \G for every i ∈ I,

2. G ∩ 〈d〉⋃i∈I Ii = ∅.

Without part 2, this follows from (Goldblatt & Hodkinson, 2017, Theorem 6.1), and part 2
can be extracted from the proof of that theorem. But the lemma is fairly quick to prove, so
we prove it here.

Proof. Write B = clG \G. If B = ∅, we can take Ii = ∅ for each i ∈ I. We are done.
Assume now that B �= ∅. Define εn = 1/2n for each n < ω. We define pairwise disjoint

subsets Zn ⊆ G (n < ω), with 〈d〉Zn = ∅, by induction as follows. Let n < ω and assume
inductively that Zm has been defined for each m < n. Let

On = G ∩ Nεn(B) \
⋃
m<n

Zm.

Using Zorn’s lemma, choose Zn to be a maximal εn-sparse subset of On. As we said,
〈d〉Zn = ∅, and plainly Zn ⊆ G. This completes the definition of the pairwise disjoint
Zn.

We first show that

G ∩ 〈d〉
⋃
n<ω

Zn = ∅. (1)

Let x ∈ G be arbitrary, and choose n < ω so large that N2εn(x) ⊆ G. Consequently,
d(x,B) ≥ 2εn. Now for each m ≥ n we have Zm ⊆ Om ⊆ Nεn(B). If there is z ∈ Nεn(x) ∩
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Zm, then d(x,B) ≤ d(x, z) + d(z,B) < εn + εn = 2εn, a contradiction. So Nεn(x) ∩⋃
m≥n Zm = ∅, and x /∈ 〈d〉⋃m≥n Zm. By Fact 4.1, 〈d〉⋃m<n Zm = ⋃

m<n 〈d〉Zm = ∅,
so x /∈ 〈d〉⋃m<n Zm as well. Hence, x /∈ 〈d〉⋃m<n Zm ∪ 〈d〉⋃m≥n Zm = 〈d〉⋃m<ω Zm,
proving (1).

Now let J ⊆ ω be infinite; we show that

〈d〉
⋃
n∈J

Zn = B. (2)

Write Z =⋃
n∈J Zn. Certainly, since Z ⊆ G we have 〈d〉Z ⊆ clG. By (1) and monotonicity

of 〈d〉, G ∩ 〈d〉Z = ∅, so 〈d〉Z ⊆ B.
For the converse, let b ∈ B and let ε > 0 be given. We will show that Z ∩ Nε(b) �= ∅.
Choose n ∈ J so large that 2εn ≤ ε. By Fact 4.1, int

⋃
m<n Zm ⊆ 〈d〉⋃m<n Zm = ∅. So⋃

m<n Zm has empty interior. By Fact 4.1 again, clG = cl(G \⋃
m<n Zm).

Now b ∈ clG. So there is x ∈ Nεn(b)∩G \⋃
m<n Zm ⊆ On. If Zn ∩Nε(b) = ∅, then for

every z ∈ Zn we have d(x, z) ≥ d(b, z)− d(b, x) > ε− εn ≥ εn, so x could be added to Zn,
contradicting its maximality. Hence, Z ∩ Nε(b) �= ∅, as required.

This holds for every ε > 0, and hence b ∈ cl Z = Z ∪ 〈d〉Z (Fact 4.1). Since Z ⊆ G, we
have b /∈ Z, so b ∈ 〈d〉Z. As b ∈ B was arbitrary, we obtain B ⊆ 〈d〉Z, so proving (2).

Now to prove the lemma, simply partition ω into infinite sets Ji (i ∈ I) and define
Ii =⋃

n∈Ji
Zn. �

From now on, assume further that X is 0-dimensional.

LEMMA 4.3. Let G ⊆ X be open, and suppose that Z ⊆ G and G ∩ 〈d〉Z = ∅. Then
there is a family (K(T) : T ⊆ Z) of subsets of G such that for each T ⊆ Z:

1. T ⊆ K(T) ⊆ G,

2. if U ⊆ ℘(Z) then K(
⋃U) =⋃

U∈U K(U), and hence K(∅) = ∅,

3. if U ⊆ Z and T ∩ U = ∅ then K(T) ∩ K(U) = ∅,

4. K(T) is open,

5. G \ K(T) is open.

Proof. If Z = ∅, define K(∅) = ∅; we are done. So assume from now on that Z, and
hence G, are nonempty, so that G is a subspace of X. Since G ∩ 〈d〉Z = ∅, it follows that
O+ = {Q ⊆ G : Q open, |Q ∩ Z| ≤ 1} is an open cover of the subspace G. This subspace,
being a metric space, is paracompact—see Stone (1948) or (Engelking, 1989, 5.1.3). So
there is a locally finite open cover O of G that refines O+. Evidently,

|O ∩ Z| ≤ 1 for every O ∈ O. (3)

For each z ∈ Z, use 0-dimensionality to choose a clopen neighbourhood K+(z) of z
contained in some O ∈ O and disjoint from all but finitely many sets in O. Since z ∈ K+(z),
it follows from (3) that each O ∈ O contains at most one set K+(z). Since K+(z) intersects
only finitely many sets in O, it, therefore, intersects only finitely many K+(t) (t ∈ Z \ {z}).
The union of these finitely many sets is clopen, so the set

K(z) = K+(z) \
⋃

t∈Z\{z}
K+(t)

is clopen. It also follows from (3) that K+(z) is the only K+(t) that contains z; so z ∈ K(z).
For each T ⊆ Z define K(T) = ⋃

t∈T K(t). We prove the lemma under this definition.
Items 1 and 2 are trivial. Item 3 holds because the K(z) (z ∈ Z) are plainly pairwise
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disjoint. Item 4 holds because by definition, K(T) is a union of open sets. For item 5, see
(Willard, 1970, 20.4–5), or prove it directly as follows. Each x ∈ G \ K(T) has an open
neighbourhood U such that {O ∈ O : U ∩ O �= ∅} is finite, and hence also {t ∈ T :
U ∩ K(t) �= ∅} is finite. Since a finite union of sets K(t) is closed, and x /∈ K(T), the set
U \ K(T) is an open neighbourhood of x. It follows that G \ K(T) is open. �

The following is the first result needed later, and is where noncompactness comes in.

THEOREM 4.4. X is not compact iff X can be partitioned into infinitely many nonempty
open sets.

Proof. ⇐ is obvious. For ⇒, assume that X is not compact. By (Engelking, 1989,
3.10.3), there is an infinite subset Z ⊆ X with 〈d〉Z = ∅. Taking G in Lemma 4.3 to be X,
the lemma tells us that X is partitioned into the pairwise disjoint open sets K({z}) (z ∈ Z)
and X \K(Z). The nonempty sets among these (all but perhaps X \K(Z)) form the required
partition. �
By grouping sets together, an infinite partition into open sets can be “coarsened” into a
partition into any finite number of open sets.

The next corollary is similar. Cf. (Goldblatt & Hodkinson, 2016, Theorem 7.5).

COROLLARY 4.5. Let G ⊆ X be open, and I be nonempty and countable. Then G can
be partitioned into open sets Gi (i ∈ I) such that cl(G) \G = cl(Gi) \Gi for each i ∈ I.

Proof. By Lemma 4.2, we can select pairwise disjoint sets Ii ⊆ G for i ∈ I, with
〈d〉Ii = clG \ G for every i ∈ I, and G ∩ 〈d〉Z = ∅, where Z = ⋃

i∈I Ii. Choose sets
K(T) ⊆ G (for T ⊆ Z) as in Lemma 4.3. Fix any i0 ∈ I. For each i ∈ I let

Gi =
{

K(Ii), if i �= i0,

G \⋃
j∈I\{i0}Gj = G \ K(Z \ Ii0), if i = i0.

By Lemma 4.3, the Gi are pairwise disjoint open subsets of G, and they plainly partition G.
Let i ∈ I. We check that clG \ G = clGi \ Gi. Notice that Ii ⊆ Gi, even when i = i0.

So clG \G = 〈d〉Ii ⊆ clGi. Since clG \G is disjoint from G and hence also from Gi, we
obtain clG \G ⊆ clGi \Gi.

Conversely, of course Gi ⊆ G, so clGi ⊆ clG. Now
⋃

j∈I\{i}Gj is open and disjoint
from Gi, so it is also disjoint from clGi. Hence, clGi\Gi is disjoint from Gi∪⋃

j∈I\{i}Gj =
G. We obtain clGi \Gi ⊆ clG \G as required. �

Now we come to the second result needed later. The first part is equivalent to Tarski’s
well-known “dissection theorem” (Tarski (1938), later strengthened in McKinsey & Tarski
(1944)), except that I can be infinite. The second part is distinctively 0-dimensional: for
example, the theorem can fail when X = R and |I| ≥ 3. The third part harks back to the
“ε clause” in (Kremer, 2013, Lemma 4.3).

THEOREM 4.6. For any nonempty countable set I and any ε > 0, any nonempty open
subset G ⊆ X can be partitioned into a nonempty set B and (necessarily nonempty) open
sets Gi (i ∈ I) such that

1. cl(G) \
⋃
i∈I

Gi = clB = clGi \Gi for each i ∈ I,

2. G ∩ 〈d〉B = ∅,

3. d(x,B) < ε for every x ∈ G.
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Proof. Using Zorn’s lemma, choose a maximal ε-sparse set Z ⊆ G. Then 〈d〉Z = ∅, Z
is nonempty (since any singleton subset of G is ε-sparse), and d(x, Z) < ε for every x ∈ G

(else x could be added to Z, contradicting its maximality).
Now use Lemma 4.2 with I a singleton to choose I ⊆ G such that 〈d〉I = clG \G, and

define B = I ∪ Z ⊆ G. Then

〈d〉B = 〈d〉I ∪ 〈d〉Z = clG \G.
Since Z ⊆ B, we have B �= ∅ and d(x,B) < ε for every x ∈ G. So parts 2 and 3 hold.

Let G′ = G\B. Note that 〈d〉B is disjoint from G. So by Fact 4.1, G′ = G\(B∪〈d〉B) =
G\clB, which is open; intB ⊆ B∩〈d〉B = ∅, so B has empty interior; hence clG′ = clG.
We now use Corollary 4.5 to partition G′ into open sets Gi (i ∈ I)with clGi\Gi = clG′\G′
for each i ∈ I. Then

clG \
⋃
i∈I

Gi = clG \G′ =
{
(clG \G) ∪ (G \G′) = 〈d〉B ∪ B = clB,

clG′ \G′ = clGi \Gi for each i ∈ I.

Each Gi is nonempty since B ⊆ clGi. This proves part 1, and we are done. �

4.2. Logic.

THEOREM 4.7. The language L∀[d] is compact over every noncompact 0-dimensional dense-
in-itself metric space.

Proof. We adopt a broadly similar approach to Kremer (2013), and extend it to handle
∀ and [d]. Fix a noncompact 0-dimensional dense-in-itself metric space X and a set � of
L∀[d]-formulas that is finitely satisfiable in X. We show that � is satisfiable in X.

Step 1. By the argument of (Goldblatt & Hodkinson, 2016, Theorem 8.4) and the com-
ments after it, in the language L∀[d] the system KD4U is sound and complete over X. Since
� is finitely satisfiable in X, it is KD4U-consistent. Hence, using the canonical model and
the downward Löwenheim–Skolem theorem, which are standard modal techniques, we can
find a countable Kripke model M = (W,R, h) whose frame (W,R) validates KD4 and so
is serial and transitive, and w0 ∈ W, such that M,w0 |� �. (The U axioms are used in
obtaining M.)

Step 2. We now define by induction on n < ω a set Gn of pairwise disjoint nonempty
open subsets of X, and a “labeling” map λn : Gn → W.

Since X is not compact, we can use Theorem 4.4 to partition it into pairwise disjoint
nonempty open sets Ow (w ∈ W). We define G0 = {Ow : w ∈ W} and λ0(Ow) = w for
each w ∈ W. Since the Ow are pairwise disjoint, λ0 is well defined.

Let n < ω and suppose inductively that Gn, λn have been defined. Let G ∈ Gn, and
suppose that λn(G) = u, say. Use Theorem 4.6 to partition G into nonempty open sets Gw

(w ∈ R(u)) and a nonempty set B(G) with

• clG \⋃
w∈R(u)Gw = clB(G) = clGw \Gw for each w ∈ R(u),

• G ∩ 〈d〉B(G) = ∅,
• d(x,B(G)) < 1/2n+1 for every x ∈ G.

We can apply the theorem here because the frame (W,R) is serial and so R(u) �= ∅. Let
Gn+1 = {Gw : G ∈ Gn, w ∈ R(λn(G))}. Also define λn+1 : Gn+1 → W by λn+1(Gw) = w.
This is well defined, because the elements of Gn are pairwise disjoint, so each Gw gets into
Gn+1 in only one way.
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That completes the definition of the Gn, λn. Let G = ⋃
n<ω Gn and λ = ⋃

n<ω λn. Then
(G,⊃) is a forest (that is, a disjoint union of trees) with roots the Ow and whose branches
all have height ω. Also, since R is transitive, it follows that λ : (G,⊃) → (W,R) is a
surjective p-morphism.

Step 3. For each x ∈ X, let E(x) = {G ∈ G : x ∈ G}. This is either a branch of the forest
(G,⊃), or a finite initial segment of such a branch. It is nonempty, since there is w ∈ W
with x ∈ Ow, and then Ow ∈ E(x).

Select an ultrafilter Dx on E(x) as follows. If E(x) is finite, its ⊆-minimal element is⋂ E(x), and we let Dx be the principal ultrafilter {S ⊆ E(x) :
⋂ E(x) ∈ S}. If E(x) is

infinite, we let Dx be any nonprincipal ultrafilter on E(x). Now let

�x =
{
ϕ ∈ L∀[d] : {G ∈ E(x) : M, λ(G) |� ϕ} ∈ Dx

}
.

Observe that

(†) every ϕ ∈ �x is true in M at some world of the form λ(G) for some G ∈ E(x),
(‡) if G ∈ G and x ∈ B(G), then

⋂ E(x) = G and �x = {ϕ ∈ L∀[d] : M, λ(G) |� ϕ}.
Step 4. Define an assignment g into X by g(p) = {x ∈ X : p ∈ �x}, for each atom

p ∈ Var.
Step 5. We now prove a “truth lemma”: that for every ϕ ∈ L∀[d], we have ϕ ∈ �x iff

(X, g), x |� ϕ for each x ∈ X.
The proof is by induction on ϕ. For ϕ ∈ Var it holds by definition of g, and the boolean

cases (including 	) follow from the fact that every Dx is an ultrafilter.
For the remaining cases, assume the result for ϕ inductively, and let x ∈ X be

given.
For the case ∀ϕ, if ∀ϕ ∈ �x then by (†), ∀ϕ is true at some world of M, so ϕ is true at

every world of M. It follows from the definition of �y that ϕ ∈ �y, and inductively that
(X, g), y |� ϕ, for every y ∈ X. So (X, g), x |� ∀ϕ.

Conversely, suppose that (X, g), x |� ∀ϕ. Let w ∈ W be given. Choose any y ∈ B(Ow).
Then (X, g), y |� ϕ, so inductively, ϕ ∈ �y. By (‡) and because λ(Ow) = w, we get
M,w |� ϕ. As w was arbitrary, we get M,w |� ∀ϕ for every w ∈ W. It is now immediate
from the definition of �x that ∀ϕ ∈ �x.

Finally we consider the case [d]ϕ. Suppose first that [d]ϕ ∈ �x. By (†), there is G ∈ E(x)
with M, λ(G) |� [d]ϕ. Then for every y ∈ G \ B(G), the set S = {G′ ∈ E(y) : G′ � G}
is in Dy by choice of Dy. Also, every G′ ∈ S satisfies R(λ(G), λ(G′)) as λ is a p-morphism
(again we need transitivity of R here), and so M, λ(G′) |� ϕ by Kripke semantics. So
ϕ ∈ �y by definition of �y, and inductively, (X, g), y |� ϕ, for every y ∈ G \ B(G).

Now x ∈ G. If x /∈ B(G), then G \ B(G) is already an open neighbourhood of x all of
whose elements satisfy ϕ. If x ∈ B(G), then recalling that G∩〈d〉B(G) = ∅, we can find an
open neighbourhood O of x with O ⊆ G and O∩B(G) = {x}. By the above, (X, g), y |� ϕ
for every y ∈ O \ {x}. Either way, we have shown that (X, g), x |� [d]ϕ.

Conversely, suppose that (X, g), x |� [d]ϕ. So there is ε > 0 such that (X, g), y |� ϕ for
every y ∈ Nε(x) \ {x}. We show that [d]ϕ ∈ �x.

Suppose first that E(x) is finite, with least element
⋂ E(x) = G, say. Then x ∈ B(G), so

by (‡) it suffices to show M, λ(G) |� [d]ϕ. Accordingly, take any w ∈ R(λ(G)). We show
that M,w |� ϕ. Now

x ∈ B(G) ⊆ clB(G) = clGw \Gw ⊆ clGw \
⋃

u∈R(w)

(Gw)u = clB(Gw).
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And x /∈ B(Gw) since B(G) is disjoint from Gw. So there is y ∈ B(Gw) ∩ Nε(x) \ {x}. For
such a y we have (X, g), y |� ϕ, so inductively, ϕ ∈ �y, and by (‡) we obtain M,w |� ϕ
since λ(Gw) = w. We are done.

Now suppose instead that E(x) is infinite. Let

S = E(x) ∩
⋃
{Gn : 0 < n < ω, 1/2n < ε},

a cofinite subset of E(x). Pick arbitrary G ∈ S. We show that M, λ(G) |� [d]ϕ. Suppose
G ∈ Gn. By choice of B(G) we have d(x,B(G)) < 1/2n < ε. Now x /∈ B(G) since E(x) is
infinite. So there is y ∈ B(G) ∩ Nε(x) \ {x}. Then Nε(x) \ {x} is an open neighbourhood of
y, and every z ∈ Nε(x) \ {x} satisfies (X, g), z |� ϕ. So (X, g), y |� [d]ϕ. Since y ∈ B(G),
E(y) is finite, so by the proof above we have M, λ(G) |� [d]ϕ as required.

We have shown that each G ∈ S satisfies M, λ(G) |� [d]ϕ. Since S is cofinite in E(x),
it is certainly in Dx, and it follows by definition of �x that [d]ϕ ∈ �x as required.

Step 6. Recall that M,w0 |� �. Take any x ∈ B(Ow0). By (‡), � ⊆ �x, so by step 5
(the truth lemma) above, (X, g), x |� �. So � is satisfiable in X. �

COROLLARY 4.8. Let X be a noncompact 0-dimensional dense-in-itself metric space. In
the language L∀[d], the system KD4U is sound and strongly complete over X. In the weaker

language L∀�, the system S4U is sound and strongly complete over X.

Proof. S4U and KD4U are outlined in §1.2 and defined fully in, e.g., Goldblatt &
Hodkinson (2016) and (Goldblatt & Hodkinson, 2017, §8.1). As shown in the former (in
particular by Theorem 5.1, the argument of Theorem 8.4, and the discussion following it),
they are sound and complete over every 0-dimensional dense-in-itself metric space in their
respective languages. The corollary now follows by Theorem 4.7 and Fact 2.1. �

§5. Cantor set. In the preceding section we proved strong completeness of the system
KD4U in the language L∀[d] over every noncompact 0-dimensional dense-in-itself metric
space. Actually, this covers all 0-dimensional dense-in-themselves metric spaces except
one—the Cantor set.

The Cantor set is, up to homeomorphism, the unique compact 0-dimensional dense-in-
itself metric space (see Brouwer (1910) or (Willard, 1970, 29.5, 30.4)). As a topological
space, it is the Stone space of the countable atomless boolean algebra (see (Bell & Slomson,
1969, Theorem 6.6 and text after Corollary 7.7) or (Koppelberg, 1989, Example 7.24)).

In this section we show that, over the Cantor set, compactness fails for L∀[d]—in sur-

prising contrast to noncompact spaces—but holds for L〈n〉� . Compactness for the weaker
languages L∀� and L[�=]

� follows immediately, and here we also obtain strong completeness
results. We have none for L〈n〉� itself only because we do not know the logic of the Cantor
set in this language.

5.1. Strong completeness fails with [d], ∀. We start by observing that the results for
noncompact spaces of the preceding section cannot be replicated for the Cantor set.

THEOREM 5.1. Let X be an infinite compact T1 topological space (such as the Cantor
set). The language L∀[d] is not compact over X. Hence, in L∀[d] or any stronger language, no
deductive system is sound and strongly complete over X.

Proof. We write down L∀[d]-formulas saying that the valuation of an atom is infinite but
has empty derivative. Let p0, p1, . . . , q ∈ Var be pairwise distinct, and let
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� = {∃(q ∧ pi ∧
∧
j<i

¬pj) : i < ω} ∪ {∀¬〈d〉q}.

Any finite subset of � is satisfiable in X: if the subset involves only p0, . . . , pn, q, choose
pairwise distinct points x0, . . . , xn ∈ X, assign each pi to {xi}, and q to {x0, . . . , xn}.
No point satisfies 〈d〉q, since in a T1 space, every finite set has empty derivative (and
conversely).

Suppose for contradiction that � as a whole were satisfiable in (X, h) for some assign-
ment h into X. For each i < ω pick xi ∈ X with (X, h), xi |� q ∧ pi ∧∧

j<i ¬pj. The xi

are plainly pairwise distinct, and hence h(q) is infinite. Since X is compact, by (Engelking,
1989, 3.10.3) every infinite subset of X has nonempty derivative. So there is x ∈ 〈d〉h(q),
and therefore (X, h), x |� 〈d〉q, contradicting the truth of ∀¬〈d〉q in (X, h).

So L∀[d] is not compact over X, proving the first part of the theorem. The second part
follows by Fact 2.1. �

The proof really needs 〈d〉: using ∀¬�q in� instead loses finite satisfiability, since even
{∃q, ∀¬�q} is not satisfiable. In Theorem 5.13 we will show that the result needs 〈d〉 too.

5.2. Compactness holds with �, 〈n〉 for n < ω. Replacing [d] by the weaker connec-
tive �, we have more success. In fact, we will prove compactness for L〈n〉� over the Cantor
set. Our proof uses a third kind of compactness—in first-order logic. Every consistent set
of first-order sentences has a model.

5.2.1. Two-sorted first-order structures To formulate topological models in first-order
logic, we introduce a two-sorted first-order signature L. It has a “point” sort and a “set”
sort, so L-structures have the form M = (X,B), where X is the set of elements of M
of point sort, and B is the set of elements of set sort. The symbols of L comprise a
binary relation symbol ∈ relating points to sets, “boolean” function symbols + (binary)
and − (unary), and constants 0, 1, all acting on the set sort, and a unary relation symbol
P of point sort for each p ∈ Var. For convenience, we also include in L a point-sorted
constant k. As usual, we write sM for the interpretation of a symbol s of L in an L-
structure M. We use x, y, z, . . . for point-sorted variables (and also by abuse for point-sorted
elements), and b, c, o,O, . . . for set-sorted variables (and also by abuse for elements of set
sort).

Given an L-structure M = (X,B), for each b ∈ B we let b̌ = {x ∈ X : M |� x ∈ b} ⊆ X.
It may be that b̌ = č for distinct b, c ∈ B, but this will not happen in our applications.

We can view a topological model as an L-structure as follows. Let X be a 0-dimensional
topological space and write Clop(X) for the set of all clopen subsets of X. This is a base for
the topology on X, and (Clop(X),∪,∼, ∅,X) is a boolean set algebra. Let h : Var → ℘(X)
be an assignment. Then the topological model (X, h) can be turned into a two-sorted L-
structure (X, h)(2) = M, say, where M has the form (X,Clop(X)), ∈ is interpreted in M as
ordinary set membership, the boolean operations are interpreted as b+c = b∪c,−b = X\b,
0 = ∅, and 1 = X, the constant k has arbitrary interpretation in X, and PM = h(p) for each
p ∈ Var. The structure (X, h)(2) is not unique: it depends on the interpretation of k. Each
b ∈ Clop(X) is both a set-sorted element of M and a set of point-sorted elements of M, and
by definition of ∈M we have b = b̌ ⊆ X. So we often do not need to write b̌ when dealing
with “concrete” structures like this (the proof of Lemma 5.4 is an example).

Conversely, given an L-structure M = (X,B), we endow X with the topology generated
by B̌ = {b̌ : b ∈ B}. Define an assignment h : Var → ℘(X) by h(p) = PM ⊆ X for each
p ∈ Var. We end up with a topological model M(1) = (X, h), where X is the topological
space just defined. Plainly, if X is 0-dimensional then ((X, h)(2))(1) = (X, h) for any h.
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5.2.2. Standard translation Every L〈n〉� -formula ϕ has a “standard translation” to an
L-formula ϕx, for any first-order variable x of point sort. The translation ϕx will have at
most the variable x free. We define ϕx by induction on ϕ:

• px = P(x) for p ∈ Var
• 	x = 	
• (¬ϕ)x = ¬ϕx, and (ϕ ∧ ψ)x = ϕx ∧ ψx

• (�ϕ)x = ∃O(x ∈ O ∧ ∀y(y ∈ O → ϕy))
• (〈n〉ϕ)x = ∃0≤i≤n xi(

∧
i<j≤n xi �= xj ∧∧

i≤n ϕ
xi), for n < ω.

As one might expect, ϕx generally “means the same” as ϕ, as the following lemma
shows. In the lemma and later, M |� ϕx(a) means that ϕx is true in M when x is assigned
to a, and ϕx(k/x) denotes the L-sentence obtained by substituting the constant k for every
free occurrence of x in ϕx.

LEMMA 5.2. Let a topological model (X, h) and an L-structure M = (X,B) be given,
and suppose that B̌ = {b̌ : b ∈ B} is a base for the topology on X. Then for every ϕ ∈ L〈n〉�

and a ∈ X we have (X, h), a |� ϕ iff M |� ϕx(a), and hence (X, h), kM |� ϕ iff M |�
ϕx(k/x).

Proof (sketch). The proof is by induction on ϕ. We consider only the case �ϕ, as
the other cases are straightforward. Let a ∈ X. Then (X, h), a |� �ϕ iff a has an open
neighbourhood O with (X, h), a′ |� ϕ for every a′ ∈ O. As B̌ is a base for the topology on
X, and by the inductive hypothesis, this is iff there is b ∈ B with a ∈ b̌ and M |� ϕx(a′) for
every a′ ∈ b̌. This is plainly iff M |� (�ϕ)x(a). �

We will prove that L〈n〉� is compact over the Cantor set using standard translations, which
give us access to first-order compactness. Suppose that � is a set of L〈n〉� -formulas that is
finitely satisfiable over the Cantor set. It will follow that for a certain first-order theory T ,
the theory T ∪ {ϕx(k/x) : ϕ ∈ �} is consistent, so by first-order compactness, it has a
model. We will transform a countable model of it into a model of � over the Cantor set.
The “side theory” T allows us to do this. It will in fact be the theory Tgood, defined next.

5.2.3. Good L-structures For set-sorted terms b, c, we write b ≤ c to abbreviate the
L-formula b + c = c, and for any L〈n〉� -formula ϕ, we write b ⊆ [[ϕ]] to abbreviate the
L-formula ∀x(x ∈ b → ϕx).

DEFINITION 5.3. An L-structure M = (X,B) is said to be good if

1. (B,+M,−M, 0M, 1M) is an atomless boolean algebra

2. M |� ∀bcx([x ∈ b+ c ↔ x ∈ b ∨ x ∈ c] ∧ [x ∈ −b ↔ ¬(x ∈ b)])

3. M |� ∀bc(∀x(x ∈ b ↔ x ∈ c)→ b = c)

4. M |� ∀xy(∀b(x ∈ b ↔ y ∈ b)→ x = y)

5. M |� ∀b
(

b ⊆ [[
∨
ψ∈�

�ψ]] → ∃
ψ∈�

cψ
(
(b ≤

∑
ψ∈�

cψ) ∧
∧
ψ∈�

(cψ ⊆ [[�ψ]])
))

,

for every nonempty finite set � of L〈n〉� -formulas.

Let Tgood be the first-order L-theory comprising first-order sentences expressing clause 1
and the L-sentences from clauses 2–5 above.

An L-structure M is good iff M |� Tgood. Let us give some examples of good and “bad”
L-structures. Good structures arise from topological models over the Cantor set, and more
generally over any separable 0-dimensional dense-in-itself metric space:
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LEMMA 5.4. Let X be a separable 0-dimensional dense-in-itself metric space, let (X, h)
be any topological model over X, and let M = (X,Clop(X)) = (X, h)(2) be an L-structure
derived from (X, h) as described in §5.2.1. Then M is good.

Proof. As X is 0-dimensional and dense in itself, (Clop(X),∪,∼, ∅,X) is an atomless
boolean algebra, and Clauses 2–4 of Definition 5.3 clearly hold for M.

We check Clause 5. For a L〈n〉� -formula ϕ, write [[ϕ]]X for {x ∈ X : (X, h), x |� ϕ}.
Let b ∈ Clop(X) and let a nonempty finite set � of L〈n〉� -formulas be given, with b ⊆
[[
∨
ψ∈� �ψ]]X .

Now we use some topology. As X is a separable metric space, it is Lindelöf (Engelking,
1989, 4.1.16). As it is also 0-dimensional, by (Engelking, 1989, 6.2.5, 6.2.7) the finite
open cover {−b} ∪ {[[�ψ]]X : ψ ∈ �} of X can be refined to a cover consisting of pairwise
disjoint open sets. Plainly, any union of these sets is clopen. So we can find clopen sets
cψ ∈ Clop(X) with cψ ⊆ [[�ψ]]X (for each ψ ∈ �) such that b ⊆⋃

ψ∈� cψ .
Clause 5 now follows by Clauses 1–3 and Lemma 5.2, which applies since Clop(X) is a

base for the topology on X. So M is good. �

EXAMPLE 5.5. An example of a bad L-structure is Q = (Q,B), where Q is the set of
rational numbers, B is the countable atomless boolean algebra consisting of finite unions
of intervals of Q of the form (x + π, y + π) (where x < y in Q ∪ {±∞}), ∈Q is ordinary
set membership, and for some atom p ∈ L we have

PQ =
⋃
n∈Z
(2n+ π, 2n+ 1+ π),

where Z denotes the set of integers. Under the standard metric d(x, y) = |x − y|, Q is a
separable 0-dimensional dense-in-itself metric space, and B is a base of clopen sets for its
topology. However, Q has continuum-many clopen sets, and indeed PQ is clopen but is not
in B. So B � Clop(Q).

Now Q ∈ B and Q ⊆ [[�p ∨ �¬p]]X . But the sets [[�p]]X and [[�¬p]]X (which are PQ

and Q \ PQ, respectively) are disjoint. So for any c, c′ ∈ B, if Q ⊆ c ∪ c′, c ⊆ [[�p]]X ,
and c′ ⊆ [[�¬p]]X , then in fact c = PQ, which is impossible since PQ /∈ B. So there are no
such c, c′, and Clause 5 of Definition 5.3 fails. (The other clauses are ok.)

5.2.4. Ultrafilter extensions of good structures We now aim to construct an “ultrafilter
extension” of a good structure. In §5.2.5, we will show that for a countable good structure,
this extension is homeomorphic to the Cantor set, and “truth-preserving.”

So until the end of §5.2.5, fix a good L-structure M = (X,B). Then (B,+M,−M, 0M, 1M)
is an atomless boolean algebra, which we write henceforth simply as B. We write

b̌ = {x ∈ X : M |� x ∈ b} for b ∈ B,
x̂ = {b ∈ B : M |� x ∈ b} for x ∈ X.

Each x̂ is a (nonprincipal) ultrafilter of B. By Clauses 2–3 of Definition 5.3, the map (b �→
b̌) is a boolean embedding of B into the boolean set algebra (℘ (X),∪,∼, ∅,X). We form
the topological model M(1) = (X, h) as outlined in §5.2.1 above. Then B̌ = {b̌ : b ∈ B}
contains X and is closed under finite intersections, and hence (Willard, 1970, 5.3) is a base
for the topology on X. So Lemma 5.2 applies to M and (X, h). We have B̌ ⊆ Clop(X), but
the inclusion may be proper (see Example 5.5).

We will let ϕ,ψ, etc., denote arbitrary L〈n〉� -formulas. We write [[ϕ]]X = {x ∈ X :
(X, h), x |� ϕ}.
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DEFINITION 5.6. Let μ be an ultrafilter of B. For a L〈n〉� -formula ϕ, we write

• μ � �ϕ if there is b ∈ μ such that b̌ ⊆ [[ϕ]]X,

• μ � �ϕ if μ �� �¬ϕ.

We define Fμ = {b̌ : b ∈ μ}∪{[[�ψ]]X : μ � �ψ}∪{{x} : x ∈ X, μ = x̂}. So Fμ ⊆ ℘(X).
LEMMA 5.7. For each ultrafilter μ of B, the set Fμ has the finite intersection property

(i.e.,
⋂

S �= ∅ for every nonempty finite S ⊆ Fμ).

Proof. Suppose first that μ = x̂ for some x ∈ X. Then x is unique (by Clause 4 of
Definition 5.3), x ∈ b̌ for every b ∈ μ, and x ∈ [[�ψ]]X for every ψ with μ � �ψ . So
x ∈ ⋂

Fμ and we are done.
Now suppose that there is no such x, so Fμ = {b̌ : b ∈ μ} ∪ {[[�ψ]]X : μ � �ψ}. As

we said, Lemma 5.2 applies to M and (X, h), so

b̌ ⊆ [[ϕ]]X ⇐⇒ M |� b ⊆ [[ϕ]], for each b ∈ B. (4)

Assume for contradiction that there are b ∈ μ and L〈n〉� -formulasψ0, . . . , ψn−1 withμ �
�ψi for each i < n, such that b̌∩⋂

i<n[[�ψi]]X = ∅. Hence, n > 0 and b̌ ⊆⋃
i<n[[�¬ψi]]X .

Then (4) gives M |� b ⊆ [[
∨

i<n �¬ψi]]. Since M is good, there are c0, . . . , cn−1 ∈ B with
M |� ci ⊆ [[�¬ψi]] for each i < n, and M |� b ≤∑

i<n ci. Butμ is an ultrafilter containing
b, so ci ∈ μ for some i < n. Using (4) again, či ⊆ [[�¬ψi]]X ⊆ [[¬ψi]]X , so μ � �¬ψi,
contradicting μ � �ψi. �

DEFINITION 5.8. For each ultrafilter μ of B, we choose an ultrafilter μ on X containing
Fμ. (By Lemma 5.7 and the boolean prime ideal theorem, this is possible.) We then define

�μ = {ϕ ∈ L〈n〉� : [[ϕ]]X ∈ μ}.
LEMMA 5.9. Let μ be an ultrafilter of B. Then for all L〈n〉� -formulas ϕ,ψ , we have:

1. ¬ϕ ∈ �μ iff ϕ /∈ �μ.

2. ϕ ∧ ψ ∈ �μ iff {ϕ,ψ} ⊆ �μ.

3. �ϕ ∈ �μ iff μ � �ϕ. Either condition implies ϕ ∈ �μ.

4. If ϕ ∈ �μ then μ � �ϕ.

5. If x ∈ X and μ = x̂, then ϕ ∈ �μ iff (X, h), x |� ϕ.

Proof.

1, 2. These hold since μ is an ultrafilter on X.

3. If μ � �ϕ then there is b ∈ μ with b̌ ⊆ [[ϕ]]X . But b̌ is open, so b̌ ⊆ int[[ϕ]]X =
[[�ϕ]]X . As b̌ ∈ Fμ ⊆ μ, we have [[�ϕ]]X ∈ μ as well, and so �ϕ ∈ �μ.
Conversely, if �ϕ ∈ �μ, then [[�ϕ]]X ∈ μ. Since μ is an ultrafilter, [[�¬ϕ]]X /∈
μ ⊇ Fμ. This means that μ �� �¬ϕ, and hence clearly μ � �ϕ.
In either case, [[�ϕ]]X ∈ μ. But [[�ϕ]]X ⊆ [[ϕ]]X . So also [[ϕ]]X ∈ μ, and ϕ ∈ �μ.

4. This follows from 3 and 1.

5. We have {x} ∈ Fμ ⊆ μ. In this case, μ is principal. So ϕ ∈ �μ iff [[ϕ]]X ∈ μ, iff
x ∈ [[ϕ]]X , iff (X, h), x |� ϕ. �

5.2.5. Models over Cantor set from countable good structures We now further assume
that the boolean algebra B is countable. As B is also atomless, its Stone space (of ultrafil-
ters) is homeomorphic to the Cantor set C (as pointed out at the start of §5), and we will
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identify the two. So we take C to be the set of ultrafilters of B, and the clopen sets in C to
be the sets of the form {μ ∈ C : b ∈ μ} for b ∈ B. These sets form a base for the topology
on C.

DEFINITION 5.10. Define an assignment g : Var → ℘(C) by g(p) = {μ ∈ C : p ∈ �μ},
for each atom p ∈ Var. Here, �μ is as in Definition 5.8.

LEMMA 5.11 (truth lemma). For every L〈n〉� -formula ϕ, we have

(C, g), μ |� ϕ ⇐⇒ ϕ ∈ �μ, for every μ ∈ C.

Proof. The proof is by induction on ϕ. For ϕ ∈ Var it follows from the definition of g,
and obviously 	 ∈ �μ. The boolean cases ¬ϕ and ϕ ∧ ψ are easy, using Lemma 5.9(1,2).
For the remaining cases, assume the result for ϕ inductively, and first consider �ϕ.

Let μ ∈ C be given. If �ϕ ∈ �μ, then μ � �ϕ by Lemma 5.9(3), so there is b ∈ μ
such that b̌ ⊆ [[ϕ]]X . So ν � �ϕ for every ν ∈ C with b ∈ ν—b itself witnesses this. So by
Lemma 5.9(3) again, ϕ ∈ �ν for all such ν. Inductively, (C, g), ν |� ϕ for all such ν. The
set of these ν is a clopen subset of C containing μ, so by semantics, (C, g), μ |� �ϕ.

Conversely, if (C, g), μ |� �ϕ then there is b ∈ μ with (C, g), ν |� ϕ for every ν ∈ C

containing b. Inductively, ϕ ∈ �ν for all such ν. In particular, for every x ∈ b̌, since b ∈ x̂,
we have ϕ ∈ �x̂. By Lemma 5.9(5), (X, h), x |� ϕ for all such x. So b̌ ⊆ [[ϕ]]X , and thus
μ � �ϕ. By Lemma 5.9(3), �ϕ ∈ �μ.

Finally, let n < ω and consider the case 〈n〉ϕ. Let μ ∈ C be given. If 〈n〉ϕ ∈ �μ, then
[[〈n〉ϕ]]X ∈ μ, so certainly 〈n〉ϕ is true at some point of (X, h). So there are more than n
points x ∈ X at which (X, h), x |� ϕ. For each such x we have ϕ ∈ �x̂ by Lemma 5.9(5), so
(C, g), x̂ |� ϕ by the inductive hypothesis. By Clause 4 of Definition 5.3, the x̂ are pairwise
distinct, so (C, g), μ |� 〈n〉ϕ by semantics.

Conversely suppose (C, g), μ |� 〈n〉ϕ, so there are pairwise distinct μ0, . . . , μn ∈ C

with (C, g), μi |� ϕ, and hence inductively ϕ ∈ �μi , for each i ≤ n. Using standard
properties of ultrafilters, we can find elements bi ∈ μi (i ≤ n) such that b̌0, . . . , b̌n are
pairwise disjoint. For each i ≤ n, since ϕ ∈ �μi , by Lemma 5.9(4) we have μi � �ϕ. So
since bi ∈ μi, there is xi ∈ b̌i with (X, h), xi |� ϕ. The xi are plainly pairwise distinct, so
〈n〉ϕ is true in (X, h) at every point. Then [[〈n〉ϕ]]X = X ∈ μ, so 〈n〉ϕ ∈ �μ. �

It follows that (C, g) “extends” (X, h) in a truth-preserving way:

COROLLARY 5.12. (X, h), x |� ϕ iff (C, g), x̂ |� ϕ, for every L〈n〉� -formula ϕ and x ∈ X.

Proof. By Lemmas 5.9(5) and 5.11, (X, h), x |� ϕ iff ϕ ∈ �x̂, iff (C, g), x̂ |� ϕ. �

5.2.6. Compactness and strong completeness We can now prove that L〈n〉� is compact
over the Cantor set.

THEOREM 5.13. Every set � of L〈n〉� -formulas that is finitely satisfiable in the Cantor set
C is satisfiable in C.

Proof. Define U = Tgood ∪ {ϕx(k/x) : ϕ ∈ �}.
CLAIM. U is consistent.
Proof of claim. Let �0 ⊆ � be finite. As � is finitely satisfiable in C, there are an

assignment h into C, and a point x ∈ C, with (C, h), x |� �0. Let M = (C,Clop(C))
be an L-structure of the form (C, h)(2) as described in §5.2.1, in which the constant k is
interpreted as x. Then Clop(C) is a base for the topology on C, so by Lemma 5.2, M |�
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Table 2. Summary of results for a 0-dimensional dense-in-itself metric space X

X �∀ �[�=] �〈n〉 [d]∀ [d][�=] [d]〈n〉

Non-compact Logic: S4U S4DT1S ? KD4U ?(∗) ?
Compact? Yes ? ? Yes ? ?

Cantor set Logic: S4U S4DT1S ? KD4U DT1 ?
Compact? Yes Yes Yes No No No

{ϕx(k/x) : ϕ ∈ �0}. Now C is a compact metric space, and hence is separable (Engelking,
1989, 4.1.18). So Lemma 5.4 applies, and M is good, giving M |� Tgood ∪ {ϕx(k/x) :
ϕ ∈ �0}. Since �0 was an arbitrary finite subset of �, this shows that U is consistent and
proves the claim.

So by first-order compactness and the downward Löwenheim–Skolem theorem, we can
take a countable model M = (X,B) |� U—that is, both X and B are countable. Then M
is good, since M |� Tgood. We apply the preceding work to M. Define (X, h) = M(1),
and g : Var → ℘(C) as in Definition 5.10. Since M |� ϕx(k/x) for every ϕ ∈ �, and
Lemma 5.2 applies to M and (X, h), we obtain (X, h), kM |� �. So by Corollary 5.12,
(C, g), k̂M |� � as required. �

We can offer no strong completeness result for L〈n〉� over the Cantor set C, because as far
as we know, the L〈n〉� -logic of C has not been determined or axiomatised. But the logic of
C in the weaker language L[�=]

� has been axiomatised by Kudinov (2006), and this yields:

COROLLARY 5.14. In the language L[�=]
� , the system S4DT1S defined in (Kudinov, 2006,

§2) is sound and strongly complete over the Cantor set.

Proof. We work in the language L[�=]
� . As we mentioned in §2.7, L[�=]

� is weaker than
L〈n〉� , so by Theorem 5.13 it is compact over C. By (Kudinov, 2006, Lemmas 6 & 8),
S4DT1S is sound, and by (Kudinov, 2006, Theorem 36), complete, over every 0-dimen-
sional dense-in-itself metric space, including of course C. Strong completeness of S4DT1S
over C now follows by Fact 2.1. �

In the still weaker language L∀�, we can present a strong completeness result for all
0-dimensional dense-in-themselves metric spaces:

COROLLARY 5.15. In the language L∀�, the system S4U is sound and strongly complete
over every 0-dimensional dense-in-itself metric space.

Proof. By Corollary 4.8, S4U is strongly complete over every noncompact 0-dimensional
dense-in-itself metric space. As we mentioned in the proof of the corollary, S4U is sound
and complete over every 0-dimensional dense-in-itself metric space, including the Cantor
set. So by Theorem 5.13 and Fact 2.1, it is strongly complete over the Cantor set too. �

§6. Conclusion. We now have some kind of picture of compactness and strong com-
pleteness over 0-dimensional dense-in-themselves metric spaces for languages able to
express ∀. A summary is in Table 2. Entries in the two “compact” rows in the table indicate
whether the designated language is compact (as defined in §2.9) over the relevant space.
The bold entries imply the others in the same row. By Fact 2.1, a “yes” entry implies strong
completeness, and a “no” entry implies lack of it, for any logic named.
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We now justify some of the statements in the table, make explicit the open questions
arising from the gaps in the table, and list some further questions.

Most entries in the table follow from Corollaries 4.8, 5.14, and 5.15, and Theorems 5.1
and 5.13. We briefly discuss the penultimate column of the table. The key fact is:

FACT 6.1 (Kudinov & Shehtman (2014)). The L[�=]
[d] -logic of any separable 0-dimen-

sional dense-in-itself metric space is DT1.

Briefly, DT1 can be axiomatised by the KD4 axioms for each of [d] and [ �=], plus [ �=]ϕ →
∀[d]ϕ. As we saw in the proof of Theorem 5.13, the Cantor set is separable, so by Fact 6.1,
its L[�=]

[d] -logic is DT1; but strong completeness fails, by Theorem 5.1. If Fact 6.1 extends to
nonseparable spaces, the entry marked (∗) in the table, currently open, would also be DT1.

PROBLEM 6.2. Let X be a noncompact 0-dimensional dense-in-itself metric space (not
necessarily separable). Are the languages L[�=]

� , L〈n〉� , L[�=]
[d] , and L〈n〉[d] compact over X?

Axiomatise the logic of X in these languages. (For L[�=]
� it is S4DT1S, as shown by Kudinov

(2006). For L[�=]
[d] and separable X it is DT1, by Fact 6.1.) Are the logics the same for all X?

PROBLEM 6.3. Axiomatise the logic of the Cantor set in the languages L〈n〉� and L〈n〉[d] .

The language L〈n〉[d] is important. Gatto (2016) proved that over T3 spaces it is equivalent
to the monadic 2-sorted first-order language Lt of Flum & Ziegler (1980). This language
can be thought of as the fragment of the language L of §5.2.1 without the boolean function
symbols that is invariant under change of base (in L-structures where the set sort is a base
for the topology on the point sort). Gatto (2016) also gave an axiomatisation of L〈n〉[d] that is
sound and complete over every class of T1 spaces that contains all T3 spaces. This may be
relevant to Problems 6.2 and 6.3.

0-dimensional spaces are often the easiest to handle. Going beyond them, what about
arbitrary dense-in-themselves metric spaces? Or arbitrary metric spaces? We can ask about
the logic of such spaces, and strong completeness, in each of the languages we have
considered. For the language L�, the logic of every metric space was determined by
Bezhanishvili, Gabelaia, & Lucero-Bryan (2015), and it seems reasonable to ask about
corresponding strong completeness results. We can even go beyond metric spaces and
ask for results on nonmetrisable topological spaces. And what about uncountable sets of
formulas (when Var is allowed to be uncountable)? This is not much explored. Finally,
where compactness fails, can we find novel strongly complete deductive systems using
infinitary inference rules?
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Państwowe Wydawnictwo Naukowe.

Stone, A. H. (1948). Paracompactness and product spaces. Bulletin of the American
Mathematical Society, 54, 977–982.

Tarski, A. (1938). Der Aussagenkalkül und die Topologie. Fundamenta Mathematicae, 31,
103–134.

Willard, S. (1970). General Topology. Reading, Mass: Addison-Wesley.

SCHOOL OF MATHEMATICS AND STATISTICS
VICTORIA UNIVERSITY

WELLINGTON, NEW ZEALAND
E-mail: Rob.Goldblatt@msor.vuw.ac.nz

DEPARTMENT OF COMPUTING
IMPERIAL COLLEGE LONDON

LONDON, UK
E-mail: i.hodkinson@imperial.ac.uk



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /PDFXOutputConditionIdentifier (FOGRA27)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




