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Abstract

We consider the temporal language with the Priorean operators G and H express-
ing that a formula is true at all future times and all past times, plus an operator
2 expressing that a formula is true throughout some open interval containing the
evaluation time (i.e., it is true ‘around now’). We show that the logic of time based
on the real numbers in this language is finitely axiomatisable, answering an implicit
question of Shehtman (1993). We also show that the logic has PSPACE-complete
complexity, but is not Kripke complete and has no strongly complete axiomatisation.

Keywords Weak completeness, finite axiomatisation, filtration, lexicographic sum,
Kripke-incompleteness.

1 Introduction

Modal formulas can be given semantics in models based on topological spaces. In a
topological model, the formula 2ϕ is true at a point if ϕ is true throughout some
open neighbourhood of that point. So the set of points satisfying 2ϕ is the interior
of the set of points satisfying ϕ. Topological semantics predates Kripke semantics
and was first considered by McKinsey and Tarski [20], who proved that the logic of
any separable dense-in-itself metric space, such as the rationals (Q) and reals (R)
with the usual metric, is S4. Interest in this theorem is undergoing a renaissance and
several new proofs have recently appeared [21, 22, 2, 1, 17, 10], either for R alone
or for the general case. The assumption of separability was removed in [24]. The
theorem was extended by Kremer [13, 12] to a strong completeness result for any
dense-in-itself metric space (for countable languages).

Additional connectives have also been considered. Shehtman added the universal
modality ∀: a formula ∀ϕ is true at an arbitrary point of a topological model if ϕ
is true at every point. He showed in [29] that the logic of any connected separable
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1



dense-in-itself metric space, such as R, is S4UC, with S4 axioms for 2, the usual
axioms U for ∀, and a connectedness axiom C: ∀(2p ∨2¬p)→ ∀p ∨ ∀¬p.

Kudinov added the difference operator [6=]: a formula [6=]ϕ is true at a point if
ϕ is true at every other point. The difference operator is more expressive than ∀.
In the language with 2, [6=], Kudinov axiomatised the logic of all topological spaces,
all dense-in-themselves topological spaces, and any zero-dimensional dense-in-itself
metric space [14]. He also axiomatised the logic of Rn for n ≥ 2 (unpublished), but
proved [15] that the logic of R is not finitely axiomatisable, and not even axiomatis-
able by formulas using finitely many variables in total.

In [28], Shehtman shifted attention to temporal logic by adding the Priorean
temporal connectives G and H to the original 2. This language is given semantics
in ordered topological models. An ordered topological model is a topological model
whose topology is the interval topology arising from an irreflexive linear order <
on the set of points. Examples include models based on Q and R with their usual
orderings and topologies. Such models can be viewed temporally. We can regard the
points as times and the order < as the earlier-later relation, so that x < y denotes
that x is in the past of y and y in the future of x. A formula Gϕ is true at a
point or time x in such a model iff ϕ is true at all future times — all y satisfying
x < y. A formula Hϕ is true at x if ϕ is true at all past times y < x. Together,
the connectives G,H are even more expressive than [ 6=]. In the temporal context,
2ϕ can still be read topologically, but it also has a reasonable temporal reading as
‘ϕ is true around now’, and this view was promulgated by Scott. In [28], Shehtman
gave a finite axiomatisation of the logic of Q in this language, observed that the
logic of R in the same language is decidable and hence recursively axiomatisable, and
implicitly posed [28, p.256] the problem of axiomatising it explicitly. Although the
area of topological semantics of modal logic has recently attracted a good deal of
attention, this problem has remained open.

Although it has no topological 2-modality, the very expressive temporal language
with U and S (Until and Since) is worth mentioning here. A formula U(ϕ,ψ) is true
at a time point x if there is a point y > x at which ϕ is true and such that ψ is true
at every z with x < z < y — informally, ψ is true until ϕ becomes true. The meaning
of S is obtained by swapping < with >. The connectives U and S were introduced
by Kamp [11] and they can easily express all the connectives we have considered so
far. Indeed, over R, they can express every connective whose meaning is definable
in first-order logic [11]. Reynolds gave a finite axiomatisation of the logic of R with
U, S in [25], and showed the logic to be PSPACE-complete in [26].

In the current paper we consider Shehtman’s temporal language withG, H, and 2,
interpreted over R. We answer Shehtman’s implicit question [28] by showing that
the logic of R in this language is finitely axiomatisable. Given Kudinov’s result, this
is perhaps surprising, but given Reynolds’s, it is less so. It suggests that G, H, and
2 are in some sense closer to Until and Since over R than to [ 6=] and 2. We obtain
only ‘weak completeness’, and we show that no strong completeness result can be
proven. We also show that the logic is not Kripke compete. As we said, Shehtman
observed in [28] that it is decidable, and we show here that it is PSPACE-complete.

Our axiom system is similar to the one for Q given by Shehtman in [28] — the
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only difference is that we include an additional connectedness axiom F (p ∧ Fq) ∧
F (¬p ∧ Fq)→ F (3p ∧3¬p ∧ Fq), where Fϕ abbreviates ¬G¬ϕ. Our completeness
proof starts in the same way as well, by a certain filtration of the canonical model.
We then apply selective filtration and a closure technique designed to give a well
behaved finite Kripke model, which we employ as a template to construct a model
over R, using lexicographic sums.

Layout of paper. Section 2 contains the basic definitions, and section 3 the
system of axioms and inference rules for the logic of R in the language with G, H,
and 2. In section 4 we prove that the logic has no strong axiomatisation and is not
Kripke complete, but is (decidable and) PSPACE-complete (decidability was known
to Shehtman). Section 5 outlines the coming completeness proof. Section 6 builds
the well behaved finite Kripke model referred to above, and section 7 constructs from
it a model over R. We conclude in section 8 with some open problems.

Throughout, we use N,Z,Q,R to denote the ordered sets of natural numbers,
integers, rationals, and real numbers (respectively).

2 Generalities

Here, we lay down the syntax and semantics of our logic, and define some basic terms.

2.1 Syntax

Let PV be a fixed countably infinite set of propositional atoms. We write p, q, r, . . .
for atoms. We define the language L to consist of the following formulas:

1. > is a formula.

2. Every p ∈ PV is a formula.

3. If ϕ,ψ are formulas then so are ¬ϕ, ϕ ∧ ψ, Gϕ, Hϕ, and 2ϕ.

The mirror image of a formula ϕ is the formula obtained by replacing every G in ϕ
by H, and every H in ϕ by G. As abbreviations we let ⊥ = ¬>, ϕ∨ψ = ¬(¬ϕ∧¬ψ),
ϕ→ ψ = ¬(ϕ ∧ ¬ψ), ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ), Fϕ = ¬G¬ϕ, Pϕ = ¬H¬ϕ, and
3ϕ = ¬2¬ϕ.

2.2 Semantics over R
We define semantics for L-formulas over R as follows. Let h : PV → ℘(R) be an
assignment to atoms (where ℘ denotes power-set). The pair (R, h) is then called a
model over R. For each x ∈ R and formula ϕ we define (R, h), x |= ϕ by induction:

1. (R, h), x |= >,

2. (R, h), x |= p iff x ∈ h(p), for p ∈ PV ,

3. (R, h), x |= ¬ϕ iff (R, h), x 6|= ϕ,

4. (R, h), x |= ϕ ∧ ψ iff (R, h), x |= ϕ and (R, h), x |= ψ,
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5. (R, h), x |= Gϕ iff (R, h), y |= ϕ for all y ∈ R with y > x,

6. (R, h), x |= Hϕ iff (R, h), y |= ϕ for all y ∈ R with y < x,

7. (R, h), x |= 2ϕ iff there exist y, z ∈ R with y < x < z and (R, h), t |= ϕ for all
t ∈ R with y < t < z.

A model (R, h) over R is said to satisfy a formula ϕ if there is some x ∈ R with
(R, h), x |= ϕ. We say that ϕ is satisfiable over R if some model over R satisfies it,
and ϕ is valid over R if ¬ϕ is not satisfiable over R. A set Σ of L-formulas is said
to be satisfiable over R if there exist an assignment h : PV → ℘(R) and x ∈ R with
(R, h), x |= ϕ for every ϕ ∈ Σ.

The L-logic of R is the set of all L-formulas that are valid over R.

2.3 Kripke semantics

Formulas have an alternative Kripke semantics. A binary relation on a set W is a
subset R of W ×W . For w, u ∈ W , we may write any of Rwu, w R u, R(w, u) to
indicate that (w, u) ∈ R.

A Kripke frame (for L) is a triple (W,<, R), where W is a non-empty set and
<, R are binary relations on W , associated with G,2, respectively. Occasionally we
consider frames of the form (W,R) as well.

The choice of the symbol < for the ‘temporal’ relation may be controversial, so we
will spend a little space justifying it. After all, in [28], Shehtman used the symbol S.
We find < convenient because it gives rise to readily understood symbols =,v,w for
various derived relations, and also because the temporal relations in the main proof
will always be transitive, a property that is suggested by the symbol <. However,
we stress at the outset that in spite of what the notation may suggest, < will not
necessarily be irreflexive. That is, we may have w < w for some elements w ∈ W .
The reader needs to guard against this possibly misleading aspect of the symbols
<,= throughout. The symbol < suggests irreflexivity even more strongly than <, so
we avoid it.

Given an assignment h : PV → ℘(W ), the tuple M = (W,<, R, h) is called a
Kripke model (for L). For w ∈W , we define M, w |= ϕ by induction on formulas ϕ:

1. M, w |= >,

2. M, w |= p iff w ∈ h(p), for p ∈ PV ,

3. M, w |= ¬ϕ iff M, w 6|= ϕ,

4. M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,

5. M, w |= Gϕ iff M, u |= ϕ for all u ∈W with w < u,

6. M, w |= Hϕ iff M, u |= ϕ for all u ∈W with u < w,

7. M, w |= 2ϕ iff M, u |= ϕ for all u ∈W with Rwu.

Let F = (W,<, R) be a Kripke frame, and M = (W,<, R, h) a Kripke model. We
say that a formula ϕ is satisfiable (or satisfied) in M, and that M satisfies ϕ, if
there is w ∈W withM, w |= ϕ, and satisfiable in F if there are h : PV → ℘(W ) and
w ∈W with (W,<, R, h), w |= ϕ. A formula ϕ is said to be valid in F (respectively,
M) if ¬ϕ is not satisfiable in F (respectively, M).
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2.4 General definitions

For a map f : X → Y , and X ′ ⊆ X, we write f(X ′) for {f(x) : x ∈ X ′}. We write
dom f for X and rng f for f(X).

DEFINITION 2.1. Let W be a set, and R a binary relation on it.

1. For w, u ∈W , we write any of Rwu, wRu, R(w, u) to indicate that (w, u) ∈ R.

2. We let R• denote the binary relation on W defined by R•wu iff Rwu ∧ ¬Ruw.

3. For w ∈W we write R(w) = {u ∈W : Rwu}.
4. A subset X ⊆W is said to be R-generated if R(x) ⊆ X for every x ∈ X.

5. For X ⊆W , we write R � X for the binary relation R ∩ (X ×X) on X.

6. We say that R is prelinear if for all x, y ∈W we have Rxy∨x = y∨Ryx. (Note
that more than one disjunct may hold. The term connex is also used in the
literature, but here R will usually be transitive, in which case ‘prelinear’ seems
more evocative.)

DEFINITION 2.2. Let M = (W,<, R, h) be a Kripke model.

1. Let u,w ∈ W . We write w v u to abbreviate w < u ∨ w = u, and w =< u
to abbreviate w < u ∧ u < w. We take u = w as synonymous for w < u, and
similarly for w.

2. An element w ∈ W is said to be <-reflexive if w < w, and <-irreflexive,
otherwise.

3. A <-cluster of/inM is a ⊆-maximal non-empty subset C ⊆W such that w < u
for all w, u ∈ C. This usage of ‘cluster’ is slightly different from that in (e.g.)
[28]. Plainly, every member of a cluster is <-reflexive.

4. Let N = (W ′,<′, R′, h′) be a Kripke model. We say that N is a submodel
of M, and write N ⊆ M, if W ′ ⊆ W , <′ = < � W ′, R′ = R � W ′, and
h′(p) = W ′ ∩ h(p) for every atom p ∈ PV .

5. Let N ⊆ M be as above. We say that N is an R-generated submodel (of M)
if W ′ is an R-generated subset of W , a <-generated submodel if W ′ is a <-
generated subset of W , and a =-generated submodel if W ′ is a =-generated
subset of W .

6. We say that N is a generated submodel of M if it is an R-generated, a <-
generated, and a =-generated submodel of M.

LEMMA 2.3. Let M,N be Kripke models as above, and suppose that N is a gen-
erated submodel of M.

1. If < is transitive, then any <-reflexive point w ∈W lies in a unique <-cluster,
namely, {u ∈W : w =< u}.

2. N , w |= ϕ iff M, w |= ϕ for every L-formula ϕ and every w ∈W ′.
3. Every L-formula that is valid in the frame (W,<, R) of M is valid in the frame

(W ′,<′, R′) of N .

Proof. We leave the proof of part 1 as an exercise. Part 2 is well known and easily
proved by induction on ϕ. Part 3 follows from part 2. 2
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2.5 Linear orders

A linear order is a structure (I,<), where I is a non-empty set and < is an irreflexive
transitive binary relation on I that is prelinear according to definition 2.1(6): (I,<) |=
∀xy(x < y∨x = y∨x > y). Since < is irreflexive and transitive, exactly one disjunct
holds, and we say in this case that < is linear. See, e.g., [27] for information about
linear orders. We often write (I,<) simply as I. As usual, we let x ≤ y abbreviate
x < y ∨ x = y. A subset U ⊆ I is unbounded (in I) if for all x ∈ I there are
y, z ∈ U with y < x < z. An interval of I is a non-empty convex subset of I. We
will often regard an interval as a linear order in its own right, under the ordering
induced from I. We use standard notation for intervals specifiable by endpoints: if
x, y ∈ I and x ≤ y then (x, y) = {z ∈ I : x < z < y}, [x, y) = {z ∈ I : x ≤ z < y},
[x, y] = {z ∈ I : x ≤ z ≤ y}, (−∞, x) = {z ∈ I : z < x}, [x,∞) = {z ∈ I : z ≥ x},
etc. An open interval is one containing no least or greatest element.

3 Axioms

We now present a Hilbert system that, as we will show, axiomatises the L-logic of R.
It is based on a system of Shehtman [28, §2] that was shown to axiomatise the L-logic
of Q. The only difference is that we have added a ‘connectedness’ axiom, axiom 5.

3.1 The system

The axioms are as follows. We assume familiarity with Sahlqvist formulas in temporal
logic: see, e.g., [3]. The axioms 2–4 are Sahlqvist formulas and their first-order
correspondents are reproduced below. (The normality axioms can be turned into
Sahlqvist formulas by replacing q by ¬q ; their correspondents are equivalent to >,
and are omitted.) Each correspondent is true in a Kripke frame iff the axiom is valid
in the frame. Moreover, the correspondents are true in the frame of the canonical
model of the logic axiomatised by the system.

1. all propositional tautologies

2. axioms for dense linear time without endpoints:

G(p→ q)→ (Gp→ Gq) normality

Gp→ GGp transitivity: ∀xyz(x < y ∧ y < z → x < z)

p→ GPp ∀xy(x < y → y = x)

GGp→ Gp density: ∀xy(x < y → ∃z(x < z ∧ z < y))

FPp→ p ∨ Fp ∨ Pp ∀xyz(x < y ∧ y = z → x = z ∨ x < z ∨ x = z)

3. S4 axioms for 2:

2(p→ q)→ (2p→ 2q) normality

2p→ p reflexivity: ∀xR(x, x)

2p→ 22p transitivity: ∀xyz(R(x, y) ∧R(y, z)→ R(x, z))

4. Shehtman’s ‘special axioms’:
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(a) Hp ∧ p ∧Gp→ 2p ∀xy(Rxy → x = y ∨ x = y ∨ x < y)

(b) Gp→ G2p ∀xyz(x < y ∧Ryz → x < z)

(c) Gp ∧2p→ 2Gp ∀xyz(Rxy ∧ y < z → x < z ∨Rxz)
(d) 2p→ Fp ∀x∃y(x < y ∧Rxy)

5. F (p ∧ Fq) ∧ F (¬p ∧ Fq)→ F (3p ∧3¬p ∧ Fq) (connectedness)

6. all mirror images of the above axioms (swap G with H, and F with P ; also
swap < with = in the correspondents).

The rules of inference are the standard ones:

1. modus ponens:
ϕ, ϕ→ ψ

ψ

2. generalisation:
ϕ

Gϕ
,

ϕ

Hϕ
,

ϕ

2ϕ

3. substitution:
ϕ(p)

ϕ(ψ/p)

Some mirror images, such as Hp → HHp, are redundant and can be omitted. We
have not investigated the exact extent to which this can be done.

As usual, the logic axiomatised by this system is the smallest set L of L-formulas
that contains all the axioms listed above and is closed under the rules of inference.
We say that an L-formula ϕ is provable in the system if ϕ ∈ L, and consistent if
¬ϕ /∈ L. A set Γ of L-formulas is consistent if γ0 ∧ . . . ∧ γn is consistent for every
n ∈ N and γ0, . . . , γn ∈ Γ, and maximal consistent if it is consistent but has no proper
consistent extension.

We aim to show that L is the L-logic of R. The inclusion ‘⊆’ (soundness) is
straightforward:

THEOREM 3.1. The system is sound over R.

Proof (sketch). All axioms other than axiom 5 are shown to be valid over any dense
flow of time without endpoints in [28, lemma 2.2(2)]. Axiom 5 is valid over R because
every interval of R is connected. Indeed, assume that for some model (R, h) and t ∈ R
we have

(R, h), t |= F (p ∧ Fq) ∧ F (¬p ∧ Fq).

Let v1, v2 > t satisfy (R, h), v1 |= p ∧ Fq and (R, h), v2 |= ¬p ∧ Fq. We can find
u > max(v1, v2) with u ∈ h(q). Assume wlog. that v1 < v2. Let

s = sup{x ∈ R : ∀y(v1 ≤ y < x→ y ∈ h(p))}.

Then t < v1 ≤ s ≤ v2 < u. Hence, (R, h), s |= Fq. By definition of s, we have
(R, h), s |= 3p ∧3¬p. We deduce that (R, h), t |= F (3p ∧3¬p ∧ Fq) as required.

The inference rules obviously preserve validity. 2

7



3.2 Simple theorems of the system

The first three lemmas do not use the connectedness axiom 5 or its mirror image.

LEMMA 3.2. F> and P> are provable in the system.

Proof. As > is a tautology, it is provable, and we get 2> by 2-generalisation. By
axiom 4d, we prove F>. We prove P> similarly. 2

LEMMA 3.3. G¬p ∧HFp→ 3p is provable in the system.

Proof. We can prove G¬p ∧ 2¬p → 2G¬p by axiom 4c. By the mirror image
of axiom 4d we have 2G¬p → PG¬p. Using propositional tautologies we deduce
G¬p ∧2¬p→ ¬HFp, and then the result. 2

The connectedness axiom (5) has an important consequence: the well known Prior
axiom

Fq ∧ FG¬q → F (G¬q ∧HFq). (3.1)

We will prove this using the following lemma.

LEMMA 3.4. 3Gq → Gq and 3Hq → Hq are provable in the system.

Proof. The following are provable:

1. 3Gq → GP3Gq by axiom p→ GPp
2. P3Gq → PGq Gq-instance of contrapositive of axiom 4b (Hp→ H2p)
3. GP3Gq → GPGq from previous by G-generalisation and normality
4. PGq → q contrapositive of temporal axiom p→ HFp
5. GPGq → Gq from previous by G-generalisation and normality

The result now follows from lines 1, 3, and 5 by propositional tautologies. The proof
of 3Hq → Hq is a mirror image. 2

Now we will use the connectedness axiom for the first time.

COROLLARY 3.5. The Prior axiom Fq∧FG¬q → F (G¬q∧HFq) and its mirror
image are provable in the system.

Proof. We give a more informal proof along the lines of the preceding lemma. As-
sume Fq∧FG¬q. Using the density axiom, this yields FFq∧FG¬q. Taking p = G¬q
and q = > in the connectedness axiom (axiom 5) gives F (G¬q ∧ F>) ∧ F (¬G¬q ∧
F>) → F (3G¬q ∧ 3¬G¬q ∧ F>). By lemma 3.2, F> is equivalent to >, so this
reduces to

FG¬q ∧ FFq → F (3G¬q ∧3Fq).

So we obtain F (3G¬q∧3Fq). Now by standard temporal logic, we can prove Fq →
HF (Fq) and HF (Fq)→ HFq. This gives us F (3G¬q∧3HFq). By lemma 3.4, we
obtain F (G¬q ∧HFq) as required. The mirror image can be derived similarly. 2

REMARK 3.6. In connection with the consequent of the Prior axiom, we point
out that ifM is a Kripke model, w ∈M, ϕ an L-formula, andM, w |= G¬ϕ∧HFϕ,
then w is <-irreflexive. For if w < w then as M, w |= HFϕ we have M, w |= Fϕ,
contradicting M, w |= G¬ϕ.
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4 Some facts about the L-logic of R
Here we prove some fairly straightforward results about the L-logic of R.

4.1 Complexity

We will see below that the L-logic of R does not have the finite model property. Since
this property is often used to show decidability, it may be surprising that the logic
is decidable [28, p. 256]. We begin by establishing its complexity.

THEOREM 4.1. The problem of deciding whether an L-formula is valid over R is
PSPACE-complete.

Proof (sketch). We assume knowledge of temporal logic with Until and Since (U, S)
as in [26], where it is proved that the problem of determining satisfiability over R of
a formula written with U, S is PSPACE-complete. Given an L-formula ϕ, introduce
a new propositional atom qψ for each subformula ψ of ϕ, and define the formula ψ̂
as follows, where ∀ψ abbreviates ψ ∧ ¬U(¬ψ,>) ∧ ¬S(¬ψ,>):

• >̂ = ∀q>
• p̂ = ∀(p↔ qp) for p ∈ PV

• ¬̂ψ = ∀(q¬ψ ↔ ¬qψ)

• ψ̂ ∧ χ = ∀(qψ∧χ ↔ qψ ∧ qχ)

• F̂ψ = ∀(qFψ ↔ U(qψ,>))

• P̂ψ = ∀(qPψ ↔ S(qψ,>))

• 2̂ψ = ∀(q2ψ ↔ qψ ∧ U(>, qψ) ∧ S(>, qψ)).

Let ϕ∗ be the conjunction of all ψ̂ for subformulas ψ of ϕ, together with qϕ. It can be
checked that ϕ is satisfiable over R iff ϕ∗ is, and that ϕ∗ can be constructed from ϕ
in polynomial time. Given ϕ, we may construct ϕ∗ and then decide its satisfiability
over R in PSPACE [26]. The combined procedure can be done in polynomial space,
so the satisfiability, and hence the validity, of ϕ can be decided in PSPACE. The
logic of R with 2 alone is S4 [20], which is already PSPACE-hard [16]. 2

4.2 Strong completeness

A Hilbert system (of axioms and rules) is said to be sound if all satisfiable formulas
are consistent, and strongly complete if any consistent set of formulas using in all
only countably many atoms is satisfiable.

THEOREM 4.2. There is no sound and strongly complete Hilbert system for the
L-logic of R.
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Proof. Let Σ be the following set of formulas written with atoms p, q, r:

2p
F (r ∧G¬r)
G(r ∨ Fr → 2p ∨2q)
F (¬p ∧ F (¬q ∧ F (¬p ∧ F ( · · · ∧ Fr )) · · · )︸ ︷︷ ︸

n brackets

for each integer n ≥ 1

It is easy to see that any finite subset of Σ is satisfiable over R. However, Σ itself
is not satisfiable over R. For suppose that Σ is satisfied at 0 and r ∧G¬r is true at
1, say. By the first and third formulas, each x ∈ [0, 1] belongs to some open interval
Ix ⊆ R with Ix ⊆ h(p) or Ix ⊆ h(q). By the Heine–Borel theorem, [0, 1] is compact,
so there are n ∈ N and x0 < · · · < xn−1 in [0, 1] such that [0, 1] ⊆

⋃
i<n Ixi . By

the final set of formulas, there are 0 < y0 < y1 < · · · < yn < 1 with yj /∈ h(p) if
j is even and yj /∈ h(q) if j is odd (each j ≤ n). Now by the pigeonhole principle
and convexity of the Ix, there are i, j < n with yj , yj+1 ∈ Ixi . But Ixi ⊆ h(p) or
Ixi ⊆ h(q), a contradiction.

If the L-logic of R had a sound and strongly complete Hilbert system, then since
Σ is finitely satisfiable, it would be consistent and so satisfiable, contradicting the
above. 2

4.3 Kripke completeness

Finally, we consider Kripke completeness. I would like to thank Nick Bezhanishvili
for helpful discussions on this material. First, a minor lemma, used only here.

LEMMA 4.3. Let F = (W,<, R) be a Kripke frame that validates the axioms of
§3.1. Suppose that w, u, x ∈ W satisfy w < u, w < x, and ¬(x < u). Then there is
y ∈W satisfying w < y, ¬(y < u), and Ryu.

Proof. Let w, u, x ∈ W be as stated. Let h : PV → W be an assignment with
h(p) = {u}, and let N = (W,<, R, h). Since ¬(x < u), we have N , x |= G¬p. As
w < u, x, this gives N , w |= Fp ∧ FG¬p. As all axioms are valid in F and frame
validity is preserved by the inference rules, by corollary 3.5 the Prior axiom (3.1) is
valid in F , so N , w |= F (G¬p ∧HFp). Hence there is y ∈W with w < y and

N , y |= G¬p ∧HFp. (4.1)

Hence, ¬(y < u). By (4.1) and lemma 3.3, N , y |= 3p. So Ryu. 2

We will now consider the following formula θ, where a, b are atoms:

θ = H¬a ∧H¬b ∧ ¬a ∧ ¬b ∧3a ∧3b ∧G¬(3a ∧3b) ∧ FG¬a. (4.2)

LEMMA 4.4. The formula θ is satisfiable over R, but is not satisfiable in any
Kripke model whose frame validates the axioms of §3.1.
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Proof. Let h : PV → ℘(R) be an assignment satisfying h(a) = {1/2n : n ∈ N} and
h(b) = {2/3n : n ∈ N}. Evidently, (R, h), 0 |= θ. So θ is satisfiable over R.

Let M = (W,<, R, h) be a Kripke model whose frame F = (W,<, R) validates
the axioms of §3.1. Let w ∈W and assume for contradiction that M, w |= θ.

Recall from definition 2.1 that R(w) = {u ∈W : Rwu}. Plainly,M, w |= 3a∧3b,
so there are u, v ∈ R(w) withM, u |= a andM, v |= b. Now the correspondents of the
axioms in §3.1, where given, are all true in F . By (the correspondent of) axiom 4a,
u = w ∨ u v w. As M, w |= H¬a ∧ ¬a, we cannot have u v w. So u = w. Since
also Rwv, by axiom 4b we obtain u = v. Similarly, v = u. By the S4 axioms, < is
transitive, so {u, v} is contained in a <-cluster.

As M, w |= FG¬a, we can choose x ∈ W with w < x and M, x |= G¬a. Since
M, u |= a, we have ¬(x < u). So by lemma 4.3, there is y ∈W with w < y, ¬(y < u),
and Ryu. But also, u < v, so by axiom 4c we obtain Ryv ∨ y < v.

If Ryv, then both u, v ∈ R(y), so M, y |= 3a ∧ 3b. Since w < y, we obtain
M, w |= F (3a ∧ 3b), contradicting that M, w |= θ. If instead y < v, then since
v < u we have y < u, contradicting that ¬(y < u). Either way, our assumption that
M, w |= θ has led to a contradiction. 2

Readers wondering whether θ could be simplified to a formula with only one atom
should bear in mind that H¬a ∧ ¬a ∧ 3a ∧ G¬3a is not satisfiable over R, and its
negation is provable (the proof uses axiom 4a and the S4 reflexivity axiom for 2).
Separately, lemma 4.4 fails if the final conjunct FG¬a is omitted from θ. We will
return to this example in §5 and §7.6.

Recall that a modal logic L is said to be Kripke complete (respectively, to have
the finite model property) if there exists a class K of (resp. finite) Kripke frames such
that L is the set of all modal formulas that are valid in every frame in K.

THEOREM 4.5. The L-logic of R is not Kripke complete and does not have the
finite model property.

Proof. If the L-logic of R were the logic of a class K of Kripke frames of the form
(W,<, R), then as the formula θ in (4.2) is satisfiable over R, it would be satisfiable
over a frame in K. By lemma 4.4, such a frame could not validate the axioms of §3.1.
So by theorem 3.1, it could not validate the logic of R either. 2

As N. Bezhanishvili has observed, the L-logic of R is a ‘naturally occurring’
example of a non-Kripke complete logic.

5 Towards completeness

The main aim of the paper is to show that the Hilbert system given in §3.1 is sound
and complete for the L-logic of R. In this section, we take some first steps in that
direction.
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5.1 A problem

We begin by observing that certain näıve approaches will not succeed. For example,
we might try to prove that every consistent formula is satisfiable in some finite Kripke
model whose frame (W,<, R) has the following special form. Ordered by <, which
is transitive and prelinear, it falls into a sequence

C0 < u0 < C1 < u1 < · · · < un−1 < Cn,

where n ≥ 0, the Ci are <-clusters, the ui are <-irreflexive, the relation < is defined
between sets and points as in definition 5.1(1), and R(ui) = Ci∪{ui}∪Ci+1 for each
i < n. (Recall that R(ui) = {w ∈ W : Ruiw}.) We could also require that every
cluster is connected as an R-frame — see definition 5.2 for the meaning of this. It
would then be not so hard to construct a model over R satisfying the formula.

This idea is unlikely to work — by theorem 4.5, the logic of R is not characterised
by any class of finite frames at all. And in fact, the formula θ of (4.2) — which is
consistent since it is satisfiable over R — is not satisfiable in any Kripke model of this
form. For, θ being true at a world w would force w to be irreflexive — say w = ui —
and a and b to be true at some worlds in the cluster Ci+1 immediately following ui in
the order <. This cluster could not be <-final in the model because of the conjunct
FG¬a of θ. So i + 1 < n. But now, 3a ∧ 3b would be true at ui+1, contradicting
the truth of G¬(3a ∧3b) at ui.

5.2 Ψ-linked models

So it seems that we are forced to work with Kripke models that may contain adjacent
<-clusters with no intervening irreflexive point. (Since the L-logic of R is not Kripke
complete, it seems that we cannot work with frames and have to use models.) We will
focus our attention on ‘nice’ models in which any two such clusters contain ‘similar’
points. We will show that any consistent formula is satisfiable in a nice Kripke model,
and that any such model can be transformed into a model over R. To define ‘nice’,
we need the following somewhat disparate preliminary definitions.

DEFINITION 5.1. Let M = (W,<, R, h) be a Kripke model.

1. For X,Y ⊆ W , we write X < Y if x < y for every x ∈ X and y ∈ Y . We
abbreviate {x} < Y to x < Y , etc.

2. We say that an ordered pair (C,D) of <-clusters in M is

• consecutive (in M) if C 6= D and {u ∈ W : u <-reflexive, C < u < D} =
C ∪D,

• adjacent (in M) if C 6= D and {u ∈W : C < u < D} = C ∪D.

In each case, C < D. Consecutive clusters have no <-reflexive points between
them, but may have <-irreflexive ones. Adjacent clusters have nothing between
them.

DEFINITION 5.2. A frame (W,R) is said to be connected if there do not exist
non-empty disjoint R-generated subsets X,Y ⊆W with W = X ∪ Y .
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DEFINITION 5.3. Let Ψ be a set of L-formulas.

1. We write BΨ for the set of formulas in Ψ of the form 2θ, Gθ, or Hθ (the
‘box-formulas’).

2. Let M = (W,<, R, h) be a Kripke model. We define an equivalence relation
≡MΨ on W by: c ≡MΨ d iff for every ψ ∈ Ψ, we have M, c |= ψ iff M, d |= ψ.

We can now give our definition of ‘nice’ model:

DEFINITION 5.4. Let Ψ be a set of L-formulas. We say that a Kripke model
M = (W,<, R, h) is Ψ-linked if:

1. W is finite.

2. The frame (W,<, R) validates all axioms of §3.1 (including mirror images),
except possibly the connectedness axiom 5 and its mirror image.

3. The relation < is prelinear (see definition 2.1(6)).

4. For every <-cluster C ⊆W , the frame (C,R � C) is connected.

5. For every pair (C,D) of adjacent <-clusters in M, there are c ∈ C and d ∈ D
with c ≡MBΨ d.

In a Ψ-linked modelM, adjacent clusters are ‘linked’ by ‘similar’ (formally, ≡MBΨ-
equivalent) points. Agreement of these points on formulas 2θ ∈ Ψ is critical for our
later work — in lemma 7.25 in particular. Their agreement on formulas Gθ and Hθ
is more a convenience that allows a simple definition of ‘nice’ model. Condition 4 is
weaker than saying that the frame of M validates the connectedness axiom 5. For
example, ifM consists of two <-reflexive points c, d, with c < d, ¬Rcd, ¬Rdc,M, c |=
p, andM, d |= ¬p, thenM is ∅-linked but does not validate the connectedness axiom.

5.3 Structure of Ψ-linked models

By definition 5.4, the frame of a Ψ-linked model validates the Shehtman axioms, and
these impose considerable structure on Kripke frames validating them. The following
lemma sheds a lot of light on this structure. It can be obtained from [28, lemmas
3.5–3.6], but we give a proof to make the paper more self-contained.

LEMMA 5.5 (λ, ρ-lemma). Let F = (W,<, R) be a Kripke frame that validates the
axioms of §3.1 except possibly the connectedness axiom 5 and its mirror image, and
let w ∈W .

1. Every <-cluster in F is an R-generated subset of W .

2. If w is <-reflexive then R(w) is a subset of a <-cluster.

3. If w is <-irreflexive, then there are disjoint <-clusters λ(w), ρ(w) such that
R(w) = λ(w) ∪ {w} ∪ ρ(w). For every t ∈ W we have t < w iff t < λ(w), and
w < t iff ρ(w) < t.
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Proof. Since F validates all axioms in §3.1 with first-order correspondents, those
correspondents are true in F . To prove part 1 of the lemma, let C ⊆ W be a
<-cluster and let w ∈ C. By lemma 2.3, C = {u ∈ W : u =< w} (recall from
definition 2.2 that u=<w denotes that u < w∧w < u). By axiom 4b and its mirror
image, C is R-generated.

For part 2, suppose that w < w. By lemma 2.3, w is contained in a <-cluster
C = {u ∈W : u=< w}. By part 1, C is R-generated, so R(w) ⊆ C.

For part 3, suppose that ¬(w < w) and let

λ(w) = R(w) ∩ {u ∈W : u < w},
ρ(w) = R(w) ∩ {u ∈W : w < u}.

These sets are non-empty by axiom 4d and its mirror image, and disjoint as w is
irreflexive and < transitive. By axiom 4a we have R(w) = λ(w) ∪ {w} ∪ ρ(w).

We show that λ(w) is a <-cluster. If t ∈ W and u ∈ λ(w), then axiom 4b and
<-transitivity yield

t < w iff t < u. (5.1)

Recalling that λ(w) 6= ∅, pick arbitrary u ∈ λ(w). Taking t = u in (5.1), we see that
u is <-reflexive, so by lemma 2.3 again, the set U = {v ∈W : v=<u} is a <-cluster.

We show that λ(w) = U . By (5.1), t < v for all t, v ∈ λ(w), and it follows
that λ(w) ⊆ U . To show that U ⊆ λ(w), let t ∈ U be arbitrary. Since u < w, by
<-transitivity we have t < w. Also, Rwu ∧ u < t, so by axiom 4c, w < t ∨ Rwt.
If w < t, then as t < w and < is transitive, we would have w < w, contradicting
irreflexivity of w. So ¬(w < t), and hence Rwt. We already have t < w, so t ∈ λ(w).
As t ∈ U was arbitrary, U ⊆ λ(w) as required.

The last claim in the lemma (for λ) is immediate from (5.1). The case of ρ is
handled similarly. 2

It follows from the lemma that for <-irreflexive w we have u < w < v for every
u ∈ λ(w) and v ∈ ρ(w), by taking t = u and t = v. That is, λ(w) < w < ρ(w). We
can think of λ(w) as the set of points lying infinitesimally near to w in the past, and
ρ(w) as the set of points lying infinitesimally near to w in the future.

We can now elucidate the structure of a Ψ-linked modelM = (W,<, R, h). Recall
that x=< y means x < y ∧ y < x. For x, y ∈W define x ∼ y iff x = y ∨ x=< y. As
< is transitive, ∼ is an equivalence relation on W . Each equivalence class is either
a singleton consisting of an <-irreflexive point, or (by lemma 2.3) a <-cluster. As <

is prelinear, we can enumerate the clusters without repetitions as C0, . . . , Ck, with
C0 < C1 < · · · < Ck. Each remaining ∼-class, if any, is a singleton {u} with u
<-irreflexive. The frame F = (W,<, R) validates the axioms required by lemma 5.5,
so for each such u the sets λ(u), ρ(u) are defined and are <-clusters. Say, λ(u) = Ci.
By the lemma, Ci < u, and u < w iff ρ(u) < w for each w ∈ W . It follows that
i < k and ρ(u) = Ci+1. If u, v are irreflexive and u < v, then by the lemma,
u < ρ(u) < λ(v) < v (possibly ρ(u) = λ(v)), so for each i < k there is at most one
irreflexive point lying between Ci and Ci+1.

We conclude that for some finite k ≥ 0, the frame (W,<) is the union of distinct
<-clusters C0 < C1 < · · · < Ck and <-irreflexive points ui (i ∈ I) for some I ⊆
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{0, . . . , k − 1}, with Ci = λ(ui) < ui < ρ(ui) = Ci+1 for each i ∈ I. We never get
two adjacent irreflexive points. This is as in the suggested form of frames in §5.1,
except that we may get two adjacent <-clusters with no intervening irreflexive point.
In this case, they are linked by containing ≡MBΨ-equivalent points.

5.4 Problem resolved

We saw in §5.1 that the formula θ of (4.2) is not satisfiable in any model whose frame
is as described there. Let us now show that θ is satisfiable in a linked model.

PROPOSITION 5.6. The formula

θ = H¬a ∧H¬b ∧ ¬a ∧ ¬b ∧3a ∧3b ∧G¬(3a ∧3b) ∧ FG¬a

of (4.2) is satisfied in a Ψ-linked model, where Ψ is the set of subformulas of θ.

Proof. The formula θ is true at world u0 in the Kripke model M = (W,R,<, h)
shown in figure 1. In the figure, the black dots are <-irreflexive and the white dots
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Figure 1: Kripke model M satisfying θ

are <-reflexive. The relation < is given by the left-to-right ordering, except within
each <-cluster Ci (i ≤ 3) where of course all points are <-related. The relation R
is given by the reflexive closure of the arrows. The atoms a, b are true only where
shown at u2 and the two upper points in C1.

Let Ψ be the set of subformulas of θ. Recalling that 3 abbreviates ¬2¬ and F
abbreviates ¬G¬, the set BΨ of ‘box-formulas’ in Ψ is

BΨ = {H¬a,H¬b,2¬a,2¬b,G¬(3a ∧3b), GFa,G¬a}.

We claim that M is Ψ-linked. It is finite, and its frame validates all axioms in §3.1
(including mirror images), except possibly the connectedness axiom 5 and its mirror
image. Obviously, the relation < is prelinear and the frame (C,R � C) is connected
for each <-cluster C. The only adjacent <-clusters in M are C1 and C2, and the
lower dots d1, s2 in them are ≡MBΨ-equivalent — 2¬a, 2¬b, and G¬(3a ∧ 3b) are
true at both of them, and H¬a, H¬b, GFa, and G¬a are false. So M is indeed
Ψ-linked. 2

We will return to this example in §7.6.
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5.5 Strategy of completeness proof

Our approach to proving completeness will now be as follows.

Step 1. We show that any formula ϕ0 that is consistent with the system of §3.1
is satisfiable in a Ψ-linked Kripke model, where Ψ is the set of subformulas of
Pϕ0. This is done in §6.

Step 2. Given any Ψ-linked model, where Ψ is a finite set of formulas closed under
subformulas, we construct a model over R that satisfies the same formulas
from Ψ. This is done in §7.

These two steps are of roughly equal length and can be read in either order. Readers
may prefer to read §7 first, as Ψ-linked models may be better motivated that way.
Completeness of the system follows immediately by putting the two steps together
— this will be done in theorem 8.1.

6 Consistent formulas have linked models

In this section we prove the following.

THEOREM 6.1. Let ϕ0 be an L-formula that is consistent with the system of
§3.1. Let Ψ be a finite set of L-formulas containing Pϕ0 and closed under taking
subformulas. Then ϕ0 is satisfiable in a Ψ-linked Kripke model.

To prove it, we will successively construct five Kripke models M0, . . . ,M4 satis-
fying ϕ0 and getting closer to our goal. The first three are exactly as in Shehtman’s
axiomatisation of the logic of F, P,2 over Q in [28]. The last,M4, will be a Ψ-linked
model satisfying ϕ0. EachMi will be written (Wi,<i, Ri, hi), but sometimes we drop
the index i from these entries. Also, we sometimes identify (notationally) Mi with
its domain Wi.

0. M0 is the canonical model.

1. M1 is a generated submodel of M0 satisfying ϕ0, in which the relation < is
prelinear.

2. M2 is got by filtrating all <-clusters ofM1, which consequently become finite.

3. M3 is a finite R-generated submodel of M2 got by selective filtration for <.
We use prelinearity and the Prior axiom to obtain it.

4. M4 is obtained fromM3 by adding some extra points to arrange that any two
adjacent clusters contain ≡M4

BΨ -equivalent points. We use the Prior axiom and

induction on the number of ‘≡M2
BΨ -types’ of points in an interval.

As we go, we will indicate why we apparently cannot jump from our latest model
directly to a model of ϕ0 over R.

Now to the details. Let ϕ0 be an L-formula consistent with the system defined
in §3.1. We will explain in turn how each model M0, . . . ,M4 is constructed.
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6.1 Model M0

This is just the canonical model of the system given in §3.1, over the set PV of atoms.
So W0 is the set of all maximal consistent sets of L-formulas. We write Γ,∆,Ξ,Θ, . . .
for arbitrary members of W0. The relations and assignment are defined by:

• Γ <0 ∆ iff ϕ ∈ ∆ for every formula Gϕ ∈ Γ (this is equivalent to each of the
three statements ϕ ∈ ∆⇒ Fϕ ∈ Γ, Hϕ ∈ ∆⇒ ϕ ∈ Γ, and ϕ ∈ Γ⇒ Pϕ ∈ ∆),

• ΓR0 ∆ iff ϕ ∈ ∆ for every formula 2ϕ ∈ Γ (equivalently, ϕ ∈ ∆⇒ 3ϕ ∈ Γ),

• h0(p) = {Γ ∈W0 : p ∈ Γ} for each atom p ∈ PV .

We assume familiarity with basic facts about canonical models — see, e.g., [5, 3] for
details. The most important ones are that M0,Γ |= ϕ iff ϕ ∈ Γ, for each Γ ∈ M0

and each L-formula ϕ, all substitution instances of axioms from §3.1 are valid in
M0, and the first-order correspondents listed in §3.1 are true in the canonical frame
(W0,<0, R0). For example, <0 is transitive and R0 is reflexive and transitive. All
substitution instances of the connectedness axiom 5 are valid in M0, but we do not
know that this axiom is valid in the canonical frame.

6.2 Model M1

Since ϕ0 is consistent, we can take Γ0 ∈ W0 containing ϕ0, and then M0,Γ0 |= ϕ0.
SoM0 satisfies ϕ0. However,M0 is a little unwieldy for us. Much of it is irrelevant:
it has smaller and more manageable submodels satisfying ϕ0, and in particular, ones
in which < is prelinear. So our first step is to restrict to such a submodel.

We define M1 = (W1,<1, R1, h1) to be the submodel of M0 with domain W1 =
{∆ ∈W0 : ∆ v0 Γ0 ∨ Γ0 <0 ∆}. Let us establish its basic properties.

LEMMA 6.2. M1 is a generated submodel of M0 in which <1 is prelinear. The
model M1 satisfies ϕ0.

Proof. Suppose ∆ ∈W1, Θ ∈W0, and ∆ <0 Θ. We show that Θ ∈W1. If Γ0 v0 ∆
then by transitivity, Γ0 <0 Θ and so Θ ∈ W1. If not, then ∆ <0 Γ0,Θ, and we
obtain Θ ∈W1 by the correspondent of the mirror image PFp→ p∨Fp∨Pp of the
linearity axiom. So M1 is a <0-generated submodel of M0. By symmetry, M1 is
also a =0-generated submodel of M0. A similar argument, left to the reader, shows
that <1 is prelinear as in definition 2.1(6).

To show that M1 is an R0-generated submodel as well, note that if ∆ ∈ W1,
Θ ∈ W0, and R0∆Θ, then by the correspondent of axiom 4a we have Θ v0 ∆ or
∆ <0 Θ. As W1 is <0- and =0-generated, Θ ∈W1.

Hence, M1 is a generated submodel of M0. By lemma 2.3, M1,Γ0 |= ϕ0 and ϕ0

is satisfied in M1. 2

As M1 is a generated submodel of M0, lemma 2.3 tells us that all substitution
instances of axioms from §3.1 are valid inM1 and all axioms other than the connect-
edness axiom 5 (and its mirror image) are valid in its frame. Hence, the first-order
correspondents of these axioms are true in the frame of M1. The following is now
immediate from lemma 5.5 (see also [28, lemma 3.6]).
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LEMMA 6.3. Every <1-cluster in M1 is an R1-generated subset of W1.

To end, we establish the perhaps surprising result that M1 contains initial and
final <1-clusters (possibly equal).

LEMMA 6.4. There are <1-clusters C∞, C−∞ ⊆ W1 such that C−∞ <1 Γ <1 C∞
for every Γ ∈W1.

Proof. Let Λ0 = {Pϕ : ϕ is satisfied in M1}. Then Λ0 is consistent. For suppose
that n > 0 is finite and ϕ0, . . . , ϕn−1 are satisfied inM1 at ∆0, . . . ,∆n−1, respectively.
Choose i < n such that |{j < n : ∆j v1 ∆i}| is maximal. It follows by prelinearity
and transitivity of <1 that for every j < n we have ∆j v1 ∆i. By lemma 3.2, F> ∈
∆i, so there is Γ ∈M1 with ∆i <1 Γ. Then ∆0, . . . ,∆n−1 <1 Γ, so Pϕ0, . . . , Pϕn−1 ∈
Γ, proving consistency of Λ0.

Let Λ ⊇ Λ0 be maximal consistent. Then Λ ∈ W0. Let Γ ∈ W1 be arbitrary.
Then ϕ ∈ Γ ⇒ Pϕ ∈ Λ0 ⊆ Λ, so Γ <0 Λ. This means that Λ ∈ W1 and that Λ is a
<1-greatest point in M1. Hence also, Λ <1 Λ, so Λ lies in a <1-cluster C∞, say, of
M1. Since C∞ is a cluster, transitivity of <1 yields that Γ <1 C∞ as required.

The cluster C−∞ is obtained by a mirror image argument. 2

6.3 Model M2

There is little hope of obtaining directly fromM1 a model over R satisfying ϕ0. For
one thing, if we could do it, it would be likely that any consistent set of formulas could
be shown satisfiable over R, contradicting theorem 4.2. The more practical problem
is that we do not know enough about <1 and R1. We can glean some information
about them from lemma 5.5. Essentially, M1 consists of <1-irreflexive points and
<1-clusters. To make a real model, we would like to ‘represent’ each cluster C over
R, using methods originating in [20] (see §7). Unfortunately, it is not clear that the
frame (C,R1 � C) is connected. This makes the task hard — and in the Ψ-linked
model that we aim to build, clusters must be connected.

The purpose of our next model M2 is to make all <-clusters connected. We
achieve this by making them finite, using a certain filtration ofM1 due to Shehtman
[28, §3]. The connectedness axiom can then be used to prove that every <2-cluster
in M2 is connected. We will also show that M2 contains certain well-behaved sub-
models, which will be used to construct the final model M4. So our study of M2

will be quite elaborate.

6.3.1 Definition of M2

We will need a finite set of formulas to define the filtration. It will be the set Ψ
of theorem 6.1 — a finite set of formulas containing Pϕ0 and closed under taking
subformulas. Our filtration equivalence relation is now defined as in [28, §3]. Recall
again that Γ =< ∆ means that Γ < ∆ and ∆ < Γ. Let ∼ be the binary relation on
W1 defined by:

Γ ∼ ∆ ⇐⇒ Γ = ∆ ∨
(
(Γ =<1 ∆) ∧ (Γ ∩Ψ = ∆ ∩Ψ)

)
. (6.1)

As <1 is transitive, ∼ is an equivalence relation on W1.
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DEFINITION 6.5. For Γ ∈W1 we write Γ/∼ for the equivalence class {∆ ∈W1 :
Γ ∼ ∆}. For X ⊆ W1, we write X/∼ for the set {Γ/∼ : Γ ∈ X} of equivalence
classes having a non-empty intersection with X.

Generally, but not always, X will be ∼-closed (i.e., a union of ∼-classes).
The domain W2 ofM2 is now defined to be the set W1/∼ of ∼-equivalence classes

inM1. The relations onM2 are: <2 is induced existentially from <1, and R2 is the
transitive closure of the relation induced existentially from R1. Formally:

<2 = {(Γ/∼,∆/∼) : Γ,∆ ∈W1, Γ <1 ∆},
R0

2 = {(Γ/∼,∆/∼) : Γ,∆ ∈W1, ΓR1 ∆},
R2 is the transitive closure of R0

2.

We set h2(p) = {Γ/∼ : Γ ∈ W1, p ∈ Γ} for each atom p ∈ PV . This defines the
model M2.

In case of doubt, we remark that the expressions above are of the form {f(x) : x ∈
X} for some set X and some class function f defined on X, and thus are well-defined
sets by the axiom of replacement of ZF. For example, for <2 we can take X = <1

and f : (Γ,∆) 7→ (Γ/∼,∆/∼).

6.3.2 Filtration lemma for M2

Filtration is designed to preserve truth of formulas, so let us confirm this first. To
begin, it is worth knowing that <2 is closely related to <1:

LEMMA 6.6. Let Γ,∆ ∈W1. Then Γ <1 ∆ iff Γ/∼ <2 ∆/∼.

Proof. If Γ <1 ∆ then Γ/∼ <2 ∆/∼ by definition of <2. Conversely, if Γ/∼ <2 ∆/∼
then by definition of <2 there are Γ′,∆′ ∈ W1 with Γ ∼ Γ′, ∆ ∼ ∆′, and Γ′ <1 ∆′.
The definition of ∼ gives Γ v1 Γ′ and ∆′ v1 ∆, so Γ <1 ∆ by transitivity of <1. 2

In [28], a ‘filtration lemma’ is proved: all formulas in Ψ are preserved from M1

to M2. Because of the simple definition of <2, we can actually go a little further:

LEMMA 6.7 (filtration). Let ψ be an L-formula formed from formulas in Ψ by
using only the boolean and temporal operators (without using 2 or 3). Then for all
Γ ∈ W1 we have M2,Γ/∼ |= ψ iff M1,Γ |= ψ (iff ψ ∈ Γ). Hence, ϕ0 is satisfied in
M2.

Proof. By induction on ψ. If ψ ∈ Ψ, the result is proved in [28, lemmas 3.2–3.3].
The boolean cases are easy and left to the reader. Assuming the result for ψ, we
prove it for Gψ. Let Γ ∈W1 be given. Then the following are equivalent:

M2,Γ/∼ |= Gψ
M2,∆/∼ |= ψ for all ∆ ∈W1 with Γ/∼ <2 ∆/∼ by semantics of G,
M1,∆ |= ψ for all ∆ ∈W1 with Γ <1 ∆ by ind. hyp. & lemma 6.6,
M1,Γ |= Gψ by semantics of G.

The case Hψ is similar.
We know there is some Γ0 ∈ W1 containing ϕ0. As ϕ0 ∈ Ψ, the above yields

M2,Γ0/∼ |= ϕ0, so ϕ0 is satisfied in M2. 2
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6.3.3 Structure of M2

We will need some simple facts about the form of M2. Happily, by [28, lemma
3.3], the frame of M2 validates all axioms of the system of §3.1 other than axiom 5
(connectedness) and its mirror image. Hence, their correspondents are true in the
frame (W2,<2, R2), and lemma 5.5 applies.

Some limited instances of (connectedness and) the Prior axiom are also valid
in M2:

LEMMA 6.8. Let β be an L-formula formed from formulas in Ψ by using only the
boolean and temporal operators (without using 2 or 3). Then the β-instance

π = Fβ ∧ FG¬β → F (G¬β ∧HFβ)

of the Prior axiom is valid in M2.

Proof. Take any w ∈ W2 and Γ ∈ w. By corollary 3.5, the Prior axiom is provable,
so Γ contains all substitution instances of it. So π ∈ Γ. This formula is made from
formulas in Ψ by using only the boolean and temporal operators, so by the filtration
lemma 6.7 we obtain M2, w |= π as required. 2

However, in lemmas 6.12 and 6.20 we will need arbitrary instances of these axioms,
and we do not know that they are valid in M2. They are of course valid in M1, so
we will work in M1 in these lemmas.

LEMMA 6.9. 1. The relation <2 is transitive and prelinear.

2. If X ⊆W1 is a <1-cluster in M1 then X/∼ is a <2-cluster in M2.

3. If C ⊆W2 is a <2-cluster in M2 then
⋃
C is a <1-cluster in M1.

4. Every <2-cluster in M2 is a finite R2-generated subset of W2.

Proof. The relation <1 is transitive (since M1 ⊆ M0 and <0 is transitive), and
prelinear (by lemma 6.2), and it follows from lemma 6.6 that <2 is as well. This
proves part 1.

For parts 2–3, let X ⊆ W1 and C ⊆ W2 be sets. Plainly, X ⊆
⋃

(X/∼) and
C = (

⋃
C)/∼. Call X a <1-precluster if Γ <1 ∆ for every Γ,∆ ∈ X, and C a

<2-precluster if c <2 d for every c, d ∈ C. By lemma 6.6, parts 2 and 3 hold if we
replace ‘cluster’ by ‘precluster’. A cluster is just a maximal precluster, and by Zorn’s
lemma, every precluster extends to a cluster.

Suppose that X is a <1-cluster. Then X/∼ is a <2-precluster. Extend it to a
<2-cluster D. Then X ⊆

⋃
(X/∼) ⊆

⋃
D, and since

⋃
D is a <1-precluster we have

X =
⋃
D. So X/∼ = (

⋃
D)/∼ = D, a <2-cluster.

Suppose that C is a <2-cluster. Then
⋃
C is a <1-precluster. Extend it to a

<1-cluster Y . Then C = (
⋃
C)/∼ ⊆ Y/∼, and since Y/∼ is a <2-precluster we have

C = Y/∼. So Y ⊆
⋃

(Y/∼) =
⋃
C ⊆ Y . Consequently,

⋃
C = Y is a <1-cluster.

For part 4, let C be a <2-cluster. Then C has the form Y/∼ for a <1-cluster
Y =

⋃
C, and by definition of ∼, for each Γ,∆ ∈ Y we have Γ ∼ ∆ iff Γ∩Ψ = ∆∩Ψ.

Hence, the map f : C → ℘(Ψ) given by f(Γ/∼) = Γ∩Ψ is well defined and one-one,
so |C| ≤ |℘(Ψ)| and C is finite (this is [28, lemma 3.4]). That C is R2-generated
follows from lemma 5.5. 2
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Lemma 6.4 also extends to M2:

LEMMA 6.10. The sets C∞/∼, C−∞/∼ are <2-clusters in M2, and for every
w ∈W2 we have C−∞/∼ <2 w <2 C∞/∼.

Proof. Immediate from lemmas 6.4, 6.6, and 6.9. 2

6.3.4 Connectedness of <-clusters in M2

By lemma 6.9, all <2-clusters in M2 are finite, and using the connectedness axiom,
we can prove that they are connected as R2-frames. To do this, we first write down
formulas to define individual elements within a <2-cluster.

DEFINITION 6.11. For w ∈ M2 let χw =
∧

(Ψ ∩ Γ) ∧ ¬
∨

(Ψ \ Γ) for arbitrary
Γ ∈ w. (By convention,

∧
∅ = > and

∨
∅ = ⊥.)

By definition of ∼ in (6.1), this definition is independent of the choice of Γ, and
obviously χw ∈ Γ. The set {χw : w ∈M2} is finite, because Ψ is finite.

LEMMA 6.12. Let C be a <2-cluster in M2. Then (C,R2 � C) is a connected
frame.

Proof. Suppose on the contrary that C is a <2-cluster in M2 that is the union of
disjoint non-empty R2-generated sets X,Y . Let α =

∨
w∈X χw. Then α defines X

within C: for any Γ ∈
⋃
C we have

α ∈ Γ ⇐⇒ Γ/∼ ∈ X. (6.2)

Choose any Γ ∈
⋃
C and let

∆0 = {3α,3¬α} ∪ {Fγ, Pγ : γ ∈ Γ}.

We show that ∆0 is consistent. Since Γ is closed under conjunction, it suffices to take
arbitrary γ ∈ Γ and show that δ = 3α ∧3¬α ∧ Fγ ∧ Pγ is consistent. Choose any
ΓX ∈

⋃
X and ΓY ∈

⋃
Y . By lemma 6.9,

⋃
C is a <1-cluster inM1. So ΓX=<1Γ and

similarly for ΓY . Now α∧Fγ ∈ ΓX and ¬α∧Fγ ∈ ΓY . So F (α∧Fγ), F (¬α∧Fγ) ∈ Γ.
By the connectedness axiom 5, F (3α ∧ 3¬α ∧ Fγ) ∈ Γ. By temporal axioms,
GPγ ∈ Γ as well, so Fδ ∈ Γ. If δ is inconsistent then ¬δ and hence G¬δ are
provable, so G¬δ ∈ Γ, contradicting its consistency. So δ is consistent, as required.

So we may take ∆ ∈ M0 with ∆ ⊇ ∆0. By definition of ∆0 we have ∆ =<0 Γ,
so ∆ ∈ M1 and ∆ ∈

⋃
C. As 3α,3¬α ∈ ∆, we may find ∆X ,∆Y ∈ R0(∆) with

α ∈ ∆X and ¬α ∈ ∆Y . Then ∆X ,∆Y ∈ R1(∆) as M1 is a generated submodel of
M0. By lemma 6.3,

⋃
C is an R1-generated subset ofM1, so ∆X ,∆Y ∈

⋃
C as well.

Let w = ∆/∼, wX = ∆X/∼, and wY = ∆Y /∼. By (6.2), wX ∈ X and wY ∈ Y .
By definition of R2, we have wX , wY ∈ R2(w). Since w ∈ X ∪ Y , this contradicts
that X and Y are disjoint and R2-generated. 2
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6.3.5 Submodels of M2

It may appear that M2 could be our final Kripke model. Each <2-cluster C in M2

is finite and connected as an R2-frame, so classical work (see §7) will give us a model
over R respecting truth within C. We can represent an <2-irreflexive point ofM2 by
a single point of R. Could we not string these together somehow, to make a model
over R satisfying ϕ0?

To do so would require the following. Let J be the linear order obtained from
(W2,<2) by replacing each <2-cluster by a copy of R. Then we would need J ∼= R.

There is no reason to suppose that J ∼= R. For example, M2 may have uncount-
ably many <2-clusters. (Indeed, the argument of theorem 4.2 can be used to create
an example in which J 6∼= R.) Even a finite submodel ofM2 may not work: if we form
J for it as we did for M2, we may still not have J ∼= R, because the submodel may
have consecutive <-clusters that are actually adjacent, with no intervening point.
Consideration of the formula θ of (4.2) shows that this can indeed happen. Re-
placing the two adjacent clusters by copies of R gives a linear order isomorphic to
((−1, 0) ∪ (0, 1), <). This is not Dedekind complete — it has a ‘gap’ at 0. It follows
that J 6∼= R in this case.

In Ψ-linked models, any two adjacent clusters contain ‘similar’ points satisfying
exactly the same formulas 2ψ,Gψ,Hψ ∈ Ψ. They allow us to ‘fill the gap’. So we
will now show thatM2 contains abundant finite submodels with this property. This
is in a sense the heart of the paper. It will lead us shortly to our final model M4.

First we introduce formulas that will help us to pick out ‘similar’ points. Recall
(definition 5.3) that BΨ is the set of all formulas in Ψ of the form 2ψ, Gψ, or Hψ
(the ‘box-formulas’).

DEFINITION 6.13. 1. For a subset B ⊆ BΨ, let βB = (
∧
B) ∧ ¬

∨
(BΨ \B).

2. For a Kripke model M and w ∈ M, we write τM(w) (or if no ambiguity is
likely, τ(w)) for the set {ψ ∈ BΨ :M, w |= ψ}.

We think of τM(w) as the ‘type’ of w inM. The following is proved by standard
boolean manipulations.

LEMMA 6.14.

1. For every Kripke model M and w ∈ M, the set τM(w) is the unique subset
B ⊆ BΨ with M, w |= βB.

2. For every Γ ∈ W1, the set τM1(Γ) is the unique subset B ⊆ BΨ such that
βB ∈ Γ. Indeed, τM1(Γ) = Γ ∩ BΨ.

3. For every Kripke model M and c, d ∈ M, we have c ≡MBΨ d (so c and d are
‘similar’) iff τM(c) = τM(d).

So to show that two clusters C,D contain similar points, it suffices to find points
c ∈ C and d ∈ D of the same type — satisfying the same formula βB for some
B ⊆ BΨ. We will use the Prior axiom to do this. However, because this axiom
delivers an <-irreflexive point after which a formula is false but at which the formula
may actually be true (see remark 3.6), whereas we want a point in a cluster, we will
actually use 2βB rather than βB.
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Not every world in a model satisfies some 2βB, so (roughly) we now pick out
the worlds that do. We will call such worlds links, because they will ‘link’ adjacent
clusters.

We would like to define w ∈ W2 to be a link if M2, w |= 2βB for some B.
Unfortunately, there is a second complication. We would like to use the Prior axiom
to find a point satisfying some 2βB. But we do not know that the 2βB-instance
of the Prior axiom is valid in M2. Moreover, the point should also lie in a certain
temporal range, and to achieve this we will need to work inM1, where <1 is defined
by formulas. Now the Prior axiom is valid inM1, and it will deliver points ofM1 in
the right range and satisfying 2βB, but their ‘representatives’ (their ∼-classes) inM2

may not satisfy 2βB as the filtration lemma 6.7 does not apply to 2β. Consequently,
with this definition of ‘link’ we cannot guarantee that adjacent clusters will contain
‘similar’ points. So in the formal definition of ‘link’, we work directly in M1:

DEFINITION 6.15. An element w ∈ W2 is said to be a link if 2βB ∈
⋃
w for

some B ⊆ BΨ — that is, there are Γ ∈ w and B ⊆ BΨ with 2βB ∈ Γ.

We first show that links are rather common, and that they work well enough to
deliver ‘similar’ points.

LEMMA 6.16. Every <2-cluster in M2 contains a link.

Proof. Let C be a <2-cluster inM2. By lemma 6.9(4), C is finite and R2-generated.
Let c ∈ C be such that |R2(c)| is least possible. We will show that c is a link.

Let B = τ(c). First we show thatM2, c |= 2βB. So take arbitrary d ∈ R2(c). As
C is R2-generated, d ∈ C. By transitivity of R2 we have R2(d) ⊆ R2(c), so by choice
of c we have R2(d) = R2(c). Moreover, since c =<2 d, by transitivity of <2 we see
that for all w ∈ W2 we have w <2 c iff w <2 d, and w =2 c iff w =2 d. So c and d
‘see’ the same elements of W2 via R2, <2, and =2. It plainly follows that c ≡M2

BΨ d, so
B = τ(c) = τ(d) and hence M2, d |= βB as well. As d was arbitrary, M2, c |= 2βB
as required.

Now let Γ ∈ c be arbitrary; we will show that 2βB ∈ Γ, so that c is a link by
definition. Let ∆ ∈ R1(Γ) be arbitrary, and let d = ∆/∼ ∈ W2. By definition of R2

we have d ∈ R2(c), so by the above, M2, d |= βB. As βB is a boolean combination
of formulas in Ψ, the filtration lemma 6.7 yields βB ∈ ∆. As ∆ was arbitrary, we
obtain 2βB ∈ Γ. 2

LEMMA 6.17. Let B ⊆ BΨ and w ∈ M2. Then 2βB ∈
⋃
w iff w is a link and

τ(w) = B.

Proof. If 2βB ∈ Γ ∈ w, then w is plainly a link. By the S4 reflexivity axiom, βB ∈ Γ
as well. By the filtration lemma 6.7, M2, w |= βB, so by lemma 6.14, τ(w) = B.

Conversely, suppose that w is a link. By definition, 2βB′ ∈
⋃
w for some B′ ⊆

BΨ. By the first part, τ(w) = B′. So if additionally τ(w) = B, we have B′ = B and
hence 2βB ∈

⋃
w. 2

We will need to count the types of links in an interval:
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DEFINITION 6.18. For <2-clusters C,D ⊆M2 with C <2 D (possibly, C = D),
let

](C,D) = |{τM2(w) : w ∈W2 a link, C <2 w ∧ w <2 D}|.

The value is plainly finite, because BΨ is finite. It is the number of types of links in
the interval (C,D) of M2.

COROLLARY 6.19. Let C,D ⊆ M2 be <2-clusters with C <2 D. Then we have
](C,D) > 0.

Proof. By lemma 6.16, there is a link w ∈ C. Plainly, C <2 w <2 D. So τ(w)
contributes one to the total for ](C,D), which is therefore nonzero. 2

Suppose that (C,D) is a pair of adjacent <2-clusters in M2. Using lemma 6.16,
take links c ∈ C and d ∈ D. Imagine that ](C,D) = 1. As τ(c) and τ(d) both
contribute one to ](C,D), we must have τ(c) = τ(d), and it follows that c ≡M2

BΨ d.
We have found similar points in C,D, as required for a Ψ-linked model. This suggests
trying to find similar points in more general situations by induction on ](C,D), and
that is what we will do in lemma 6.22 below. For the induction step, we will need
the following important technical lemma. Part 3 of the lemma shows that the value
of ] drops, facilitating the induction.

LEMMA 6.20. Let C be a <2-cluster in M2, and let w ∈ M2 with C <2 w and
w /∈ C. Then there is a <2-irreflexive u ∈M2 such that:

1. C <2 u v2 w,

2. there are c ∈ C and d ∈ λ(u) with c ≡M2
BΨ d,

3. if w is <2-irreflexive and u <2 w, then ](ρ(u), λ(w)) < ](C, λ(w)).

(See lemma 5.5 for λ, ρ.) The mirror image also holds.

Proof. By lemma 6.16, there is a link c ∈ C. Let B = τ(c). By lemma 6.17, there
is Γ ∈ c with 2βB ∈ Γ.

Now pick any ∆ ∈ w. Since C <2 w /∈ C, by lemma 6.6 we have Γ <1 ∆ and
¬(∆ <1 Γ). By the latter, there is a formula γ with

γ ∈ Γ and G¬γ ∈ ∆. (6.3)

If w is <2-irreflexive, then ∆ is <1-irreflexive, and in that case, as the reader may
confirm, we can suppose that Hγ ∈ ∆ as well.

So γ ∧ 2βB ∈ Γ and G¬(γ ∧ 2βB) ∈ ∆. As Γ is in a <1-cluster (
⋃
C), we have

Γ <1 {Γ,∆}, so F (γ ∧ 2βB) ∧ FG¬(γ ∧ 2βB) ∈ Γ. Now by corollary 3.5, the Prior
axiom is provable, so its instance F (G¬(γ ∧2βB)∧HF (γ ∧2βB)) is in Γ. This lets
us take Θ =1 Γ in M1 with

G¬(γ ∧2βB) ∧HF (γ ∧2βB) ∈ Θ. (6.4)

It follows from (6.4) that Θ is <1-irreflexive. Let u = Θ/∼. By lemma 6.6, u is
<2-irreflexive. Since Γ <1 Θ, we have C <2 u. (So by lemma 5.5, C <2 λ(u); note
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that C = λ(u) is possible.) Since HFγ ∈ Θ but G¬γ ∈ ∆, we see that ∆ 6<1 Θ. By
prelinearity, Θ v1 ∆, so u v2 w. This proves part 1 of the lemma.

It follows from (6.4) and lemma 3.3 that 3(γ ∧ 2βB) ∈ Θ. So we may choose
Θ′ ∈ R1(Θ) containing γ ∧ 2βB. There are two possibilities, the first being the
reason why we need to use 2βB rather than just βB. If Θ′ = Θ, choose arbitrary
Ξ ∈ R1(Θ) with Ξ <1 Θ (there is such a Ξ by the mirror image of axiom 4d). By
transitivity of R1 we have 2βB ∈ Ξ. Alternatively, if Θ′ 6= Θ, then by (6.4) we have
¬(Θ v1 Θ′), and prelinearity of <1 gives Θ′ <1 Θ. In that case let Ξ = Θ′. Again
we have 2βB ∈ Ξ.

Let d = Ξ/∼. Then d ∈ λ(u). By lemma 6.17, τ(d) = B = τ(c). By lemma 6.14,
c ≡M2
BΨ d. This proves part 2 of the lemma.
For part 3, suppose that w is <2-irreflexive and u <2 w, so that ρ(u) <2 λ(w)

by lemma 5.5 (possibly ρ(u) = λ(w)). We have Hγ ∈ ∆ in this case, and by (6.4),
G¬(γ ∧ 2βB) ∈ Θ. It follows that 2βB /∈ Ξ′ for every Ξ′ ∈ W1 with Θ <1 Ξ′ <1 ∆.
As Θ/∼ = u and ∆/∼ = w, by lemmas 6.6 and 6.17 there is no link v with τ(v) = B
and u <2 v <2 w — equivalently, with ρ(u) <2 v <2 λ(w) (see lemma 5.5). So

{τ(v) : v ∈W2 a link, ρ(u) <2 v <2 λ(w)}
⊆ {τ(v) : v ∈W2 a link, C <2 v <2 λ(w)} \ {B}.

Since there certainly is a link v of type B with C <2 v <2 λ(w) — for example, v = c
— we see that ](ρ(u), λ(w)) < ](C, λ(w)). 2

We remark that γ in (6.3) may be very complex and the instance of the Prior axiom
used to obtain (6.4) may not be valid in M2. That is why we work in M1.

DEFINITION 6.21. Let M = (W,<, R, h) be a submodel of M2.

1. We say that M is good if it is finite, R2-generated, and every <-cluster in M
is a <2-cluster in M2.

2. We say that M is perfect if it is good, and for every pair (C,D) of adjacent
<-clusters in M, there are c ∈ C and d ∈ D with c ≡M2

BΨ d.

Note that we use ≡M2
BΨ and not ≡MBΨ here. We will convert to ≡MBΨ in §6.4 but we

will need a little more machinery for that.

LEMMA 6.22. Every good submodel of M2 extends to a perfect submodel of M2.

Proof. Let us say that a defect in a good submodel M = (W,<, R, h) of M2 is a
pair (C,D) of adjacent <-clusters in M such that there do not exist c ∈ C, d ∈ D
with c ≡M2

BΨ d. Again, we use M2 here, not M. Let

d(M) =
∑{

](C,D) : (C,D) a defect of M
}
.

Then d(M) ≥ 0, and d(M) is finite because M is.
Now letM = (W,<, R, h) be an arbitrary good submodel ofM2. Among all good

submodels M∗ = (W ∗,<∗, R∗, h∗) with M⊆M∗ ⊆M2, choose one with d(M∗) as
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small as possible. We will show that d(M∗) = 0. Since by corollary 6.19, ](C,D) > 0
for every defect (C,D), it follows that M∗ has no defects and is therefore perfect.

Assume for contradiction that d(M∗) > 0. Pick any defect (C,D) inM∗ and any
w ∈ D. AsM∗ ⊆M2, we have C <2 w and ¬(w <2 C). Let u ∈M2 be as provided
by lemma 6.20, and let N be the submodel of M2 consisting of M∗ together with
R2(u). We let < denote <2 � N . So

{v ∈ N : C < v < D} = C ∪ λ(u) ∪ {u} ∪ ρ(u) ∪D, (6.5)

shown left to right in <-order. (Possibly, λ(u) = C or ρ(u) = D or both.) Plainly,
N is good and M⊆ N ⊆M2. So by choice of M∗ we have d(N ) ≥ d(M∗).

Now outside the range C–D shown in (6.5), all defects and their ]-values are the
same in M∗ and N . (Remember that ] is evaluated with respect to M2.) So let us
consider the remaining potential defects in N . From inspection of (6.5), these are
(C, λ(u)) and (ρ(u), D). (Note that (λ(u), ρ(u)) is not a defect since it is not a pair
of adjacent clusters: u is <-irreflexive and λ(u) < u < ρ(u).)

The pair (C, λ(u)) is not a defect, because lemma 6.20 provides that C and λ(u)
contain ≡M2

BΨ -equivalent points (possibly even C = λ(u)).
So because d(N ) ≥ d(M∗), we see that (ρ(u), D) must be a defect in N and

moreover that ](ρ(u), D) ≥ ](C,D).
But since C <2 ρ(u), we have ρ(u) <2 t <2 D ⇒ C <2 t <2 D for all t ∈ W2,

so every link type contributing to ](ρ(u), D) also contributes to ](C,D). Hence,
](ρ(u), D) ≤ ](C,D). So in fact, ](ρ(u), D) = ](C,D) and d(N ) = d(M∗).

Now u is irreflexive, so u <2 D and ¬(D <2 u). Applying the mirror image
of lemma 6.20, we obtain irreflexive v ∈ M2 with u v2 v <2 D, where ρ(v) and
D contain ≡M2

BΨ -equivalent points. But ρ(u) and D do not contain ≡M2
BΨ -equivalent

points, since (ρ(u), D) is a defect in N . It follows that u 6= v. We conclude that
u <2 v <2 D.

Let N ′ be the submodel of M2 consisting of N together with R2(v). We let <

denote <2 � N ′. So

{v ∈ N ′ : ρ(u) < v < D} = ρ(u) ∪ λ(v) ∪ {v} ∪ ρ(v) ∪D, (6.6)

again shown left to right in <-order. (Possibly, ρ(u) = λ(v) or ρ(v) = D or both.)
Outside the range ρ(u)–D shown in (6.6), N ′ has the same defects as N . Within
this range, the possible defects in N ′ are (ρ(u), λ(v)) and (ρ(v), D). Lemma 6.20
provides that (ρ(v), D) is not a defect in N ′ and that ](ρ(u), λ(v)) < ](ρ(u), D). It
follows that d(N ′) < d(N ) = d(M∗). Since again, N ′ is good and M ⊆ N ′ ⊆ M2,
this contradicts the minimality of d(M∗), and completes the proof. 2

6.4 Models M3 and M4

Our final modelM4 will be a perfect submodel ofM2 obtained by lemma 6.22 from a
good submodelM3 satisfying ϕ0 that we have to construct first. So we do a selective
filtration ofM2 to deliver our first verifiably finite model: an R2-generated submodel
M3 ofM2 satisfying ϕ0. We select the points ofM2 to include inM3 in three steps.
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1. Select the whole of C∞/∼ and C−∞/∼, which by lemma 6.10 are finite <2-
clusters and R2-generated subsets of W2, and add them to M3.

2. Now consider in turn each ψ ∈ Ψ (if any) such that F¬ψ ∧ FGψ is satisfied
in M2. Here, Ψ is as in theorem 6.1. Choose any w ∈ W2 with M2, w |=
F¬ψ∧FGψ. By lemma 6.8,M2, w |= F (Gψ∧HF¬ψ), so choose u ∈W2 with
M2, u |= Gψ∧HF¬ψ (and with u =2 w). Select the whole finite set R2(u) and
add it to M3.

3. Also do the mirror image of step 2.

Clearly,M3 is a non-empty good submodel ofM2. So by lemma 6.22, we may choose
a perfect modelM4 withM3 ⊆M4 ⊆M2. We have arrived at our final model. We
show first that truth of formulas in Ψ is preserved between it and M2.

LEMMA 6.23. For every w ∈W4 and ψ ∈ Ψ we have M4, w |= ψ iff M2, w |= ψ.

Proof. The proof is by induction on ψ. The argument is fairly standard for se-
lective filtration. If ψ is atomic, it is true because M4 is a submodel of M2, and
the boolean cases are straightforward (note here and below that Ψ is closed under
subformulas, so the inductive hypothesis applies to subformulas of ψ). The case 2ψ
is also straightforward, because M4 is an R2-generated submodel of M2. The main
cases are formulas in Ψ of the form Gψ and Hψ. Then ψ ∈ Ψ; inductively assume
the result for ψ.

If M2, w |= Gψ, take arbitrary u =4 w in M4. Then u =2 w because M4 ⊆M2.
So M2, u |= ψ. Inductively, M4, u |= ψ. Since u was arbitrary, M4, w |= Gψ.

Assume now thatM2, w |= ¬Gψ — i.e.,M2, w |= F¬ψ. It suffices to find v ∈W3

with w <2 v and M2, v |= ¬ψ. For then, we have v ∈ W4 (since W3 ⊆ W4), w <4 v
(sinceM4 ⊆M2), andM4, v |= ¬ψ (by the inductive hypothesis). So v is a witness
to M4, w |= ¬Gψ.

There are two cases. The first is when M2, w |= GF¬ψ. By lemma 6.10, for
every u ∈ C∞/∼ we have u =2 w, soM2, u |= F¬ψ and there is v ∈W2 with v =2 u
and M2, v |= ¬ψ. By lemma 6.10, v ∈ C∞/∼ as well. So by construction, v ∈ W3,
and by transitivity, w <2 v as required.

The second case is when M2, w |= F¬ψ ∧ FGψ. By definition of M3, there is
u ∈ W2 with M2, u |= Gψ ∧HF¬ψ and R2(u) ⊆ W3. If w w2 u then M2, w |= Gψ,
a contradiction. So by prelinearity, w <2 u. By lemma 3.3, Gψ ∧HF¬ψ → 3¬ψ is
provable in the system without using the connectedness axiom (or its mirror image).
Since all axioms required for the proof are valid in the frame ofM2, and the inference
rules preserve frame validity, we see that Gψ ∧ HF¬ψ → 3¬ψ is valid in M2 and
so M2, u |= 3¬ψ. Choose v ∈ R2(u) with M2, v |= ¬ψ. Then v ∈ W3 (since
R2(u) ⊆W3). As w <2 u R2 v, by axiom 4b we have w <2 v, as required.

So in either case,M4, w |= ¬Gψ as required. The case of Hψ is handled similarly.
This completes the induction. 2

Our final lemma establishes the main theorem 6.1:

LEMMA 6.24. The model M4 is Ψ-linked, and ϕ0 is satisfied in M4.
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Proof. We refer to definition 5.4 for the meaning of ‘Ψ-linked’. Plainly, W4 is finite.
We check that the frame (W4,<4, R4) ofM4 validates all axioms of §3.1 excluding the
connectedness axiom 5 and its mirror image. All these axioms are valid in the frame of
M2, so their first-order correspondents are true in this frame. The correspondents of
all axioms except temporal density and axiom 4d are universal first-order sentences,
and so remain true in the frame of M4 which is a substructure of the frame of
M2. The correspondent of axiom 4d is preserved by R-generated subframes and so
remains true in the frame ofM4. The frame ofM4 consists of <4-clusters sometimes
interspersed by single irreflexive points. It is plain from this that <4 is dense, so the
density axiom is valid in the frame.

Since M4 ⊆M2, and <2 is prelinear (by lemma 6.9), <4 is prelinear too.
Let C ⊆ W4 be a <4-cluster. Since M4 is good, C is also a <2-cluster of M2.

By lemma 6.12, the frame (C,R2 � C) is connected. But this frame is (C,R4 � C),
since M4 ⊆M2. So (C,R4 � C) is connected.

As M4 is perfect, for every pair (C,D) of adjacent <4-clusters there are c ∈ C
and d ∈ D with c ≡M2

BΨ d. By lemma 6.23, c ≡M4
BΨ d as well. So M4 is Ψ-linked.

By lemma 6.7, ϕ0 is satisfied in M2. Pick any w ∈ C∞/∼. Then M2, w |= Pϕ0.
Recall that Pϕ0 ∈ Ψ. Then w ∈ W4 and by lemma 6.23, M4, w |= Pϕ0. It follows
that ϕ0 is satisfied in M4. 2

7 From linked models to real models

In §§7.1–7.3 we provide a simple way to build maps defined on intervals of R. As
far as we know, the method essentially originates in [4]. We will use it in §7.4 to
‘represent’ any connected S4-frame over R, and in §7.5 to ‘represent’ any Ψ-linked
Kripke model over R in a way that respects the formulas in Ψ. An example of the
construction for the formula θ of (4.2) will be given in §7.6.

Linear orders, intervals, and other related notions were introduced in §2.5. In
particular, recall that we often write a linear order (I,<) simply as I. In this section,
we will write ordered pairs in the form 〈i, j〉 where they might be confused with
intervals.

7.1 Lexicographic sums of linear orders

Let (J,<) be a linear order, and for each j ∈ J let Ij be an interval of R. (More
generally, Ij can be any linear order, but we are concerned only with the case of
intervals of R.) We write

I =
∑
j∈J

Ij = {〈i, j〉 : j ∈ J, i ∈ Ij},

and define an order < on I lexicographically by 〈i, j〉 < 〈i′, j′〉 iff j < j′ or (j = j′

and i < i′). Clearly, (I,<) is a linear order. It can be thought of as the linear
order obtained from (J,<) by replacing each j ∈ J by a copy of Ij . If (J,<) =
({0, 1, . . . , n}, <) for some n ∈ N, we can write I explicitly as I0 + · · ·+ In. It can be
thought of as a copy of I0 followed by copies of I1, . . . , In in order.
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When J = {0, 1}, it is plain that if I0 has a greatest element and I1 has no least
element, or if I0 has no greatest element and I1 has a least element, then I0 + I1 is
order-isomorphic to an interval of R. For example, (0, 1] + (0, 1] ∼= (0, 1) + [0, 1] ∼=
(0, 1]. More generally:

PROPOSITION 7.1. Suppose that one of the following holds.

1. J is finite, say (J,<) = ({0, 1, . . . , n}, <) for some n ∈ N. I0 has no least or
greatest element. Each Ij for j > 0 has a least element but no greatest element.

2. (J,<) = (Z, <), each Ij (j odd) has no least or greatest element, and each Ij
(j even) is a singleton.

3. (J,<) = (R, <), each Ij has a least and a greatest element, and Ij is a singleton
for every irrational j.

Then (
∑

j∈J Ij , <) ∼= (R, <).

Proof (sketch). A linear order is isomorphic to (R, <) iff it is dense, has no endpoints,
has a countable dense subset, and is Dedekind complete. It is well known and easy
to check that each of the three sum-orders above has these properties. See [4, 27] for
more information. 2

When J and the Ij meet one of the conditions in proposition 7.1, the linear order
(I,<) is isomorphic to (R, <), and we will generally identify the two. Sometimes we
will identify (I,<) with an open interval of R. It will always be stated explicitly
when these identifications are made.

7.2 Functions on linear orders

We continue to let (J,<) be a linear order, Ij (j ∈ J) an interval of R, and I =∑
j∈J Ij . Let W be a non-empty set, and for each j ∈ J let fj : Ij → W be a map.

We define a map

f =
∑
j∈J

fj : I →W

by f(〈i, j〉) = fj(i).

In the case where (J,<) = ({0, 1, . . . , n}, <), we may write the sum explicitly as
f0 + · · · + fn. If Ij is a singleton {x} and fj(x) = s, say, we may write the map fj
simply as s.

This ‘sum’ notation for functions should not be confused with (for example) the
pointwise sum of real-valued functions, and in fact, in our applications the set W will
be the set of worlds of a Kripke frame and will have no ‘+’ operation defined on it.

EXAMPLE 7.2. If w0, . . . , wn ∈ W then, modulo a renaming of the elements of
its domain, w0 + · · ·+wn is the map f : {0, . . . , n} →W given by f(i) = wi for each
i ≤ n.
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For j ∈ J we define domf (fj) = Ij × {j} ⊆ I. We will sometimes regard fj as a
map fj : domf (fj) → W , via 〈i, j〉 7→ fj(i) for each 〈i, j〉 ∈ domf (fj). In effect, we
identify fj with f � domf (fj).

The notation domf (fj) is more convenient than the plain Ij×{j} for two reasons.
First, in several places we will not have explicit notation for the Ij , and the notation
saves us from the need to introduce any. Second, we will frequently be identifying
I with R via some tacit order isomorphism ρ : I → R, and we will carry over the
notation domf (fj) via the identification. Formally, when this identification is in
operation,

1. we will identify f with the map f ◦ ρ−1 : R→W ,

2. we will redefine domf (fj) to denote the interval ρ(Ij × {j}) of R,

3. we will sometimes identify fj with the map f ◦ ρ−1 � ρ(Ij ×{j}) defined on this
interval.

7.3 Shuffles

There is an important special case known as the shuffle. Reynolds [26] described a
shuffle as a ‘thorough mixture’ of its ingredients. Keeping W as above, let G be a
countable (possibly empty) set of maps of the form g : Kg → W , where Kg is an
interval of R with a least and a greatest element. Suppose also that g0 : Kg0 →W is
a map, where Kg0 is a singleton interval of R. Choose any θ : R→ G∪{g0} such that
θ(j) = g0 for every irrational j, and θ−1(g) is a dense subset of Q for each g ∈ G.
This is not difficult to do. Then θ−1(g) is dense in R for every g ∈ G ∪ {g0}. Now
define Ij = Kθ(j) for each j ∈ R, so that θ(j) : Ij →W , and let

I =
∑
j∈R

Ij , σ =
∑
j∈R

θ(j) : I →W.

Then σ(〈i, j〉) = (θ(j))(i) ∈W .
An element x ∈ I is said to be a σ-endpoint if it is of the form 〈i, j〉, where j ∈ R

and i is the least or greatest element of Ij .

LEMMA 7.3. Let I, σ be as above, let x, y, z ∈ I with y < x < z, and suppose that
x is a σ-endpoint. Then σ((y, z)) = rng(σ).

Proof. We show that rng σ ⊆ σ((y, z)) (the converse inclusion is trivial). Fix arbi-
trary s ∈ rng σ. Pick g ∈ G ∪ {g0} and k ∈ Kg with g(k) = s. Suppose x = 〈i, j〉,
say, and suppose that i is the least element of Ij (the case where it is the greatest
element of Ij is similar). If y = 〈i′, j′〉, say, then we must have j′ < j. Now θ−1(g) is
dense in R, so we may pick j∗ ∈ θ−1(g) with j′ < j∗ < j. Then y < 〈k, j∗〉 < z and
s = σ(〈k, j∗〉) ∈ σ((y, z)) as required. 2

COROLLARY 7.4. Let I, σ be as above. Then σ−1(s) is unbounded in I for each
s ∈ rng(σ).

Proof. This follows from the lemma, as the set of σ-endpoints is unbounded in I. 2
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By proposition 7.1(3), the linear order (I,<) is isomorphic to (R, <), so by choos-
ing a suitable isomorphism we can regard σ as a map σ : R→W . This map depends
on the choices of the isomorphism and θ, but any choices will do for us and in fact
all choices lead to the same result modulo an automorphism (order-preserving per-
mutation) of (R, <). So we let

Shuffle
(
G ; g0

)
denote a map σ : R → W as above, for arbitrary tacit choices of these items. The
elements of G ∪ {g0} are called the ingredients of the shuffle.

EXAMPLE 7.5. If a, b, c ∈W then Shuffle({a, b}; c) can be taken to be a map σ :
R→ {a, b, c} such that σ−1(a), σ−1(b) are dense sets of rationals and σ−1(c) = R\Q.

7.4 S4 frames

We now use lexicographic sums to establish a relative of the McKinsey–Tarski theo-
rem that the logic of R in the language with 2 is S4 [20]. It will be needed in §7.5.
A similar method is used in [10] to prove the McKinsey–Tarski theorem itself, and
others. There is also very substantial similarity to the methods used in [20, 24].

DEFINITION 7.6. An S4-frame is a pair (W,R), where R is a reflexive and
transitive binary relation on the non-empty set W .

DEFINITION 7.7. Let F = (W,R) be an S4-frame, (I,<) a linear order, and
g : I →W a map. We say that an element x ∈ I is g-fair (with respect to F) if there
are y, z ∈ I with y < x < z and such that g((y′, z′)) = R(g(x)) for every y′, z′ ∈ I
with y ≤ y′ < x < z′ ≤ z.

To motivate the definition, consider a Kripke model M = (W,R, h) and a map
g : R → W . Let h′ : PV → ℘(R) be the assignment induced from M by g, via
h′(p) = g−1(h(p)) for p ∈ PV . The reader is invited to check that if every x ∈ R is
g-fair then g preserves all modal formulas: (R, h′), x |= ϕ iff M, g(x) |= ϕ for every
x ∈ R and every L-formula ϕ not involving G or H. See the claim in the proof of
lemma 7.25 below.

REMARK 7.8. Clearly, if F is an R-generated subframe of an S4-frame G, a point
x ∈ I is g-fair with respect to F iff it is g-fair with respect to G.

Where the meaning is clear from the context, we will usually say simply that x
is g-fair.

REMARK 7.9. Fairness is clearly a ‘local’ property depending only on arbitrarily
small neighbourhoods of the point in question. So if g =

∑
j∈J fj , j ∈ J , and

x ∈ domg(fj) is in the interior of domg(fj) (that is, x is not a least or greatest
element of domg(fj)), then x is g-fair iff it is fj-fair. (Recall here that we identify fj
with g � domg(fj).)

THEOREM 7.10. Let F = (W,R) be a finite connected S4-frame (connected frames
were defined in definition 5.2). Then there is a map g : R→W satisfying:

31



1. every x ∈ R is g-fair (with respect to F),

2. g−1(w) is unbounded in R for every w ∈W .

Proof. Recall from definition 2.1 that R•wu means that Rwu ∧ ¬Ruw. As F is
finite, we can define for each w ∈ W a map νw : R → W by complete induction on
|R(w)|:

νw = Shuffle
(
{w + νu + w : u ∈ R•(w)} ∪ {u : Rwu ∧Ruw} ; w

)
.

This is well defined because (a) for each u ∈ R•(w), since R is transitive we have
R(u) ⊆ R(w), and plainly w ∈ R(w) \ R(u), so |R(u)| < |R(w)| and hence νu is
defined inductively, (b) the domain of each map w+νu+w and of each map u can be
taken to be an interval of R with a least and a greatest point (for u it is a singleton
interval), and (c) the domain of the map w is some singleton interval of R.

Claim. For each w ∈W :

1. rng(νw) = R(w).

2. Every x ∈ R is νw-fair.

Proof of claim. The proof is by complete induction on |R(w)|. Inductively assume
the claim for all u ∈ R•(w). For part 1, rng(νw) is clearly the union of the ranges of
the ingredients of the shuffle defining νw. For any u ∈W , the range of the map u is
just {u}. So using the inductive hypothesis,

rng(νw) =
(⋃

u∈R•(w)({w} ∪ rng(νu) ∪ {w})
)
∪ {u : Rwu ∧Ruw} ∪ {w}

=
(⋃

u∈R•(w)R(u)
)
∪ {u : Rwu ∧Ruw} ∪ {w}

= R(w).

This proves part 1. For part 2, take x ∈ R. We show that x is νw-fair. If x is a
νw-endpoint (see §7.3), suppose that νw(x) = u, say. The definition of νw tells us
that either u = w, or Rwu and Ruw. In both cases, by transitivity of R we have
R(u) = R(w). By lemma 7.3 and part 1, whenever y < x < z we have

νw((y, z)) = rng(νw) = R(w) = R(u).

It follows that x is νw-fair. If x is not a νw-endpoint, then x is in the interior of the
domain of νu for some u ∈ R•(w). Inductively, x is νu-fair, and hence (see remark 7.9)
it is νw-fair as well. This proves the claim.

Now F is connected and R is reflexive and transitive. It follows that F is path-
connected in the sense that for each u, v ∈ W there are w0, . . . , wn ∈ W (for some
finite n) with w0 = u, wn = v, R(wi, wi+1) for each even i < n, and R(wi+1, wi) for
each odd i < n. Using this and the finiteness of F , it is straightforward to find an
infinite zigzag path through F that visits each point infinitely often. Formally, there
are ai, bi ∈W (i ∈ Z) satisfying:

• Raibi−1 and Raibi for each i ∈ Z,

• for each w ∈W , the set {i ∈ Z : ai = w} is unbounded in Z.
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We would like to define g =
∑

i∈Z(ai+νai +ai+νbi), but the notation may be easier
to follow if we avoid nested sums. So for each i ∈ Z, define functions as follows:

f4i = f4i+2 = ai,
f4i+1 = νai ,
f4i+3 = νbi .

We now define our desired map g : R→W by

g =
∑
j∈Z

fj .

By proposition 7.1(2), dom(g) is order-isomorphic to R. As usual, we identify the
two, and identify each restriction g � domg(fj) of g with fj .

Let x ∈ R be arbitrary. We show that it is g-fair. Fix the unique j ∈ Z such that
x ∈ domg(fj). There are four cases. If j = 4i+ 1 for some i ∈ Z, then fj = νai . By
the claim, x is νai-fair, and hence (remark 7.9) it is g-fair. The case where j = 4i+ 3
for some i ∈ Z is similar.

Suppose j = 4i+ 2 for some i ∈ Z. So fj is the map ai, g(x) = ai, and the maps
fj−1 = νai and fj+1 = νbi are shuffles. Take any y ∈ domg(fj−1) and z ∈ domg(fj+1),
so that y < x < z. By applying corollary 7.4 and part 1 of the claim to νai and νbi ,
we see that

g((y, x)) = rng(νai) = R(ai),
g((x, z)) = rng(νbi) = R(bi).

Consequently, g((y, z)) = g((y, x)) ∪ {g(x)} ∪ g((x, z)) = R(ai) ∪ {ai} ∪ R(bi). But
ai ∈ R(ai), and moreover, since Raibi, transitivity yields R(bi) ⊆ R(ai). So this union
is just R(ai) — i.e., R(g(x)). Thus, g((y, z)) = R(g(x)) for every y ∈ domg(fj−1)
and z ∈ domg(fj+1). Since all sufficiently large y < x lie in domg(fj−1) and all
sufficiently small z > x lie in domg(fj+1), it follows that x is g-fair as required.

A similar argument covers the case where j = 4i for some i ∈ Z. We simply note
that the left and right neighbours of x are then νbi−1

and νai , respectively, and that
Raibi−1. So in all cases, x is g-fair. This proves part 1 of the theorem.

For part 2, let w ∈W and r ∈ R be given. The set {i ∈ Z : ai = w} is unbounded
in Z, so we can take i, j ∈ Z such that ai = w, j = 4i (so fj = ai), and so large that
r < x for the unique x ∈ domg(fj). Then g(x) = ai = w. So g−1(w) has no upper
bound, and a symmetrical argument shows that it has no lower bound either. 2

7.5 Representing Ψ-linked models

Here, we prove the main result of this section:

THEOREM 7.11. Let Ψ be a finite set of L-formulas closed under subformulas,
let ϕ ∈ Ψ, and suppose that ϕ is satisfied in some Ψ-linked Kripke model. Then ϕ is
satisfiable over R.

To prove it, fix ϕ,Ψ as in the statement of the theorem, and letM = (W,<, R, h)
be a Ψ-linked Kripke model in which ϕ is satisfied. We will use theorem 7.10 to
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define (in definition 7.18) a map g : R→W that will induce a model over R, and we
will then prove that g preserves all formulas in Ψ. The theorem will follow from this.

To define g, we need to set out some terminology.

7.5.1 Clusters in the model

SinceM is Ψ-linked (see definition 5.4), < is prelinear and lemma 5.5 applies to the
frame of M. Thus we may enumerate, without repetitions, the <-clusters in M as
C0, . . . , Ck for some k ≥ 0, with

C0 < C1 < · · · < Ck.

Let i < k. Then (Ci, Ci+1) is a pair of consecutive <-clusters. AsM is Ψ-linked,
there are two possibilities.

1. Ci and Ci+1 are not adjacent, so there is u ∈ M with Ci < u < Ci+1 and
u /∈ Ci ∪ Ci+1. Then u is not in any <-cluster, so is irreflexive. We must have
Ci = λ(u) and Ci+1 = ρ(u). It follows that u is unique. We define ui to be
this u, and we say that i is open, Ci is right-open, and Ci+1 is left-open.

2. Ci and Ci+1 are adjacent, so as M is Ψ-linked, we can select di ∈ Ci and
si+1 ∈ Ci+1 with di ≡MBΨ si+1. In this case, we say that i is closed, Ci is
right-closed, and Ci+1 is left-closed.

We also say that C0 is left-open and Ck right-open. (We do not define k itself as
either open or closed.)

7.5.2 The maps fi and f ′i

The map g : R → W will be made from maps f0, . . . , fk and f ′0, . . . , f
′
k−1. Up to an

order automorphism of R, we will have g =
∑

i<k(fi + f ′i) + fk, but it may help the
reader if we provide more specific notation for the domains of the components of this
sum. So we choose elements

−∞ = l0 < r0 ≤ l1 < r1 ≤ l2 < r2 ≤ · · · < rk−1 ≤ lk < rk =∞ (7.1)

in R ∪ {±∞}, such that ri = li+1 iff i is open, for each i < k. We will use these
elements to define

• surjective maps fi : (li, ri)→ Ci for each i ≤ k,

• ‘filler’ maps f ′i : [ri, li+1]→W for each i < k.

Unfortunately, the definitions involve a number of cases, because the Ci come in four
kinds: left- or right-open, and left- or right-closed.

DEFINITION 7.12. First we define the maps fi for i ≤ k. Fix such an i. We
will actually define fi by way of an auxiliary map, f∗i . First note that because M is
Ψ-linked, (Ci, R � Ci) is a finite connected S4-frame.
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1. If Ci is left-open and right-open then, observing that (li, ri) is order-isomorphic
to R, use theorem 7.10 to choose a map f∗i : (li, ri) → Ci satisfying the stated
properties — to wit, every x ∈ (li, ri) is f∗i -fair with respect to (Ci, R � Ci),
and (f∗i )−1(w) is unbounded in (li, ri) for every w ∈ Ci.

2. If Ci is left-open and right-closed, first use theorem 7.10 to choose a map f∗i :
(li,∞) → Ci with the stated properties. The properties ensure that there is
x > li with f∗i (x) = di. By some scaling, we can suppose that x = ri.

3. If Ci is left-closed and right-open, we use a mirror image argument to choose a
map f∗i : (−∞, ri)→ Ci with f∗i (li) = si.

4. If Ci is left-closed and right-closed, we combine the preceding two cases, with
a little extra work to ensure surjectivity. Using theorem 7.10, choose a map
f∗i : R→ Ci with the stated properties. By the properties and the finiteness of
Ci, there are x < y in R with f∗i (x) = si, f

∗
i (y) = di, and f∗i ((x, y)) = Ci. By

scaling, we can assume that x = li and y = ri.

We now define fi = f∗i � (li, ri).

Before moving on, we collect some facts about the fi.

LEMMA 7.13. Let i ≤ k and x ∈ (li, ri). If Ci is left-open then fi((li, x)) = Ci. If
Ci is right-open then fi((x, ri)) = Ci.

Proof. Suppose that Ci is left-open. Certainly, fi((li, x)) ⊆ rng(f∗i ) = Ci. To
prove the converse inclusion, let w ∈ Ci be given. Because Ci is left-open, dom(f∗i )
has the form (li, z) where either z = ri or z = ∞ (see definition 7.12(1,2)). By
theorem 7.10, (f∗i )−1(w) is unbounded in dom(f∗i ), so there is y ∈ (li, x) with f∗i (y) =
w. By definition, fi = f∗i � (li, ri), so fi(y) = w and hence w ∈ fi((li, x)). Since w
was arbitrary, Ci ⊆ fi((li, x)), proving the first part. The second part is a mirror
image. 2

COROLLARY 7.14. For each i ≤ k, the map fi : (li, ri)→ Ci is surjective.

Proof. This is immediate from lemma 7.13 except when Ci is left-closed and right-
closed (case 4 of definition 7.12). But in that case, we arranged explicitly that
fi((li, ri)) = Ci. 2

LEMMA 7.15. Suppose that i < k is closed. Then fi((y, ri)) ⊆ R(di) for some
y ∈ (li, ri), and fi+1((li+1, z)) ⊆ R(si+1) for some z ∈ (li+1, ri+1).

Proof. Here, Ci is right-closed, Ci+1 is left-closed, and di, si+1 are defined. By
theorem 7.10, ri is f∗i -fair, so there are y, z ∈ dom(f∗i ) with li < y < ri < z and
f∗i ((y, z)) = R(f∗i (ri)) = R(di). Then fi((y, ri)) = f∗i ((y, ri)) ⊆ f∗i ((y, z)) = R(di).
This proves the first part of the lemma, and the second part is a mirror image. 2

DEFINITION 7.16. Next we define the maps f ′i : [ri, li+1]→W for each i < k.

1. If i is open, then ri = li+1 and ui is defined. Define f ′i simply by f ′i(ri) = ui.
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Figure 2: Example of parts of g : R→M when k = 4

2. If i is closed, then Ci is right-closed, Ci+1 is left-closed, and di, si+1 are defined.
Plainly, (R(di), R � R(di)) is a finite S4-frame. It is trivially connected, be-
cause if R(di) is the union of disjoint R-generated subsets X,Y , then supposing
without loss of generality that di ∈ X, we have R(di) ⊆ X and so Y = ∅.
Noting that (ri, li+1) is order-isomorphic to R in this case, we may therefore
choose a map f ′i : (ri, li+1) → R(di) satisfying the conditions of theorem 7.10
— to wit, each x ∈ (ri, li+1) is f ′i-fair with respect to (R(di), R � R(di)), and
f ′i
−1(w) is unbounded in (ri, li+1) for each w ∈ R(di). We extend f ′i to the

whole of [ri, li+1] by defining f ′i(ri) = di and f ′i(li+1) = si+1. (So in this case,
f ′i([ri, li+1)) ⊆ Ci but f ′i(li+1) ∈ Ci+1.)

LEMMA 7.17. Suppose that i < k is closed and let x ∈ (ri, li+1). Then f ′i((ri, x)) =
f ′i((x, li+1)) = R(di).

Proof. As in lemma 7.13, theorem 7.10’s conditions imply that (ri, li+1) ∩ f ′i
−1(w)

is unbounded in (ri, li+1) for each w ∈ R(di), from which the lemma follows. 2

7.5.3 The map g

DEFINITION 7.18. We finally define g = (
⋃
i≤k fi) ∪ (

⋃
i<k f

′
i) : R → W . That

is, for each x ∈ R,

g(x) =

{
fi(x), if x ∈ (li, ri) for some i ≤ k,
f ′i(x), if x ∈ [ri, li+1] for some i < k.

This is plainly well defined.

EXAMPLE 7.19. An example of the construction of g is shown in figure 2. In the
figure, C0 and C4 are left- and right-open, C1 is left-open and right-closed, C2 is left-
and right-closed, and C3 is left-closed and right-open. The small circles inside C1 and
C2 are d1 and s2, respectively, and the big circles are R(d1) and R(s2), respectively.
Similarly, the element d2 is the small square inside C2, and the large square is R(d2).
The large square inside C3 is R(s3) and s3 is the small square inside it. We can see
that R(d1) is used in a sense as intervening material for g between C1 and C2 via f ′1,
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and similarly with R(d2). For an example of how the construction produces a model
of ϕ over R, see §7.6.

7.5.4 Properties of g

We establish a few properties of g, useful below.

LEMMA 7.20. For each i ≤ k,

Yi = {x ∈ R : g(x) < Ci} =

{
(−∞, li+1), if i < k,

R, if i = k.

Proof. If i = k, the result is trivial since W < Ck. Let i < k. If x < li+1, then g(x) is
fj(x) or f ′j(x) for some j ≤ i, so by inspection, g(x) ∈ Cj for some j ≤ i, or g(x) = uj
for some j < i (we have j 6= i since x 6= li+1). It follows that g(x) < Ci. If x ≥ li+1

then g(x) = uj for some j ≥ i or g(x) ∈ Cj for some j > i, so ¬(g(x) < Ci). 2

LEMMA 7.21. The map g : R→W is surjective and order preserving: if x < y in
R then g(x) < g(y).

Proof. Surjectivity is immediate from corollary 7.14 and the fact that g(ri) = ui for
every i < k such that ui is defined. We check that g is order preserving. Assume
x < y. Suppose first that g(y) ∈ Ci for some i ≤ k. Then y ∈ Yi. By lemma 7.20,
Yi is closed downwards under <, so x ∈ Yi as well. Hence g(y) ∈ Ci = g(x) as
required. If on the other hand g(y) = ui for some i < k, then the definition of g
yields y = li+1 > x, so x ∈ Yi by lemma 7.20. Hence g(x) < Ci < ui = g(y) as
required. 2

LEMMA 7.22. Each x ∈ R \ {ri, li+1 : i < k} is g-fair with respect to the frame
of M.

Proof. Each such x is in the interior of dom(fi) for some i ≤ k or the interior of
dom(f ′i) for some i < k. As fi and f ′i were defined using theorem 7.10, in the former
case x is fi-fair with respect to (Ci, R � Ci), and in the latter case x is f ′i-fair with
respect to (R(di), R � R(di)). These are R-generated subframes of the frame of M.
By remarks 7.8 and 7.9, x is g-fair with respect to the frame of M. 2

LEMMA 7.23. Let i ≤ k and x ∈ (li, ri).

1. If Ci is left-open then g((li, x)) = Ci.

2. If Ci is right-open then g((x, ri)) = Ci.

Proof. Immediate from lemma 7.13, since g � (li, ri) = fi. 2

LEMMA 7.24. Suppose that i < k is closed.

1. g((y, ri)) ⊆ R(di) for some y < ri.

2. g((ri, x)) = g((x, li+1)) = R(di) for every x ∈ (ri, li+1).

3. g((li+1, z)) ⊆ R(si+1) for some z > li+1.

Proof. Since g � (li, ri) = fi and g � (li+1, ri+1) = fi+1, parts 1 and 3 follow from
lemma 7.15. Part 2 follows from lemma 7.17, since g � (ri, li+1) = f ′i . 2
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7.5.5 The model R

We define an assignment h′ into R by h′(p) = g−1(h(p)), for each atom p. We let
R = (R, h′). This is our intended model. We now prove a ‘truth lemma’ for it, from
which theorem 7.11 will easily follow.

LEMMA 7.25. For every ψ ∈ Ψ and x ∈ R we have R, x |= ψ iff M, g(x) |= ψ.

Proof. By induction on ψ. The lemma for atomic ψ is immediate from the definition
of h′, and the boolean cases are easy. The main cases are Gψ, Hψ, and 2ψ. Since Ψ
is closed under subformulas, ψ ∈ Ψ as well, so inductively assume the lemma for ψ:

R, x |= ψ ⇐⇒ M, g(x) |= ψ for every x ∈ R (inductive hypothesis) (7.2)

First we deal with the temporal operators. If M, g(x) |= Gψ then take arbitrary
y ∈ R with y > x. By lemma 7.21, g is order preserving, so g(x) < g(y) and hence
M, g(y) |= ψ. Inductively, R, y |= ψ, and as y was arbitrary, R, x |= Gψ.

Conversely, suppose that M, g(x) |= ¬Gψ. As W is finite and < transitive and
prelinear, we may choose w ∈ W such that M, w |= ¬ψ and w w u for all u ∈ W
withM, u |= ¬ψ. Such a w is a ‘<-maximal’ witness to ¬ψ inM. It should be plain
that g(x) < w. We show that

there is y > x in R with g(y) = w. (7.3)

To prove (7.3), there are two cases.

Case 1: w = ui for some i < k. We have g(x) < w = ui, so g(x) < λ(ui) = Ci.
By lemma 7.20, x ∈ Yi = (−∞, li+1). So x < li+1, and by definition of g,
g(li+1) = ui = w, proving (7.3) in this case.

Case 2: w ∈ Ci for some i ≤ k. We show first that Ci is right-open. Suppose for
contradiction that Ci is right-closed. Then i < k, the points di and si+1 are
defined, and w and di are in the same cluster, so di < w and hence M, di |=
¬Gψ. But di ≡MBΨ si+1 and Gψ ∈ BΨ, so M, si+1 |= ¬Gψ as well, and there
is u ∈ W with si+1 < u and M, u |= ¬ψ. By choice of w we have u v w. So
si+1 < u v w < di. By transitivity, si+1 < di. But this is a contradiction,
because di ∈ Ci, si+1 ∈ Ci+1, and Ci+1 is a strictly <-later cluster than Ci. So
Ci is indeed right-open.

Because Ci is right-open, if i < k then ri = li+1. Also, rk =∞. So lemma 7.20
yields Yi = {y ∈ R : g(y) < Ci} = (−∞, ri). Since g(x) < w ∈ Ci, we have
x ∈ Yi. As Ci is right-open, lemma 7.23(2) yields Ci ⊆ g((x, ri)), so there is
y > x with g(y) = w, proving (7.3) in this case too.

So we may take y as in (7.3). Then R, y |= ¬ψ by the inductive hypothesis (7.2), so
R, x |= ¬Gψ as required.

In spite of the temporal asymmetry of the definition of g, the case of Hψ is so
similar that we leave it to the reader.

Finally we consider 2ψ, the most interesting case. The following claim will make
light of all but one of the subsequent subcases.
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Claim. If x is g-fair then R, x |= 2ψ iff M, g(x) |= 2ψ.
Proof of claim. Assume that x is g-fair. First suppose that M, g(x) |= 2ψ. By
g-fairness of x, we can choose y, z ∈ R with y < x < z and g((y, z)) ⊆ R(g(x)). Take
arbitrary t ∈ (y, z). Then g(t) ∈ R(g(x)), so by Kripke semantics, M, g(t) |= ψ. By
the inductive hypothesis (7.2), R, t |= ψ. As t was arbitrary, we obtain R, x |= 2ψ.

Conversely, if R, x |= 2ψ then choose y < x < z in R such that R, t |= ψ for all
t ∈ (y, z). Pick arbitrary w ∈ R(g(x)). By g-fairness of x we have R(g(x)) ⊆ g((y, z)),
so there is t ∈ (y, z) with g(t) = w. Since t ∈ (y, z), we haveR, t |= ψ, and inductively
(see (7.2)),M, w |= ψ. Since w was arbitrary,M, g(x) |= 2ψ. This proves the claim.

There are now four subcases.

1. If x ∈ R \ {ri, li+1 : i < k} then by lemma 7.22, x is g-fair, and the claim gives
R, x |= 2ψ iff M, g(x) |= 2ψ as required.

2. Suppose that x = li+1 = ri for some i < k. We show that x is g-fair, and
this is easy to do. As ri = li+1, we see that Ci is right-open, Ci+1 is left-open,
and g(x) = ui. Take any y, z with li < y < x < z < ri+1. Recalling that
x = li+1 = ri, by lemma 7.23 we have g((y, x)) = Ci and g((x, z)) = Ci+1, so

g((y, z)) = g((y, x)) ∪ {g(x)} ∪ g((x, z)) = Ci ∪ {ui} ∪ Ci+1 = R(ui).

Hence, x is g-fair. By the claim, R, x |= 2ψ iff M, g(x) |= 2ψ.

3. Suppose that x = ri < li+1 for some i < k. Then i is closed and g(x) = di. By
lemma 7.24(1), g((y, x)) ⊆ R(di) for all large enough y < x. On the other side,
if z ∈ (x, li+1) then by lemma 7.24(2), g((x, z)) = R(di). Consequently, for all
large enough y and small enough z with y < x < z, we have

g((y, z)) = g((y, x)) ∪ {g(x)} ∪ g((x, z)) =

⊆R(di)︷ ︸︸ ︷
g((y, x)) ∪ {di} ∪R(di) = R(di).

So once again, x is g-fair, and the claim yields R, x |= 2ψ iff M, g(x) |= 2ψ.

4. Finally suppose that ri < li+1 = x for some i < k. This case is the culmination
of our work. The claim does not apply, as x is not g-fair: indeed, g((ri, x)) is
disjoint from R(g(x)).

Since ri < li+1, we know that Ci is right-closed, Ci+1 is left-closed, di and si+1

are both defined, g(x) = si+1, and di ≡MBΨ si+1.

Suppose on the one hand that R, x |= 2ψ. We show first that M, di |= 2ψ.
Choose y ∈ (ri, x) with R, t |= ψ for all t ∈ (y, x). Then g((y, x)) = R(di) by
lemma 7.24(2). Let w ∈ R(di) be arbitrary. Choose t ∈ (y, x) with g(t) = w.
Inductively (see (7.2)), M, w |= ψ. Since w was arbitrary, we obtain M, di |=
2ψ as required. But di ≡MBΨ si+1 = g(x) and 2ψ ∈ BΨ, so we have M, g(x) |=
2ψ as well.

Suppose on the other hand that M, g(x) |= 2ψ. As g(x) = si+1 ≡MBΨ di and
2ψ ∈ BΨ, we have both M, si+1 |= 2ψ and M, di |= 2ψ. Hence, M, w |= ψ
for every w ∈ R(si+1) ∪ R(di). Let y = ri < x. It follows from lemma 7.24(2)
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that g((y, x)) = R(di). By lemma 7.24(3) there is z > x such that g((x, z)) ⊆
R(si+1). Of course, {g(x)} ⊆ R(si+1) too. So

g((y, z)) = g((y, x)) ∪ {g(x)} ∪ g((x, z)) ⊆ R(di) ∪R(si+1).

Choose t ∈ (y, z) arbitrarily. By the above, g(t) ∈ R(di)∪R(si+1). SoM, g(t) |=
ψ, and inductively (see (7.2)), R, t |= ψ as well. Since t was arbitrary, we obtain
R, x |= 2ψ, as required.

This completes the induction and the proof. 2

Now choose w ∈ W with M, w |= ϕ. By lemma 7.21, g is surjective, so there is
x ∈ R with g(x) = w. Since ϕ ∈ Ψ, by the lemma we obtain R, x |= ϕ. Thus, ϕ is
satisfiable over R, proving theorem 7.11.

7.6 Example

We give a brief example of the construction of R. Recall from proposition 5.6 that
the formula

θ = H¬a ∧H¬b ∧ ¬a ∧ ¬b ∧3a ∧3b ∧G¬(3a ∧3b) ∧ FG¬a

of (4.2) is true at world u0 in the Ψ-linked Kripke modelM shown in figure 3, where
Ψ is the set of subformulas of θ.
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Figure 3: Kripke model M satisfying θ

Following the route taken in §7.5, we select points −∞ = l0 < r0 = l1 < r1 <
l2 < r2 = l3 < r3 = ∞ in R ∪ {±∞}. Theorem 7.10 yields maps f∗i : R → Ci for
i = 0, 1, 2, 3, which we scale and chop to give maps fi : (li, ri)→ Ci. For i 6= 1 there
is no choice for fi, since |Ci| = 1. For f∗1 : R→ C1, the sequence ai, bi (i ∈ Z) in the
proof of theorem 7.10 looks like

· · · a−2 b−2 a−1 b−1 a0 b0 a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 · · ·
· · · a d1 d1 d1 b d1 d1 d1 a d1 d1 d1 b d1 d1 d1 · · ·

so f∗1 is a Z-sum of maps taking singletons to a, b, d1 and open intervals of R to d1.
Up to isomorphism, it maps odd integers to the point satisfying a in C1, even integers
to the point satisfying b, and non-integers to d1. We choose a non-integer, say −0.5,
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and scale f∗1 � (−∞,−0.5) to (l1, r1), yielding our map f1 : (l1, r1) → C1. The odd
negative integers, when scaled, form a sequence of points in (l1, r1) converging to l1
and mapping to a under f1, and there is a similar sequence for b arising from the even
negative integers. There is no choice over the maps f ′i , since by the definitions we have
f ′0 : [r0, l1]→ {u0}, f ′1 : [r1, l2)→ R(d1) = {d1}, f ′1(l2) = s2, and f ′2 : [r2, l3]→ {u2}.
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Figure 4: the maps fi and f ′i (i = 0, 1, 2) and f3

Figure 4 sketches these maps. We let g : R → M be the union of all of them.
The model over R induced by g is shown in figure 5. It should be clear that θ is true
at l1.

l1
u aa· · · au

r2bb· · · r1

u -θ

R

Figure 5: the map g : R→M

8 Conclusion

We can now prove our main result:

THEOREM 8.1. The system of §3.1 axiomatises the L-logic of R.

Proof. Soundness was shown in theorem 3.1. Conversely, let ϕ0 be a formula consis-
tent with the system of §3.1. Let Ψ be the set of subformulas of Pϕ0. By theorem 6.1,
ϕ0 is satisfied in a Ψ-linked Kripke model. By theorem 7.11, ϕ0 is satisfiable over R.
Hence, any consistent formula is satisfiable over R. 2

We have shown that the logic of R in the temporal language L with modalities
G, H, and 2
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• is finitely axiomatisable, answering an implicit problem of Shehtman [28],

• has PSPACE-complete complexity,

• has no strongly complete axiomatisation,

• is not Kripke complete.

We list some remaining open problems. First, some complexity problems.

PROBLEM 8.2. For fixed k ≥ 0, what is the complexity of the set of L-formulas
that are satisfiable over R and involve at most k 2-operators?

The methods of [23] may be helpful. If the answer is ‘NP-complete’, it might
suggest that the language with F , P , and 2 could be more tractable in practice than
the more expressive language with Until and Since.

The operations of sum (+) and shuffle in §7, plus two more involving countable
iterations, can be used to specify models over R in a finite way. By results in [4], any
model over R can be specified up to any desired degree of first-order equivalence in
such a way, so any satisfiable L-formula has a model specified by these operations.
This leads to the following problem.

PROBLEM 8.3. Investigate the complexity of model checking for the language L
for models over R specified by a finite sequence of operations of the above kinds.

This problem was investigated in [6] for the language with Until and Since. It
was shown to be in PSPACE in [19] and PSPACE-complete in [8]. One may also
wish to develop alternative reasoning systems for L over R, such as tableaux, and
synthesis methods along the lines of [6, 7]. The end result of this research could
justify the promotion of L as a viable language for specification and reasoning over
the real line, possibly a more attractive one than the very expressive language with
Until and Since.

It may be of interest to study the logic of R in the sublanguage of L without H:
the only non-boolean connectives are G and 2. This logic is PSPACE-complete, by
the same argument as in theorem 4.1. Theorem 4.2 survives: there is no strongly
complete axiomatisation. The proof of theorem 4.5 can be adapted to show that it
is not Kripke complete, using the formula

F (p ∧G¬p ∧ ¬a ∧ ¬b ∧3a ∧3b ∧G¬(3a ∧3b) ∧ FG¬a) ∧G(Fp→ ¬a ∧ ¬b).

The Prior axiom is no longer expressible, but a variant Fp∧FG¬p→ F (G¬p∧3p)
can be used instead.

PROBLEM 8.4 (N. Bezhanishvili). Is the logic of R with connectives G,2 finitely
axiomatisable?

An alternative and more expressive interpretation of 2 is as ‘derivative’ [d], so
that (R, h), x |= [d]ϕ if there is an open neighbourhood O of x with (R, h), y |= ϕ for
every y ∈ O \ {x}. Finite axiomatisations of the logic of R with [d] alone (without
G, H) and with [d] and ∀ are given in [18] (see also Shehtman’s habilitation thesis
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and [10]). Gatto [9] has recently shown that the logic of R in the language with G,
H, and [d] is finitely axiomatisable.

Other possible, non-first-order definable interpretations of 2 over R are based
on cardinality and Baire category. For example, one could define (R, h), x |= 3ϕ to
hold when every open neighbourhood of x contains uncountably many points y with
(R, h), y |= ϕ.

PROBLEM 8.5. Study the logic of R (and, dropping G,H, of other topologi-
cal spaces) in the language with boxes based on cardinality or Baire category, plus
G,H,2, [d], and its sublanguages.

One final language consists of G,H and two modalities 2+,2−, where (R, h), x |=
2+ϕ if there is y > x such that (R, h), z |= ϕ for every z ∈ (x, y), and 2− is the mirror
image. We could read 2− and 2+ as ‘recently’ and ‘imminently’. The corresponding
diamonds have been written in the literature as K−,K+, respectively.

PROBLEM 8.6. Find axiomatisations of the logic of R in this language and in
sublanguages such as {G,2+}.
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