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Abstract

We study a canonical modal logic introduced by Lemmon, and ax-
iomatised by an infinite sequence of axioms generalising McKinsey’s
formula. We prove that the class of all frames for this logic is not
closed under elementary equivalence, and so is non-elementary. We
also show that any axiomatisation of the logic involves infinitely many
non-canonical formulas.
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1 Introduction

Our story starts with McKinsey’s formula,1

M : �♦p→ ♦�p. (1)

M has long been studied by modal logicians. On the one hand, the normal
modal logic K4M (also known as K4.1) axiomatised by M together with
the transitivity axiom �p → ��p is a well-behaved logic. It is canonical
(i.e., valid in its own canonical frame), and hence Kripke complete. The
class of all frames validating K4M is elementary: it is the class of transitive
frames such that colloquially, every world sees a world that can see at most
itself (see, e.g., [3, proposition 3.46] or [2, example 3.57]).

On the other hand, M itself is rather wild. The logic KM that M
axiomatises alone is determined by its finite frames [4], and so it is Kripke
complete. However, the class of all frames validating KM is not elementary
[6], and not even closed under elementary equivalence [20].2 KM is not the
logic of any elementary class of frames [6], and is not canonical [7]. M is

1McKinsey actually studied (in [18]) the system S4 augmented with �♦p ∧ �♦q →
♦(p ∧ q), but Sobociński showed in [19] that this is the same system as S4 + M . For this
and further discussion, see [9].

2Actually, the class of frames validating any modal logic is elementary iff it is closed
under elementary equivalence [21].
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often called the simplest formula not equivalent to a Sahlqvist formula (see
[2, §3.6] or [3, §10.3] for details of Sahlqvist formulas).

KM was cited by Lemmon in [17] as a logic that had not yielded to the
‘canonical model’ completeness method expounded in that work. Lemmon
then generalised M to an infinite sequence of formulas

Mk : ♦
(
(♦p1 → �p1) ∧ . . . ∧ (♦pk → �pk)

)
, for k ≥ 1. (2)

M is equivalent (in the basic normal modal logic K) to M1. It may help to
observe that since ♦p → �p is equivalent to �¬p ∨ �p, we can rewrite Mk

equivalently as

M0 = >, Mk = ♦
∧
i<k

(�pi ∨�¬pi) for k ≥ 1, (3)

where for later convenience we use the propositional variables p0, . . . , pk−1.
We will use this form of the Mk throughout the paper. Now we can see that
the validity of M1 in a Kripke frame F says that for any partition of the
worlds of F into at most two sets (corresponding to the interpretations of p
and ¬p in a Kripke model over F), any world sees a world whose successors
all lie in a single partition set. Mk says the same as M1 but for a partition
into at most 2k sets. Clearly, Mk+1 `Mk for all k ≥ 1. Lemmon showed by
a short proof-theoretic argument that assuming transitivity, all the Mk are
equivalent to M1.

Lemmon defined KM∞ to be the modal logic axiomatised by the axioms
in (2). This logic, standing between KM and K4M , is the subject of our
paper. Lemmon proved that it is the logic of the class of Kripke frames
satisfying

m∞ : ∀x∃y
(
R(x, y) ∧ ∀z z′(R(y, z) ∧R(y, z′) → z = z′)

)
. (4)

This condition says that every world sees a world with at most one successor.
By considering partitions as above, it is easily seen that KM∞ is valid in all
frames with this property. Lemmon proved completeness by a compactness
argument that showed that the canonical frame for KM∞ satisfies m∞. This
means that KM∞ is canonical. The logic obtained from KM∞ by adding the
transitivity axiom is K4M , so since the transitivity axiom is also canonical,
this gives another proof of the canonicity of K4M .

Since KM∞ is the logic of an elementary class of frames — those satis-
fying m∞ — its canonicity also follows from Fine’s theorem that the modal
logic of an elementary class of frames is canonical [5]. However, the proof
by compactness is different, and the method applies in some cases where
Fine’s result does not [11, 10]. A similar compactness argument was used
by Hughes in [14]. It was generalised by Balbiani et al. in [1, §3], where
it is shown that if σ(p0, . . . , pn−1) is a Sahlqvist formula with first-order
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correspondent φ(x), then {♦
∧

i<k σ(pi
0, . . . , p

i
n−1) : k ≥ 1}, where the pi

j

are distinct propositional variables, axiomatises the modal logic of the class
of frames satisfying ∀x∃y(R(x, y) ∧ φ(y)). By Fine’s theorem, this logic is
canonical. KM∞ is covered by taking σ = ♦p → �p, and the logic in [14]
is covered by taking σ = �p → p. [12] derives axioms for the modal logic
of an arbitrary elementary class of frames; as an example, (3) is obtained
effectively from a formulation of (4) in hybrid logic.

In [15, §6], Jónsson showed using new algebraic proofs that the Mk

are theorems of K4M , that KM∞ is canonical, and hence that K4M is
canonical.

In [1, §5], it is shown that KM∞ (and also the logic axiomatised by Mk,
for each finite k) has the finite model property and is decidable. It is stated
that KM∞ is PSpace-complete and that the proof will appear in a sequel.

Our paper Here, we add to the impression that KM∞ lies somewhat
nearer to KM than to K4M . First, we show that, just as for KM , the
class of all frames for KM∞ is non-elementary, and not even closed under
elementary equivalence (theorem 2.2 below). The proof is similar to that
of [20] for KM , and the result was also proved independently by the same
argument in [1]. In remark 3.9, we show that the class of frames for KM∞

is not closed under ultraproducts.
We also study the canonicity of KM∞. We have seen that it shares

canonicity with K4M . But we will show that it is only barely canonical. A
formula is said to be canonical if the logic that it axiomatises is canonical.
We prove:

• (Theorem 4.3) For no k ≥ 1 is Mk canonical. This generalises the
result of [7] that M is not canonical.

• KM∞ cannot be axiomatised by canonical formulas. Hence, it is not
axiomatisable by Sahlqvist formulas.

• (Theorem 4.4) Indeed, any axiomatisation of KM∞ has infinitely many
non-canonical axioms.

It follows by Fine’s theorem that KM∞ is only barely the logic of an ele-
mentary class of frames. No Mk (for any k ≥ 1) axiomatises the logic of
any elementary class of frames; and any axiomatisation of KM∞ contains
infinitely many axioms that, taken individually, fail to axiomatise the logic
of any elementary class of frames. But KM∞ itself is the logic of a finitely
axiomatisable elementary class of frames.

Thus, the canonicity of KM∞, and its being the logic of an elementary
class of frames, do not arise from properties of any finite number of axioms.
They only emerge in the limit when all the axioms are taken together. This
striking phenomenon has been seen before. In an algebraic setting, [13]
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showed that the variety RRA of representable relation algebras, and also the
variety of modal algebras of ‘infinite chromatic number’, cannot be axioma-
tised by finitely many non-canonical axioms plus arbitrarily many canonical
ones. Analogous results on elementary frame classes then follow from Fine’s
theorem as above. We use the same proof methods here. For each k, l with
2 ≤ l ≤ k < ω, we construct an inverse system of finite Kripke frames vali-
dating Mk, whose inverse limit is a frame that validates Ml but not Ml+1.
The frames are based on those used in the proof in [7] of non-canonicity of
KM . We can then deduce the third result above by first-order compactness.

Organisation of paper In section 2 we prove that the class of frames
for KM∞ is non-elementary (theorem 2.2). In section 3, we introduce some
particular frames, and determine which Mk they validate. They will be put
to use in section 4, where we show that no Mk is canonical (theorem 4.3),
and that any axiomatisation of KM∞ involves infinitely many non-canonical
axioms (theorem 4.4).

Notation Let f : X → Y be a map. We write dom f and rng f for the
domain and range of f , respectively. If S ⊆ X, we write f�S denote the
restriction f to S. If S ⊆ Y , we write f−1[S] for {x ∈ X : f(x) ∈ S}. If
y ∈ Y , we write f−1[y] for f−1[{y}]. For sets Xi (i ∈ I), we write

∏
i∈I Xi

for the set of maps η : I →
⋃

i∈I Xi such that η(i) ∈ Xi for each i. We often
write η(i) as ηi in this case.

Natural numbers will be regarded as ordinals. So for a natural number
n < ω, we identify n with {0, 1, . . . , n − 1}. For an ordinal α, we write α2
for the set of maps f : α → 2, and <ω2 for

⋃
n<ω

n2. Given a set X and a
cardinal κ, the expression [X]≥κ denotes {Y ⊆ X : |Y | ≥ κ}.

Kripke semantics We set up our notation for this. A (Kripke) frame
F = (W,R) consists of a non-empty set W of ‘worlds’, together with a
binary ‘accessibility’ relation R on W . We will write domF for W , and
write R(x, y) to indicate that (x, y) ∈ R. An R-successor (respectively, R-
predecessor) of w ∈ W is a world x ∈ W satisfying R(w, x) (respectively,
R(x,w)). We may indicate informally that R(w, x) by saying that w sees x,
or that x is accessible from w. We will write Rw for the set of all R-successors
of w.

We fix a countably infinite set V = {p0, p1, . . .} of propositional variables.
An assignment into F is a map h : V → ℘(W ), the power set of W . The
pair (F , h) is called a (Kripke) model. We evaluate modal formulas at worlds
of Kripke models in the usual way: for p ∈ V , (F , h), w |= p iff w ∈ h(p);
booleans as usual; and (F , h), w |= ♦φ (respectively, (F , h), w |= �φ) iff
(F , h), x |= φ for some (respectively, all) x ∈ Rw. A modal formula φ is
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valid at a world w of a frame F if (F , h), w |= φ for every assignment h into
F . φ is valid in a frame F , written F |= φ, if it is valid at every world of F .

A frame (W,R) is a generated subframe of another, (W ′, R′), if W ⊆W ′

and R = R′ ∩ (W ×W ′). In this case, it is known (e.g., from [2, proposition
2.6] or [3, theorem 2.7]) that for any h′ : V → ℘(W ′), if h : V → ℘(W ) is
given by h(p) = h′(p) ∩W for p ∈ V , then

(W,R, h), w |= φ ⇐⇒ (W ′, R′, h′), w |= φ

for every w ∈ W and every modal formula φ. Hence, validity is preserved
under generated subframes.

We will assume familiarity with basic notions of modal logic, such as
canonical models. See [2, 3] for guidance if required.

2 The frames for KM∞ are non-elementary

Using a result of the first author and an argument along the lines of van
Benthem’s proof for KM in [20], we can establish our first result. We first
quote theorem 1 of [7] (reproduced as [8, theorem 10.1]).

Theorem 2.1 Let F = (W,R) be a frame. Suppose that W contains a point
r with the property that |Rm| ≥ |Rr| + ω for every m ∈ Rr. Then no Mk

(k ≥ 1) is valid in F .

Proof. Let |Rr| = κ, and put Rr = {mi : i < κ}. Define distinct points
xi, yi ∈ W for i < κ by induction as follows. If i < κ and xj , yj have been
defined for all j < i, we define xi, yi to be any distinct points of Rmi\{xj , yj :
j < i}. This is possible because |Rmi | ≥ κ + ω, so Rmi \ {xj , yj : j < i}
is infinite. Now define a Kripke model M over F by making p true at
precisely {yi : i < κ}. If M, r |= ♦(�p∨�¬p), then there is i < κ such that
M,mi |= �p ∨�¬p. But xi, yi ∈ Rmi , M, xi |= ¬p, and M, yi |= p, so this
is impossible. Hence, M, r 6|= M1. Since Mk+1 ` Mk for k ≥ 1, no Mk for
any k ≥ 1 is valid in F . �

Theorem 2.2 For each k ≥ 1, the class of frames that validate Mk is not
closed under elementary substructures, and hence is not elementary. The
same holds for the class of frames validating KM∞.

Proof. Let F = (W,R) be the Kripke frame with W = {r} ∪ [ω]≥ω ∪ ω,
where r /∈ [ω]≥ω ∪ ω is arbitrary, and R is given by:

Rr = [ω]≥ω,
RS = S for each S ∈ [ω]≥ω,
Rn = {n} for each n ∈ ω.
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(So for n ∈ ω and S ∈ [ω]≥ω, R(S, n) holds iff n ∈ S.) Then F is a frame for
KM∞. For, given any k ≥ 1 and any assignment h : {p0, . . . , pk−1} → ℘(W ),
there is S ∈ [ω]≥ω such that for all x, y ∈ S and i < k, we have (F , h), x |= pi

iff (F , h), y |= pi. Then (F , h), S |=
∧

i<k(�pi ∨ �¬pi), so (F , h), r |= Mk.
Validity of Mk at all other points in F is clear, as they have a successor (an
element of ω) related only to itself. So F |= Mk for each k, and F validates
KM∞.

But in any countable elementary substructure F0 = (W0, R0) of F , it
is easy to check that r ∈ W0, and |Rr

0| ≤ ω = |RS
0 | for each S ∈ Rr

0. (For
example, this follows from the preservation under elementary substructures
of the formulas ∃x∀y¬R(y, x) and ∀x(R(r, x) → ∃≥ny R(x, y)) for each finite
n.) By theorem 2.1, F0 6|= Mk for every k ≥ 1.

Hence, the class of frames validating KM∞ is not closed under elemen-
tary substructures and so cannot be elementary. Also, for each k ≥ 1, the
class of all frames validating Mk is not closed under elementary substruc-
tures (since F validates Mk but F0 does not). �

The proof shows that if L is any modal logic such that KM ⊆ L ⊆ KM∞,
then the class of frames validating L is not elementary. This was proved
independently in [1, theorem 21] by the same argument.

3 Frames validating some Mk and not others

In this section, we study the canonicity properties of KM∞ and its axioma-
tisations, using special frames based on those in [7].

3.1 Squat frames

Definition 3.1 Let F = (W,R) be a frame. A world of W is called a root
of F if it has no R-predecessors, a leaf of F if it has no R-successors other
than itself, and a midpoint, otherwise. A world is reflexive if it is R-related
to itself, and irreflexive otherwise.

F is said to be squat ([7] uses the term ‘trellis-like’) if it has a unique
root, say r; r is not a leaf; all (R-)successors of r are midpoints; and all
successors of midpoints are reflexive leaves.

For example, the frame in theorem 2.2 is squat.

Remark 3.2 We will often use the obvious fact that each Mk is valid at
every world of a squat frame except perhaps the root. This is because each
non-root has a reflexive leaf among its successors, and a reflexive leaf must
clearly validate

∧
i<k(�pi ∨�¬pi) for any k ≥ 1.
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Definition 3.3 Let I 6= ∅, and for each i ∈ I let Fi be a squat frame. We
write

∑
i∈I Fi for the squat frame consisting of a copy of each Fi (i ∈ I),

the copies being disjoint except that their roots are identified.
Formally, if Fi = (Wi, Ri) then

∑
i∈I Fi = (W,R), whereW = (

⋃
i∈I Wi×

{i})/∼, the equivalence relation ∼ is given by (w, i) ∼ (w′, i′) iff (w, i) =
(w′, i′) or w,w′ are the roots of Fi,Fi′ respectively, and

R = {((w, i)/∼, (w′, i)/∼) : i ∈ I, Ri(w,w′)},

where (w, i)/∼ denotes the ∼-class of (w, i). If I = {i1, . . . , im}, we write
the sum as Fi1 + · · ·+ Fim .

We will usually identify each non-root world w of each Fi with its ‘copy’
(w, i)/∼ in

∑
i∈I Fi.

Lemma 3.4 Let Fi (i ∈ I 6= ∅) be squat frames. For any k < ω, we have∑
i∈I Fi |= Mk iff Fi |= Mk for some i ∈ I.

Proof. Recall that M0 = > and Mk = ♦
∧

j<k(�pj ∨ �¬pj) for k ≥ 1.
The result is trivial for M0. Let k ≥ 1. Write ri for the root of Fi (each
i), and r for the root of F =

∑
i∈I Fi. Note that roots are by definition

irreflexive. We will use remark 3.2 without explicit mention. We write
α =

∧
j<k(�pj ∨�¬pj), so that Mk = ♦α.

⇒: If Fi 6|= Mk for each i ∈ I, then for each i there is an assignment
hi into Fi such that (Fi, hi), ri 6|= Mk. Let h be an assignment into F such
that for each i, h agrees with hi on the non-root worlds of Fi. Assume for
contradiction that (F , h), r |= Mk. Pick a successor s of r with (F , h), s |= α.
Since r is irreflexive, s 6= r. Suppose that s is in Fi, say. Then s ∈ Rri

i ,
where Ri is the accessibility relation of Fi. Now it is clear that the subframe
of Fi based on {s}∪Rs

i is a generated subframe of both F and Fi. It follows
that (Fi, hi), s |= α, and hence (Fi, hi), ri |= Mk, contradicting the choice of
hi. So (F , h), r 6|= Mk, and Mk is not valid in F .

⇐: Suppose that i ∈ I and Fi |= Mk. Let h be any assignment into
F . We show that (F , h), r |= Mk. Let hi be the ‘restriction’ of h to Fi.
By assumption, (Fi, hi), ri |= Mk, so there is a successor s of ri in Fi with
(Fi, hi), s |= α. By definition of F , s is a successor of r in F . As before,
(F , h), s |= α. So (F , h), r |= Mk as required. �

3.2 Special squat frames

The following squat frames are modifications of frames used in [7] to prove
non-canonicity of M . We will use them to study the canonicity of KM∞.

Definition 3.5 For each k, n < ω, we define Gk
n to be the squat frame with

a root r, a set Lk
n = k+n2 of leaves, and a set [Lk

n]≥2n
= {Y ⊆ Lk

n : |Y | ≥ 2n}
of midpoints. See figure 1. The accessibility relation R on Gk

n is given by:
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Lk
n = k+n2

[Lk
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Figure 1: The squat frame Gk
n

• Rr = [Lk
n]≥2n

,

• Rs = s for each s ∈ [Lk
n]≥2n

,

• Rx = {x} for each x ∈ Lk
n.

Fix k < ω. The following lemmas determine which Ml (l < ω) are valid
in which Gk

n.

Lemma 3.6 Gk
0 validates Ml for every l < ω.

Proof. M0 = > is valid, so suppose l ≥ 1. All singleton subsets of Lk
0 are

midpoints of Gk
0 . So each of these midpoints has a unique successor. But

any point with at most one successor validates
∧

i<l(�pi ∨�¬pi). Since the
root sees all midpoints, Ml is valid at the root, and hence (remark 3.2) valid
in Gk

0 . �

Lemma 3.7 For each n < ω, Mk is valid in Gk
n.

Proof. Certainly, M0 is valid. Assume that k ≥ 1. By remark 3.2, we only
need check that Mk is valid at the root. Let h : V → ℘(domGk

n) be an
arbitrary assignment. Then h induces a partition of Lk

n into at most 2k sets,
namely, the equivalence classes of the equivalence relation on Lk

n given by
x ∼ y iff x ∈ h(pi) ⇐⇒ y ∈ h(pi) for each i < k. Since |Lk

n| = 2k+n,
at least one partition set s must have cardinality at least 2n, and so is in
[Lk

n]≥2n
. Then (Gk

n, h), s |= �pi ∨ �¬pi for each i < k. As s is accessible
from the root, we see that (Gk

n, h), r |= Mk. Since h was arbitrary, the proof
is complete. �
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Lemma 3.8 If n ≥ 1 then Mk+1 is not valid in Gk
n.

Proof. As n ≥ 1, we may assign truth values to the variables p0, . . . , pk at
points in Lk

n by: pi is true at η ∈ k+n2 iff η(i) = 1. Let s ⊆ Lk
n and suppose

that for each i ≤ k, pi has the same truth value on every element of s. Define
ξ ∈ k+12 by: for each i ≤ k, ξ(i) = 1 iff pi is true at every element of s.
Then ξ = x�(k+ 1) for every x ∈ s. It follows that |s| ≤ 2k+n−(k+1) = 2n−1.
As all midpoints of Gk

n have at least 2n elements, s cannot be in Gk
n. So∧

i≤k(�pi ∨ �¬pi) is false at every midpoint in Gk
n, and therefore Mk+1 is

false at the root under this assignment. �

Note that the accessibility relation of Gk
n is not transitive. This is essen-

tial. For as we mentioned in the introduction, Mk+1 `Mk for all k, and any
transitive frame validating M1 actually validates all the Mk. It follows that
any transitive frame validating Mk (for any k ≥ 1) must also validate Mk+1.
So transitivity would violate the lemmas. They show that Mk 6` Mk+1. So
in the absence of transitivity, the Mk are strictly increasing in strength. It
follows easily that KM∞ is not finitely axiomatisable (corollary 4.5 below).

Remark 3.9 These results will show that the class of frames that validate
KM∞ is not closed under ultraproducts, thereby reproving theorem 2.2.
For each n < ω, let Fn =

∑
k<ω Gk

n. By lemma 3.7, Gk
n validates Mk for

each k. By lemma 3.4, Fn also validates Mk for each k. Now consider a
non-principal ultraproduct F of the Fn. Every midpoint of Fn has at least
2n successors. By standard saturation properties of ultraproducts, or by
direct inspection, each midpoint of F has 2ω successors, and |domF| = 2ω

as well. By theorem 2.1, F validates no Mk for any k ≥ 1. Our result now
follows from the well known fact that a class of structures is elementary iff
it is closed under ultraproducts and ultraroots. The same argument shows
that for any k ≥ 1, the class of frames validating Mk is not closed under
ultraproducts. Of course, these results follow from theorem 2.2, since the
class of frames that validate a modal logic is always closed under ultraroots.

3.3 Descriptive frames and inverse limits

We wish to apply a result of the first author on inverse limits of families of
descriptive frames, so we will recall what these are.

Definition 3.10 A general frame is a triple (W,R,P ), where (W,R) is a
Kripke frame, and P ⊆ ℘(W ) is non-empty and closed under intersection,
complement, and the map lR : S 7→ {x ∈ W : ∀y(R(x, y) → y ∈ S)} (for
S ⊆W ).

A general frame (W,R,P ) is said to be a descriptive frame if

1. If x, y ∈ W are distinct, then there is some S ∈ P with x ∈ S and
y /∈ S.
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2. If x, y ∈ W and ¬R(x, y), then there is some S ∈ P with x ∈ lR(S)
and y /∈ S.

3.
⋂
µ 6= ∅ for every ‘ultrafilter’ µ ⊆ P — i.e., a subset of P satisfying,

for all S, S′ ∈ P , (i) S′ ⊇ S ∈ µ⇒ S′ ∈ µ, (ii) S, S′ ∈ µ⇒ S ∩ S′ ∈ µ,
and (iii) S ∈ µ ⇐⇒ (W \ S) /∈ µ.

For information about descriptive frames, see, e.g., [8, §§1.9–1.11], [3, §8.4],
and [2, §5.5].

Definition 3.11

1. If F = (W,R) is a Kripke frame, we write F+ for (W,R,℘(W )). ([8,
1.3.5] uses this notation in a different way.) Clearly, if F is finite (i.e.,
W is finite), then F+ is a descriptive frame.

2. If F = (W,R,P ) is a descriptive frame, we write F+ for its underlying
Kripke frame (W,R). (We will not use this notation for non-descriptive
general frames because it would clash with well known algebraic no-
tation.)

Definition 3.12 Let F = (W,R,P ) be a general frame and φ a modal
formula. We say that φ is valid in F , written F |= φ, if (W,R, h), w |= φ for
every assignment h : V → P and every w ∈W .

Clearly, φ is valid in a Kripke frame F iff it is valid in the general frame
F+:

F |= φ ⇐⇒ F+ |= φ. (5)

We will also need the notions of bounded morphism, frame homomor-
phism, and inverse family.

Definition 3.13 Recall that given frames F = (W,R) and F ′ = (W ′, R′),
a map f : W →W ′ is said to be a bounded morphism from F to F ′ if for all
w ∈W and v′ ∈W ′, we have R′(f(w), v′) iff there is v ∈ Rw with f(v) = v′.

We remark that the generated subframes of a frame F are precisely the
ranges of bounded morphisms into F .

Definition 3.14 [8, definition 1.5.1] Let F = (W,R,P ) and F ′ = (W ′,
R′, P ′) be general frames. We say that f : F → F ′ is a frame homomorphism
if f : (W,R) → (W ′, R′) is a bounded morphism and f−1[S′] ∈ P for every
S′ ∈ P ′.

Clearly, if f : F → F ′ is a bounded morphism between Kripke frames, then
f : F+ → F ′+ is a frame homomorphism.
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Definition 3.15 [8, definition 1.11.1] An inverse family of descriptive
frames is an object

I =
(
(I,≤), (Fi : i ∈ I), (fij : i ≥ j in I)

)
,

where (I,≤) is an upwards-directed partial order (‘upwards-directed’ means
that any finite subset of I has an upper bound in I), Fi = (Wi, Ri, Pi)
is a descriptive frame for each i ∈ I, and for each i, j ∈ I with i ≥ j,
fij : Fi → Fj is a frame homomorphism such that (a) fii is the identity map
on Wi, and (b) fjk ◦ fij = fik whenever k ≤ j ≤ i in I.

The inverse limit lim← I of I is defined to be F = (W,R,P ), where

W = {x ∈
∏

i∈I Wi : fij(xi) = xj for each i ≥ j in I},
R = {(x, y) ∈W : Ri(xi, yi) for each i ∈ I},
P = {f−1

i [S] : i ∈ I, S ∈ Pi}.

In the third line, for each i ∈ I, fi : W → Wi is the projection given by
fi(x) = xi.

The main fact we need about inverse limits is:

Fact 3.16 [8, 1.11.2(8), 1.11.4] In the above notation, the inverse limit
F of I is itself a descriptive frame. Moreover, for any modal formula φ, if
φ is valid in Fi for every i ∈ I, then φ is valid in F .

3.4 Inverse limits of the squat frames

We will now apply this to our squat frames Gk
n.

Definition 3.17 Let k < ω and n ≤ m < ω. We define πk
mn : domGk

m →
domGk

n as follows:

• It takes the root of Gk
m to the root of Gk

n.

• πk
mn(x) = x�(k + n) for each leaf x ∈ Lk

m = k+m2.

• πk
mn maps a set s ∈ [Lk

m]≥2m
to the set {πk

mn(x) : x ∈ s}.
(It is clear that |πk

mn(s)| ≥ |s|/2m−n, so that indeed, πk
mn(s) ∈ [Lk

n]≥2n
.)

Lemma 3.18 Let k < ω and n ≤ m ≤ l < ω. Then πk
mn : Gk

m → Gk
n is

a surjective bounded morphism, πk
nn is the identity on domGk

n, and πk
ln =

πk
mn ◦ πk

lm.

Proof. Straightforward. �

11



We need a little notation: if F ,F ′,G,G′ are squat frames and f : F → F ′,
g : G → G′ are bounded morphisms taking roots to roots, then we define
f + g : F + G → F ′ + G′ to be the map (clearly a well defined bounded
morphism) taking the root of F +G to the root of F ′+G′, and given on the
remaining worlds x by

(f + g)(x) =

{
f(x), if x ∈ domF ,
g(x), otherwise.

Until §4, fix k, l < ω. We will define two inverse families of descriptive
frames made from finite squat frames (for πk

mn and −+ see definitions 3.17
and 3.11):

1. Ik =
(
(ω,<), ((Gk

n)+ : n < ω), (πk
mn : n ≤ m < ω)

)
,

2. J k,l =
(
(ω,<), ((Gk

n + Gl
1)

+ : n < ω), (πk
mn + ι : n ≤ m < ω)

)
, where ι

is the identity map on domGl
1.

The general frames here are descriptive frames because they are of the form
F+ for a finite Kripke frame F . We are interested in the inverse limits of
these families. For short, write

G∞ =
(
lim
←

(Ik)
)
+

F∞ =
(
lim
←

(J k,l)
)
+

(6)

Lemma 3.19 F∞ ∼= G∞ + Gl
1.

Proof. Let r be the root of F∞ and r′ the root of G∞ + Gl
1. By definition,

for η ∈ F∞ we have ηn ∈ dom(Gk
n + Gl

1) for each n < ω. Define

η′ =


r′, if η = r,

η, if η 6= r and ηn ∈ domGk
n for each n < ω,

η0, if η 6= r and ηn ∈ domGl
1 for each n < ω.

It can be checked that (η 7→ η′) : F∞ → G∞ + Gl
1 is well defined and is the

required isomorphism. �

F∞ is the underlying Kripke frame of the inverse limit of an inverse
family of descriptive frames whose underlying Kripke frames all validate
Mmax(k,l) (by lemmas 3.7 and 3.4). Now k, l < ω are arbitrary, and it could
be that k � l. Nevertheless, and perhaps surprisingly, F∞ need not validate
Mk. Indeed, we will show that F∞ |= Ml but F∞ 6|= Ml+1.

This will be proved by showing that G∞ 6|= Mn for any n ≥ 1. The proof
will need some technical lemmas. The first one is almost immediate from
the definition of G∞:

12



Lemma 3.20 G∞ is a squat frame with at most 2ω worlds.

Proof (sketch). The maps πk
nm take roots to roots, midpoints to midpoints,

and leaves to leaves. So each element in domG∞ is a sequence in
∏

n<ω domGk
n

consisting entirely of roots, entirely of midpoints, or entirely of reflexive
leaves. It is not so hard to see that such a sequence is a root, midpoint, or
reflexive leaf of G∞, respectively. (In particular, because the maps πk

mn are
bounded morphisms, we can inductively construct a sequence of leaves that
is a successor in G∞ of any given sequence in G∞ consisting of midpoints.
We will prove a stronger result in corollary 3.25 below.) It follows easily that
G∞ is squat. Since the Gk

n are finite, |domG∞| ≤
∣∣ ∏

n<ω domGk
n

∣∣ = 2ω. �

The next fact we need — that each midpoint of G∞ has 2ω successors
— is a little harder to prove. Let G∞ = (W,R), say. Fix an arbitrary
midpoint s = (sn : n < ω) of G∞. So (i) each sn is a midpoint of Gk

n, and
(ii) πk

mn(sm) = sn whenever n ≤ m. By the definitions, this says:

(i) sn ⊆ k+n2 and |sn| ≥ 2n for each n < ω,

(ii) sn = {x�(k + n) : x ∈ sm} whenever n ≤ m < ω.

An element x = (xn : n < ω) of G∞ is a leaf of G∞ iff xn ∈ k+n2 for each n.
In this case, xn = xm�(k + n) for each n ≤ m < ω, and x ∈ Rs iff xn ∈ sn

for all n.

Definition 3.21 Let n < ω and x ∈ sn.

1. For n ≤ m < ω, write sx
m = {y ∈ sm : y�(k + n) = x}.

2. For c < ω, we say that x is c-big if |sx
m| ≥ 2m−n−c for every m ≥ n.

Since sx
m ⊆ k+m2 and x ∈ k+n2, we see that

|sx
m| ≤ 2m−n for any n ≤ m < ω and x ∈ sn. (7)

Clearly,

sx
l =

⋃
{sy

l : y ∈ sx
m}, whenever n ≤ m ≤ l < ω and x ∈ sn. (8)

Also note that ‘c-big’ gets weaker as c grows: any c-big element is (c+1)-big.

Lemma 3.22 If x ∈ sn is not c-big, then for all large enough l ≥ n we have
|sx

l | < 2l−n−c.

Proof. By assumption, there is m ≥ n such that |sx
m| < 2m−n−c. Take any

l ≥ m. By (7), |sy
l | ≤ 2l−m for each y ∈ sx

m. So by (8), |sx
l | ≤ 2l−m · |sx

m| <
2l−m · 2m−n−c = 2l−n−c. �
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Corollary 3.23 There is some k-big x ∈ s0.

Proof. If not, then since s0 is finite, by the preceding lemma we may choose
large enough n < ω such that |sx

n| < 2n−k for every x ∈ s0. Now s0 ⊆ k2, so
|s0| ≤ 2k. By (ii) above, sn =

⋃
{sx

n : x ∈ s0}. Hence, |sn| < 2n−k · |s0| ≤ 2n,
contradicting (i) above. �

Proposition 3.24 For any n, c < ω and any c-big x ∈ sn, there is some
m > n such that sx

m contains at least two c-big elements.

Proof. By induction on c. If c = 0, then |sx
m| ≥ 2m−n for all m ≥ n. But

(cf. (7)) we have sx
m ⊆ {y ∈ k+m2 : y�(k + n) = x}, and the right-hand size

has cardinality 2m−n. So in fact,

sx
m = {y ∈ k+m2 : y�(k + n) = x} for all m ≥ n. (9)

Now, for l ≥ m ≥ n and any y ∈ sx
m, we have

sy
l = {z ∈ sl : z�(k +m) = y} by definition of sy

l ,
= {z ∈ sx

l : z�(k +m) = y} since y�(k + n) = x,
= {z ∈ k+l2 : z�(k +m) = y} by (9).

So |sy
l | = 2l−m, and hence every element of every sx

m (m ≥ n) is 0-big.
Suppose that 1 ≤ c < ω, and inductively assume the proposition for

smaller c. Let x ∈ sn be c-big. There are two cases.

Case 1: some element of
⋃

m≥n sx
m is (c − 1)-big. Suppose that m ≥

n and y ∈ sx
m is (c − 1)-big. By the inductive hypothesis, there is

l > m such that sy
l (and hence sx

l ) contains at least two (c − 1)-big
(and hence c-big) elements, as required.

Case 2: otherwise. So x itself is not (c − 1)-big, and by lemma 3.22 we
may take m ≥ c+n such that |sx

m| < 2m−n−(c−1). We show that there
are at least two c-big elements of sx

m.

Assume for contradiction that sx
m has at most one c-big element. By

(ii) above, sx
m 6= ∅. So we may take y ∈ sx

m such that sx
m \{y} contains

no c-big elements. By the case assumption, y is not (c − 1)-big. So
using lemma 3.22 repeatedly, there is large enough l > m such that

|sy
l | ≤ 2l−m−c+1 − 1,

|sz
l | ≤ 2l−m−c − 1 for all z ∈ sx

m \ {y}.

Now by (8), sx
l = sy

l ∪
⋃
{sz

l : z ∈ sx
m \ {y}}. We know that |sx

m| <
2m−n−(c−1), so

|sx
m \ {y}| ≤ 2m−n−c+1 − 2.
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Because x is c-big, we have |sx
l | ≥ 2l−n−c. We conclude that

2l−n−c ≤ |sx
l |

≤ |sy
l |+

∑
z∈sx

m\{y}

|sz
l |

≤ 2l−m−c+1 − 1 + (2m−n−c+1 − 2)(2l−m−c − 1)
= 2l−m−c+1 − 1 + 2l−n−2c+1 − 2l−m−c+1 − 2m−n−c+1 + 2
= 2l−n−2c+1 − 2m−n−c+1 + 1
< 2l−n−2c+1 (since m ≥ c+ n, so m− n− c+ 1 ≥ 1).

Hence l − n − c < l − n − 2c + 1, and so c < 1, contradicting our
assumption. So again, sx

m has at least two c-big elements, as required.

This completes the induction and the proof. �

Corollary 3.25 |Rs| ≥ 2ω.

Proof. For each σ ∈ n2 (each n < ω), we will choose k-big σ̂ ∈ sm for some
m ≥ n by induction on n, such that σ̂ 0̂, σ̂ 1̂ are distinct elements of sbσ

l for
some l > m. Here, we write σ î for the map τ ∈ n+12 given by τ�n = σ and
τ(n) = i (for i = 0, 1).

We have 02 = {∅}. Let ∅̂ be any k-big element of s0; by corollary 3.23,
such an element exists. Inductively, if k-big σ̂ ∈ sm has been chosen, by
proposition 3.24 we can choose l > m and distinct k-big σ̂ 0̂, σ̂ 1̂ ∈ sbσ

l .
Now, for each η ∈ ω2, {η̂�n : n < ω} generates a leaf λ(η) =

(
(η̂�n)�(k+

n) : n < ω
)
∈ Rs, and the λ(η) for distinct η are pairwise distinct. So

λ : ω2 → Rs is one-one, and hence |Rs| ≥ 2ω. �

The corollary holds for any midpoint s of G∞. This completes our analysis
of the structure of G∞. The underlying ‘combinatorial principle’ we used is
that for any k < ω, any subtree of the infinite binary tree whose nth level
has at least 2n−k nodes, for each n, has 2ω branches.

It now follows that:

Proposition 3.26 G∞ 6|= Mn for every n ≥ 1.

Proof. Let r be the root of G∞. Then Rr is the set of midpoints of G∞. By
lemma 3.20 and corollary 3.25, for any s ∈ Rr we have |Rr|+ω ≤ 2ω = |Rs|.
The result follows by theorem 2.1. �

We can now prove what we wanted.

Corollary 3.27 F∞ |= Ml but F∞ 6|= Ml+1.

Proof. Recall from lemma 3.19 that F∞ ∼= G∞ + Gl
1. By lemma 3.7, Gl

1 |=
Ml, so by lemma 3.4, F∞ |= Ml as well. By proposition 3.26, G∞ 6|= Ml+1;
and by lemma 3.8, Gl

1 6|= Ml+1. So by lemma 3.4, F∞ 6|= Ml+1. �
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We summarise our conclusions in the following

Theorem 3.28 Let k, l < ω.

1. There is an inverse family J k,l of finite descriptive frames validating
Mmax(k,l), such that if F∞ = (lim← J k.l)+ is the underlying Kripke
frame of the inverse limit of J k,l, then F∞ |= Ml but F∞ 6|= Ml+1.

2. There is a descriptive frame Dk,l = (W,R,P ) with |P | = ω, such that
Dk,l |= Mmax(k,l), D

k,l
+ |= Ml, and Dk,l

+ 6|= Ml+1.

Proof. The first part has already been established. For the second part,
take Dk,l = lim← J k,l = (W,R,P ), say. It is clear from definition 3.15 that
P is countably infinite. By fact 3.16, Dk,l |= Mmax(k,l). The rest is as in the
first part. �

4 Canonical axioms and KM∞

A modal formula φ is said to be canonical if it is valid in the canonical
frame of the normal modal logic axiomatised by φ. The following is more
convenient here, and is well known to be equivalent to this:

Definition 4.1 A modal formula φ is said to be countably d-persistent if
whenever it is valid in a descriptive frame F = (W,R,P ) with P countable,
it is also valid in its underlying Kripke frame F+.

Lemma 4.2 Any canonical formula is countably d-persistent, and conver-
sely.

Proof (sketch). We only sketch the proof, because it is well known (see,
e.g., [16, p. 221]). We assume familiarity with canonical models; see [2, 3] or
any modal logic text for details. Write L for the set of all modal formulas
written using only propositional variables from our countable set V . Let
F = (W,R,P ) be a descriptive frame such that P is countable, and suppose
that φ ∈ L is canonical and valid in F . Let Λ be the modal logic axiomatised
by φ, and let M = (W ∗, R∗, h∗) be its canonical model — so W ∗ is the set
of all maximal Λ-consistent subsets of L.

Since P is countable, we may choose a surjective assignment h : V → P .
For w ∈ W , put Γw = {ψ ∈ L : (F , h), w |= ψ}. Since φ is valid in F ,
Λ is also valid in F , and it follows that each Γw is maximal Λ-consistent
(i.e., in W ∗). Using that F is a descriptive frame and that h is surjective,
it can be checked that the map f : W → W ∗ given by f(w) = Γw is a
one-one bounded morphism. Since φ is assumed canonical, it is valid in
(W ∗, R∗), and so also in its generated subframe based on rng f . But f is an
isomorphism from (W,R) onto this. So φ is valid in (W,R), as required.
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Conversely, if φ is countably d-persistent then of course it is canonical,
because the canonical model of the logic axiomatised by φ can be viewed
as a descriptive frame with countable ‘P ’-part (namely, the truth sets of
formulas in L), and φ is valid in it. �

We can now prove our second main result. The case k = 1 was proved
in [7].

Theorem 4.3 For no k ≥ 1 is Mk canonical.

Proof. Let k ≥ 1; we prove that Mk is not countably d-persistent. For
each n, Gk

n |= Mk by lemma 3.7. By fact 3.16, lim← Ik |= Mk as well. By
definition, the ‘P ’-part of lim← Ik is countable. But by proposition 3.26,
(lim← Ik)+ = G∞ 6|= Mk. �

It follows that no Mk (k ≥ 1) is d-persistent (this stronger notion is defined
as in definition 4.1 but without the cardinality restriction).

To prove our third result, we want to use first-order compactness. To
do this, we view a general frame (W,R,P ) as a first-order structure whose
domain is the disjoint union of W and P , with unary relations picking out W
and P , and binary relations R ⊆W ×W and ∈ ⊆W ×P interpreted in the
natural way. It is easy to write down a finite set ∆ of first-order sentences
expressing that a structure (W,R,P ) for this signature is a general frame.

As is well known (see, e.g., [2, definition 2.45]), every modal formula φ
has a standard translation to a formula STx(φ) of first-order logic, with a
free variable x. We modify this here by regarding propositional variables as
first-order variables. For a propositional variable p, we define STx(p) to be
x ∈ p. We put STx(>) = >, etc., STx(φ ∧ ψ) = STx(φ) ∧ STx(ψ) and sim-
ilarly for negation, and STx(�φ) = ∀y(R(x, y) → STy(φ)) and STx(♦φ) =
∃y(R(x, y)∧STy(φ)). Here, y is a new variable. For a formula φ(p1, . . . , pn),
we write ST (φ) for the universal closure ∀x ∈W ∀p1 . . . pn ∈ P STx(φ). For
a set X of formulas, we write ST (X) for {ST (φ) : φ ∈ X}. Clearly, a modal
formula φ is valid in a general frame G iff ST (φ) is true in it in first-order
semantics:

G |= φ ⇐⇒ G |= ST (φ). (10)

Hence (cf. (5)), φ is valid in a Kripke frame F iff ST (φ) is true in F+ in
first-order semantics:

F |= φ ⇐⇒ F+ |= ST (φ). (11)

With these preliminaries in hand, we can prove our third theorem.

Theorem 4.4 Any axiomatisation of the logic KM∞ has infinitely many
non-canonical axioms.
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Proof. Suppose on the contrary that (without loss of generality) KM∞ is
axiomatised by a single axiom B together with a set Σ of canonical formulas.
Since Σ ∪ {B} and {Mk : k < ω} axiomatise the same logic, the two first-
order theories

∆ ∪ ST (Σ ∪ {B}),
∆ ∪ {ST (Mk) : k < ω}

have the same models. (Here, ∆ is as above.) Therefore, bearing in mind
that for m > n, Mm ` Mn and hence ∆ ∪ ST (Mm) |= ST (Mn), first-order
compactness yields:

(a) there is l < ω such that ∆ ∪ ST (Ml) |= ST (B),

(b) there is a finite subsetX ⊆ Σ such that ∆∪ST (X∪{B}) |= ST (Ml+1),

(c) there is finite k such that ∆∪ST (Mk) |= ST (X). (Necessarily, k > l.)

Let D = Dk,l be the descriptive frame of theorem 3.28(2). The ‘P ’-part
of D is countable, D |= Mmax(k,l), D+ |= Ml, and D+ 6|= Ml+1.

We have D |= Mk. Plainly, D |= ∆. Now, by (c) and (10), we obtain
D |= X. The formulas in X are assumed canonical, so by lemma 4.2,
D+ |= X as well. By (11), (D+)+ |= ST (X).

As D+ |= Ml, (11) gives (D+)+ |= ST (Ml). Clearly, (D+)+ |= ∆. So by
(a), (D+)+ |= ST (B).

Now we have (D+)+ |= ∆ ∪ ST (X ∪ {B}), so by (b) and (11), we arrive
at D+ |= Ml+1, a contradiction. �

The following is immediate.

Corollary 4.5 KM∞ is not finitely axiomatisable.
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