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Abstract. Interval logics are an important area of computer science.
Although attention has been mainly focused on unary operators, an
early work by Venema (1991) introduced an expressively complete in-
terval logic language called CDT, based on binary operators, which has
many potential applications and a strong theoretical interest. Many very
natural questions about CDT and its fragments, such as (non-)finite ax-
iomatizability and (un-)decidability, are still open (as a matter of fact,
only a few undecidability results, including the undecidability of CDT,
are known). In this paper, we answer most of these questions, showing
that almost all fragments of CDT, containing at least one binary opera-
tor, are neither finitely axiomatizable with standard rules nor decidable.
A few cases remain open.

1 Introduction

Interval-based temporal logic represents an important area of computer science.
The main species of propositional interval temporal logics studied so far include
Mozskowski’s Propositional Interval Logic (PITL) [22], Halpern and Shoham’s
Modal Logic of Allen’s Relations (HS) [16], and Venema’s CDT logic [25] (ex-
tended to branching-time frames with linear intervals in [14]). Important frag-
ments of HS studied in more detail include, among others, the logic of begins/ends
Allen’s relations (BE) [19], the logics of temporal neighborhood [8,9,12] and the
logics of subinterval structures [4,5].

(Un-)decidability. The logic PITL, which features the binary modality C
(chop) and the modal constant π for point-intervals, has been shown to be un-
decidable in [22] when interpreted in the class of all finite linearly ordered sets
and in classes based on N or Z; in [19] the result has been extended to the dense
case (as pointed out in [13], this implies undecidability in the class of all linearly
ordered sets). Satisfiability for HS is also undecidable in many cases, as it has
been shown in [16]. HS can be thought of as a modal logic with a unary modal
operator for any of Allen’s relations between two intervals. Undecidability has



been shown for various interesting classes of linearly ordered sets, and the proof
hinges on a non-trivial reduction from the halting problem for a Turing ma-
chine. In some cases, such as Dedekind-complete linearly ordered sets with an
infinite unbounded ascending sequence, validity is non recursively enumerable,
which implies non-finite axiomatizability (no matters what kind of deduction
rules are used). Undecidability of CDT, over the same classes of structures, im-
mediately follows from that of HS. In [19], the fragment of HS with only two
modalities, corresponding to Allen’s relations begins/ends (BE), has been shown
undecidable when interpreted over dense linear orderings. On the positive side,
decidability of the fragments of HS with modalities corresponding to Allen’s
relations begins/begun-by and ends/ended-by has been obtained by means of a
translation to Linear Temporal Logic [13]. Moreover, decidability of the satis-
fiability problem for the class of HS fragments featuring only two modalities,
corresponding to Allen’s relations meets/met-by (AA, or PNL), has been shown
in [6] (as a matter of fact, a number of natural extensions of it turn out to be un-
decidable ([7])). Finally, decidability of the logics of subinterval structures over
dense ordering has been proved in [4,5].

(Non-)finite axiomatizability. Sound and complete axiomatic systems in in-
terval temporal logics are scarce. PITL has been axiomatized both at the first-
order and the propositional level in [3] for discrete/finite linearly ordered sets,
but under the hypothesis of locality, that is, with the semantical assumption that
each propositional letter is true over an interval if and only if it is true at the first
point of the interval. The logics HS and CDT have been finitely axiomatized,
respectively in [24] and [25], for various classes of linearly ordered sets, but using
a Burgess/Gabbay-style non-orthodox ‘irreflexivity’ rule [11]. Finally, logics of
neighborhood modalities have complete axiomatic systems with standard rules
in various cases; some of them are infinite, as in the case in which point-intervals
are allowed, but no modal constant for them is included in the language [12].

In this paper we focus on the logic CDT. Its language includes three binary
operators C, D, and T , which correspond to the ternary interval relations occur-
ring when an extra point is added in one of the three possible distinct positions
with respect to the two endpoints of the current interval (between, before, and
after), plus a modal constant π which holds at a given interval if and only if it is
a point-interval. We prove the following results. First, we show that the undecid-
ability of CDT can be extended to some sub-languages. For the language with C
and π, undecidability was known (as recalled above). Here we show that D alone
and T alone are undecidable as well, when interpreted in interval structures over
any class of linearly ordered sets containing at least one linearly ordered set with
an infinite sequence — ascending for T , descending for D — and that D+π and
T + π are undecidable when interpreted in interval structures over finite strict
linear orders. Second, the logic CDT is not finitely axiomatizable with standard
rules over interval structures based on any class of linearly ordered sets con-
taining (Q, <). The same holds for any sub-language containing at least one of
the modalities C,D, T . This result holds even if we drop the modal constant π.
Notice that the undecidability and non-finite axiomatizability results are inde-



pendent from each other. The question of whether there exists a finite axiomatic
system for CDT with standard rules only was open since [24,25]. The results in
the present paper correct a previous claim in [23]. Because of space restrictions,
many proofs are only sketched in bare outline or omitted.

2 Basic Notions

Venema’s interval-based temporal logic CDT [25] features a denumerable set AP
of propositional letters, the classical operators ∧ and ¬ (the remaining ones can
be considered as abbreviations), the modal constant π, and three binary modal
operators, namely, C, T , and D.4 Well-formed formulas, denoted by φ, ψ, . . .,
can be obtained by the following grammar:

φ := p | ¬φ | φ ∧ ψ | π | φ ]ψ (] ∈ Mod),

where Mod = {C,D, T} and p ∈ AP. We will denote the sublanguage of CDT
featuring only the non-empty set S ⊆ Mod of the operators by LπS , and by LS
when π is not allowed (so CDT becomes LπCDT in our notation). In the next
section, we will show that, for every S, LS is not expressive enough to define π.

Definition 1 (abstract semantics). Let S ⊆ Mod. An S-frame is a structure
of the form F = (I,Π,R] : ] ∈ S), where I is a non-empty set, Π ⊆ I, and
R] ⊆ I3 for each ] ∈ S. An S-model is a structure of the form M = (F , h),
where F = (I,Π,R] : ] ∈ S) is an S-frame and h : AP → P(I). The frame of
M is F . We evaluate an LπS-formula φ in M at i ∈ I as follows:

– M, i |= p iff i ∈ h(p), for p ∈ AP;
– M, i |= ¬φ iff it is not the case that M, i |= φ;
– M, i |= φ ∧ ψ iff M, i |= φ and M, i |= ψ;
– M, i |= π iff i ∈ Π;
– M, i |= φ ]ψ iff there exist j, k ∈ I with R](i, j, k),M, j |= φ, andM, k |= ψ.

Throughout, we often identify (notationally) a model or frame with its domain:
so, for example, we write i ∈ F or i ∈M to mean i ∈ I as above. Let S ⊆ Mod,
M be an S-model, and K be a class of S-frames. An LπS-formula φ is said to
be satisfiable in M if there is some i ∈ M such that M, i |= φ, and satisfiable
over K if it is satisfiable in a model whose frame is in K. Similarly, an LπS-
formula φ is valid in M (resp., valid over K) if for every i ∈ M, it is the case
that M, i |= φ (resp., if φ is valid in every model whose frame is in K). These
definitions naturally generalize to the case of sets of formulas.

Notice that LS-formulas are LπS-formulas, so we can evaluate them in S-models.
We do not need to include Π in our frames in this case, but it can always be
added without affecting LS-semantics. So rather than to complicate our notation
by introducing frames without Π, we give LS-formulas semantics in LπS-models,
which include Π.

While the above semantics can be considered abstract, we can formalize a
concrete one based on pairs of points (intervals) over linear orders.
4 C stands for ‘chop’. One may think of D as standing for ‘Done’ and T for ‘To come’.
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Fig. 1. The relations RC , RD, RT ; the thick line represents the current interval [x, y].

Definition 2 (concrete semantics). Let (T,<) be a strict linear order. We
write Int(T,<) for the set {[t, u] : t, u ∈ T, t ≤ u}. As usual, [t, u] = {v ∈ T :
t ≤ v ≤ u}, and t ≤ u abbreviates t < u ∨ t = u. Let Π = {[t, t] : t ∈ T}. For
any [x, y], [z, t], [v, w] ∈ Int(T,<), we define

– RC([x, y], [z, t], [v, w]) iff x = z, t = v, and y = w;
– RD([x, y], [z, t], [v, w]) iff x = t, z = v, and y = w;
– RT ([x, y], [z, t], [v, w]) iff x = v, y = z, and t = w.

For S ⊆ Mod, we write IntS(T,<) for the S-frame (Int(T,<), Π,R] : ] ∈ S).

A graphical account of the three relations is given in Fig. 1. Intuitively, for an
interval [x, y], we have M, [x, y] |= φCψ iff there is z ∈ [x, y] with M, [x, z] |=
φ and M, [z, y] |= ψ, and similarly for the other two modalities. We will use
alternatively the abstract or the concrete semantics.

Definition 3. Let S ⊆ Mod and let K be a class of strict linear orders. We
write S(K) (resp., Sπ(K)) for the set of all LS-formulas (resp., LπS-formulas)
valid over {IntS(T,<) : (T,<) ∈ K}. Thus, S(K) and Sπ(K) are the logics of
(intervals over) K in their respective languages.

Beside the usual N,Z,Q, we introduce notation for some common classes:

– Lin = the class of all strict linear orders
– Fin = the class of all finite strict linear orders
– Dense = the class of all strict dense linear orders
– Dis = the class of all strict discrete linear orders
– Asc = the class of all strict linear orders that contain an infinite ascending

sequence (i.e., they have (N, <) as a suborder)
– Des = the class of all strict linear orders that contain an infinite descending

sequence

We usually write S ⊆ Mod as a sequence consisting of its members: thus, we
have the logics CDT (Lin), Cπ(Dense), etc. When K = {(T,<)}, we write S(K)
as S(T,<) and Sπ(K) as Sπ(T,<).

3 Expressive Power of LCDT and LπCDT

While in this paper we are mainly interested in binary modalities, unary modal-
ities are most studied in interval logics. In general, one can introduce a unary



interval modality for each of Allen’s relations between two intervals. In [16] it was
shown that only four of them are sufficient to express any of Allen’s relations
between two intervals, namely, 〈B〉 (begins), 〈E〉 (ends) and their inverses. In
the language LπCDT these operators can be easily expressed, e.g.: 〈B〉φ = φC¬π,
or 〈E〉φ = ¬πDφ. In [24] the undecidability of CDT (Asc) (and, by symmetry,
of CDT (Des)) has been proved by exploiting the undecidability of HS over the
same classes. Notice that the modal constant π plays an important role here.
So, the question is whether π is definable in the language LCDT or not. Here we
show that it is not the case, proving that LCDT is strictly less expressive than
LπCDT , by applying a simple bisimulation argument to exhibit two models that
can be distinguished by an LπCDT -formula, but not by any LCDT -formula.

Theorem 1. The modal constant π cannot be defined in LCDT .

Proof. Consider the pair of models (M0,M1), based, respectively, on Int(T0, <)
and Int(T1, <), where T0 = {x0, z0, y0} with x0 < z0 < y0, and T1 = {x1, y1}
with x1 < y1. Clearly, Int(T0, <) = {[x0, x0], [y0, y0], [z0, z0], [x0, y0], [x0, z0],
[z0, y0]}, and Int(T1, <) = {[x1, x1], [y1, y1], [x1, y1]}. The valuation functions
h0 and h1 are void. It is easily seen that the intervals [x0, z0] and [x1, x1] are
bisimilar. By the bisimulation-invariance of modal formulas (see, e.g., [1, Theo-
rem 2.20]), they satisfy the same LCDT -formulas in their respective models. But
M0, [x0, z0] |= ¬π and M1, [x1, x1] |= π. ut

Because π is equivalent to [B]⊥ (and to [E]⊥), this means that LCDT cannot
define all of the modalities corresponding to Allen’s relations, and the original
argument for the undecidability cannot be applied anymore. As for fragments of
LπCDT , the logic Cπ has been shown to be undecidable for discrete linear orders
in [22]; later, in [19], the undecidability was shown also for dense orders, and
thus, since density and the universal operator can be defined in the language
(see [13]), for all linear orders. The other fragments, with or without π, have
received no attention so far.

4 Undecidability

In this section, we establish undecidability of any logic D(K) where K ⊆ Lin and
K ∩Des 6= ∅, and T (K), where K ⊆ Lin and K ∩ Asc 6= ∅. Recall that Asc (resp.,
Des) is the class of all linearly ordered sets with an infinite ascending (resp.,
descending) sequence. We consider the case of T , the other one is symmetric. We
show how to encode in LT a variant of the N×N-tiling problem called the Octant
Tiling Problem. Given a set of tiles T = {t1, . . . , tk}, the octant tiling problem
consists in establishing whether T can tile one octant of the Cartesian plane
over N; in our case, it will be the second octant O = {(p, q) | p, q ∈ N, p ≤ q}.
Each tile ti has four colors, namely, right(ti), left(ti), up(ti), and down(ti),
and neighboring tiles must have matching colors. Formally, we say that a set
T can tile O if there exists a function f : O 7→ T such that right(f(p, q)) =
left(f(p + 1, q)) and up(f(p, q)) = down(f(p, q + 1)), where f(p, q) represents



the tile to be placed in the position (p, q), whenever all relevant coordinates
((p, q), (p+ 1, q) etc.) lie in O. The undecidability of the N×N-tiling problem is
well-known (e.g., see [2]); one can easily prove that the octant tiling problem is
undecidable as well.

4.1 Language, Shortcuts, and u-Intervals

Let T = {t1, . . . , tk} be an instance of the octant tiling problem. We will assume
that AP contains at least the propositional letters u, t1,. . . , and tk.

As a preliminary step, we introduce a sort of universal operator (denoted
by G) that looks only at the future of the current interval, and, then, we set
our framework by forcing the existence of unit-intervals (or u-intervals) work-
ing like atomic elements. Such intervals will be denoted by the propositional
letter u. We will impose that u-intervals are disposed in an unbounded unique
(uninterrupted) sequence:

Gφ ::= ¬(>T (¬φT>)), (1)
uT> ∧G(u→ uT¬u). (2)

It is not difficult to see that M, [x, y] |= Gφ iff ∀z, t(y ≤ z ≤ t→M, [z, t] |= φ).
Lemma 1. Suppose that M is a model with frame IntT (T,<) for any strict
linear order (T,<), that [x, y] ∈M, and that M, [x, y] |= (2). Then, there exists
an infinite sequence of points y0 < y1 < · · · such that

1. y = y0;
2. For every l ∈ N, M, [yl, yl+1] |= u.

4.2 The Encoding of the Tiling Problem and Undecidability

Since the set of tiles T is finite, the set of colors is finite as well. Let us define
an arbitrary order over it and denote the i-th color by col(i). The propositional
letters t1, . . . , tk are used to encode the colors of each side of the corresponding
tiles t1, . . . , tk, that is, to state that right(ti) = color(kr), left(ti) = color(kl),
up(ti) = color(ku), and down(ti) = color(kd), for suitable kr, kl, ku, and kd.

The next formulas state that all u-intervals are tiles and that, whenever a
tile is placed, it is unique. Moreover, they guarantee that tiles are placed in such
a way that they respect conditions on colors.

G(u→
|T |∨
i=1

ti), (3)

G
∧
i 6=j

¬(ti ∧ tj), (4)

G

|T |∧
i=1

(ti → ¬(uT¬
|T |∨

j=1,up(ti)=down(tj)

tj)), (5)

G
(
u→

|T |∧
i=1,j=1, right(tj)6=left(ti)

¬(tiTtj)
)
. (6)
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Fig. 2. A pictorial representation of the encoding.

Now we define
φT = (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6). (7)

Lemma 2 (soundness). Let T = {t1, . . . , tk} be a set of tiles. If φT is satis-
fiable, then T tiles the second octant O.

Proof. Let M, [x, y] |= φT . We show that there exists a tiling function f : O 7→
T . By Lemma 1, we know that there exists a unbounded sequence of points
y0 < y1 < . . . such that y = y0, and, for every l ∈ N, M, [yl, yl+1] |= u. Now, for
each l,m ∈ N, l ≤ m, we put:

f(l,m) = t, where M, [yl, ym+1] |= t.

First, we have to show that f is well-defined, that is, that each f(l,m) is a tile.
We proceed by induction on (m− l). If (m− l) = 0, then we are on a u-interval,
and, by (3), it must be a tile. If more than one tile is placed over, it suffices to
choose one of them randomly, and thus f is a function. Suppose now that f(l,m)
is a tile whenever m−l ≤ p, and consider m−l = p+1. Since ((m−1)−l) ≤ p, by
inductive hypothesis f(l,m−1) is a tile, say ti. This means thatM, [yl, ym] |= ti,
and, by (5), M, [yl, ym] |= ¬(uT¬

∨
up(ti)=down(tj)

tj). So, for every y ≥ ym,
if M, [ym, y] |= u, it must be the case that M, [yl, y] |=

∨
up(ti)=down(tj)

tj .
This applies to the particular case y = ym+1, since M, [ym, ym+1] |= u. Hence,
we have that M, [yl, ym+1] |= tj , that is, f(l,m) = tj , for some j such that
down(tj) = up(ti). This guarantees us that f respects the ‘vertical’ condition of a
tiling function. To conclude the proof, we need to show that that the ‘horizontal’
condition is respected as well. To this end, consider f(l,m) and f(l + 1,m).
By definition, the corresponding tiles are [yl, ym+1] and [yl+1, ym+1]. Since, by
definition, the interval [yl, yl+1] is a u-interval, by (6) it cannot be the case
that left(f(l + 1,m)) 6= right(f(l,m)),which implies that left(f(l + 1,m)) =
right(f(l,m)). ut

Lemma 3 (completeness). Let T = {t1, . . . , tk} be a set of tiles and f : O 7→
T be a tiling function. Then φT is satisfiable over (the intervals of) any linearly
ordered set with an infinite ascending sequence.



Proof. Assuming for simplicity that the order is (N, <), one can make φT true
at [0, 0] by letting u be true at all intervals of length 1, and each ti be true at
all intervals of the form [x, y + 1], where f(x, y) = ti. ut

We can prove similar results for S ⊆ {C,D, T} containing C, without using
the modal constant π, over any K ⊆ Lin containing some (T,<) that has an infi-
nite interval [x, y]. The construction is analogous to the previous one. Assuming
that [x, y] contains an infinite increasing sequence, we substitute T by C in (1),
and modify (2), (5), and (6), as follows:

uC> ∧G(u→ >C¬u) ∧ ¬(>C(uC¬(uC>))), (8)

G

|T |∧
i=1

(
tiCu→

|T |∨
j=1,up(ti)=down(tj)

tj

)
, (9)

G

|T |∧
i=1

(
uCti →

|T |∨
j=1, right(tj)=left(ti)

tj

)
. (10)

If the resulting conjunction φT is satisfiable over Lin, then T tiles the second
octant; this implies that φT is satisfiable on [x, y]. A mirror image formula works
when [x, y] contains an infinite descending sequence.

Theorem 2. For any S ⊆ {C,D, T} containing T , the logics S(K) and Sπ(K)
are not decidable for any K ⊆ Lin with K∩Asc 6= ∅, in particular when K is any
of the following: Lin, Dense, Dis, Asc, the class of all infinite linearly ordered sets,
any of the usual linear orders based on N, Q, R, etc. The same applies for any
S ⊆ {C,D, T} containing D, substituting Asc with Des, and N with Z or Z≤0.
Finally, for any S ⊆ {C,D, T} containing C, S(K) and Sπ(K) are undecidable
whenever K ⊆ Lin contains some (T,<) such that some interval in Int(T,<) is
infinite — e.g., when K is Lin, Asc, Des, Dense, Dis, {(Q, <)}, or {(R, <)}.

Proof. If K is any class with K ⊆ Lin and K∩Asc 6= ∅, then φT is satisfiable over
K (and hence ¬φT /∈ T (K), Tπ(K)) iff T tiles O. Since φT can be constructed
from T by an algorithm, the result for T follows from the undecidability of the
octant tiling problem. The other cases are similar. ut

4.3 Undecidability over finite models

The above argument cannot be applied when we interpret the language over
finite models. On the other hand, in [22] the language LπC has been shown to be
undecidable when interpreted in the class of all finite linearly ordered sets, or,
equivalently (since this logic can only ‘look’ inside the initial interval), over N or
Z. Here we show how to adapt the same argument to show that the logicsDπ(Fin)
and Tπ(Fin) are undecidable too; again, we focus on the latter only. We closely
follow [22]. In more detail, let G be a context-free grammar in Greibach normal
form with terminals 0, 1, say, and set of non-terminals N (G) = {A0, . . . , AN},
say, where A0 is initial. We assume that the language generated by G does not



contain the empty string ε, and hence that G has no productions of the form
Ai −→ ε. So all productions are of the form Ai −→ V1V2 . . . Vm, where m ≥ 1,
V1 is a terminal, and V2, . . . , Vm are terminals or non-terminals.

Whenever a word w0w1 . . . wn−1 is generated by G, there is a finite derivation
tree D for it (and conversely). Each node d of D has a label λ(d): it is 0 or 1
if d is a leaf, and some non-terminal Ai otherwise, in which case the children
of d taken in left-right order are labeled V1, V2, . . . , Vm, respectively, for some
production rule Ai −→ V1V2 . . . Vm of G (V1 is always a terminal and so the
leftmost child of any node is a leaf). The root of D is labeled A0, and the leaves
taken in left-right order are labeled w0, w1, . . . , wn−1, respectively.

We regard each non-terminal as a propositional letter, and we also use two
more propositional letters, p and u. Thus, our set of propositional letters is
L(G) := N (G) ∪ {p, u}. We let φG be the conjunction of the following LπT -
formulas, where Gφ is defined as in (1), and A0 is the starting symbol for G:

G(u→ ¬π) ∧G¬(¬π ∧ (¬πTu)), (11)(
A0 ∧ ¬(¬πT>)

)
T>, (12)

G¬(Ai ∧ (¬πTAi)), ∀ i = 0, . . . , N, (13)

G
(
π ∧AiT> →

n(i)∨
j=1

V̂ j1 T (V̂ j2 T (· · ·T (V̂ jm(i,j)TAi)) · · · )
)
, ∀ i = 0, . . . , N, (14)

where

Ai −→ V 1
1 V

1
2 . . . V

1
m(i,1) | V

2
1 V

2
2 . . . V

2
m(i,2) | · · · | V

n(i)
1 V

n(i)
2 · · ·V n(i)

m(i,n(i))

is the ‘consolidated’ production rule of G for Ai, and for any terminal or non-
terminal V :

V̂ =


u ∧ p, if V = 1,
u ∧ ¬p, if V = 0,
V, otherwise.

(15)

Lemma 4 (soundness). Let G1,G2 be grammars as above, with (wlog.) N (G1)∩
N (G2) = ∅. Note that L(G1) ∩ L(G2) = {p, u}. If the LπT -formula ψ = φG1 ∧
φG2 is satisfiable in a model with frame of the form IntT (T,<) for some finite
strict linear order (T,<), then the languages generated by G1,G2 have a word in
common.

Proof. Suppose that ψ is satisfiable in a modelM with frame IntT (T,<), where
(T,<) ∈ Fin. We can suppose wlog. that M, [0, 0] |= ψ for some point 0 ∈ T ,
where {x ∈ T : x ≥ 0} = {0, 1, . . . , n} for some natural number n ≥ 0, and < is
the usual ordering on this set. We will see below that n > 0. For x < n put

wx =

{
1, if M, [x, x+ 1] |= p,

0, otherwise.
(16)



We show that the word w = w0 . . . wn−1 is generable by G1 by constructing a
derivation tree D for it. Each node d of D will be associated with an interval
[xd, yd] of (T,<), where 0 ≤ xd ≤ yd. We will add nodes d to D step by step, in
such a way that

M, [xd, yd] |= λ̂(d). (17)

Given this, if d ∈ D is labeled by a terminal λ(d) = α ∈ {0, 1}, thenM, [xd, yd] |=
α̂; by (15), α̂ ` u, so M, [xd, yd] |= u. As M, [0, 0] |= (11), we have yd = xd + 1.

First we add the root r to D, and put [xr, yr] = [0, n] and λ(r) = A0.
As M, [0, 0] |= (12), we have M, [0, n] |= A0, so (17) holds. Then we repeat
the following while D has leaves labeled by non-terminals. Pick such a leaf d,
where λ(d) is a non-terminal Ai, say. By (17),M, [xd, yd] |= Ai, soM, [xd, xd] |=
π∧AiT>. SinceM, [0, 0] |= (14), there exist a production rule Ai −→ V1V2 . . . Vm
of G1 and points xd = x0 ≤ x1 ≤ . . . ≤ xm ≤ n with M, [xj−1, xj ] |= V̂j for
each j = 1, . . . ,m, and M, [xd, xm] |= Ai. But M, [0, 0] |= (13), so xm = yd. We
now add new nodes d1, . . . , dm to D as the left-to-right children of d, and we
put [xdj , ydj ] = [xj−1, xj ] and λ(dj) = Vj for each j = 1, . . . ,m. By choice of
the xj , (17) is preserved. Note that since V1 is a terminal, xd1 < yd1 . It follows
that xd < yd for each d ∈ D; n > 0; and the lengths of intervals associated with
non-terminals strictly decrease as we move from the root. So as T is finite, the
process terminates. Let l0, . . . , lm−1 be the leaves of the final D in left-to-right
order. Each li is labeled by a terminal, and so is associated with a two-point
interval. Now the construction preserves the property that for any x < n, there
is always a leaf of D whose associated interval contains [x, x + 1]. So at the
end, this is still true, and it follows that [x, x + 1] is associated with some li.
Therefore, m = n and l0, . . . , ln−1 are associated with [0, 1], [1, 2], . . . , [n− 1, n],
respectively. For each x < n we have wx = 1 iff M, [x, x + 1] |= p (by (16)), iff
λ(lx) = 1 (by (15) and (17)). So λ(lx) = wx. Hence, D is a derivation tree for w
in G1. Since we can prove by the same argument that w is generable also by G2,
the languages generated by G1, and G2 both contain w, and thus the thesis. ut

Lemma 5 (completeness). Let G1,G2 be as in the previous lemma. If the
languages generated by G1,G2 have a word in common, then the LπT -formula
ψ = φG1 ∧ φG2 is satisfiable in a model with frame of the form IntT (T,<) for
some finite strict linear order (T,<).

Proof. Run Lemma 4’s proof backwards: use derivation trees in G1,G2 for the
common word to read off models of φG1 , φG2 on the same base, on any (T,<) ∈
Fin with long enough intervals. ut

Theorem 3. The logics Tπ(Fin) and Dπ(Fin) are undecidable.

Proof. By [18, theorem 8.10], it is undecidable whether the languages generated
by two context-free grammars have a common word. It is not hard to see that this
is also true for context-free grammars in the form we have used. By Lemma 4
and 5, this problem reduces to satisfiability of LπT -formulas over the intervals
of finite linear orders, which is therefore also undecidable. The argument for
Dπ(Fin) is symmetrical. ut



The same argument shows that Dπ(N, <) and Tπ(N, >) are undecidable.

5 Non-finite axiomatizability

In this section we will show that the logics S(K) and Sπ(K) are not finitely ax-
iomatizable using orthodox inference rules, for any non-empty S ⊆ {C,D, T} and
any class K with (Q, <) ∈ K ⊆ Lin. For example, CDTπ(Lin) and CDTπ(Dense)
are not finitely axiomatizable. The argument is based on the so-called ‘Monk
algebras’ from the theory of relation algebra (see, e.g., [21,20,17]), but we do not
assume any knowledge of that topic here.

5.1 Basic Definitions

Let η, κ > 0 be cardinals, and define an equivalence relation ∼ on η×κ = {(i, j) :
i < η, j < κ} by (i, j) ∼ (i′, j′) if and only if j = j′. We think of j as the color
of (i, j), so ∼ is the ‘same color’ relation. Then, we form a relational structure
α(η, κ) as follows.

Definition 4. We define α(η, κ) as a tuple of the type (I,Π, ρ), where:

– I = (η × κ) ∪ {1,}, where 1,, called identity, is assumed not to be in η × κ;
– Π = {1,};
– ρ is the set of all triples (a, b, c) ∈ I3 such that 1) one of a, b, c is 1, and the

other two are equal, or 2) 1,
/∈ {a, b, c} and a, b, c are not all ∼-equivalent.

The relations RC , RD, RT ⊆ I3 (for I as above) are defined as follows:

– RC = ρ \ {(1,
, a, a) : a ∈ I, a 6= 1,},

– RT = ρ \ {(a, 1,
, a) : a ∈ I, a 6= 1,},

– RD = ρ \ {(a, a, 1,) : a ∈ I, a 6= 1,}.

We define the S-frame FS(η, κ) = (I,Π,R] : ] ∈ S), for each S ⊆ {C,D, T}.

The FS(η, κ) are ‘non-standard’ frames. They are not based on intervals, and
indeed, this is detectable in LS : if η, κ are finite and η � κ then FS(η, κ) does
not even validate the logic S(Lin). But FS(ω, ω) is a bounded morphic image of
Int(Q, <) (cf., e.g., [1, def. 2.10]), and so does validate Sπ(K). Since we can ob-
tain FS(ω, ω) as a ‘limit’ (via ultraproducts or compactness) of the finite frames
FS(η, κ), this will show that S(K) and Sπ(K) are not finitely axiomatizable.

5.2 Frames FS(η, κ) not Validating S(Lin)

Define f : ω → ω by f(0) = 1, and f(k+ 1) = 1 + (k+ 1) · f(k) for every k < ω.
For any set X, and 1 ≤ k < ω, a k-coloring of X is a coloring of the edges of
the complete undirected loop-free graph whose set of nodes is X, using at most
k colors, such that no ‘monochromatic triangle’ appears — that is, there is no
3-element subset of X such that all three edges lying within it are given the
same color. The following Ramsey-type theorem can be found in [15].



Proposition 1. Let k ≥ 1. If a set X has more than f(k) elements then X has
no k-coloring.

Theorem 4. Suppose that S ⊆ {C,D, T} is non-empty, η > 0, κ > 1, and
f(κ) < |FS(η, κ)| < ω. Then FS(η, κ) does not validate S(Lin).

Proof. One can write down a ‘Jankov–Fine’ formula φ (see, e.g., [1, §3.4]) describ-
ing FS(η, κ) and satisfiable only in bounded morphic pre-images of FS(η, κ). If
FS(η, κ) validated S(Lin), φ would be consistent with S(Lin), and so there would
be a bounded morphism h from some concrete interval frame IntS(T,<) onto
FS(η, κ). This would induce a partial κ-coloring of T : the color of the edge xy
for x < y would be the color of h([x, y]) when h([x, y]) 6= 1,. As FS(η, κ) is large,
Lemma 1 shows that (assuming C ∈ S) some interval of T would chop into two
subintervals, all three having the same color. This contradicts the definition of
RC . The cases D ∈ S, T ∈ S are similar. ut

5.3 Frames FS(η, κ) that Do Validate Sπ(Q, <)

We show here that FS(ω, ω) does validate Sπ(Q, <), for any S ⊆ {C,D, T}. To
do this, we will construct a bounded morphism from IntS(Q, <) onto FS(ω, ω)
step by step, using the concepts of ‘networks’ and ‘representations’.

Definition 5. A network is a map N : B × B → α(ω, ω), for some B ⊆ Q,
such that for all x, y, z ∈ B we have:

1. N(x, y) = 1, ⇐⇒ x = y,
2. N(x, y) = N(y, x),
3.
(
N(x, z), N(x, y), N(y, z)

)
∈ ρ.

We write B(N) (the ‘base’ of N) for the set B = {x ∈ Q : (x, x) ∈ dom(N)}.
A network can be thought of as a complete directed graph with edges labeled
by elements of α(ω, ω), satisfying the conditions above. As networks N,M are
functions, it follows from the definitions that N ⊆ M iff B(N) ⊆ B(M) and
N = M � (B(N)×B(N)).

Definition 6. A network N is said to be a representation5 of α(ω, ω) if B(N) =
Q and the following hold for all x, y ∈ Q, where the quantifiers range over Q:

1. ∃z(z ≤ x ∧N(x, z) = a) and ∃z(z ≥ x ∧N(x, z) = a) for every a ∈ α(ω, ω),
2. x < y → ∃z(x ≤ z ≤ y∧N(x, z) = a∧N(z, y) = b) whenever (N(x, y), a, b) ∈

ρ,
3. x < y → ∃z(z ≥ y ∧N(x, z) = a ∧N(z, y) = b) whenever (N(x, y), a, b) ∈ ρ

and a 6= 1,,
4. x < y → ∃z(z ≤ x ∧N(x, z) = a ∧N(z, y) = b) whenever (N(x, y), a, b) ∈ ρ

and b 6= 1,.
5 The term ‘complete representation’ would be more in accordance with usual algebraic

terminology.



Our aim is to show that α(ω, ω) has a representation. We can derive validity of
Sπ(Q, <) in FS(ω, ω) from this quite easily.

Lemma 6. α(ω, ω) has a representation.

Proof. We can build a representation by a ‘step by step’ game played on finite
networks. In each round, one player challenges some failure of a property of
Definition 6 for the current network. The other player replaces the network
by an extension lacking this defect. This is always possible since we are using
α(η, κ) with infinite κ, so that brand new colors can be used to label network
edges whenever necessary. This avoids monochromatic triangles of the kind we
met in Theorem 4. At the end of the game, a representation results. ut

Theorem 5. FS(ω, ω) validates Sπ(Q, <) for any S ⊆ {C,D, T}.

Proof. A representation N of α(ω, ω) induces a bounded morphism h from
IntS(Q, <) onto FS(ω, ω), via h([x, y]) = N(x, y). Bounded morphisms preserve
validity of formulas. ut

5.4 Non Finite Axiomatizability

Theorem 6. For any non-empty S ⊆ {C,D, T} and any class K ⊆ Lin that
contains (Q, <), the logics S(K) and Sπ(K) are not finitely axiomatizable using
standard inference rules (modus ponens, universal generalization, substitution).

Proof. Let Λ be either one of S(K), Sπ(K). Note that

S(Lin) ⊆ Λ ⊆ Sπ(Q, <). (18)

Assume for contradiction that Φ is a finite set of axioms for Λ in its own signa-
ture (LS or LπS). Then (

∧
Φ) = φ(p1, . . . , pk), say, axiomatises Λ alone. For each

finite n > 1, choose finite ηn so large that |α(ηn, n)| > f(n). By Theorem 4,
FS(ηn, n) does not validate even S(Lin), so by (18), it certainly does not vali-
date Λ. Because the standard inference rules preserve validity over any frame,
there is a model Mn = (FS(ηn, n), hn) in which φ is not valid. We regard Mn

as a first-order structure in an appropriate signature. Let M be a countable
elementary substructure of a non-principal ultraproduct of the Mn (cf. [10]).
By  Loś’s Theorem, it follows thatM∼= FS(ω, ω), and that φ is not valid inM.
This contradicts Theorem 5 that FS(ω, ω) validates Sπ(Q, <), and so (by (18))
certainly validates Λ. ut

The logics CDTπ(Lin), CDTπ(Dis), CDTπ(Dense), CDTπ(Q) were finitely
axiomatized by Venema [25], using an unorthodox Burgess/Gabbay-style infer-
ence rule. There is no conflict between this result and Theorem 6. A formula
derived from a formula valid in FS(η, κ) using Venema’s rule need not be valid
in FS(η, κ). So the argument of Theorem 6 fails when this rule is added.



K C(K) Cπ(K) D(K) Dπ(K) T (K) Tπ(K)

Lin Und., NFA Und.[13],NFA Und., NFA Und., NFA Und., NFA Und., NFA
Asc Und., NFA Und., NFA NFA NFA Und., NFA Und., NFA
Des Und., NFA Und., NFA Und.,NFA Und., NFA NFA NFA
Fin ? Und.[22] ? Und. ? Und.
Dense Und., NFA Und.[19],NFA Und., NFA Und., NFA Und., NFA Und., NFA
Dis Und. Und. Und. Und. Und. Und.
N ? Und.[22], ? Und. Und. Und.
Z ? Und.[22], Und. Und. Und. Und.
Q Und., NFA Und.[19],NFA Und., NFA Und, NFA Und., NFA Und., NFA

Table 1. A resume of the results of this paper.

6 Conclusions

In this paper we have considered the temporal logic for intervals CDT intro-
duced by Venema in [25]. Finite axiomatizability with standard rules and decid-
ability/undecidability of CDT itself and of its possible single-modality fragment
is a natural question that was open since the introduction of the logic, and to
which we have answered here. Results are summarized in Table 1, where ‘Und.’
means undecidable and ‘NFA’ indicates non-finite axiomatizability.
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