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Abstract

In a topological setting in which the diamond modality is interpreted as the derivative
(set of limit points) operator, we study a ‘tangled derivative’ connective that assigns to
any finite set of propositions the largest set in which all those propositions are strictly
dense. Building on earlier work of ourselves and others we axiomatise the resulting
logic of the real line. We then show that the logic of any zero-dimensional dense-in-
itself metric space is the ‘tangled’ extension of KD4, eliminating an assumption of
separability in previous results for zero-dimensional spaces. This requires new kinds
of ‘dissection lemma’ in the sense of McKinsey-Tarski. We extend the analysis to
include the universal modality, and also show that the tangled extension of KD4 has
a strong completeness result for topological models that fails for its Kripke semantics.

Keywords: derivative operator, dense-in-itself metric space, modal logic, finite
model property, zero-dimensional, strong completeness

1 Introduction
The tangle connective applies to a finite set Γ of modal formulas to give a new
formula 〈t〉Γ with the following semantics in a model on Kripke frame (W,R):

〈t〉Γ is true at w iff there is an endless R-path wRw1 · · ·wnRwn+1 · · · · · · in
W with each member of Γ being true at wn for infinitely many n.

This pertains to arbitrary models, but in a finite transitive frame the truth
condition equivalently means that w can access a cluster (maximal R-clique)
in which each member of Γ is true at some point. Denoting by [[ϕ]] the set of
points at which a formula ϕ is true, [[〈t〉Γ]] can be shown to be equal to the
union ⋃

{S ⊆W : S ⊆
⋂

γ∈Γ
R−1([[γ]] ∩ S)}. (1.1)
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This connective was introduced by Dawar and Otto [3], who showed that
over the class of finite transitive frames, the bisimulation-invariant fragment
of monadic second-order logic collapses to that of first-order logic, with both
fragments being expressively equivalent to the language L〈t〉2 that adds 〈t〉 to
the language L2 of the basic modal logic of a unary modality 2.

Now L〈t〉2 is translatable into the language Lµ2 of the modal mu-calculus,
since 〈t〉 has the same meaning as the Lµ2-formula

νp
∧
γ∈Γ

3(γ ∧ p),

where ν is the greatest fixed point operator, 3 is the dual modality to 2,
and p is a fresh propositional atom not occurring in Γ. But the mu-calculus
is expressively equivalent to the bisimulation-invariant fragment of monadic
second-order logic [7], so the upshot is that L〈t〉2 is expressively equivalent to
the seemingly more powerful Lµ2 over finite transitive frames.

The name ‘tangle’ was coined by Fernández-Duque [4,5], who developed
the following topological interpretation of 〈t〉. A collection G of subsets of a
topological space X is said to be tangled in a subset S of X if, for all G ∈ G,
G∩S is dense in S. In other words, each point of S is in the closure clX(G∩S)
of G∩S. There is a largest subset of X in which G is tangled, and this is called
the tangled closure of G. In a model on X, [[〈t〉Γ]] is defined to be the tangled
closure of {[[γ]] : γ ∈ Γ}, which can be described as the set⋃

{S ⊆ X : S ⊆
⋂

γ∈Γ
clX([[γ]] ∩ S)}. (1.2)

Interpreting 3ϕ as the closure clX [[ϕ]] of [[ϕ]], and 2ϕ as the interior intX [[ϕ]],
Fernańdez-Duque axiomatised the resulting L〈t〉2 -logic as an extension of S4, and
showed it has the finite model property. 1 In this S4 setting (1.1) is an instance
of (1.2), because an S4-frame, having R reflexive and transitive, is a topological
space under the Alexandroff topology generated by the sets R(w) = {v : wRv}
for all w ∈W , and in this topology the closure cl(S) of S is just R−1(S).

The present paper is a continuation of our work in [6], where the equiva-
lence of L〈t〉2 and Lµ2 over finite transitive frames was lifted to the class of all
topological spaces, and the finite model property over frames was established
for a range of logics having the tangle connective, including some having the
universal modality ∀ as well. We also studied the more expressive interpreta-
tion of a modal diamond as the derivative operator 〈dX〉 of a space X. For that
semantics the diamond and its dual box are written as 〈d〉 and [d], with [[〈d〉ϕ]]
being the set 〈dX〉[[ϕ]] of limit points of [[ϕ]]. Then 3ϕ is spatially equivalent
to ϕ ∨ 〈d〉ϕ, and 2ϕ to ϕ ∧ [d]ϕ. Here we write [d]

∗
ϕ for the formula ϕ ∧ [d]ϕ.

For this derivative interpretation we write the tangle connective as 〈dt〉. It
has exactly the same ‘endless R-path’ meaning as 〈t〉 in frames, where [[〈dt〉Γ]]

1 The notation 〈t〉 is ours. In [5] 〈t〉Γ is written 3∗Γ, or just 3Γ, justified because in finite
S4 models the L〈t〉2 -formula 3∗{ϕ} has the same meaning as the L2-formula 3ϕ.



Goldblatt and Hodkinson 3

continues to be the set (1.1). But what changes are the frames themselves,
which no longer require all points to be reflexive. So we interpret 〈dt〉 over K4-
frames rather than S4-frames. For the spatial interpretation of 〈dt〉 we replace
the closure operator clX by 〈dX〉, and define [[〈dt〉Γ]] to be the set⋃

{S ⊆ X : S ⊆
⋂

γ∈Γ
〈dX〉([[γ]] ∩ S)}. (1.3)

The inclusion S ⊆ 〈dX〉([[γ]] ∩ S) says that every point of S is a limit point of
[[γ]] ∩ S. Since in general 〈dX〉Y ⊆ clX Y , and indeed clX Y = Y ∪ 〈dX〉Y , this
is a stricter form of density of [[γ]] ∩ S in S. So according to (1.3), [[〈dt〉Γ]] is
the union of all sets S in which {[[γ]] : γ ∈ Γ} is strictly tangled, and may be
called the tangled derivative of {[[γ]] : γ ∈ Γ}.

In spaces in which the derivative 〈dX〉{x} of any point x is closed (so-called
TD spaces), 〈t〉 is definable from 〈dt〉, since 〈t〉Γ is equivalent to the formula∧

Γ ∨ 〈d〉
∧

Γ ∨ 〈dt〉Γ (see [6, Lemma 6.5]).
Shehtman’s seminal paper [13] axiomatised the logic of some classical spaces

in the language L[d] with the derivative interpretation. It proved that the L[d]-
logic of any separable zero-dimensional dense-in-itself metric space is KD4, and
the logic of the Euclidean space Rn is KD4G1 for all n ≥ 2. It also conjectured
that the logic of the real line R is KD4G2, which was later verified by Shehtman
[12] and Lucero-Bryan [8].

Our purpose in this paper is to lift these results to the language L〈dt〉[d]

with the tangled derivative connective. We use the name Lt for the L〈dt〉[d] -logic
defined by adding to the axiomatisation of some L[d]-logic named L the ‘fixed
point’ axioms

Fix: 〈dt〉Γ→ 〈d〉(γ ∧ 〈dt〉Γ), all γ ∈ Γ

Ind: [d]
∗
(ϕ→

∧
γ∈Γ 〈d〉(γ ∧ ϕ))→ (ϕ→ 〈dt〉Γ).

We already dealt with Rn for n ≥ 2 in [6, Theorem 9.3] which showed that if
X is any dense-in-itself metric space, then the L〈dt〉[d] -logic of X is included in
KD4G1t, and is exactly KD4G1t if X validates G1. 2 In particular this holds
when X = Rn.

Here we will prove that the L〈dt〉[d] -logic of R is KD4G2t. The proof uses a
result of [8] about the existence of d-morphisms from R onto finite KD4G2-
frames. We show that these morphisms preserve validity of L〈dt〉[d] -formulas.

We then turn to zero-dimensional spaces and generalize the result of [13] by
eliminating the restriction to separable spaces, and showing that the L〈dt〉[d] -logic
of each zero-dimensional dense-in-itself metric space is KD4t. This requires
certain ‘dissection’ lemmas about the partitioning of an open set into subsets
with properties that allow them to be used to represent the structure of finite
frames. A variant of the dissection lemma of McKinsey and Tarski [9] allows

2 This result also holds when restricted to L[d] and KD4G1, answering another question
from [13].
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any dense-in-itself metric space to represent finite rooted S4-frames. But KD-
frames may have irreflexive points, and we need a further dissection result to
handle them (Theorem 7.3), as well as one for zero-dimensional spaces about
dissection into special open sets (Theorem 7.5).

We extend our results to the language with the universal modality, show-
ing that the L〈dt〉[d]∀-logic of any zero-dimensional dense-in-itself metric space is
KD4t.U, and of R is KD4G2t.UC, where C is Shehtman’s axiom expressing
topological connectedness.

Finally, we give a topological strong completeness result for KD4t, showing
that any countable KD4t-consistent set of formulas is satisfiable at any point of
any zero-dimensional dense-in-itself metric space X. By contrast, this strong
completeness fails for KD4t over its Kripke semantics.

2 Formulas and Frames
We assume a set Var of propositional variables or atoms. Formulas are con-
structed from these variables by the standard Boolean connectives >, ¬, ∧;
the unary modality [d]; and the tangle connective 〈dt〉 which assigns a formula
〈dt〉Γ to each finite non-empty set Γ of formulas. The other Boolean connec-
tives ⊥, ∨, → are introduced as standard abbreviations, and the dual 〈d〉 of [d]
is defined to be ¬[d]¬. We write [d]

∗
ϕ for the formula ϕ ∧ [d]ϕ, and 〈d〉∗ϕ for

ϕ ∨ 〈d〉ϕ. We denote the set of all formulas by L〈dt〉[d] , and the set of formulas
with no occurrence of 〈dt〉 by L[d].

A frame is a pair F = (W,R), where W is a non-empty set and R is a
binary relation on W . We may write any of R(w, v), Rwv, and wRv to denote
that (w, v) ∈ R. We let R(w) denote the set {v ∈ W : wRv} An element w is
called reflexive if wRw, and irreflexive otherwise.

We restrict ourselves throughout the paper to frames that have transitive R.
Then if R∗ = R∪ idW , where idW is the identity relation onW , we get that R∗
is the reflexive transitive closure of R, and putting R∗(w) = {v ∈ W : wR∗v}
we get that R∗(w) = {w}∪R(w). Observe that w is reflexive iff R∗(w) = R(w).

If R−1 is the inverse relation to R, then each subset W ′ ⊆ W has the R-
inverse image R−1(W ′) = {w ∈ W : ∃v ∈ W ′(wRv)} = {w : R(w) ∩W ′ 6= ∅}.
For singleton subsets we write R−1({v}) just as R−1(v).

A model (F , h) on F is given by an assignment h, which is a function from
Var into the powerset ℘W of W . The notion (F , h), w |= ϕ of a formula ϕ
being true, or satisfied, at w in model (F , h) is defined by induction on the
formation of ϕ, by the following clauses.

(i) (F , h), w |= p iff w ∈ h(p), for p ∈ Var.
(ii) (F , h), w |= >.
(iii) (F , h), w |= ¬ϕ iff (F , h), w 6|= ϕ.
(iv) (F , h), w |= ϕ ∧ ψ iff (F , h), w |= ϕ and (F , h), w |= ψ.
(v) (F , h), w |= [d]ϕ iff (F , h), v |= ϕ for every v ∈ R(w).
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(vi) (F , h), w |= 〈dt〉Γ iff there is a sequence w = w0, w1, . . . in W with
wnRwn+1 for each n < ω and such that for each γ ∈ Γ there are infinitely
many n < ω with (F , h), wn |= γ.

The sequence {wn : n < ω} in the last clause could be described as an endless
R-path satisfying each member of Γ infinitely often.

A formula ϕ is satisfiable in frame F if (F , h), w |= ϕ for some h and some
w. ϕ is valid in F if ¬ϕ is not satisfiable in F , i.e. if ϕ is true at every point
in every model on F .

In any model (F , h) each formula defines the ‘truth-set’ [[ϕ]]h = {w ∈ W :
(F , h), w |= ϕ}. In particular [[p]]h = h(p) for p ∈ Var. The semantic clause 5
above for [d] states that [[[d]ϕ]]h = {w : R(w) ⊆ [[ϕ]]h}. The truth condition for
the dual modality 〈d〉 gives

[[〈d〉ϕ]]h = {w : R(w) ∩ [[ϕ]]h 6= ∅} = R−1[[ϕ]]h. (2.1)

Lemma 2.1 In any model (F , h) on a frame, and any w ∈ W , we have w ∈
[[〈dt〉Γ]]h iff there is a subset S of W such that

w ∈ S ⊆
⋂

γ∈Γ
R−1([[γ]]h ∩ S). (2.2)

Proof. Suppose w ∈ [[〈dt〉Γ]]h, and let S = {wn : n < ω} be the resulting
sequence given by clause 6 above. Then w = w0 ∈ S, and for any wn ∈ S and
any γ ∈ Γ there is an m > n such that (F , h), wm |= γ, so as R is transitive,
wnRwm ∈ [[γ]]h ∩ S, showing wn ∈ R−1([[γ]]h ∩ S). This proves (2.2).

Conversely, if (2.2) holds for some S, then for each v ∈ S and each γ ∈ Γ
there is some u ∈ S such that vRu and (F , h), u |= γ. Using this, if Γ =
{γ1, . . . , γm} we can iteratively choose a sequence {wn : n < ω} of members of
S with w0 = w and wnRwn+1 and every index mk + i with 1 ≤ i ≤ m having
(F , h), wmk+i |= γi. This shows that (F , h), w |= 〈dt〉Γ. 2

Thus [[〈dt〉Γ]]h is the union of all subsets S of W such that S ⊆⋂
γ∈ΓR

−1([[γ]]h ∩ S). To put this in perspective we invoke the Knaster-Tarski
Theorem on fixed points of monotone functions on complete lattices [15]. De-
fine F (S) =

⋂
γ∈ΓR

−1([[γ]]h ∩ S). Then F is a function on the lattice of all
subsets of W that is monotone for inclusion: S ⊆ S′ implies F (S) ⊆ F (S′).
The Knaster-Tarski Theorem states that such a function has a largest fixed
point S0, namely if S0 =

⋃
{S ⊆ X : S ⊆ F (S)}, then S0 = F (S0) and S ⊆ S0

whenever F (S) = S. But here
⋃
{S ⊆ X : S ⊆ F (S)} = [[〈dt〉Γ]]h. So [[〈dt〉Γ]]h

is the largest fixed point of F .
This fixed point interpretation and the ‘endless R-path’ interpretation of

〈dt〉 each have their uses. In Section 4 we use the fixed point approach to show
that validity of formulas is preserved by certain morphisms. Here we note that
the endless path approach makes it very easy to see that validity is preserved
by generated subframes. Recall that F ′ = (W ′, R′) is a generated subframe of
F = (W,R) if W ′ ⊆ W , R′ is the restriction of R to W ′, and W ′ is R-closed
in the sense that R(w) ⊆ W ′ for all w ∈ W ′. Then given models (F , h) and



6 The Tangled Derivative Logic of the Real Line and Zero-Dimensional Spaces

(F ′, h′) with h′(p) = h(p) ∩W ′ for p ∈ Var, it is a standard fact that for all
L[d]-formulas ϕ and all w ∈W ′,

(F , h), w |= ϕ iff (F ′, h′), w |= ϕ. (2.3)

In other words, [[ϕ]]h′ = [[ϕ]]h ∩ W ′. But this result extends readily to all
L〈dt〉[d] -formulas, with the inductive case of a formula 〈dt〉Γ holding because any
endless R′-path is an R-path and, crucially, any endless R-path that starts in
W ′ remains in W ′ by the R-closure of W ′ and so is an R′-path.

We write F∗(w) for the subframe of F based on R∗(w), which is a generated
subframe as R is transitive. If W = R∗(w), then F = F∗(w) and we say that
w is a root of F . From the result (2.3) a standard argument gives

Theorem 2.2 A L〈dt〉[d] -formula is valid in a frame F iff it is valid in every
rooted subframe F∗(w) of F . 2

3 Spaces
Let X be a topological space. We do not name the topology of X, but just
refer to various subsets of X as being open or closed in X. An open set O
containing a point x is called an open neighbourhood of x. Then O \ {x} is a
punctured neighbourhood of x. We write clX S for the closure (smallest closed
superset) of a subset S ⊆ X, and intX S for the interior (largest open subset)
of S. 〈dX〉S denotes the derivative or set of limit points of S. Then we have

intXS = {x ∈ X : O ⊆ S for some open neighbourhood O of x}. (3.1)
clXS = {x ∈ X : S ∩O 6= ∅ for all open neighbourhoods O of x}. (3.2)
〈dX〉S = {x ∈ X : S ∩O \ {x} 6= ∅ for all open neighbourhoods O of x}.

(3.3)

X is called dense-in-itself if 〈dX〉X = X, i.e. if every point x of X is a limit
point of X and so {x} is not open. We record some standard facts about these
operators:

Lemma 3.1

(1) 〈dX〉 is additive: 〈dX〉(S ∪ T ) = 〈dX〉S ∪ 〈dX〉T .
(2) clX S = S ∪ 〈dX〉S.
(3) S is closed iff it contains all its limit points (i.e. 〈dX〉S ⊆ S). 2

A model (X,h) on X is given by an assignment h : Var → ℘X. The
truth/satisfaction relation (X,h), x |= ϕ, and associated truth-sets [[ϕ]]h =
{x ∈ X : (X,h), x |= ϕ}, are defined inductively as follows.

1. (X,h), x |= p iff x ∈ h(p), for p ∈ Var.
2. (X,h), x |= >.
3. (X,h), x |= ¬ϕ iff (X,h), x 6|= ϕ.
4. (X,h), x |= ϕ ∧ ψ iff (X,h), x |= ϕ and (X,h), x |= ψ.
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5. (X,h), x |= [d]ϕ iff there is an open neighbourhood O of x with (X,h), y |= ϕ
for every y ∈ O \ {x}.

6. (X,h), x |= 〈dt〉Γ iff there is some S ⊆ X such that x ∈ S ⊆⋂
γ∈Γ 〈dX〉([[γ]]h ∩ S).

By clause 5, [d]ϕ is true at x iff x has a punctured neighbourhood included in
[[ϕ]]h. This implies that

(X,h), x |= 〈d〉ϕ iff every open neighbourhood O of x has (X,h), y |= ϕ for
some y ∈ O \ {x}.

From (3.3) it then follows that [[〈d〉ϕ]]h = 〈dX〉[[ϕ]]h, the set of all limit points
of [[ϕ]]h. Using (3.1) and Lemma 3.1(2) we get that [[[d]

∗
ϕ]]h = intX [[ϕ]]h and

[[〈d〉∗ϕ]]h = clX [[ϕ]]h.
A set Y is strictly dense in a set S containing Y if every member of S is a

limit point of Y , i.e. S ⊆ 〈dX〉Y . In a model (X,h) a finite set of formulas Γ
will be called strictly tangled in S if [[γ]]h∩S is strictly dense in S for all γ ∈ Γ,
i.e. if S ⊆

⋂
γ∈Γ 〈dX〉([[γ]]h ∩ S). Thus the truth condition for 〈dt〉Γ gives that

[[〈dt〉Γ]]h is the union of all the sets S such that Γ is strictly tangled in S.

Theorem 3.2 Γ is tangled in [[〈dt〉Γ]]h, so [[〈dt〉Γ]]h is the largest set in which
Γ is strictly tangled. Moreover [[〈dt〉Γ]]h =

⋂
γ∈Γ 〈dX〉([[γ]]h ∩ [[〈dt〉Γ]]h).

Proof. This is another instance of the Knaster-Tarski Theorem (see the para-
graph after Lemma 2.1). If F (S) =

⋂
γ∈Γ 〈dX〉([[γ]]h ∩ S), then Γ is strictly

tangled in S iff S ⊆ F (S). Now F is a monotone function on the powerset
lattice of W , so the Knaster-Tarski Theorem states that F has largest fixed
point

⋃
{S ⊆ X : S ⊆ F (S)} = [[〈dt〉Γ]]h. 2

Given the interpretation of 〈d〉 as 〈d〉X in spaces and as R−1 in frames
(2.1), we now see that the semantics of 〈dt〉 in frames and spaces is formally
the same: in both cases [[〈dt〉Γ]]h is the largest solution of the equation S =⋂
γ∈Γ d([[γ]]h ∩ S), where d is the relevant interpretation of 〈d〉.
A formula ϕ is satisfiable in space X if (X,h), x |= ϕ for some h and some

x, and is valid in X if ¬ϕ is not satisfiable in X.

Theorem 3.3 In any topological space, all instances of the following formula
schemes are valid.

Fix: 〈dt〉Γ→ 〈d〉(γ ∧ 〈dt〉Γ), with γ ∈ Γ.
Ind: [d]

∗
(ϕ→

∧
γ∈Γ 〈d〉(γ ∧ ϕ))→ (ϕ→ 〈dt〉Γ).

Proof. Working in any model (X,h) on X, we show that these formulas are
true at all points. The result for Fix is immediate from the previous theorem,
which gives [[〈dt〉Γ]]h ⊆ [[〈d〉(γ ∧ 〈dt〉Γ)]]h.

For Ind, suppose x |= [d]
∗
(ϕ→

∧
γ∈Γ 〈d〉(γ ∧ ϕ)) and x |= ϕ. Then there is

an open neighbourhood O of x such that for any γ ∈ Γ, O ⊆ [[ϕ→ 〈d〉(γ∧ϕ)]]h,
hence O ∩ [[ϕ]]h ⊆ 〈dX〉([[γ]]h ∩ [[ϕ]]h).

But then O ∩ [[ϕ]]h ⊆ 〈dX〉([[γ]]h ∩O ∩ [[ϕ]]h), because if y ∈ O ∩ [[ϕ]]h, then
for any open neighbourhood O′ of y, O ∩O′ \ {y} intersects [[γ]]h ∩ [[ϕ]]h, hence
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O′ \ {y} intersects [[γ]]h ∩O ∩ [[ϕ]]h.
This shows that Γ is strictly tangled in O∩ [[ϕ]]h, and hence that O∩ [[ϕ]]h ⊆

[[〈dt〉Γ]]h. But x ∈ O ∩ [[ϕ]]h, so then x |= 〈dt〉Γ, confirming that Ind is true at
x. 2

Corresponding to generated subframes we have the notion of Y being an
open subspace of X, meaning that Y is a subspace of X that is itself open in
the topology on X. The openness of Y ensures that for all S ⊆ X,

〈dX〉S ∩ Y = 〈dY 〉(S ∩ Y ). (3.4)

Theorem 3.4 If Y is an open subspace of X, then any L〈dt〉[d] -formula valid in
X is valid in Y .

Proof. This follows from the result that if models (X,h) and (Y, h′) have
h′(p) = h(p) ∩ Y for p ∈ Var, then for all L〈dt〉[d] -formulas ϕ and all y ∈ Y ,

(X,h), y |= ϕ iff (Y, h′), y |= ϕ.

This result, which gives [[ϕ]]h′ = [[ϕ]]h∩Y , is standard for L[d]-formulas, with the
inductive case of a formula 〈d〉ϕ holding because (3.4) implies that [[〈d〉ϕ]]h∩Y =
〈dY 〉([[ϕ]]h ∩ Y ) = [[〈d〉ϕ]]h′ .

For the case of a formula 〈dt〉Γ, assuming inductively that the result holds
for all members of Γ, let y ∈ Y and (Y, h′), y |= 〈dt〉Γ. Then y belongs to
some S ⊆ Y in which Γ is strictly tangled in (Y, h′). So for any γ ∈ Γ,
S ⊆ 〈dY 〉([[γ]]h′ ∩ S) ⊆ 〈dX〉([[γ]]h ∩ S). This shows that Γ is strictly tangled in
S in (X,h), hence (X,h), y |= 〈dt〉Γ.

Conversely, if (X,h), y |= 〈dt〉Γ, then y belongs to some S ⊆ X in which Γ
is strictly tangled in (X,h). Then for any γ ∈ Γ, S ⊆ 〈dX〉([[γ]]h ∩ S), and so

S ∩ Y ⊆ 〈dX〉([[γ]]h ∩ S) ∩ Y = 〈dY 〉([[γ]]h ∩ S ∩ Y ) = 〈dY 〉([[γ]]h′ ∩ S ∩ Y ).

Hence Γ is strictly tangled in S∩Y in (Y, h′). Since y ∈ S∩Y , (Y, h′), y |= 〈dt〉Γ
follows as required. 2

4 d-Morphisms
A function ρ : X → W is called a d-morphism from a space X to a frame
F = (W,R) if every subset S ⊆ W has 〈dX〉ρ−1(S) = ρ−1(R−1(S)). When W
is finite, for this to hold it is sufficient to require that it hold whenever S is a
singleton, i.e. 〈dX〉ρ−1(w) = ρ−1(R−1(w)) for all w ∈ W . This is because the
operators 〈dX〉, ρ−1 and R−1 distribute across finite unions, as was observed
in [13] where maps of this kind were first studied. 3

It is shown in [2, Corollary 2.9] that surjective d-morphisms preserve validity
of all L[d]-formulas, regardless of whether F is finite or infinite. We will extend
that result to the present language with 〈dt〉, making use of the two results in
the next Lemma, which follow from [2, Theorem 2.7].

3 In [6] a d-morphism with W finite is called a representation of the frame F over the space
X.
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Lemma 4.1 Let ρ : X → W be a d-morphism from space X to frame F =
(W,R).

(1) For all w ∈W , ρ−1(R∗(w)) is an open subset of X.
(2) For every irreflexive w ∈ W , the preimage ρ−1(w) is a discrete subspace

of X. 2

Theorem 4.2 Let ρ : X → W be a d-morphism from space X to frame F =
(W,R), and let (X,h) and (F , h′) be models having [[p]]h = ρ−1[[p]]h′ for all
p ∈ Var. Then [[ϕ]]h = ρ−1[[ϕ]]h′ for all L〈dt〉[d] -formulas ϕ.

Proof. By induction on the formation of ϕ, with the result holding by assump-
tion if ϕ ∈ Var; the inductive cases of the Boolean connectives being standard,
and the inductive case of a formula beginning with 〈d〉 following from the def-
inition of d-morphism.

Consider the case of a formula 〈dt〉Γ, on the inductive assumption that the
result holds for all members of Γ. If x ∈ ρ−1[[〈dt〉Γ]]h′ , then by Lemma 2.1 ρ(x)
belong to some S ⊆W such that S ⊆

⋂
γ∈ΓR

−1([[γ]]h′ ∩S). Let Y = ρ−1(S). If
y ∈ Y , then for any γ ∈ Γ, ρ(y) ∈ R−1([[γ]]h′ ∩ S), so y ∈ ρ−1(R−1([[γ]]h′ ∩ S)).
But as ρ is a d-morphism, this implies

y ∈ 〈dX〉ρ−1([[γ]]h′ ∩ S) = 〈dX〉(ρ−1[[γ]]h′ ∩ ρ−1(S)) = 〈dX〉([[γ]]h ∩ Y ).

This shows that Y ⊆ 〈dX〉([[γ]]h ∩ Y ) for all γ ∈ Γ, so Γ is strictly tangled in
Y in (X,h). Since x ∈ Y , that gives x ∈ [[〈dt〉Γ]]h, proving that ρ−1[[〈dt〉Γ]]h′ ⊆
[[〈dt〉Γ]]h.

For the converse inclusion, suppose x ∈ [[〈dt〉Γ]]h. Then x belongs to some
S ⊆ X such that S ⊆

⋂
γ∈Γ 〈dX〉([[γ]]h ∩ S). Let Z = R∗(ρ(x)) ∩ ρ(S) ⊆ W .

Then ρ(x) ∈ Z. We will show that Z ⊆
⋂
γ∈ΓR

−1([[γ]]h′ ∩ Z). For this, take
any w ∈ Z. Then w = ρ(y) for some y ∈ S. Let O = ρ−1(R∗(w)), an open
neighbourhood of y by Lemma 4.1(1).

Now if w is irreflexive, then by Lemma 4.1(2), y is isolated from the rest of
ρ−1(w), so there is an open neighbourhood O′ of y such that O′∩ρ−1(w) = {y}.
Put U = O∩O′. If however w is reflexive, put U = O. Either way, U is an open
neighbourhood of y. Since y ∈ S, for any γ ∈ Γ we have y ∈ 〈dX〉([[γ]]h ∩ S),
so there is some y′ ∈ U with y 6= y′ ∈ [[γ]]h ∩ S. Then ρ(y′) ∈ ρ(S). Also as
y′ ∈ [[γ]]h, the induction hypothesis on γ gives ρ(y′) ∈ [[γ]]h′ .

Since y′ ∈ U ⊆ O, we get ρ(y′) ∈ R∗(w). If w is reflexive, this immediately
gives wRρ(y′). But if w is irreflexive, then y′ ∈ O′ and y′ 6= y, so y′ /∈ ρ−1(w),
hence ρ(y′) 6= w, and therefore again wRρ(y′). Thus in any case wRρ(y′),
so as w ∈ R∗(ρ(x)), transitivity of R gives ρ(y′) ∈ R∗(ρ(x)). Now we have
ρ(y′) ∈ [[γ]]h′ ∩ R∗(ρ(x)) ∩ ρ(S) = [[γ]]h′ ∩ Z. Hence w ∈ R−1([[γ]]h′ ∩ Z) as
required.

This complete the proof that ρ(x) ∈ Z ⊆
⋂
γ∈ΓR

−1([[γ]]h′ ∩ Z), which by
Lemma 2.1 implies ρ(x) ∈ [[〈dt〉Γ]]h′ , hence x ∈ ρ−1[[〈dt〉Γ]]h′ . 2

Corollary 4.3 If there exists a surjective d-morphism ρ : X → F , then any
L〈dt〉[d] -formula valid in X is valid in F .
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Proof. If ϕ is not valid in F , then there is a model (F , h′) with w /∈ [[ϕ]]h′ for
some w. Then w = ρ(x) for some x ∈ X as ρ is surjective. Define a model
(X,h) by putting h(p) = ρ−1[[p]]h′ for all p ∈ Var. Then x /∈ ρ−1[[ϕ]]h′ = [[ϕ]]h
by the Theorem, making ϕ not valid in X. 2

5 The Logic of R
By the logic of a space X, in a given language, we mean the set of all formulas
of that language that are valid in X. In this section we will identify the L〈dt〉[d] -
logic of the real line R, considered as a space under its standard Euclidean
metric topology.

Any space validates the formula-scheme 〈d〉〈d〉ϕ → 〈d〉∗ϕ. The stronger
scheme 〈d〉〈d〉ϕ → 〈d〉ϕ, which corresponds to transitivity of R in frames,
is valid precisely in the TD-spaces, which are those in which the derivative
〈dX〉{x} of any point is closed. This TD condition, introduced in [1], is implied
by the T1 separation property, which is itself equivalent to 〈dX〉{x} = ∅. Our
concern here is with the logic of metric spaces, which have the even stronger
T2 property, so this justifies our restriction to transitive frames.

By a tangle logic we mean any set of L〈dt〉[d] -formulas that includes all in-
stances of tautologies and of the schemes

K: [d](ϕ→ ψ)→ ([d]ϕ→ [d]ψ)

4: 〈d〉〈d〉ϕ→ 〈d〉ϕ
Fix: 〈dt〉Γ→ 〈d〉(γ ∧ 〈dt〉Γ), all γ ∈ Γ

Ind: [d]
∗
(ϕ→

∧
γ∈Γ 〈d〉(γ ∧ ϕ))→ (ϕ→ 〈dt〉Γ)

and is closed under modus ponens and the [d]-modality. The members of the
logic will be called its theorems. It is readily seen that if F is any transitive
frame, then the set of all formulas valid in F is a tangle logic.

The smallest tangle logic will be denoted K4t, and the smallest tangle logic
containing the D-axiom 〈d〉> with be denoted KD4t. The frame condition for
validity of 〈d〉> is that R be serial, i.e. ∀w∃w′(wRw′), so R(w) 6= ∅ for all w.
A serial transitive frame will be referred to as a KD4-frame.

Theorem 5.1 (Soundness) The L〈dt〉[d] -logic of any TD-space includes K4t
and the logic of any dense-in-itself TD-space includes KD4t.

Proof. It is standard that the set of formulas valid in a space includes axiom K
and is closed under modus ponens and [d]. It includes Fix and Ind by Theorem
3.3, and includes axiom 4 when the space is TD as just noted. The D-axiom is
valid in space X iff 〈dX〉X = X, which means that X is dense-in-itself. 2

There is a natural topological distinction between R and the higher dimen-
sional Euclidean spaces Rn for n ≥ 2. If O is an open ball in Rn, then a
punctured subspace O \ {x} is connected (indeed any two points of O \ {x}
are joined by a continuous path lying in O \ {x}). But if O is an open inter-
val (a, b) in R, then O \ {x} is disconnected, with two connected components
(a, x) and (x, b). This difference is captured with the help of certain formu-
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las Gn for n ≥ 1. Gn has the n + 1 variables p0, . . . , pn. For i ≤ n, put
Qi = pi ∧

∧
i 6=j≤n ¬pj . Then Gn is

[d]
( ∨
i≤n

[d]
∗
Qi
)
→
∨
i≤n

[d]¬Qi.

It asserts that if some punctured neighbourhood of x can be covered by the
interiors of n+ 1 disjoint sets, then there must be a punctured neighbourhood
of x that is disjoint from one of those sets.

The Gn’s were introduced by Shehtman in [13], where he showed that the
L[d]-logic of Rn for n ≥ 2 is KD4G1, the smallest extension of KD4 to include
all substitution instances of G1. He also conjectured that the L[d]-logic of R
is KD4G2. This was later verified by himself [12] with another proof given by
Lucero-Bryan [8].

Let KD4G2t be the smallest tangle logic including the D-axiom and all
substitution instances of G2. In [6, Section 4.13] we proved that this logic has
the finite model property for frames: if an L〈dt〉[d] -formula ϕ is not a KD4G2t-
theorem, then it is falsified by a model on some finite frame that validates
KD4G2t.

Theorem 5.2 KD4G2t is the L〈dt〉[d] -logic of R.

Proof. Soundness: since R is a dense-in-itself TD-space that validates G2, its
logic includes KD4G2t. Completeness: let ϕ be an L〈dt〉[d] -formula that is not
a KD4G2t-theorem. Then by [6] there is a finite KD4-frame F falsifying ϕ
that validates KD4G2t. Hence by Theorem 2.2, ϕ is not valid in some rooted
subframe F∗(w) of F that also validates K4DG2t. But Lemma 4.4 of [8] showed
that any finite rooted KD4G2-frame is a d-morphic image of any interval (x, y)
of R with x < y. So there exists such a d-morphism from (x, y) onto F∗(w).
By Corollary 4.3 it follows that ϕ is not valid in the open subspace (x, y) of R.
Hence ϕ is not valid in R by Theorem 3.4. 2

As already noted in the Introduction, we showed in [6, Theorem 9.3] that
for n ≥ 2, the L〈dt〉[d] -logic of Rn is KD4G1t.

6 Universal Modality
We now extend the syntax to include the universal modality ∀, creating formu-
las ∀ϕ with the spatial semantics (X,h), x |= ∀ϕ iff for all y ∈ X, (X,h), y |= ϕ;
and the frame-semantics (F , h), w |= ∀ϕ iff for all v ∈W , (F , h), v |= ϕ.

We denote the new set of formulas by L〈dt〉[d]∀ . It is straightforward to extend
Corollary 4.3 to show that validity of these formulas is preserved by surjective
d-morphisms.

A tangle logic for the new language is now required to include the S5 axioms
and rules for ∀, and the scheme

U: ∀ϕ→ [d]ϕ,
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all of which are valid in all frames and spaces. The smallest such logic is denoted
K4t.U, and KD4t.U and KD4Gnt.U are defined similarly. All of these L〈dt〉[d]∀-
logics were shown in [6] to have the finite model property over their frames.

Let K4t.UC be the smallest tangle logic extending K4t.U in the language
L〈dt〉[d]∀ that includes the scheme

C: ∀(2∗ϕ ∨2∗¬ϕ)→ (∀ϕ ∨ ∀¬ϕ),

which was introduced in [11]. The condition for validity of C in a frame is
graphical connectedness: any two points are connected by an (R ∪R−1)-path.
The validity condition for C in a space X is topological connectedness, i.e. that
X cannot be partitioned into two non-empty open subsets.

In [6], the logics K4t.UC, KD4t.UC and KD4Gnt.UC were all shown to have
the finite model property over their frames. Theorem 9.5 of [6] proved that if
X is any dense-in-itself metric space then the L〈dt〉[d]∀-logic of X is included in
KD4G1t.UC, and is exactly KD4G1t.UC if X validates G1. In particular the
L〈dt〉[d]∀-logic of Rn is KD4G1t.UC for all n ≥ 2.

As to the real line R, its L[d]∀-logic was shown to be KD4G2.UC in [8]. We
extend this now to the language with 〈dt〉.

Theorem 6.1 KD4G2t.UC is the L〈dt〉[d]∀-logic of R.

Proof. Soundness: the axioms D, 4, G2 and C are all valid in R.
Completeness: let ϕ be an L〈dt〉[d]∀-formula that is not a KD4G2t.UC-theorem.

Then by [6, Section 4.13] there is a finite frame F that validates KD4G2t.UC
and falsifies ϕ. But Theorem 5.25 of [8] proved that any KD4G2.UC frame
is a d-morphic image of R. Since validity of L〈dt〉[d]∀-formulas is preserved by
surjective d-morphisms, ϕ is not valid in R.

2

7 Zero-Dimensionality and Dissection
A metric space is zero-dimensional if its topology has a basis of clopen (closed
and open) sets. Such a space is totally disconnected: distinct points can be
separated by a clopen set. Examples of zero-dimensionality include the space
of rationals Q, the irrationals R − Q, the Cantor space, and the Baire space
ωω. These are all dense-in-themselves and separable, i.e. they have a countable
dense subset.

It was shown in [13] that the L[d]-logic of each separable zero-dimensional
dense-in-itself metric space is KD4. Here we will generalise this, first by elimi-
nating the restriction to separable spaces, and then by showing that the L〈dt〉[d] -
logic of each zero-dimensional dense-in-itself metric space is KD4t. This section
provides some prerequisite results about ‘dissecting’ an open set into special
subsets with properties that allow us to use them to represent the structure of
finite frames.

First some background. If X is a metric space, we write d for its metric,
and Nε(x0) for the open ball {x ∈ X : d(x, x0) < ε}, where x0 ∈ X, ε ∈ R,
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ε > 0. For non-empty S ⊆ X, define d(x, S) = inf{d(x, y) : y ∈ S}. (We leave
d(x, ∅) undefined.) The following Lemma collects some standard facts.

Lemma 7.1 Let X be a dense-in-itself metric space and S ⊆ X.

(1) If S is non-empty and open, then S is infinite.
(2) 〈dX〉S = {x ∈ X : S ∩O is infinite for every open neighbourhood O of x}.
(3) intX S ⊆ 〈dX〉S. If S is open then 〈dX〉S = clX S. 2

Theorem 7.2 Let X be a dense-in-itself metric space. If G is a non-empty
open subset of X, then for r, s < ω, G can be partitioned into non-empty
open subsets G1, . . . ,Gr and other non-empty sets B0, . . . ,Bs such that, letting
D = clX(G) \ (G1 ∪ · · · ∪Gr), we have clX(Gi) \Gi = D for each i = 1, . . . , r,
and 〈dX〉Bj = D for each j = 0, . . . , s. 2

Rasiowa and Sikorski in [10, III, 7.1] proved the version of this theorem
that has ‘clX Bj = D’ in place of ‘〈dX〉Bj = D’. That version follows from
the above because if 〈dX〉Bj = D, then clX Bj = Bj ∪ 〈dX〉Bj = Bj ∪D = D
since Bj ⊆ D. But the two versions are equivalent, for by applying the version
from [10] to r and 2s + 1 we first obtain disjoint sets Bij with clX Bij = D for
j = 0, . . . , s and i = 0, 1, and define Bj = B0

j ∪ B1
j for each j. Then it can be

shown that 〈dX〉Bj = D [6, Section 7.4].
Tarski introduced the first version of the cl-formulation of this theorem in

[14, satz 3.10]. It had s = 0 and required X to be separable. He credited
the proof to Samuel Eilenberg, noting that he had originally proven the result
himself for R and its dense-in-themselves subspaces. The restriction to s = 0
was removed in [9, theorem 3.5], where the property of X that the theorem
asserts was called ‘dissectability’. The separability restriction was removed in
[10].

Theorem 7.2 allows a suitable morphism to be constructed from G onto any
finite rooted reflexive transitive frame. But KD-frames may have irreflexive
points, and we need further dissection results to handle this. First we state a
result that is an instance of Theorem 7.8(1) of [6].

Theorem 7.3 Let X be a dense-in-itself metric space and U be a non-empty
open subset of X. Then there are disjoint non-empty subsets I0, I1 ⊆ U satis-
fying 〈dX〉I0 = 〈dX〉I1 = clX(U) \ U. 2

The next results require X to be zero-dimensional.

Lemma 7.4 Let X be a zero-dimensional dense-in-itself metric space and G
be a non-empty open subset of X. Then G can be partitioned into non-empty
open subsets G0,G1 such that clX(G) \G = clX(Gi) \Gi for each i = 0, 1.

Proof. See page 15 in Appendix. 2

The partitioning of G can now be extended to any finite number of cells.

Theorem 7.5 (dissection) Let G be a non-empty open subset of a zero-
dimensional dense-in-itself metric space X, and let n < ω. Then G can be
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partitioned into non-empty open subsets G0, . . . ,Gn such that clX(G) \ G =
clX(Gi) \Gi for each i ≤ n.

Proof. By induction on n. If n = 0 we let G0 = G. Now we assume the result
for n and prove it for n + 1. By the inductive hypothesis, there is a partition
G0, . . . ,Gn of G into non-empty open sets with clX(G) \G = clX(Gi) \Gi for
each i ≤ n. By the preceding lemma, Gn can be partitioned into non-empty
open sets G0

n,G1
n with clX(Gn) \ Gn = clX(Gin) \ Gin for each i = 0, 1. So

clX(G) \ G = clX(Gin) \ Gin for each i = 0, 1. The required partition is now
G0, . . . ,Gn−1,G0

n,G1
n.

2

8 d-Morphisms on Open Subspaces
Let X be a topological space, G a non-empty open subset of X, F = (W,R)
a finite frame, and ρ : G → W a map. Recall from Section 4 that ρ is a
d-morphism from the space G to F when

〈dG〉ρ−1(w) = ρ−1(R−1(w)) for all w ∈W . (8.1)

But the openness of G ensures (3.4) that 〈dG〉ρ−1(w) = G∩〈dX〉ρ−1(w), so ρ is
a d-morphism from G to F iff G ∩ 〈dX〉ρ−1(w) = ρ−1(R−1(w)) for all w ∈W .

The following are some useful facts about the relations between d-
morphisms on open subspaces. The proofs are left to the reader.

Lemma 8.1 Let F ′ = (W ′, R′) be a generated subframe of F = (W,R), let T
and G be open subsets of a space X with ∅ 6= T ⊆ G, and let ρ : G→ W ′ be a
map.

(1) ρ is a d-morphism from G to F iff it is a d-morphism from G to F ′.
(2) ρ � T is a d-morphism from T to F iff T∩〈dX〉ρ−1(w) = T∩ρ−1(R−1(w))

for every w ∈W .
(3) If T =

⋃
i∈I Gi, where for each i, Gi is non-empty and open and ρ � Gi is

a d-morphism from Gi to F , then ρ � T is a d-morphism from T to F . 2

A map ρ : G → W is said to be full if clX(G) \ G ⊆ 〈dX〉ρ−1(w) for all
w ∈W . The following key result on the existence of full d-morphisms is proven
on page 16 in the Appendix.

Theorem 8.2 Let X be a zero-dimensional dense-in-itself metric space, and
F = (W,R) be a finite, rooted, KD4-frame (i.e. R is transitive and serial).
If G ⊆ X is a non-empty open set, then there is a surjective full d-morphism
ρ : G→W from G to F . 2

Corollary 8.3 Let X be a zero-dimensional dense-in-itself metric space. Then
for every finite KD4-frame F = (W,R), there is a surjective d-morphism from
any non-empty open subset G of X to F .

Proof. Let W = {w0, . . . , wn}. Then W = R∗(w0) ∪ · · · ∪ R∗(wn) and so F
is the union of its rooted subframes F∗(w0), . . . ,F∗(wn), which are also KD4-
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frames. As an open subspace of X, G is infinite (Lemma 7.1(1)) and zero-
dimensional, so can be partitioned into non-empty open subsets G0, . . . ,Gn.
This follows from Theorem 7.5, but does not depend on it and is a standard
fact that holds for any infinite zero-dimensional metric space. 4 For each i ≤ n,
by Theorem 8.2 there is a surjective d-morphism ρi : Gi → R∗(wi) from Gi to
F∗(wi). By Lemma 8.1(1), ρi is a d-morphism from Gi to F . Put ρ =

⋃
i≤n ρi.

Then ρ is a map G → W that is surjective as the R∗(wi)’s cover W and each
ρi is surjective. For each i, ρ � Gi is the d-morphism ρi from Gi to F , so by
Lemma 8.1(3), ρ is a d-morphism from G to F . 2

In [6, Section 4.8] we showed that KD4t has the finite model property over
serial transitive frames. We can now apply that to zero-dimensional metric
spaces.

Theorem 8.4 If X is any zero-dimensional dense-in-itself metric space, then
the L〈dt〉[d] -logic of X is KD4t.

Proof. (A similar argument to Theorem 5.2.) Soundness: By Theorem 5.1,
the L〈dt〉[d] -logic of any dense-in-itself metric space includes KD4t.

Completeness: if ϕ is an L〈dt〉[d] -formula that is not a KD4t-theorem, then
by [6, Section 4.8] there is a finite frame F validating KD4t in which ϕ is not
valid. Let G = X. Then by Corollary 8.3 there is a surjective d-morphism
ρ : X →W from X to F , so by Corollary 4.3, ϕ is not valid in X. 2

The same argument shows that KD4t.U is the L〈dt〉[d]∀-logic of X, because
KD4t.U has the finite model property over KD4-frames [6, Section 4.9]. Of
course the connectedness axiom C is not relevant here, as X is totally discon-
nected.

In conclusion we extend Theorem 8.4 to a strong completeness result whose
proof and ramifications are discussed on page 19 in the Appendix.

Theorem 8.5 If Γ is any countable KD4t-consistent set of formulas, and x0

is any point of any zero-dimensional dense-in-itself metric space X, then Γ is
satisfiable at x0 in X. 2

Appendix
This Appendix provides the proofs of Lemma 7.4 and Theorems 8.2 and 8.5.

Proof of Lemma 7.4
If clXG ⊆ G, then simply let G0 be any non-empty clopen proper subset of G,
and G1 = G \G0.

From now on, assume that clXG\G 6= ∅. By Theorem 7.3, there are disjoint
non-empty I0, I1 ⊆ G such that 〈dX〉Ii = clX(G) \G for each i = 0, 1. Both Ii
are infinite (otherwise, 〈dX〉Ii = ∅ 6= clXG \G).

4 Actually it holds for any infinite totally disconnected space, a weaker property than zero-
dimensionality.
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For each x ∈ I0, let m(x) = min(d(x, I0 \{x}), d(x, I1)). By assumption, G∩
〈dX〉Ii = ∅ for each i. So m(x) > 0. For each such x, using zero-dimensionality,
choose a clopen neighbourhood B(x) of x with

B(x) ⊆ Nm(x)/6(x). (8.2)

Note that B(x)∩ I1 = ∅. Now define G0 =
⋃
x∈I0

B(x) and G1 = G \G0. Plainly,

G0 is open and I0 ⊆ G0, and G0 ∩ I1 = ∅ so I1 ⊆ G1.

Claim. G1 is open (in X).
Proof of claim. Let a ∈ G1 be arbitrary, and let s = d(a, I0). Again, s > 0.
Fix x ∈ I0 with d(a, x) < 2s. Since a /∈ G0 ⊇ B(x), and B(x) is clopen, we
can choose an open neighbourhood N of a disjoint from B(x). We can further
suppose that N ⊆ G and N ⊆ Ns/2(a).

The claim will be proved if we show that N ⊆ G1, which we do by showing
that N ∩B(y) = ∅ for each y ∈ I0 \ {x}. Take such a y, and let d(a, y) = t, say
(we have s ≤ t). Then

m(y) ≤ d(y, I0 \ {y}) ≤ d(y, x) ≤ d(y, a) + d(a, x) < t+ 2s ≤ 3t.

So m(y)/6 ≤ t/2. By (8.2), B(y) ⊆ Nt/2(y). So B(y) ∩ Nt/2(a) = ∅. But
N ⊆ Ns/2(a) ⊆ Nt/2(a), so B(y) ∩N = ∅ as required. This proves the claim.

So we have partitioned G into two non-empty open sets Gi with Ii ⊆ Gi
(i = 0, 1). It remains to check that clX(G) \G = clX(Gi) \Gi for each i:

clX(G) \G = 〈dX〉Ii by choice of Ii
= 〈dX〉Ii \G since 〈dX〉Ii is disjoint from G
⊆ clX(Gi) \G since Ii ⊆ Gi so 〈dX〉Ii ⊆ 〈dX〉Gi ⊆ clXGi
⊆ clX(Gi) \Gi since Gi ⊆ G
= clX(Gi) \ (Gi ∪G1−i) since G1−i is open and disjoint from Gi,

so also disjoint from clXGi
= clX(Gi) \G since G0 ∪G1 = G
⊆ clX(G) \G since Gi ⊆ G.

This proves the Lemma. 2

Proof of Theorem 8.2
We construct a full d-morphism from G onto the rooted frame F = (W,R). To
describe the structure of F , define R◦ = R ∩ R−1 and R• = R \ R−1. Then
R◦(w) = {v ∈ W : wRvRw} and R•(w) = {v ∈ W : wRv and not vRw}. The
set {w}∪R◦(w) is the cluster of w. These clusters partition W . If w0 is a root
of F , then W = {w0} ∪R◦(w0)∪R•(w0), and there are two kinds of structure
that F could have:

1. w0 is reflexive. Then w0 ∈ R◦(w0) and W is the disjoint union of R◦(w0)
and R•(w0), with R◦(w0)×W ⊆ R. In this case it is possible that R•(w0) =
∅, so then F consists of the single cluster R◦(w0). Either way, the relation
R is universal on R◦(w0), whch has at least one element.
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2. w0 is irreflexive. Then R◦(w0) = ∅ and W is the disjoint union of {w0}
and R•(w0), with {w0} ×R•(w0) ⊆ R. If R is serial, then R•(w0) 6= ∅.
The proof proceeds by induction on the size of W . We make the induction

hypothesis that the result holds for all frames smaller than F , and consider the
two cases for w0 just described.

Case 1: w0 is reflexive. ThenW = R◦(w0)∪R•(w0) as above. By Theorem
7.2, G can be partitioned into non-empty sets Bv (v ∈ R◦(w0)) and non-
empty open sets Gu (u ∈ R•(w0)) such that, for each u ∈ R•(w0) and
v ∈ R◦(w0), we have

clX(Gu) \Gu = 〈dX〉Bv = clX(G) \
⋃

w∈R•(w0)

Gw = D, say. (8.3)

Each F∗(u) for u ∈ R•(w0) is a finite rooted KD4-frame smaller than F , since
it does not contain w0, so by the inductive hypothesis, there is a surjective
full d-morphism ρu from Gu to F∗(u). Define ρ : G→W by

ρ(x) =

{
ρu(x), if x ∈ Gu for some (unique) u ∈ R•(w0),

v, if x ∈ Bv for some (unique) v ∈ R◦(w0).

That is, ρ =
⋃
u∈R•(w0) ρu ∪

⋃
v∈R◦(w0) Bv × {v}. We will show that ρ is a

surjective full d-morphism from G to F . The following claim will help.

Claim. D ⊆ 〈dX〉ρ−1(w) for every w ∈W , where D is defined in (8.3).
Proof of claim. There are two cases. The first is when w ∈ R•(w0).
Now (8.3) givesD = clX Gw\Gw. As ρw : Gw → F∗(w) is full, clX Gw\Gw ⊆
〈dX〉ρ−1

w (w) ⊆ 〈dX〉ρ−1(w) (since ρw ⊆ ρ).
The second case is when w /∈ R•(w0). Since w ∈ W = R◦(w0) ∪ R•(w0),

we have w ∈ R◦(w0). Hence ρ−1(w) = Bw. By (8.3), D = 〈dX〉Bw =
〈dX〉ρ−1(w). This proves the claim.

We now check that ρ is a d-morphism from G to F . So let w ∈ W . We
require

G ∩ 〈dX〉ρ−1(w) = ρ−1(R−1(w)). (8.4)

Since G is partitioned into the Gu’s and Bv’s, it is enough to prove, for all
u ∈ R•(w0) and v ∈ R◦(w0), that the following equations hold.

Gu ∩ 〈dX〉ρ−1(w) = Gu ∩ ρ−1(R−1(w)), (8.5)
Bv ∩ 〈dX〉ρ−1(w) = Bv ∩ ρ−1(R−1(w)). (8.6)

(i) Proof of (8.5). Since Gu is open and ρ � Gu = ρu, a d-morphism from
Gu to the generated subframe F∗(u) of F , Lemma 8.1(1) implies that
ρ � Gu is a d-morphism from Gu to F . Then Lemma 8.1(2) yields (8.5).

(ii) Proof of (8.6). Bv ⊆ D by definition of D (8.3), so Bv ⊆ 〈dX〉ρ−1(w) by
the claim. Since v ∈ R◦(w0), we have vRw0Rw (as w0 is a reflexive root),
hence vRw and Bv = ρ−1(v) ⊆ ρ−1(R−1(w)). Thus Bv ∩ 〈dX〉ρ−1(w) =
Bv = Bv ∩ ρ−1(R−1(w)).
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So ρ is indeed a d-morphism from G to F . Now clX G \ G ⊆ D by (8.3),
so by the claim, clX G \ G ⊆ 〈dX〉ρ−1(w) for every w ∈ W , showing that ρ
is full.
We also need that ρ is surjective. But if u ∈ R•(w0) then u = ρ(x) for

some x ∈ Gu as ρu : Gu → R∗(u) is surjective, and if v ∈ R◦(w0) then
v = ρ(x) for all x ∈ Bv by definition.

Case 2: w0 is irreflexive. Then W = {w0} ∪R•(w0). By Theorem 7.3 with
U = G, there are disjoint non-empty I, I′ ⊆ G with 〈dX〉I = 〈dX〉I′ =
clX(G) \G.
Let G′ = G \ I. Plainly, G′ is non-empty (it contains I′) and open (since
〈dX〉I is disjoint from G, we have G′ = G \ I = G \ (I ∪ 〈dX〉I) = G \ clX I).

Claim. clX(G′) \G′ = (clX(G) \G) ∪ I.
Proof of claim. Plainly clX(G′)\G′ = clX(G′)\(G\I) ⊆ (clX(G′)\G)∪I ⊆
(clX(G) \G) ∪ I. Conversely, clX(G) \G = 〈dX〉I′ ⊆ 〈dX〉G′ ⊆ clX G′, and

I ⊆ G ∩ clX G clear
= G ∩ 〈dX〉G since clX G = 〈dX〉G by Lemma 7.1(3)
= G ∩ (〈dX〉I ∪ 〈dX〉G′) since G = I ∪G′ and 〈dX〉 is additive
= G ∩ 〈dX〉G′ since G ∩ 〈dX〉I = ∅
⊆ 〈dX〉G′ ⊆ clX G′ clear.

So (clX(G) \ G) ∪ I ⊆ clX G′. The converse inclusion (clX(G) \ G) ∪ I ⊆
clX(G′) \ G′ now follows, since both clX(G) \ G and I are disjoint from G′.
This proves the claim.

By Theorem 7.5, G′ can be partitioned into non-empty open sets Gu (u ∈
R•(w0)) with clX(G′) \ G′ = clX(Gu) \ Gu for each such u. Here we need
R•(w0) 6= ∅, which holds by seriality of R and irreflexivity of w0.
For each u ∈ R•(w0), the frame F∗(u) is a finite rooted KD4-frame smaller

than F . Inductively, there is a surjective full d-morphism ρu from Gu to
F∗(u). Define ρ : G→W by

ρ(x) =

{
ρu(x), if x ∈ Gu for some (unique) u ∈ R•(w0),

w0, if x ∈ I.

Then ρ is surjective, similarly to Case 1. It helps below to note that

(clX(G) \G) ∪ I ⊆ 〈dX〉ρ−1(w) for all w ∈ R•(w0). (8.7)

For, by the claim, for each w ∈ R•(w0) we have (clX(G) \G)∪ I = clX(G′) \
G′ = clX(Gw) \Gw. But clX(Gw) \Gw ⊆ 〈dX〉ρ−1(w), by fullness of ρw and
the fact that w is in F∗(w).
We now check that ρ is a d-morphism from G to F . So let w ∈ W . We

require (8.4) to hold. Since G is partitioned as I ∪G′, it is enough to prove
the two equations

I ∩ 〈dX〉ρ−1(w) = I ∩ ρ−1(R−1(w)), (8.8)
G′ ∩ 〈dX〉ρ−1(w) = G′ ∩ ρ−1(R−1(w)). (8.9)
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(i) Proof of (8.8).
(a) If w ∈ R•(w0) then I∩〈dX〉ρ−1(w) = I by (8.7), and I∩ρ−1(R−1(w)) = I

since I ⊆ ρ−1(w0) and w0 ∈ R−1(w).
(b) Suppose instead that w /∈ R•(w0). As R is transitive, W = R•(w0) ∪
{w0}, so w = w0 and ρ−1(w) = I. Thus I∩〈dX〉ρ−1(w) = I∩〈dX〉I = ∅.
Also, R−1(w) = ∅, so I ∩ ρ−1(R−1(w)) = ∅ as well.

(ii) Proof of (8.9). For each w ∈ R•(w0), Gw is non-empty and open, and
ρ � Gw = ρw is a d-morphism from Gw to F . Since G′ =

⋃
w∈R•(w0) Gw,

Lemma 8.1(3) tells us that ρ � G′ is a d-morphism from G′ to F . Now
(8.9) follows by Lemma 8.1(2).

So ρ is a d-morphism from G onto F . It remains to show that it is full,
i.e. that clX(G) \ G ⊆ 〈dX〉ρ−1(w) for all w ∈ W . For w ∈ R•(w0), the
result follows from (8.7). But for w = w0, we have clX(G) \ G = 〈dX〉I =
〈dX〉ρ−1(w0).

This completes the induction and proves the Theorem. 2

Proof of Theorem 8.5
Space restrictions prevent us from giving full details of the proof, but we can
outline the main construction involved. First, a refinement of the proof of
Theorem 8.4 shows that any non-theorem of KD4t is falsifiable at any x0 in
X. Hence any finite subset of Γ, being KD4t-consistent, is satisfiable at x0 in
some model.

We can assume without loss of generality that Γ is maximally KD4t-
consistent. As Γ is countable, we can express it as

⋃
n<ω Γn, where each Γn

is finite and Γ0 ⊆ Γ1 ⊆ · · · . Then for each n < ω, Γn is satisfiable at x0, so
there is an assignment gn : Var → ℘X such that (X, gn), x0 |=

∧
Γn. Because

X is zero-dimensional and the Γn are finite, we can choose, by induction on n,
a sequence (Cn : n < ω) of clopen sets with X = C0 ⊇ C1 ⊇ · · · and with the
following properties holding for each n > 0, where we write Dn = Cn \ Cn+1:

C1 x0 ∈ Cn ⊆ N1/n(x0),
C2 for each formula 〈d〉ϕ ∈ Γn, there is x ∈ Dn with (X, gn), x |= ϕ,
C3 for each ¬〈d〉ϕ ∈ Γn, we have (X, gn), x 6|= ϕ for each x ∈ Cn \ {x0}.
Then by C1,

⋂
n<ω Cn = {x0}. The Dn are clopen and pairwise disjoint and

partition X \ {x0}, and Cm \ {x0} =
⋃
m≤n<ωDn for each m < ω.

Now an assignment g : Var→ ℘X can be defined by declaring x0 ∈ g(p) iff
p ∈ Γ, and if x 6= x0, then x ∈ g(p) iff x ∈ gn(p) for the unique n such that
x ∈ Dn. Since each Dn is open, an induction on ϕ (cf. Theorem 3.4) shows
that for each formula ϕ and each x ∈ Dn we have

(X, g), x |= ϕ iff (X, gn), x |= ϕ.

Using this, a further inductive argument involving C2 and C3 shows that for
each formula ϕ we have ϕ ∈ Γ iff (X, g), x0 |= ϕ. Hence Γ is satisfiable in X at
x0 as required.
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By contrast, strong completeness fails for the Kripke frame semantics. If

Σ = {p0, q, [d]
∗
(p2n → 〈d〉(p2n+1 ∧ ¬q)), [d]

∗
(p2n+1 → 〈d〉(p2n+2 ∧ q)) : n < ω},

then the set Σ ∪ {¬〈dt〉{q,¬q}}, discussed in [6, Section 4.4], is KD4t-
consistent because each of its finite subsets is satisfiable in a KD4-frame. But
Σ ∪ {¬〈dt〉{q,¬q}} is not itself satisfiable at any point of a transitive frame.
For if Σ is satisfied at some such point w, then there is an endless R-path in
the frame starting from w along which q and ¬q are each satisfied infinitely
often in the model in question, ensuring that ¬〈dt〉{q,¬q} is false at w.

Strong completeness for topological semantics does not hold in general if the
language is enriched by the universal modality. In [6, Section 10.5] it is shown
that there exists a countable set of L[d]∀-formulas that is finitely satisfiable, but
not satisfiable, in any dense-in-itself metric space that is compact and locally
connected.
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