
Simple completeness proofs

for some spatial logics of the real line

Ian Hodkinson

December 26, 2012

Abstract

McKinsey–Tarski (1944), Shehtman (1999), and Lucero-Bryan (2011)
proved completeness theorems for modal logics with modalities 2, 2 and
∀, and [∂] and ∀, respectively, with topological semantics over the real
numbers. We give short proofs of these results using lexicographic sums
of linear orders.

1 Introduction

This paper contains no new results at all. Its sole aim is to present what I
believe are new and simple completeness proofs of some modal logics of the real
line R. They are often regarded as spatial logics — see [1] for example. The
paper is deliberately kept short, with little historical background. There are
three main theorems:

1. If 2 is read as the interior operator in the standard topology on R, the logic
of R is S4 — proved by McKinsey–Tarski [13]. This result was the first in
the field. Interest in it is undergoing a renaissance and several alternative
proofs have recently appeared [14, 15, 2, 1, 10, 8]. So yet another proof
will do no harm and may be of interest.

2. The logic of R with 2 and the universal modality ∀ is S4UC — proved by
Shehtman [19].

3. If we replace 2 by a different box [∂], to be read as the coderivative
operator, then the logic of R with [∂] and ∀ is KD4G2.UC — proved by
Lucero-Bryan [12].

The logic of R with [∂] alone is KD4G2: this was proved by Shehtman [21],
and later by Lucero-Bryan [12]. We will not prove it here. It can be done by
removing parts of the proof of (3), which the reader may wish to do.

One may wonder whether the proofs would go through with ∀ replaced by
the stronger difference operator [6=]. However, Kudinov [9] has shown that the
logic of R with 2 and [6=] is not finitely axiomatisable, and his argument appears
to work for [∂] and [6=] as well.

Completeness proofs for modal logics with topological semantics over R often
start by applying methods from classical modal logic, of varying sophistication,
and end by applying topological techniques. Our proof proceeds like this as well,
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but with two differences. First, our use of modal logic is relatively straightfor-
ward. All we need is the finite model property for the logics, so that we can
argue by induction on the size of parts of the finite model. For some of the
logics the finite model property is nontrivial to establish, but we have nothing
new to contribute here so we omit proofs and simply cite the literature. (It is
worth noting here that we presuppose some familiarity with basic modal logic.)
Second, we use very little topology. Instead, we use lexicographic sums of linear
orders. Although these are very well known in some circles, a substantial part of
the paper is devoted to introducing them, in the hope that they become known
a little more widely, and to make the paper more self-contained.

The layout of the paper is simple. We describe syntax and semantics in §2
and lexicographic sums in §3. The three completeness proofs are in §§4–6, and
we conclude in §7 with a couple of open questions.

We use standard notation such as Z, Q, R. We often identify (notationally)
a structure with its domain. For a map f : X → Y and subsets X ′ ⊆ X,
Y ′ ⊆ Y , we write f(X ′) = {f(x) : x ∈ X ′}, rng(f) = f(X), and f−1(Y ′) =
{x ∈ X : f(x) ∈ Y ′}. The cardinality of a set X is denoted by |X|.

2 Definitions

We will study the logic of R in three sublanguages of the following ambient
language L. We fix a countably infinite set PV of propositional variables (or
‘atoms’).

2.1 Syntax — L-formulas

The formulas of L are as follows:

1. > is an L-formula.

2. Any atom p ∈ PV is an L-formula.

3. If ϕ,ψ are L-formulas then so are ¬ϕ and (ϕ ∧ ψ).

4. If ϕ is an L-formula then 2ϕ, [∂]ϕ, and ∀ϕ are also L-formulas.

We will write L for the set of all L-formulas, L2 for the set of L-formulas
not involving [∂] or ∀, L[∂] for the set of L-formulas not involving 2 or ∀,
L2∀ for the set of L-formulas not involving [∂], and L[∂]∀ for the set of L-
formulas not involving 2. We will use the standard abbreviations: ⊥ = ¬>,
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), ϕ → ψ = ¬(ϕ ∧ ¬ψ), 3ϕ = ¬2¬ϕ, 〈∂〉ϕ = ¬[∂]¬ϕ, and
∃ϕ = ¬∀¬ϕ. We adopt the usual binding conventions for the connectives and
omit parentheses where no ambiguity results.

2.2 Kripke semantics

Although Kripke semantics is not the main concern of the paper, our proofs will
use Kripke semantics for L-formulas. A binary relation on a set W is a subset
R ⊆ W ×W . We will write any of R(w, u), Rwu, and w R u to denote that
(w, u) ∈ R. For w ∈W , we write R(w) for the set {u ∈W : Rwu}. For X ⊆W
we write R � X for the binary relation R ∩ (X ×X) on X.
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A Kripke frame is a pair F = (W,R), where W is a nonempty set and R
a binary relation on W . A Kripke frame (W ′, R′) is said to be a generated
subframe of F if W ′ ⊆ W , R′ = R � W ′, and R(w) ⊆ W ′ for every w ∈ W ′.
An assignment into F is a map g : PV → ℘(W ), where ℘ denotes the power
set operation, and a Kripke model is a triple (W,R, g), where F = (W,R) is a
Kripke frame and g an assignment into F .

For a Kripke modelM = (W,R, g) an element w ∈W , and a formula ϕ ∈ L,
we define M, w |= ϕ (‘ϕ is true in M at w’) by induction on ϕ as follows:

1. M, w |= >

2. M, w |= p iff w ∈ g(p), for p ∈ PV

3. M, w |= ¬ϕ iff M, w 6|= ϕ

4. M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

5. M, w |= 2ϕ iff M, u |= ϕ for every u ∈ R(w)

6. M, w |= [∂]ϕ iff M, u |= ϕ for every u ∈ R(w)

7. M, w |= ∀ϕ iff M, u |= ϕ for every u ∈W

We make no distinction between 2 and [∂] in Kripke semantics. We will always
consider the two boxes separately, so this will not be a problem for us.

As usual, an L-formula ϕ is said to be satisfied in a Kripke model M =
(W,R, h) ifM, w |= ϕ for some w ∈W , and valid in a Kripke frame F = (W,R)
if (W,R, h), w |= ϕ for every assignment h into F and every w ∈W .

2.3 Linear orders

A linear order is a structure (I,<), where I is a nonempty set and < a binary
relation on I with the following properties:

1. ∀x¬(x < x) irreflexivity

2. ∀xyz(x < y ∧ y < z → x < z) transitivity

3. ∀xy(x < y ∨ x = y ∨ y < x) linearity

We let x ≤ y abbreviate x < y ∨ x = y as usual. In line with our general
convention, we will often identify (notationally) a linear order (I,<) with its
domain I. For example, (Z, <) and (R, <) are linear orders, and we often write
them simply as Z, R. A subset D ⊆ I is said to be dense if for every i, j ∈ I
with i < j, there is d ∈ D with i < d < j. The order I itself is dense if I is
a dense subset of I. Linear orders (I,<), (I ′, <′) are said to be isomorphic (in
symbols, (I,<) ∼= (I ′, <′)) if there is a bijection f : I → I ′ such that i < j iff
f(i) <′ f(j) for all i, j ∈ I; we say that f : I → I ′ is an isomorphism.
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2.4 Linear models

We give L-formulas semantics over a linear order (I,<) as follows. An assign-
ment (into I) is a map h : PV → ℘(I). A linear model (over I) is a triple
M = (I,<, h), where (I,<) is a linear order and h an assignment into I. We
write dom(M) (the domain of M) for the set I, and supp(M) (the support of
M) for the set {p ∈ PV : h(p) 6= ∅}. For a linear order (I ′, <′) and a linear
model M ′ = (I ′, <′, h′), we say that M is isomorphic to M ′, and write M ∼= M ′,
if there is an isomorphism f : (I,<) → (I ′, <′) with h′(p) = f(h(p)) for every
p ∈ PV . We say that M ′ is a submodel of M , and write M ′ ⊆ M , if I ′ ⊆ I,
<′ = < � I ′, and h′(p) = h(p) ∩ I ′ for every p ∈ PV . We say that M ′ is an
initial submodel of M if M ′ ⊆ M and whenever i ∈ I, i′ ∈ I ′, and i < i′, we
have i ∈ I ′. We say that M ′ is a final submodel of M if M ′ ⊆M and whenever
i ∈ I, i′ ∈ I ′, and i′ < i, we have i ∈ I ′.

For a linear model M = (I,<, h) and a point x ∈ I, we define M,x |= ϕ by
induction on ϕ, as follows:

1. M,x |= >

2. M,x |= p iff x ∈ h(p), for p ∈ PV

3. M,x |= ¬ϕ iff M,x 6|= ϕ

4. M,x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ

5. M,x |= 2ϕ iff there exist y, z ∈ I with y < x < z and such that M, t |= ϕ
for all t ∈ I with y < t < z

6. M,x |= [∂]ϕ iff there exist y, z ∈ I with y < x < z and such that M, t |= ϕ
for all t ∈ I with y < t < z and t 6= x

7. M,x |= ∀ϕ iff M,y |= ϕ for all y ∈ I

An L-formula ϕ is said to be satisfiable over R if there exist an assignment h
into R, and a point x ∈ R, such that (R, h), x |= ϕ. The formula ϕ is said to
be valid over R if (R, h), x |= ϕ for every assignment h into R and every x ∈ R.
(There is a potential ambiguity here since (R, <) is also a Kripke frame, but in
this paper we never consider Kripke semantics in (R, <).) Clearly, ϕ is valid
over R iff ¬ϕ is not satisfiable over R. Let L denote the set of L-formulas that
are valid over R — the logic of R. We define L2 = L ∩ L2, L2∀ = L ∩ L2∀, and
L[∂]∀ = L ∩ L[∂]∀ — the logics of R in each of the respective sublanguages. Our
main aim is to give simple completeness proofs for these three logics. (There is
little point in considering L itself, since 2 can be expressed with [∂].)

3 Construction of linear models

We now recall some well known information about lexicographic sums of monadic
expansions of linear orders. Sources include [11, 18, 3]. Taken further, this be-
comes an extremely powerful model-theoretic method and we cite [16, 22, 7, 5,
17] as further reading.
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3.1 Lexicographic sums

Let (J,<J) be a linear order, and for each j ∈ J let Mj = (Ij , <j , hj) be a linear
model. We write

M =
∑
j∈J

Mj

for the linear model (I,<, h), where I = {〈i, j〉 : j ∈ J, i ∈ Ij}, < is defined
lexicographically by 〈i, j〉 < 〈i′, j′〉 iff j <J j′ or (j = j′ and i <j i′), and
h(p) =

⋃
j∈J(hj(p) × {j}) = {〈i, j〉 : j ∈ J, i ∈ hj(p)} for each p ∈ PV . It can

be verified that (I,<) is a linear order. When J = ({0, . . . , n− 1}, <), we may
write M as

∑
j<nMj . When J = ({0, 1}, <), we may write M as M0 +M1. Up

to isomorphism, + is associative (though not commutative), so we may omit
brackets in finite sums.

For j ∈ J , we let M � j denote the submodel of M with domain Ij ×{j}. It
is isomorphic to Mj (the isomorphism is 〈i, j〉 7→ i). We will sometimes identify
the two, and so regard Mj as a submodel of M via this isomorphism.

3.2 Intervals of R
An interval of R is a nonempty convex subset X ⊆ R, regarded implicitly as
a linear order (X,< � X). An interval is open if it has no least element and
no greatest element. We will use standard notation for intervals: [x, y] = {z ∈
R : x ≤ z ≤ y}, (x, y), [x, y), etc. We will be interested in linear models whose
domains are (isomorphic to) intervals of R. The following is a trivial but useful
case.

DEFINITION 3.1 For p ∈ PV we will let p̂ denote the one-point linear model
({0}, ∅, h), where h(p) = {0} and h(q) = ∅ for each q ∈ PV \ {p}.

EXAMPLE 3.2 Let p, q ∈ PV . Let Mj = p̂ for each j ∈ Q and Mj = q̂ for
each j ∈ R\Q. Then

∑
j∈RMj is isomorphic to the linear model M = (R, <, h),

where h(p) = Q, h(q) = R \Q, and h(r) = ∅ for every r ∈ PV \ {p, q}.

In the example, the underlying order of M was isomorphic to R. This is an
instance of a more general phenomenon:

PROPOSITION 3.3 Let (J,<) be a linear order, and for each j ∈ J let
Mj be a linear model over an interval of R. Suppose that one of the following
conditions holds:

1. (J,<) = ({0, 1, . . . , n}, <) for some integer n ≥ 0, Mj has a greatest
element and no least element for each j ∈ {0, 1, . . . , n − 1}, and Mn has
no least element and no greatest element.

2. (J,<) = (Z, <), and for each j ∈ Z, Mj has a greatest element and no
least element.

3. (J,<) = (R, <), each Mj has a least and a greatest element, and dom(Mj)
is a singleton whenever j ∈ R \Q.

Then the underlying order of
∑

j∈J Mj is isomorphic to R.
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Proof. It is well known and easily proved that a linear order is isomorphic to
R iff it has no least element, no greatest element, is separable (has a countable
dense subset), (hence) is dense, and is Dedekind complete (any nonempty sub-
set with an upper bound has a least upper bound). It is easily checked that∑

j∈J Mj has these properties in each case. 2

3.3 Shuffles

An important and attractive type of lexicographic sum is the so-called shuffle.
Shuffles give us an exceedingly simple way to define relatively complicated linear
models.

Let N be a countable set of linear models, where each N ∈ N is based on
an interval of R with a least element and a greatest element (such as [0, 1] or
{0}). Let N0 be a linear model based on a singleton interval. A shuffle choice
map is a map s : R→ N ∪ {N0} such that:

1. s−1(N) is a dense subset of R for each N ∈ N .

2. s(x) = N0 for each irrational x ∈ R.

Since Q can be partitioned into infinitely many dense subsets, it is not difficult
to show that shuffle choice maps exist. Choose a shuffle choice map s, and define

M = Shuffle(N ; N0) =
∑
j∈R

s(j). (1)

By proposition 3.3(3), M is a linear model whose underlying order is isomorphic
to R, and we will regard it as actually having R as its underlying order. Its
formal form depends on s and the isomorphism to R, but the specific choices
are immaterial here, and in any case, an argument similar to the proof that
any countable dense linear order is isomorphic to (Q, <) will show that, up to
isomorphism, M is independent of these choices. Whenever we use the Shuffle
notation as in equation (1), we will assume that they have been tacitly chosen.

Let M be the shuffle above. An element of M is said to be an M -endpoint
if it is a least or greatest element of M � j for some j ∈ R (see §3.1 for the
definition of M � j).

LEMMA 3.4 Let x ∈M and p ∈ supp(M). (See §2.4 for supp(M).)

1. If x is an M -endpoint, then M,x |= 〈∂〉p and M,x |= 3p.

2. If x is not an M -endpoint, suppose that x ∈ M � j for (unique) j ∈ R.
Then M,x |= 3p iff M � j, x |= 3p, and M,x |= 〈∂〉p iff M � j, x |= 〈∂〉p.

3. There are y, z ∈ R with y < x < z, M,y |= p, and M, z |= p.

Proof. [Proof sketch] For part 1, suppose that x is the greatest point of M � j,
for some j ∈ R. Let y > x be given. Plainly, y ∈ M � k for some k ∈ R
with k > j. Pick N ∈ N ∪ {N0} and t ∈ N with N, t |= p. As s−1(N) is
dense in R, we may find l ∈ (j, k) with s(l) = N , so M � l ∼= N . Let z be the
element of M � l corresponding to t under this isomorphism. Then M, z |= p
and z ∈ (x, y). Since y was arbitrary, M,x |= 〈∂〉p ∧ 3p. The case where x
is the least point of M � j is similar. Part 2 holds simply because the part of
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M � j excluding its endpoints is an open interval of R containing x. Finally,
part 3 holds because for each N ∈ N ∪ {N0} there are arbitrarily large and
small j ∈ R with s(j) = N . 2

EXAMPLE 3.5 Let p, q ∈ PV .

1. Shuffle({p̂} ; q̂) is, up to isomorphism, the model M of example 3.2.

2. Let N = p̂ + Shuffle(∅ ; p̂) + p̂. This is a linear model whose underlying
order is isomorphic to [0, 1], and all its points satisfy p and only p.

3. S = Shuffle({N} ; q̂) is a linear model that can be described up to isomor-
phism as: each rational in R is replaced by a non-singleton closed interval
of R whose points satisfy only p, and each irrational is left intact and made
to satisfy only q. The S-endpoints are the endpoints of the closed inter-
vals and the intact irrationals. The endpoints satisfy 〈∂〉p∧〈∂〉q, while the
other points satisfy 2(p ∧ ¬q). The underlying order of S is isomorphic
to R.

4. Shuffle({N, p̂} ; q̂) is rather different: again up to isomorphism, we split
Q into two dense subsets, replace the points of the first set by copies of N ,
make the points of the second set satisfy only p, and make the irrationals
satisfy only q as before. This model is not isomorphic to S above, because
it has singleton subintervals (endpoints) satisfying p that are not part of
any longer interval whose points satisfy p. However, perhaps surprisingly,
an Ehrenfeucht–Fräıssé game will show that it is indistinguishable from S
in L.

Armed with these devices and standard modal methods, we will be able
to prove completeness theorems for R really rather easily. There are two main
steps. First, given an appropriate finite Kripke frame (W,R), by applying shuffle
we obtain a linear model whose domain is isomorphic to R, and which gives
rise to a certain function f : R → W . Second, given an assignment, say g,
into (W,R), we define a new assignment h = f−1 ◦ g into R, yielding a linear
model M = (R, <, h). From these two main steps we can prove the following
‘satisfaction’ lemma: M,x |= ϕ iff (W,R, g), f(x) |= ϕ, for each x ∈ R and
L-formula ϕ in the appropriate fragment. The finite model property for each
of the logics under consideration yields a finite model (W,R, g) satisfying any
given consistent formula ϕ, which is turned into a linear model satisfying ϕ as
above.

4 The logic of R with 2

We start with the classical result of McKinsey and Tarski [13] that the logic of
2 over R is S4. So in this section we work with the language L2 whose formulas
involve only >, atoms, the boolean operations, and 2. Recall that S4 is the
smallest set of L2-formulas that contains the axioms:

1. all propositional tautologies

2. 2(p→ q)→ (2p→ 2q) normality
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3. 2p→ p reflexivity

4. 2p→ 22p transitivity

and is closed under the inference rules:

1. modus ponens:
ϕ, ϕ→ ψ

ψ

2. generalisation (or necessitation) for 2:
ϕ

2ϕ

3. substitution:
ϕ(p)

ϕ(ψ/p)

Let (W,R) be a finite Kripke frame in which all the axioms of S4 are valid,
and such that W ⊆ PV (this will allow us to define models ŵ and write L-
formulas such as 3w, for w ∈ W ). It follows that R is reflexive and transitive.
Define a binary relation R• on W by R•wu iff Rwu ∧ ¬Ruw. For each w ∈ W
define C(w) = {u ∈W : Rwu ∧Ruw}.

DEFINITION 4.1 For each w ∈ W , we define a linear model Nw over R by
complete induction on |R(w)|:

Nw = Shuffle
(
{ŵ +Nu + ŵ : u ∈ R•(w)} ∪ {û : u ∈ C(w)} ; ŵ

)
.

We check that Nw is well defined. If u ∈ R•(w) then R(u) ⊆ R(w) by
transitivity of R, and plainly, w ∈ R(w)\R(u). So |R(u)| < |R(w)|. Inductively,
Nu is a well defined linear model over R. So the underlying order of ŵ+Nu + ŵ
is isomorphic to an interval of R with a least and a greatest element. All models
û, ŵ are based on singleton intervals, so Nw is a legal shuffle and a well defined
linear model over R.

Since Nw is ‘made’ wholly from linear models of the form û for u ∈ R(w),
we have supp(Nw) ⊆ R(w), and for each x ∈ R there is a unique u ∈ R(w) with
Nw, x |= u. (This can be proved formally by a trivial induction on |R(w)|.) We
write fw(x) for this u. So we have defined a map fw : R → W . For all x ∈ R
and u ∈W ,

Nw, x |= u ⇐⇒ fw(x) = u. (2)

LEMMA 4.2 For every w ∈W , the following hold:

1. We have rng(fw) = supp(Nw) = R(w).

2. For each v ∈W and x ∈ R we have Nw, x |= 3v iff R(fw(x), v).

Proof. By induction on |R(w)|. Assume the lemma inductively for every u ∈
W with |R(u)| < |R(w)| — in particular, every u ∈ R•(w). By definition,
supp(Nw) = {u ∈ PV : ∃x ∈ R(Nw, x |= u)}. By the above, this is {u ∈ W :
∃x ∈ R(u = fw(x))} = rng(fw). Noting that supp(û) = {u}, it follows from
the definition of Nw that supp(Nw) =

⋃
{{w} ∪ supp(Nu) : u ∈ R•(w)} ∪C(w).

Inductively, this is
⋃
{{w} ∪ R(u) : u ∈ R•(w)} ∪ C(w) = R(w). This proves

part 1. For part 2, let v, x be given. There are two cases.
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Case 1. If x is an Nw-endpoint, then inspection of the definition of Nw shows
that fw(x) = w or fw(x) ∈ C(w). Either way, fw(x) ∈ C(w). So by transitivity
of R we have R(fw(x)) = R(w), and hence R(fw(x), v) iff v ∈ R(w). By part 1,
R(w) = supp(Nw). Also, v ∈ supp(Nw) iff Nw, x |= 3v (⇒ is by lemma 3.4, and
⇐ is trivial). Stringing all this together, we see that R(fw(x), v) iff Nw, x |= 3v.

Case 2. If not, then x ∈ Nw � j ∼= ŵ+Nu + ŵ for some j ∈ R and u ∈ R•(w).
We identify Nu with the submodel of Nw � j ⊆ Nw as usual. As x is not a Nw-
endpoint, we have x ∈ Nu. By lemma 3.4(2), Nw, x |= 3v iff Nw � j, x |= 3v.
The least and greatest points of Nw � j do not affect 3, so this is iff Nu, x |= 3v.
Inductively, this is iff R(fu(x), v). But plainly, fu(x) = fw(x). 2

Now fix w ∈W , and writeNw and fw simply asN and f , respectively. Let g :
PV → ℘(W ) be an assignment and letM be the Kripke model (W,R, g). Define
an assignment h : PV → ℘(R) by h(p) = f−1(g(p)) = {x ∈ R :M, f(x) |= p},
for each p ∈ PV . Let M be the linear model (R, <, h). Of course, M depends
on M and w. We now have two linear models N,M over R and we will use
them both below.

LEMMA 4.3 For every ψ ∈ L2 and x ∈ R, we have M,x |= ψ iff M, f(x) |=
ψ.

Proof. By induction on ψ. The atomic and boolean cases are easy and we
omit them. Assume the lemma for ψ, and consider 3ψ. First suppose that
M, f(x) |= 3ψ, so there is u ∈W withR(f(x), u) andM, u |= ψ. By lemma 4.2,
N, x |= 3u. Inductively, every y ∈ R with N, y |= u satisfies M,y |= ψ (since
f(y) = u). It follows that M,x |= 3ψ.

Conversely, suppose that M,x |= 3ψ. We claim that for some u ∈W , every
open interval of R containing x contains a point y with M,y |= ψ and f(y) = u.
For if not, for each u there is an open interval Ou containing x but containing
no such point y. Let O =

⋂
u∈W Ou. Since W is finite, O is again an open

interval containing x. But M,x |= 3ψ, so O contains a point y with M,y |= ψ.
Let f(y) = u. Then y ∈ Ou, contradicting the definition of Ou. This proves the
claim.

Let u be as in the claim. Plainly, N, x |= 3u, so by lemma 4.2, R(f(x), u).
Also, inductively we have M, u |= ψ. Hence, M, f(x) |= 3ψ as required. 2

THEOREM 4.4 (McKinsey–Tarski, 1944) The L2-logic L2 of R is S4.

Proof. It is easy to check that the S4 axioms are valid over R, and that the
inference rules preserve validity. So S4 ⊆ L2. For the converse, take ϕ ∈ L2

with ϕ /∈ S4. We will show that ¬ϕ is satisfiable over R, so that ϕ /∈ L2,
completing the proof.

It is known that S4 has the finite model property. (This can be proved by
filtration: see, e.g., [4, corollary 5.32].) So ¬ϕ is satisfied in a finite Kripke
modelM = (W,R, g) such that all the S4-axioms are valid in the Kripke frame
(W,R). It is immaterial what the elements of W are, so we may assume without
loss of generality that W ⊆ PV . Choose w ∈W such that M, w |= ¬ϕ.

We now suppose that W , R, M, and w are as in the foregoing discussion.
This can be done without loss of generality. Define f and M as above. By
lemma 4.2(1), there is x ∈ R with f(x) = w. As M, w |= ¬ϕ, lemma 4.3 yields
M,x |= ¬ϕ. So ¬ϕ is satisfiable over R and ϕ /∈ L2 as required. 2
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The map f is an interior map, as in several other proofs of this result. It
is worth noting that the proof transforms a finite Kripke model satisfying a
formula effectively into an explicit and simple description of a model over R
that satisfies the formula. It is easy to write down the description in practice,
using shuffles.

EXAMPLE 4.5 The formula ϕ = p ∧ 3(¬p ∧ 3p) is plainly true at 0 in the
Kripke model M = ({0, 1, 2},≤, g) where g(p) = {0, 2}. We assume as above
that 0, 1, 2 ∈ PV , and construct three linear models:

N2 = Shuffle({2̂} ; 2̂)

N1 = Shuffle({1̂ +N2 + 1̂, 1̂} ; 1̂)

N0 = Shuffle({0̂ +N1 + 0̂, 0̂ +N2 + 0̂, 0̂} ; 0̂)

The underlying order of N0 is R. We define f = f0 : R → {0, 1, 2} as above.
So for each i ∈ {0, 1, 2}, f−1(i) is the set of points of N0 lying in ‘copies’ of

î. We define h : PV → ℘(R) by h(q) = f−1(g(q)), for q ∈ PV . So h(p) =
f−1(0)∪ f−1(2). We define M to be the linear model (R, <, h). Then M,x |= ϕ
for any x in a copy of 0̂. Indeed it is plain that any such x satisfies p and has
arbitrarily close to it points y in copies of 1̂. Such y satisfy ¬p, and have points
z in copies of 2̂ arbitrarily close to them; such z satisfy p.

5 The logic of R with 2 and ∀
We now move on to the language L2∀ containing formulas using both 2 and ∀.
In [20], Shehtman showed that the logic of R in this language is S4UC. The
logic S4UC is the smallest set of L2∀-formulas closed under the inference rules of
modus ponens, generalisation for both 2 and ∀, and substitution, and containing
the following axioms:

1. all propositional tautologies

2. 2(p→ q)→ (2p→ 2q) normality

3. 2p→ p reflexivity

4. 2p→ 22p transitivity

5. ∀(p→ q)→ (∀p→ ∀q) normality

6. ∀p→ p reflexivity

7. ∀p→ ∀∀p transitivity

8. ∃∀p→ p symmetry

9. ∀p→ 2p ‘U’

10. ∀(2p ∨2¬p)→ ∀p ∨ ∀¬p connectedness, ‘C’

Let (W,R) be a finite Kripke frame in which all the axioms of S4UC are
valid and such that W ⊆ PV . So R is reflexive and transitive. We will apply
the same idea as in the preceding section, but since ∀ is in the language, we
need to arrange that the map f : R → W is surjective. To do this, we will use
that (W,R) is connected.

10



DEFINITION 5.1 Let F = (W,R) be a Kripke frame. A connected compo-
nent of F is a minimal nonempty subset D ⊆W such that for all w ∈W :

• if w ∈ D then R(w) ⊆ D

• if w ∈W \D then R(w) ⊆W \D

If k is an integer, F is said to be k-connected if it has at most k connected
components, and connected if it is 1-connected. A Kripke model is said to be
connected or k-connected if its frame has this property.

The slight differences of definition 5.1 from definitions in [20, 12] will not matter,
since we will not formally use any results involving connectedness from those
papers.

Indeed, (W,R) is connected. This is easy to see (cf. [20, lemma 8]). For if
D is a connected component of (W,R), let g be an assignment into (W,R) with
g(p) = D, and let w ∈W . Then (W,R, g), w |= ∀(2p ∨2¬p). Axiom C is valid
in (W,R), so (W,R, g), w |= ∀p ∨ ∀¬p, and hence D = W or D = ∅. Since D is
nonempty, D = W .

As (W,R) is finite and connected, a little thought shows that there exist
points d0, u0, d1, u1, . . . , dn−1, un−1, dn ∈W , for some finite n, such that:

• Rujdj and Rujdj+1 for each j < n

• W =
⋃

j<nR(uj)

For each w ∈ W , let Nw be the linear model of definition 4.1, with underlying
order R.

LEMMA 5.2 For each x ∈ R and u ∈W , we have u ∈ supp(Nw) iff there are
y, z ∈ R with y < x < z, Nw, y |= u, and Nw, z |= u.

Proof. ⇒ is immediate from lemma 3.4(3), and ⇐ is trivial. 2

Now define

N =
(∑

j<n

(Ndj
+ ûj +Nuj

+ ûj)
)

+Ndn
. (3)

In effect, N is the finite sum

Nd0
+ û0 +Nu0

+ û0 +Nd1
+ û1 +Nu1

+ û1 + · · ·+Nun−1
+ ûn−1 +Ndn

.

A couple of applications of proposition 3.3(1) show that N is a linear model
whose underlying linear order is isomorphic to R. As usual, we will assume that
its underlying order is actually R, and that each of the Ndj , Nuj , and two copies
of ûj are submodels of N .

As in §4, for each x ∈ R there is a unique u ∈ W with N, x |= u, and we
write f(x) for this u. Thus, f : R→W . By lemma 4.2(1) and the choice of uj ,
we have

rng(f) = supp(N) ⊇
⋃
j<n

supp(Nuj
) =

⋃
j<n

R(uj) = W.

So f is surjective.
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LEMMA 5.3 Let x ∈ R and w ∈W . Then N, x |= 3w iff R(f(x), w).

Proof. If x ∈ Ndj
for some j ≤ n or x ∈ Nuj

for some j < n, the result follows
from lemma 4.2(2), since these submodels are based on open intervals of R.
Suppose for some j < n that x is in the submodel ûj that is preceded by Ndj

and followed by Nuj . Clearly, N, x |= 3w iff (a) arbitrarily large elements of
Ndj

satisfy w, or (b) N, x |= w, or (c) arbitrarily small elements of Nuj
satisfy

w. Now by lemmas 5.2 and 4.2(1), (a) holds iff w ∈ supp(Ndj
) = R(dj), and (c)

holds iff w ∈ supp(Nuj
) = R(uj). Plainly, (b) holds iff w = uj . So N, x |= 3w

iff w ∈ R(dj)∪{uj}∪R(uj). Because R is reflexive and transitive and Rujdj , we
have R(dj)∪{uj}∪R(uj) = R(uj) = R(f(x)). So N, x |= 3w iff R(f(x), w), as
required. The argument when x is in the submodel ûj between Nuj

and Ndj+1

is similar, using that Rujdj+1. 2

Now, as before, let g : PV → ℘(W ) be an assignment into W , and let M
be the Kripke model (W,R, g). Define the linear model M = (R, <, h), where
h(p) = f−1(g(p)) for each p ∈ PV .

LEMMA 5.4 For every ψ ∈ L2∀ and x ∈ R, we have M,x |= ψ iff M, f(x) |=
ψ.

Proof. The proof is the same as for lemma 4.3, but there is an additional
case: ∀ψ. So assume the lemma inductively for ψ, and let x ∈ R be given. If
M, f(x) |= ∀ψ, then M, w |= ψ for all w ∈ W . Inductively, M,y |= ψ for all
y ∈ R, and we obtain M,x |= ∀ψ. Conversely, assume that M,x |= ∀ψ, and
let w ∈ W be given. As f is surjective, we can find y ∈ R with f(y) = w.
By assumption, M,y |= ψ, and inductively, M, f(y) |= ψ as well. Since w was
arbitrary, we obtain M, f(x) |= ∀ψ as required. 2

THEOREM 5.5 (Shehtman, 1999) The L2∀-logic L2∀ of R is S4UC.

Proof. Again it is easy to check soundness: that S4UC ⊆ L2∀. (Axiom C is
valid over R because R is connected: it cannot be written as the union of two
disjoint nonempty open sets.) For the converse, we take a formula ϕ /∈ S4UC
and show that ¬ϕ is satisfiable over R, so that ϕ /∈ L2∀.

By [20, theorem 10] (proved by filtration), S4UC has the finite model prop-
erty. So we may take a finite Kripke modelM = (W,R, g) satisfying ¬ϕ and in
whose frame (W,R) all axioms of S4UC are valid. We may assume that W,R, g
are the same as above. Define f,M as above. Take w ∈ W with M, w |= ¬ϕ.
As f is surjective, we may find x ∈ R with f(x) = w. By lemma 5.4, M,x |= ¬ϕ.
Thus, ¬ϕ is satisfiable over R, which completes the proof. 2

6 The logic of R with [∂] and ∀
Finally we consider the language L[∂]∀ containing formulas using [∂] and ∀ but
not 2. Actually we will use 2, but as an abbreviation: 2ϕ will abbreviate
ϕ∧ [∂]ϕ. (It can be checked that the semantics of 2 in linear models — though
not in Kripke models — is as in earlier sections.)

The logic of R in the language L[∂] is KD4G2 — this was conjectured by
Shehtman [19] and proved by Shehtman [21] and Lucero-Bryan [12, theorem
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4.5]. Lucero-Bryan goes on to show [12, corollary 5.27] that the logic of R in
the language L[∂]∀ is KD4G2.UC. The logic KD4G2.UC is the smallest set of
L[∂]∀-formulas closed under the standard inference rules (modus ponens, gener-
alisation for [∂] and ∀, and substitution) and containing the following axioms:

1. all propositional tautologies

2. [∂](p→ q)→ ([∂]p→ [∂]q) normality

3. 〈∂〉> seriality

4. [∂]p→ [∂][∂]p transitivity

5. ∀(p→ q)→ (∀p→ ∀q) normality

6. ∀p→ p reflexivity

7. ∀p→ ∀∀p transitivity

8. ∃∀p→ p symmetry

9. ∀p→ [∂]p ‘U’

10. ∀(2p ∨2¬p)→ ∀p ∨ ∀¬p connectedness, ‘C’

11. [∂]
(∨

0≤i≤2 2ϕi

)
→
∨

0≤i≤2[∂]¬ϕi ‘G2’
where p0, p1, p2 ∈ PV and ϕi = pi ∧

∧
{¬pj : 0 ≤ j ≤ 2, j 6= i} for each

i ∈ {0, 1, 2}

The logic KD4G2 is defined analogously in the language L[∂] by deleting ax-
ioms 5–10.

Let F = (W,R) be a finite Kripke frame in which all axioms of KD4G2.UC
are valid, and with W ⊆ PV . Importantly, R may not be reflexive. But we do
have:

• R is transitive.

• R(w) 6= ∅ for every w ∈W .

• F is connected (using axiom C).

• F is ‘locally 2-connected’. That is, for every w ∈W , the frame (R(w), R �
R(w)) is 2-connected (see definition 5.1) and so has at most two connected
components. (This is easy to prove using validity of G2 in F .)

As earlier, define the binary relation R• on W by R•wu iff Rwu ∧ ¬Ruw. For
w ∈ W , define C(w) = {u ∈ W : Rwu ∧ Ruw}. We say that w is a leaf
if R•(w) = ∅. In that case, the axiom 〈∂〉> and transitivity give Rww. For
w ∈W we define Ww = R(w) ∪ {w}, and define the Kripke frame

Fw = (Ww, R �Ww).

This is connected — a connected component containing w must be Ww — and
a generated subframe of F .

LEMMA 6.1 For each connected generated subframe G of F , there is a linear
model G based on R, and such that for each x ∈ R and v ∈ G:
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G1. There is a unique u ∈ PV with G, x |= u. Moreover, u ∈ G. We will write
this u as fG(x).

G2. G, x |= 〈∂〉v iff R(fG(x), v).

G3. There are y < x < z in R with G, y |= v and G, z |= v.

G4. If v is a leaf, there are linear models A,B such that G ∼= A + Fv + B.
(Reminder: linear models are nonempty.)

Proof. We prove the lemma by complete induction on |G|. So take a connected
generated subframe G of F , and inductively assume the lemma for smaller sub-
frames than G. There are two cases.

Case 1. Suppose that G = Fw for some reflexive w ∈ W (i.e., with Rww).
Choose such a w (it need not be unique). Now, as in definition 4.1, we let

G = Shuffle
(
{ŵ + Fu + ŵ : u ∈ R•(w)} ∪ {û : u ∈ C(w)} ; ŵ

)
(4)

Inductively, Fu is defined for each u ∈ R•(w), so as earlier, we see that this
shuffle is well defined. It is easy to confirm that G meets the requirements
G1–G4. We leave the reader to verify G1 and G3. We briefly check G2. It
holds inductively for any x in a submodel of G of the form Fu. Any x not in
such a submodel is a G-endpoint, so G, x |= 〈∂〉v iff v ∈ supp(G) (⇒ is trivial
and ⇐ follows from lemma 3.4(1)). It follows easily from G1 and G3 that
supp(G) = Ww, so this is iff v ∈ Ww. Since w is reflexive, this is iff R(w, v).
But fG(x) ∈ C(w), so by transitivity of R, this is iff R(fG(x), v), as required.

We now check G4. Suppose that v ∈ G = Fw is a leaf. If R•wv then it is
plain that G4 holds for v, since Fv is an ‘ingredient’ of the shuffle in equation (4)
defining G. If instead ¬R•wv, then v ∈ C(w), so Fv = Fw = G. Since G is a
shuffle, it is easily seen that G ∼= A+ G +B = A+ Fv +B for some A,B.

Case 2. Suppose otherwise. As G is connected and locally 2-connected, a little
thought shows that there is a sequence

. . . u−1, d0, u0, d1, u1, d2, . . .

of elements of G with the following properties:

• Ruidi ∧Ruidi+1 for each i ∈ Z.

• G =
⋃

j<iWuj
=
⋃

k>iWuk
for each i ∈ Z.

• {di : i ∈ Z} is the set of leaves that lie in G.

• For each i ∈ Z, let Ci and Di be the connected components of the frame
(R(ui), R � R(ui)) that contain di and di+1, respectively. Then R(ui) =
Ci ∪Di.

We briefly indicate one way to choose such a sequence. As G is connected, there
is a finite ‘zigzag cycle’ d0, u0, . . . , dn−1, un−1, dn with dn = d0, Ruidi∧Ruidi+1

for each i < n, every leaf in G is among d0, . . . , dn, and G =
⋃

i<nWui
. For each

di that is not a leaf, there is a leaf d′i in G with Rdid
′
i. We can replace di by d′i.
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So we may assume that all the di are leaves. Take any i < n. As (R(ui), R �
R(ui)) is 2-connected, it has connected components C,D (possibly equal) with
C ∪D = R(ui). Suppose di ∈ C, say. If di+1 /∈ D then choose any leaf d ∈ D
and replace the part di, ui, di+1 of the cycle by di, ui, d, ui, di+1. Do this for
each i < n. After these insertions we obtain a cycle d0, u0, . . . , dm−1, um−1, dm
with dm = d0, for some m ≥ n. Now the Z-sequence

. . . , um−1, d0, u0, . . . , dm−1, um−1, d0, u0, . . . , dm−1, um−1, d0, . . .

has the required properties.
Each Ci (i ∈ Z) is the domain of a connected generated subframe of F which

we denote by Ci, and similarly for Di. If Ci = G, then ui ∈ G = Ci ⊆ R(ui) ⊆
Wui

⊆ G, so ui is reflexive and G = Fui
, contradicting the case assumption. So

|Ci| < |G|, and similarly, |Di| < |G|. Let Ci,Di be the linear models given by
the inductive hypothesis. As di ∈ Ci, di+1 ∈ Di, and they are leaves, by the
inductive hypothesis there are linear models Ai, Bi, A

′
i, B
′
i (i ∈ Z) such that:

Ci ∼= Ai + Fdi +Bi

Di
∼= A′i + Fdi+1 +B′i

(5)

Plainly, Ai has a greatest element and no least element, Bi has a least element
and no greatest element, and similarly for A′i, B

′
i.

We now set
G =

∑
j∈Z

(
Fdj

+Bj + ûj +A′j

)
. (6)

In effect, G is the sum

· · ·+ Fd0
+B0 + û0 +A′0 + Fd1

+B1 + û1 +A′1 + Fd2
+B2 + û2 +A′2 + · · ·

Clearly, the underlying order of each Fdj
+ Bj + ûj + A′j is isomorphic to an

interval of R with a greatest point but no least point. So by proposition 3.3(2),
G can be assumed to have domain R.

Let us check the requirements of the lemma. Requirement G1 is proved by
induction as before. For G2, suppose that x ∈ ûj for some j ∈ Z. Referring
to equation (6), x lies just after a submodel Bj of G that is isomorphic to a
final submodel of Cj . Take y ∈ Bj , so that y < x. Trivially, if y < z < x and
G, z |= v then v ∈ Cj . Conversely, by G3 for Cj , for any v ∈ Cj and y < x there
is z ∈ Bj with y < z < x and G, z |= v. Similarly, a copy of an initial submodel
A′j of Dj can be found just after x, so all and only the elements of Dj ‘occur’
arbitrarily near to x on its right. Combining these two observations, we see
that for any v ∈ W we have G, x |= 〈∂〉v iff v ∈ Cj ∪Dj = R(uj) = R(fG(x)).
Condition G2 for x follows. Every other element x ∈ G lies in an open interval
of a structure Cj or Dj (of the form Fdj

+Bj or A′j +Fdj+1
, respectively), so G2

holds inductively for x.
For G3, let v ∈ G and x ∈ R be given. Suppose that x lies in the submodel

Fdi +Bi + ûi +A′i, say, of G. By assumption on the ui, there are j, k ∈ Z with
j < i < k and v ∈ Wuj

∩Wuk
. Let y′ be the element of G in the submodel ûj

(see equation (6)). So y′ < x. If v = uj , then plainly G, y′ |= v. If v 6= uj then
v ∈ R(uj), so by G2 we have G, y′ |= 〈∂〉v. Either way it is clear that G, y |= v
for some y < x. The case z > x is similar, using k.

For G4, note that any leaf v ∈ G is equal to some dj , and as equation (6)
plainly shows, Fdj

occurs as an interval in G. 2
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Now F is itself a connected generated subframe of F , so by the lemma, F can
be found, with underlying order R. Let f = fF . By property G3 of lemma 6.1,
f : R→W is surjective.

Let g : PV → ℘(W ) be an assignment into F , and let M be the Kripke
model (W,R, g). Define h : PV → ℘(R) by h(p) = f−1(g(p)) = {x ∈ R :
M, f(x) |= p}. This gives us a linear model M = (R, <, h).

LEMMA 6.2 For every x ∈ R and L[∂]∀-formula ϕ, we have M,x |= ϕ iff
M, f(x) |= ϕ.

Proof. By induction on ϕ. The atomic and boolean cases are easy. Assume the
result for ϕ. Then M,x |= ∀ϕ iff M,y |= ϕ for every y ∈ R, iff M, w |= ϕ for
every w ∈W (inductively, and since f is surjective), iffM, f(x) |= ∀ϕ. Finally,
M,x |= 〈∂〉ϕ iff for every open interval O ⊆ R containing x, there is y ∈ O \{x}
with M,y |= ϕ. Inductively, this holds iff for every open O containing x, there
is y ∈ O \ {x} with M, f(y) |= ϕ. As M is finite, there are only finitely many
values of f , so this is equivalent to saying that for some w ∈W withM, w |= ϕ,
every open O containing x contains a point y 6= x with f(y) = w. This is
plainly equivalent to F , x |= 〈∂〉w for some w ∈ W with M, w |= ϕ. By G2 of
lemma 6.1, this holds iff R(f(x), w) for some w ∈W withM, w |= ϕ — that is,
iff M, f(x) |= 〈∂〉ϕ. 2

THEOREM 6.3 (Lucero-Bryan, 2011) The L[∂]∀-logic L[∂]∀ of R is
KD4G2.UC.

Proof. Again we leave it to the reader to check that KD4G2.UC ⊆ L[∂]∀ (sound-
ness). (Axiom G2 is valid over R because if O is an open interval of R and x ∈ O,
then O \ {x} is not the union of three pairwise disjoint nonempty open sets [19,
lemma 31].) For the converse (completeness), again we take an L[∂]∀-formula
ϕ /∈ KD4G2.UC and show that ¬ϕ is satisfiable over R.

By [12, corollary 5.22], KD4G2.UC has the finite model property. (This is
nontrivial and is proved by an unorthodox filtration in a style due to Shehtman
[19]; see also [23].) So we may take a finite Kripke model M = (W,R, g) in
which ¬ϕ is satisfied, and such that the axioms of KD4G2.UC are valid in the
frame (W,R). As usual, we may assume that (W,R) is the frame F studied
above. Let M and f be as above. As f is surjective, we can take x ∈ R with
M, f(x) |= ¬ϕ. By lemma 6.2, M,x |= ¬ϕ, and so ¬ϕ is satisfiable over R as
required. 2

We leave it as an exercise to show that KD4G2 is the logic of R in the
sublanguage of L[∂]∀ without ∀.

Once again, the proof transforms a finite Kripke model of a formula effec-
tively into a model over R satisfying the formula, in a way that can be applied
in practical examples.

EXAMPLE 6.4 The formula 〈∂〉p ∧ 〈∂〉q ∧ ∃(〈∂〉q ∧ 〈∂〉s ∧ [∂]¬p) is true at
0 in the Kripke model M shown in figure 1. Its set of worlds is {0, . . . , 4},
and the relation R is indicated by the arrows; 0, 1 are R-irreflexive and 2, 3, 4
are R-reflexive. Plainly, M is connected and locally 2-connected. We select a
sequence . . . , d0, u0, d1, u1, . . . of elements of M as follows:

. . . u0 u1 u2 u3 u4 u5 u6 . . .

. . . d0 d1 d2 d3 d4 d5 d6 . . .

. . . 2 0 3 1 4 1 3 0 2 0 3 1 4 1 . . .
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Figure 1: The model M

This ‘loops’ over all points in M and meets the conditions in the proof above.
In the notation of the proof, we have C0 = {2}, D0 = C1 = {3}, D1 = C2 = {4},
D2 = C3 = {3}, and so on. So Di−1 = Ci = {di} for every i ∈ Z.

We assume as usual that {0, . . . , 4} ⊆ PV . Let F be the frame of M, and
define linear models

P = Shuffle({2̂}; 2̂) ∼= F2

Q = Shuffle({3̂}; 3̂) ∼= F3

S = Shuffle({4̂}; 4̂) ∼= F4

As P is a shuffle, we can find a copy of it in the middle of itself, so P ∼=
PA + P + PB for some suitable PA and PB , and similarly for Q,S. For each i,
as Di−1 = Ci = {di} we have Di−1 = Ci = Fdi

, so

C0 = Fd0
= F2 = P ∼= PA + P + PB

D0 = C1 = Fd1 = F3 = Q ∼= QA +Q+QB

D1 = C2 = Fd2 = F4 = S ∼= SA + S + SB

D2 = C3 = Fd3
= F3 = Q ∼= QA +Q+QB

D3 = C4 = Fd4
= F2 = P ∼= PA + P + PB

D4 = Fd5 = F3 = Q ∼= QA +Q+QB

and so on. Equation (5) in the proof of lemma 6.1 tells us to write Ci ∼=
Ai +Fdi +Bi and Di

∼= A′i +Fdi+1 +B′i, for each i and for suitable Ai, Bi, A
′
i,

B′i. So we can take

. . . B0 = PB A′0 = QA

B1 = QB A′1 = SA

B2 = SB A′2 = QA

B3 = QB A′3 = PA

B4 = PB A′4 = QA . . .

According to equation (6) in the proof, we define the linear model

F =
∑

j∈Z
(
Fdj

+Bj + ûj +A′j

)
= · · ·+ P + PB + 0̂ +QA︸ ︷︷ ︸

j=0

+Q+QB + 1̂ + SA︸ ︷︷ ︸
j=1

+S + SB + 1̂ +QA︸ ︷︷ ︸
j=2

+Q+QB + 0̂ + PA︸ ︷︷ ︸
j=3

+P + PB + 0̂ +QA︸ ︷︷ ︸
j=4

+ · · ·
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In this example, the expression obviously simplifies to

F ∼= · · ·+ P + 0̂ +Q+ 1̂ + S + 1̂ +Q+ 0̂ + P + 0̂ +Q+ · · ·

and if we assign p to the set of points in copies of P , and similarly for q, s,
we obtain an entirely sensible and reasonable linear model M over R in which
〈∂〉p ∧ 〈∂〉q ∧ ∃(〈∂〉q ∧ 〈∂〉s ∧ [∂]¬p) is true at any point in a copy of 0̂.

7 Conclusion

We have proved completeness theorems for some ‘spatial’ logics over R in a
fairly simple way. Spatial logic is of burgeoning interest and the methods used
here may find further application. For example, there is potential for model
checking a formula against a description of a model over R using shuffles and
other operators, and this has already been explored for temporal logic in [6].
Some of the theorems that we have reproved here were originally proved in more
general forms, for certain topological spaces. It remains to be seen whether the
methods of this paper can be adapted to apply in this generality.

Acknowledgments

The author thanks the organisers for inviting him to the conference, Rob Gold-
blatt for handling the paper, Valentin Shehtman for helpful bibliographic infor-
mation, and the referee for finding several mistakes in the submitted paper and
for very detailed comments and suggestions.

References

[1] M. Aiello, J. van Benthem, and G. Bezhanishvili, Reasoning about space:
the modal way, J. Logic Computat. 13 (2003), 889–920.

[2] G. Bezhanishvili and M. Gehrke, A new proof of completeness of S4 with
respect to the real line, Tech. Report PP-2002-06, ILLC, Amsterdam, 2002.

[3] J P Burgess and Y Gurevich, The decision problem for linear temporal
logic, Notre Dame J. Formal Logic 26 (1985), no. 2, 115–128.

[4] A Chagrov and M Zakharyaschev, Modal logic, Oxford Logic Guides,
vol. 35, Clarendon Press, Oxford, 1997.

[5] K Doets, Monadic π1
1-theories of π1

1-properties, Notre Dame Journal of
Formal Logic 30 (1989), 224–240.

[6] T. French, J. McCabe-Dansted, and M. Reynolds, Synthesis and model
checking for continuous time: Long version, Tech. report, CSSE, Univer-
sity of Western Australia, 2012, http://www.csse.uwa.edu.au/~mark/

research/Online/sctm.htm.

[7] Y Gurevich, Monadic second-order theories, Model-Theoretic Logics
(J Barwise and S Feferman, eds.), Springer-Verlag, New York, 1985,
pp. 479–507.

18



[8] P. Kremer, Strong completeness of S4 wrt the real line, manuscript;
http://individual.utoronto.ca/philipkremer/onlinepapers/

strongcompletenessR.pdf, 2012.

[9] A. Kudinov, Topological modal logic of R with inequality, Russian Mathe-
matical Surveys 63 (2008), 163–166.

[10] Tamar Lando and Darko Sarenac, Fractal completeness tech-
niques in topological modal logic: Koch curve, limit tree, and the
real line, preprint, http://philosophy.berkeley.edu/file/698/

FractalCompletenessTechniques.pdf, 2011.
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