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Abstract. A possible-worlds semantics is defined that validates the main axioms of
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Introduction and Overview

Kripke’s model theory for first-order modal logic [3] assigns to each world
w a set Dw thought of as the domain of individuals that exist in w. The
quantifier ∀x is interpreted at a world as meaning “for all existing x”. This
semantics does not validate the Universal Instantiation schema

UI ∀xϕ→ ϕ(y/x), where y is free for x in ϕ,1

because the value of variable y may not exist in a particular world. It does
however validate the variant

UI◦ ∀y(∀xϕ→ ϕ(y/x)), where y is free for x in ϕ,

along with the schemata

UD ∀x(ϕ→ ψ) → (∀xϕ→ ∀xψ),

VQ ϕ→ ∀xϕ, where x is not free in ϕ,

of Universal Distribution, and Vacuous Quantification, as well as being sound
for the Universal Generalisation rule

Presented by Name of Editor; Received 23 Feb, 2007
1ϕ(τ/x) is the formula obtained by uniform substitution of term τ in place of free x in

ϕ; the side condition is the usual proviso that no variable of τ becomes bound in ϕ(τ/x)
as a result.
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UG from ϕ infer ∀xϕ.

In addition this semantics validates the schema

CQ ∀x∀yϕ→ ∀y∀xϕ
of Commutative Quantification, which was shown by Fine [1] not to be
derivable from UI◦, UD and VQ by using UG and valid Boolean reasoning.
This raises the question of whether there is some plausible, “possible-worlds
style”, structural model theory for systems that have the axioms UI◦, UD
and VQ, but perhaps not CQ.2

In this paper such a semantics is presented, and a model constructed
that falsifies CQ while validating the other three quantificational axioms,
along with the axioms for any specified normal propositional modal logic.
The approach has been used previously in [5] and [2] to give a complete
semantics for the quantified relevant logic RQ and for a range of first-order
modal logics that are incomplete for their standard possible-worlds models.

There are two basic ideas involved. The first, already long exploited
in propositional modal logic, is that not every set of worlds need count
as a proposition. Instead we take a collection Prop of sets of worlds, the
admissible propositions, that forms a Boolean set algebra closed also under
the operation that interprets the modality �. The “truth value” of any
formula must then be a member of Prop.

The second notion has long been exploited in algebraic logic: the uni-
versal quantifier ∀x is interpreted as a greatest lower bound in the lattice of
propositions, this being the natural interpretation of arbitrary conjunctions.
To illustrate this, suppose we have the set W of worlds, and a universe U of
individuals that serves as the range of the quantifier ∀x. If ϕ is a formula
in which x is only the free variable, let ϕ(a) be the result of replacing free x
in ϕ by the individual a, viewed as a constant. Let |∀xϕ| and |ϕ(a)| be the
sets of worlds (subsets of W ) at which these sentences are true, respectively.
Intuitively, ∀xϕ is semantically equivalent to the conjunction of the ϕ(a)’s
for all a ∈ U . So

|∀xϕ| =
⋂
a∈U

|ϕ(a)|,

where
⋂

is set-theoretic intersection. This makes |∀xϕ| the greatest lower
bound of the |ϕ(a)|’s in the lattice of all subsets ofW , i.e. the largest/weakest

2The axiomatisation of [3] took as axioms the closures of all instances of UI◦, UD, VQ,
tautologies and appropriate modal schemata, with detachment for material implication as
the only inference rule. UG and Necessitation (from ϕ infer �ϕ) are then derivable rules.
Here a closure of ϕ is any sentence obtained by prefixing universal quantifiers and copies
of � to ϕ in any order.
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proposition that implies all of the propositions |ϕ(a)|. But if we are con-
strained to use the set Prop of admissible propositions, which may not be
the full powerset ℘W of W , then instead we should take

|∀xϕ| =
l

a∈U

|ϕ(a)|,

where
d

is the greatest lower bound operation in the ordered set (Prop,⊆).
The definition of “model” should require that

d
a∈U |ϕ(a)| always exists in

Prop. It will be the weakest admissible proposition that implies all of the
|ϕ(a)|’s. But it may not be equal to

⋂
a∈U |ϕ(a)| !

This interpretation, as developed in [2], has the quantifiers ranging over a
fixed domain of possible individuals. But here we have the varying domains
Dw ⊆ U of existing individuals, with ∀xϕ being equivalent to the conjunc-
tion of the assertions “if a exists then ϕ(a)” for all a ∈ U . To formalise
this, let Ea = {w ∈W : a ∈ Dw}, so that Ea represents the proposition “a
exists”. Then we want

|∀xϕ| =
l

a∈U

Ea⇒ |ϕ(a)|, (0.1)

where ⇒ is the Boolean set implication operation: X ⇒ Y = (W \X) ∪ Y .
When

d
=

⋂
, equation (0.1) reproduces the Kripkean semantics of [3] for

the quantifier ∀x.
In working with greatest lower bounds we put

d
S =

⋃
{X ∈ Prop : X ⊆

⋂
S},

so that
d
S is defined for an arbitrary S ⊆ ℘W . When S ⊆ Prop andd

S ∈ Prop, then
d
S is indeed the greatest lower bound of S in Prop.

Also, if
⋂
S ∈ Prop, then

d
S =

⋂
S. But by making

d
a totally defined

operation we ensure that |∀xϕ| is always defined, regardless of whether it is
admissible. We will see that admissibility of |∀xϕ| is not required for the
validity of a number of principles, including UI◦, UD and UG, but is required
for VQ.

We will show that if all of the Ea’s are admissible (i.e. Ea ∈ Prop), then
the definition (0.1) of |∀xϕ| validates CQ. The same conclusion holds if U is
finite, or if the Boolean algebra Prop is atomic, hence if Prop is finite, and
hence if W is finite. Moreover, validity of CQ follows if equality is definable
in the model in the sense that there is a formula “x ≈ y” such that

|a ≈ b| =

{
W, if a = b,

∅, otherwise.
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Thus the construction of a falsifying model for CQ is not a simple matter.
In Sections 1–3 we define model structures, premodels (in which |∀xϕ|

need not be admissible) and models (in which it is), and prove several sound-
ness results. Section 4 gives sufficient criteria for validity of CQ, and Section
5 constructs its falsifying model. The final Section 6 briefly states complete-
ness results for various logics relative to the given semantics, and points out
some interesting relationships between CQ and the Barcan formula.

1. Model Structures

A model structure is a system S = (W,R,Prop, U,D) such that

• W is a set, and R is a binary relation on W ;

• Prop is a Boolean subalgebra of the powerset algebra ℘W ;

• Prop is closed under the operation [R] defined by

[R]X = {w ∈W : ∀v ∈W (wRv implies v ∈ X)};

• U is a set, andD is a function assigning to each w ∈W a subsetDw ⊆ U .

Members of Prop are called the admissible sets of S. For each a ∈ U we
define Ea = {w ∈ W : a ∈ Dw}. Sets of the form Ea may be referred to as
“existence sets”. They are not required to be admissible.

Using Prop we define, for each X ⊆W ,

X↓ =
⋃
{Y ∈ Prop : Y ⊆ X},

X↑ =
⋂
{Y ∈ Prop : X ⊆ Y },

giving X↓ ⊆ X ⊆ X↑. The sets X↓ and X↑ need not belong to Prop, but if
they do, then X↓ is the largest admissible subset of X, and X↑ the smallest
admissible superset. So if X ∈ Prop, then X↓ = X↑ = X. Operations

d

and
⊔

on ℘℘W are defined by putting, for all S ⊆ ℘W ,
d
S = (

⋂
S)↓,

⊔
S = (

⋃
S)↑.

Then any admissible X has X ⊆
d
S iff X ⊆

⋂
S. If S ⊆ Prop and

d
S ∈

Prop, then
d
S is the greatest lower bound of S in the partially-ordered

set (Prop,⊆), i.e. the largest admissible set included in every member of S.
Dual statements hold concerning the role of

⊔
S as the least upper bound of

S ⊆ Prop.
It is quite possible that

d
S is admissible while

⋂
S is not. However, if⋂

S ∈ Prop then
d
S =

⋂
S.
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We now record some useful facts about
d

, some of which involve the
Boolean set “implication” operation ⇒, defined by X ⇒ Y = (W \X) ∪ Y .
Its main property is that Z ⊆ X ⇒ Y iff Z ∩X ⊆ Y .

In the following Lemma, Xi, Yi, Xij are subsets of W , S is a subset of
℘W , and

d
i∈I Xi is

d
{Xi : i ∈ I}.

Lemma 1.1.

(1) If Xi ⊆ Yi for all i ∈ I, then
d

i∈I Xi ⊆
d

i∈I Yi.
(2)

d
i∈I

d
j∈J Xij =

d
j∈J

d
i∈I Xij, provided that both sides of this equation

belong to Prop.
(3) If X ∈ Prop, then X ⇒

d
S =

d
Y ∈S(X ⇒ Y ).

(4) If {Yi : i ∈ I} ⊆ Prop, then
d

i∈I(Xi ⇒ Yi) =
d

i∈I(Xi↑ ⇒ Yi).

Proof.

(1)
⋂

i∈I Xi ⊆
⋂

i∈I Yi, and the operation ↓ is ⊆-monotonic.
(2) (N.B: the Xij ’s need not be admissible here.)

Let X =
d

i∈I

d
j∈J Xij . Then X ⊆ Xij for all (i, j) ∈ I × J . So, for a

given j0 ∈ J we haveX ⊆ Xij0 for all i ∈ I, henceX ⊆
d

i∈I Xij0 because
X ∈ Prop. Since this holds for every j0 ∈ J , X ⊆

d
j∈J

d
i∈I Xij ,

again as X is admissible. The converse inclusion holds by a symmetric
argument.

(3) (N.B: the members of S need not be admissible.)
Since Y ⊆ (X ⇒ Y ),

d
S ⊆

d
Y ∈S(X ⇒ Y ) by (1). Also, as W \X ⊆

(X ⇒ Y ), and W \ X ∈ Prop because X ∈ Prop, we have W \ X ⊆d
Y ∈S(X ⇒ Y ). Altogether then,

X ⇒
d
S = W \X ∪

d
S ⊆

d

Y ∈S

(X ⇒ Y ).

For the converse inclusion it is enough to show that any admissible
subset of

⋂
Y ∈S(X ⇒ Y ) is a subset of X ⇒

d
S. But if Z ∈ Prop has

Z ⊆
⋂

Y ∈S(X ⇒ Y ), then for all Y ∈ S, Z ⊆ (X ⇒ Y ), so Z ∩X ⊆ Y .
Hence Z ∩X ⊆

d
S as Z ∩X ∈ Prop. Therefore Z ⊆ X ⇒

d
S.

(4) (N.B: the Xi need not be admissible.)
First, since Xi ⊆ Xi↑, we have (Xi↑ ⇒ Yi) ⊆ (Xi ⇒ Yi), for all i ∈ I.
Hence

d
i∈I(Xi↑ ⇒ Yi) ⊆

d
i∈I(Xi ⇒ Yi) by (1).

For the converse inclusion, let Z be any admissible subset of
d

i∈I(Xi ⇒
Yi). Then for all i ∈ I, Z ⊆ Xi ⇒ Yi, hence Xi ⊆ Z ⇒ Yi. But Z ⇒ Yi

is admissible (by admissibility of Z and Yi), and so Xi↑ ⊆ Z ⇒ Yi,
implying that Z ⊆ Xi↑ ⇒ Yi. Hence Z ⊆

d
i∈I(Xi↑ ⇒ Yi).
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2. Premodels and Models

Let L be a set of relation and function symbols and individual constants. A
premodel M = (S, | · |M) for L, based on a model structure S, is given by
an interpretation function | · |M on L that assigns

• to each n-ary relation symbol P a function |P |M : Un → Prop,

• to each individual constant c an element |c|M ∈ U , and

• to each n-ary function symbol F a function |F |M : Un → U .

We deal with first-order modal L-formulas generated using a set {xn : n < ω}
of first-order variables, but often regard this set simply as ω by identifying
xn with n. A variable-assignment is then a map f ∈ ωU . Any L-term τ
can be interpreted via f as an element τMf ∈ U in the usual way. We use
the letters x, y, z, · · · for variables, and define f [a/x] to be the function that
“updates” f by assigning the value a ∈ U to x and otherwise acting as f .

A premodel gives an interpretation |ϕ|M : ωU → ℘W to each L-formula.
For each assignment f , |ϕ|Mf is thought of as the set of worlds at which ϕ
is true under f . This is defined by induction on the formation of ϕ:

• |Pτ1 · · · τn|Mf = |P |M(τM1 f, . . . , τMn f) ∈ Prop,

• |>|Mf = W and |⊥|Mf = ∅,
• |¬ϕ|Mf = W \ |ϕ|Mf , and |ϕ ∧ ψ|Mf = |ϕ|Mf ∩ |ψ|Mf ,

• |�ϕ|Mf = [R]|ϕ|Mf ,

• |∀xϕ|Mf =
d

a∈U

(
Ea⇒ |ϕ|Mf [a/x]

)
.

Thus if X ∈ Prop, then X ⊆ |∀xϕ|Mf iff X ⊆ Ea ⇒ |ϕ|Mf [a/x] for all
a ∈ U . We have

|∀xϕ|Mf =
[ ⋂

a∈U

Ea⇒ |ϕ|Mf [a/x]
]
↓.

=
[ ⋂

a∈U

(W \ Ea) ∪ |ϕ|Mf [a/x]
]
↓.

Identifying ∃ with ¬∀¬ gives

|∃xϕ|Mf =
⊔
a∈U

Ea ∩ |ϕ|Mf [a/x]

=
[ ⋃

a∈U

Ea ∩ |ϕ|Mf [a/x]
]
↑.
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Remark 2.1. The semantics of [3] interprets an n-ary relation symbol P as
a function

Φ(P, ·) : W → ℘(Un)

assigning to each world w an n-ary relation Φ(P,w) ⊆ Un. From such a Φ
we can define |P | : Un → ℘W by

w ∈ |P |(a1, . . . , an) iff 〈a1, . . . , an〉 ∈ Φ(P,w).

Alternatively, this can be viewed as a definition of Φ, given |P |, so the two
methods are equivalent. We find that use of the “proposition-valued” func-
tions |ϕ| provides a convenient way of handling the restriction to admissible
propositions.

It is worth emphasising that this kind of model theory allows relations
and properties to hold of non-existent objects (e.g. Pegasus has wings). Thus
it is not required that Φ(P,w) ⊆ (Dw)n; equivalently, it is not required that

|P |(a1, . . . , an) ⊆ Ea1 ∩ · · · ∩ Ean.

Writing M, w, f |= ϕ to mean that w ∈ |ϕ|Mf , we get the following
clauses for this satisfaction relation |=, with all except that for ∀ being
familiar:

• M, w, f |= Pτ1 · · · τn iff w ∈ |Pτ1 . . . τn|Mf ,

• M, w, f |= > and M, w, f 6|= ⊥,

• M, w, f |= ¬ϕ iff M, w, f 6|= ϕ,

• M, w, f |= ϕ ∧ ψ iff M, w, f |= ϕ and M, w, f |= ψ,

• M, w, f |= �ϕ iff for all v ∈W (wRv implies M, v, f |= ϕ).

• M, w, f |= ∀xϕ iff there is an X ∈ Prop such that w ∈ X and
X ⊆

⋂
a∈U

(
Ea⇒ |ϕ|Mf [a/x]

)
.

A formula ϕ is valid in premodel M, written M |= ϕ, if |ϕ|Mf = W for all
f , i.e. if M, w, f |= ϕ for all w ∈W and f ∈ ωU .

As with standard semantics, satisfaction of a formula depends only on
value-assignment to free variables:

Lemma 2.2. In any premodel M, for any formula ϕ, if assignments f, g ∈
ωU agree on all free variables of ϕ, then |ϕ|Mf = |ϕ|Mg.
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Proof. The only departure from the standard proof is the inductive case
that ϕ is ∀xψ. Then if f and g agree on all free variables of ϕ, then for each
a ∈ U , f [a/x] and g[a/x] agree on all free variables of ψ, so |ψ|Mf [a/x] =
|ψ|Mg[a/x] by induction hypothesis. Hence

|ϕ|Mf =
l

a∈U

(
Ea⇒ |ψ|Mf [a/x]

)
=

l

a∈U

(
Ea⇒ |ψ|Mg[a/x]

)
= |ϕ|Mg.

This result can be used to establish the usual relationship between syn-
tactic substitution of terms for variables and updating of evaluations:

Lemma 2.3. Let ϕ be any formula, and τ a term that is free for x in ϕ.
Then in any premodel M, for any f ∈ ωU , |ϕ(τ/x)|Mf = |ϕ|Mf [τMf/x].

Proof. Again the only nonstandard case is when ϕ is of the form ∀yψ.
First, when x is not free in ϕ then f and f [τMf/x] agree on all free variables
of ϕ, and ϕ(τ/x) is just ϕ, so the result is given by Lemma 2.2.

Otherwise, x is free in ϕ, so x 6= y and ϕ(τ/x) = ∀y(ψ(τ/x)) with τ free
for x in ψ, so y does not occur in τ . Then

|ϕ(τ/x)|Mf =
l

a∈U

Ea⇒ |ψ(τ/x)|Mf [a/y], and

|ϕ|Mf [τMf/x] =
l

a∈U

Ea⇒ |ψ|Mf [τMf/x][a/y].

But for any a ∈ U , the induction hypothesis on ψ gives

|ψ(τ/x)|Mf [a/y] = |ψ|Mf [a/y][τMf [a/y]/x],

and τMf [a/y] = τMf because y is not in τ , while

f [a/y][τMf/x] = f [τMf/x][a/y]

as y 6= x. So altogether

|ψ(τ/x)|Mf [a/y] = |ψ|Mf [τMf/x][a/y],

and hence |ϕ(τ/x)|Mf = |ϕ|Mf [τMf/x] in this case.

Corollary 2.4. If M |= ϕ, then M |= ϕ(τ/x) whenever τ is free for x in
ϕ.
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Proof. If M |= ϕ, then for any f , |ϕ(τ/x)|Mf = |ϕ|Mf [τMf/x] = W .

We will say that a formula ϕ is admissible in M if the function |ϕ|M
has the form ωU → Prop, i.e. |ϕ|Mf ∈ Prop for all f ∈ ωU . Every atomic
formula Pτ1 · · · τn is admissible. Given the closure properties of Prop it
is evident that the set of admissible formulas is closed under the Boolean
connectives and �. In particular, every quantifier-free formula is admissible.

A model for L is a premodel in which every L-formula is admissible.

Lemma 2.5. In any model M, |∀xϕ|Mf =
d

a∈U

(
Ea↑ ⇒ |ϕ|Mf [a/x]

)
.

Proof. As ϕ is admissible in M, {|ϕ|Mf [a/x] : a ∈ U} ⊆ Prop. Hence by
Lemma 1.1(4),

d

a∈U

(
Ea⇒ |ϕ|Mf [a/x]

)
=

d

a∈U

(
Ea↑ ⇒ |ϕ|Mf [a/x]

)
.

3. Soundness and M-Equivalence

We now fix a a premodel M, and examine the validity of various principles
in it, identifying some whose validity requires M to be a model. From now
on, the M-superscript will often be dropped from the notation |ϕ|Mf .

Proposition 3.1. The schemata UI◦ and UD are valid in M, and the rule
UG is sound for validity in M.

Proof. UG is dealt with first, as it is simplest. If M |= ϕ, then for any f
and a, Ea ⇒ |ϕ|f [a/x] = Ea ⇒ W = W, so |∀xϕ|f =

d
{W} = W . Hence

M |= ∀xϕ.
For UD, suppose that M, w, f |= ∀x(ϕ→ ψ) and M, w, f |= ∀xϕ. Then

there exist X,Y ∈ Prop such that

w ∈ X ⊆
⋂
a∈U

Ea⇒ |ϕ→ ψ|f [a/x], and

w ∈ Y ⊆
⋂
a∈U

Ea⇒ |ϕ|f [a/x].

Then w ∈ X ∩ Y ∈ Prop, and for all a,

X ∩ Y ∩ Ea ⊆ |ϕ→ ψ|f [a/x] ∩ |ϕ|f [a/x] ⊆ |ψ|f [a/x],
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hence X ∩ Y ⊆ Ea⇒ |ψ|f [a/x]. This shows M, w, f |= ∀xψ.
For UI◦, let y be free for x in ϕ. It suffices to show that for any f and a,

Ea ⊆ |∀xϕ→ ϕ(y/x)|f [a/y]. (3.1)

For then Ea⇒ |∀xϕ→ ϕ(y/x)|f [a/y] = W for all a ∈ U , so

|∀y(∀xϕ→ ϕ(y/x))|f =
d
{W} = W,

and hence M |= ∀y(∀xϕ→ ϕ(y/x)).
To prove (3.1), let w ∈ Ea. Then if w ∈ |∀xϕ|f [a/y], there exists

X ∈ Prop with
w ∈ X ⊆

⋂
b∈U

Eb⇒ |ϕ|f [a/y][b/x].

In particular, when b = a, since w ∈ Ea we get w ∈ |ϕ|f [a/y][a/x]. But by
Lemma 2.3, |ϕ|f [a/y][a/x] = |ϕ(y/x)|f [a/y] because yMf [a/y] = a. Thus

w ∈ |∀xϕ|f [a/y] ⇒ |ϕ(y/x)|f [a/y] = |∀xϕ→ ϕ(y/x)|f [a/y].

Next we consider the validity of VQ:

Proposition 3.2. Suppose that x has no free occurrence in ϕ. If ϕ is
admissible in M, then M |= ϕ→ ∀xϕ.

Proof. For any f ∈ ωU and a ∈ U , the assignments f and f [a/x] agree on
all free variables of ϕ, so by Lemma 2.2,

|ϕ|f = |ϕ|f [a/x] ⊆ Ea⇒ |ϕ|f [a/x].

But |ϕ|f ∈ Prop by M-admissibility of ϕ, so

|ϕ|f ⊆
l

a∈U

(
Ea⇒ |ϕ|f [a/x]

)
= |∀xϕ|f.

Hence |ϕ|f ⇒ |∀xϕ|f = W for all f .

Corollary 3.3. Every model validates VQ.

Proof. In a model, every ϕ is admissible.

We say that formulas ϕ and ψ are M-equivalent if |ϕ|M = |ψ|M. The
following properties of this equivalence relation are left to the reader to
check.
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Proposition 3.4. In any premodel M:

(1) ϕ is M-equivalent to ψ iff M |= ϕ↔ ψ.

(2) If ϕ is tautologically equivalent to ψ (i.e. ϕ↔ ψ is a tautology), then ϕ
and ψ are M-equivalent.

(3) M-equivalence is a congruence on the algebra of L-formulas, i.e. if the
pair ϕ,ψ are M-equivalent, then so are the pairs ¬ϕ,¬ψ and ϕ∧θ, ψ∧θ
and �ϕ,�ψ and ∀xϕ,∀xψ and ∃xϕ,∃xψ etc.

(4) If ψ is obtained from ϕ by replacing some subformula by an M-equivalent
formula, then ψ is M-equivalent to ϕ.

The next result will be used in a model construction in Section 5.

Proposition 3.5. In any premodel M:

(1) ∃x(ϕ ∨ ψ) and ∃xϕ ∨ ∃xψ are M-equivalent.

(2) ∃x(ϕ ∧ ψ) and ϕ ∧ ∃xψ are M-equivalent if ϕ is admissible in M and
has no free occurrences of x.

Proof. (1) It is enough to show that the formula

∃x(ϕ ∨ ψ) ↔ ∃xϕ ∨ ∃xψ

is valid inM. But, as the reader can check, this formula is derivable from
tautologies and instances of UD using the rule UG and valid Boolean
reasoning. Hence it is valid in M by Proposition 3.1.

(2) If ϕ is M-admissible and without free x, then ¬ϕ is M-admissible and
without free x, so by Lemma 3.2 the formulas ϕ→ ∀xϕ and ¬ϕ→ ∀x¬ϕ
are valid inM. But from these two, using tautologies, UD, UG and valid
Boolean reasoning we can derive

∃x(ϕ ∧ ψ) ↔ ϕ ∧ ∃xψ,

which is therefore valid in M.

4. Validating CQ

We now give some conditions under which the formulas ∀x∀yϕ and ∀y∀xϕ
are M-equivalent in a model. Of course we can assume x 6= y here, for oth-
erwise there is no work to do. Then assignments f [a/x][b/y] and f [b/y][a/x]
are identical, and may be written f [a/x, b/y] or f [b/y, a/x].
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Lemma 4.1. In a premodel M, let f ∈ ωU and let B be any Boolean sub-
algebra of Prop that contains |ϕ|Mf [a/x, b/y], |∀xϕ|f [b/y], and |∀yϕ|f [a/x]
for all a, b ∈ U . Then exactly the same atoms of B are included in the sets
|∀x∀yϕ|Mf and |∀y∀xϕ|Mf .

Proof. Let X be an atom of B with X 6⊆ |∀x∀yϕ|f . Then as X ∈ Prop,
there exists a0 ∈ U such that

X 6⊆ Ea0 ⇒ |∀yϕ|f [a0/x]. (4.1)

Hence X 6⊆ |∀yϕ|f [a0/x], so again as X ∈ Prop there exists b0 ∈ U such
that

X 6⊆ Eb0 ⇒ |ϕ|f [a0/x, b0/y]. (4.2)

Hence X 6⊆ |ϕ|f [a0/x, b0/y]. But X is a B-atom and |ϕ|f [a0/x, b0/y] ∈ B as
given, so X must be disjoint from |ϕ|f [a0/x, b0/y] = |ϕ|f [b0/y, a0/x]. Since
X ∩ Ea0 6= ∅ by (4.1), this implies

X 6⊆ Ea0 ⇒ |ϕ|f [b0/y, a0/x].

Hence
X 6⊆

l

a∈U

Ea⇒ |ϕ|f [b0/y, a/x] = |∀xϕ|f [b0/y].

Again the atomicity of X then makes X disjoint from |∀xϕ|f [b0/y] ∈ B.
Since X ∩ Eb0 6= ∅ by (4.2),

X 6⊆ Eb0 ⇒ |∀xϕ|f [b0/y].

Hence
X 6⊆

l

b∈U

Eb⇒ |ϕ|f [b/y] = |∀y∀xϕ|f.

Conversely, interchanging x and y in this argument shows that if X 6⊆
|∀y∀xϕ|f , then X 6⊆ |∀x∀yϕ|f .

Proposition 4.2. A model validates CQ if any of the following hold:

(1) Prop is an atomic Boolean algebra.

(2) Prop is finite.

(3) The universe U is finite.

Proof. (1) Put B = Prop. For any f , all sets |ϕ|f [a/x, b/y], |∀xϕ|f [b/y],
|∀yϕ|f [a/x] are in B by admissibility. But likewise the sets |∀x∀yϕ|f
and |∀y∀xϕ|f are in B, and include the same atoms of B by Lemma 4.1,
hence as B is atomic this makes |∀x∀yϕ|f = |∀y∀xϕ|f .
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(2) By (1), as any finite Boolean algebra is atomic.

(3) If U is finite, then for any f ,

{|∀x∀yϕ|f, |∀y∀xϕ|f}
∪ {|ϕ|f [a/x, b/y], |∀xϕ|f [b/y], |∀yϕ|f [a/x] : a, b ∈ U}

is a finite subset of Prop, so it generates a Boolean subalgebra B of Prop
that is finite, hence atomic. The proof that |∀x∀yϕ|f = |∀y∀xϕ|f in B
then follows by the argument of (1).

Next we consider consequences of admissibility of the “existence sets”
Ea and Ea↑.

Proposition 4.3. If a model has Ea↑ ∈ Prop for all a ∈ U , then it validates
CQ.

Proof. Since we are working in a model, we can use Lemma 2.5 to replace
Ea by Ea↑ in the definition of |∀xϕ|. Thus

|∀x∀yϕ|f

=
d

a∈U

(
Ea↑ ⇒

d
b∈U (Eb↑ ⇒ |ϕ|f [a/x, b/y])

)
=

d
a∈U

d
b∈U

(
Ea↑ ⇒ (Eb↑ ⇒ |ϕ|f [a/x, b/y])

)
by Lemma 1.1(3) as
Ea↑ ∈ Prop,

=
d

a∈U

d
b∈U

(
Ea↑ ∩ Eb↑ ⇒ |ϕ|f [a/x, b/y]

)
by set theory.

Similarly, |∀y∀xϕ|f =
d

b∈U

d
a∈U

(
Eb↑ ∩ Ea↑ ⇒ |ϕ|f [b/y, a/x]

)
.

But Eb↑∩Ea↑ ⇒ |ϕ|f [b/y, a/x] = Ea↑∩Eb↑ ⇒ |ϕ|f [a/x, b/y], so the
d

-
commutation result of Lemma 1.1(2) applies to give |∀x∀yϕ|f = |∀y∀xϕ|f .

Corollary 4.4. If a model has Ea ∈ Prop for all a ∈ U , then it validates
CQ.

Proof. If Ea ∈ Prop, then Ea = Ea↑.

We say that equality is definable in M if for any distinct variables x, y,
there is an L-formula “x ≈ y” such that

|x ≈ y|Mf =

{
W, if fx = fy,

∅, otherwise.
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Corollary 4.5. If equality is definable in a model, then it validates CQ.

Proof. Let a ∈ U be arbitrary, and suppose f ∈ ωI satisfies fx = a. Then
|∃y(x ≈ y)|f = [

⋃
b∈U Eb ∩ |x ≈ y|f [b/y]]↑ = Ea↑. Hence Ea↑ ∈ Prop as

every formula is admissible in M. By Proposition 4.3, CQ is valid in M.3

A premodel M will be called Kripkean if it always has

|∀xϕ|Mf =
⋂
a∈U

(
Ea⇒ |ϕ|Mf [a/x]

)
.

This means that ∀ gets the varying-domain semantics of Kripke [3]:

M, w, f |= ∀xϕ iff for all a ∈ Dw, M, w, f [a/x] |= ϕ. (4.3)

A Kripkean model has[ ⋂
a∈U

Ea⇒ |ϕ|Mf [a/x]
]
∈ Prop

by admissibility of formula ∀xϕ, and conversely this last condition implies
that a model is Kripkean.

Proposition 4.6. Every Kripkean premodel validates CQ.

Proof. This is straightforward, essentially because the quantifiers for all
existing . . . commute in the metalanguage. A more formal proof can be
given by repeating the proof of Proposition 4.3 with

⋂
in place of

d
(and

Ea in place of Ea↑). Instead of parts (2) and (3) of Lemma 1.1, the results⋂
i∈I

⋂
j∈J

Xij =
⋂

j∈J

⋂
i∈I

Xij , X ⇒
⋂
S =

⋂
Y ∈S

(X ⇒ Y ),

are used. These are laws of set theory that hold independently of any ad-
missibility constraints.

5. A Countermodel to CQ

This section exhibits a model that falsifies an instance of CQ. It is not so
hard to construct a premodel that does this, but we wish to ensure that
every formula is admissible in M, so that it validates VQ as well as UI◦ and

3For this proof to work it suffices in fact that |x ≈ y|Mf ⊇ Efx when fx = fy, and
|x ≈ y|Mf = ∅ otherwise.
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UD. From what has been shown in the last Section, our model must have
infinite sets for U and Prop, and hence for W . Also Prop cannot be atomic,
and cannot contain every Ea, or every Ea↑. Moreover, the model cannot be
Kripkean, or permit the definability of equality.

Let ∼ denote a fixed (but arbitrary) equivalence relation on Q (the ratio-
nals) with infinitely many equivalence classes, each of which is dense in Q:
so each interval (a, b) for a < b in Q contains a point from each equivalence
class. Such a relation is easy to construct. Let b/∼ denote the ∼-equivalence
class containing b.

We define a model structure S = (W,R,Prop, U,D), where

• W = U = Q;

• either R = ∅, or R = {(a, a) : a ∈ Q};
• Prop is the Boolean subalgebra of ℘(Q) generated by the set of all half-

open intervals [a, b) = {x ∈ Q : a ≤ x < b}, where a, b ∈ Q and a < b;

• Da = {a} for each a ∈ Q. Hence Ea = {a}.

We have actually defined two model structures, depending on the choice of
R. In the first case with R = ∅, [R]X = W for all X ⊆ W . In the second
case with R the identity relation, [R]X = X. Hence in both cases Prop
is [R]-closed. In the first case (W,R) (and hence (W,R,Prop)) validates
the smallest normal propositional modal logic containing �⊥, while in the
second case it validates the smallest normal logic containing the schema
�ϕ↔ ϕ. But each normal propositional modal logic is a sublogic of one of
these two [4], so is validated by one of these structures. We will make use of
that fact in Section 6.

Each non-empty X ∈ Prop is a finite union of intervals of the form
(−∞, a), [b, c), and [d,+∞). Prop is atomless, and Ea↑ = Ea = {a} /∈ Prop
for all a ∈ Q.

Lemma 5.1. Write Q/∼ for the set of all ∼-classes, and let E ⊆ Q/∼. Then
(
⋃
E)↑ and (

⋃
E)↓ are admissible, with

(
⋃
E)↑ =

{
∅, if E = ∅,
Q, otherwise,

(
⋃
E)↓ =

{
Q, if E = Q/∼,
∅, otherwise.

Proof. If E = ∅ then
⋃
E = ∅, and clearly ∅↑ = ∅. Otherwise, by density,

any non-empty X ∈ Prop intersects
⋃
E , and so (

⋃
E)↑ = Q. The case

of ↓ is similar (or it can be derived from the ↑ case, using the equation
S↓ = Q \ ((Q \ S)↑) for S ⊆ Q).
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Now let L consist of two binary relation symbols, P and ∼. (The two
uses of ∼ will be distinguished by context.) We define an L-premodel on S
by putting, for each a, b ∈ Q,

• |∼|M(a, b) =

{
Q, if a ∼ b,

∅, otherwise;

• |P |M(a, b) =


Q, if a ∼ b,

some non-empty interval
[b, c) not containing a, otherwise.

Note that Prop contains |∼|M(a, b) and |P |M(a, b) for all a, b ∈ Q, as re-
quired. The definition ensures that b ∈ |P |M(a, b) for all b, while a ∈
|P |M(a, b) iff a ∼ b.

Proposition 5.2. M does not validate ∀x∀yPxy → ∀y∀xPyx.

Proof. We show that for any f ∈ ωU ,

|∀x∀yPxy|f = Q while |∀y∀xPxy|f = ∅.

Now |∀yPxy|f =
[⋂

b∈QEb⇒ |P |(fx, b)
]
↓. But for any b,

Eb⇒ |P |(fx, b) = {b} ⇒ |P |(fx, b) = Q,

since b ∈ |P |(fx, b). Hence |∀yPxy|f = Q↓ = Q. It follows that for any f ,
|∀x∀yPxy|f = [

⋂
a∈QEa⇒ Q]↓ = Q as well.

On the other hand, |∀xPxy|f =
[⋂

a∈QEa⇒ |P |(a, fy)
]
↓. But

Ea⇒ |P |(a, fy) = Q \ {a} ∪ |P |(a, fy) =

{
Q, if a ∼ fy,

Q \ {a}, otherwise ,

so |∀xPxy|f =
[⋂

a 6∼fy Q \ {a}
]
↓ = (fy/∼)↓ = ∅ by Lemma 5.1.

It follows that for any f , |∀y∀xPxy|f = [
⋂

b∈Q Q \ {b} ∪ ∅]↓ = ∅↓ = ∅ as
well.

Notice that this proof shows that M is non-Kripkean: since ∅ 6= fy/∼,
we have

|∀xPxy|f 6=
⋂
a∈Q

Ea⇒ |P |(a, fy).

We now have to show that the premodel M is actually a model, i.e.
|ϕ|Mf is always admissible. This is done as follows. As before, we say that
formulas ϕ,ψ are M-equivalent if |ϕ| = |ψ| in this M.
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Proposition 5.3. Let ϕ be any formula. Then

(1) ϕ is M-equivalent to a quantifier-free formula.

(2) |ϕ|Mf ∈ Prop for all f ∈ ωI.

Proof. We prove both parts simultaneously by induction on ϕ. In the
proof, we write ‘M-equivalent’ simply as ‘equivalent’. Let us say that a
formula ϕ is coherent if it satisfies the two conditions of the proposition.
Any formula that is equivalent to a coherent one is itself coherent, a fact
that will be used repeatedly. To begin with, any formula is equivalent to
one formed from atomic formulas by the propositional connectives and the
quantifier ∃, so we can suppose without loss of generality that ϕ has this
form.

If ϕ is atomic, we are given the coherence. The set of coherent formulas
is clearly closed under the Boolean connectives. It is also closed under �,
since �ϕ is equivalent to the coherent > when R = ∅, and equivalent to ϕ
itself when R is the identity relation.

Assume that ϕ is coherent. We will prove that ∃xϕ is coherent. Induc-
tively, there is a quantifier-free formula ψ equivalent to ϕ, and so ∃xϕ is
coherent if the equivalent ∃xψ is coherent. Thus we can suppose that ϕ is
quantifier-free. But then there is a quantifier-free ψ in disjunctive normal
form that is tautologically equivalent to ϕ, and hence equivalent to ϕ in M.
Again, ∃xϕ will be coherent if the equivalent ∃xψ is. Thus we can suppose
that ϕ is in disjunctive normal form.

So, suppose that ϕ is ϕ1 ∨ · · · ∨ ϕn, where each ϕi is a conjunction of
literals, i.e. atomic and negated-atomic formulas. If each ∃xϕi is coherent,
then so is ∃xϕ1 ∨ · · · ∨ ∃xϕn, which is equivalent to ∃x(ϕ1 ∨ · · · ∨ ϕn) by
Lemma 3.5(1), so ∃xϕ will be coherent. Hence we can suppose that ϕ is a
conjunction of literals.

Next we can split off the conjuncts of ϕ in which x does not occur. For, if
ϕ is equivalent to ψ∧θ with ψ a literal not containing x, and ∃xθ is coherent,
then so is ψ ∧∃xθ, which is equivalent to ∃x(ψ ∧ θ) by Lemma 3.5(2), hence
equivalent to ∃xϕ. So we can suppose that x occurs in each conjunct of ϕ.

Similarly, we can delete P (x, x) and x ∼ x if they occur as conjuncts of
ϕ, since each is equivalent to > by the definitions of |∼|M and |P |M, and
∃x(>∧θ) is equivalent to ∃xθ. Moreover, if the negation of P (x, x) or x ∼ x
occurs in ϕ then we are done, since ∃x(⊥ ∧ θ) is equivalent to the coherent
⊥. Finally, y ∼ x with y different to x can be replaced by the equivalent
x ∼ y. So altogether we can suppose that we are dealing with a formula of



18 R. Goldblatt and I. Hodkinson

the form ∃xϕ, where

ϕ =
∧
i

P (x, yi) ∧
∧
j

P (zj , x) ∧
∧
k

¬P (x, uk) ∧
∧
l

¬P (vl, x)

∧
∧
m

(x ∼ sm) ∧
∧
n

¬(x ∼ tn),

all variables yi, zj , etc are distinct from x, and each
∧

could be empty. Now
for any f ∈ ωI, we have

|∃xϕ|f =
[ ⋃

a∈Q

(
Ea ∩

⋂
i

|P |(a, fyi) ∩
⋂
j

|P |(fzj , a)

∩
⋂
k

(
Q \ |P |(a, fuk)

)
∩

⋂
l

(
Q \ |P |(fvl, a)

)
∩

⋂
m

|∼|(a, fsm) ∩
⋂
n

(
Q \ |∼|(a, ftn)

))]
↑.

Any empty intersection here is interpreted as Q. Now Ea = {a} for any
a ∈ Q. So

|∃xϕ|f =
{
a ∈ Q : a ∈

⋂
i

|P |(a, fyi) ∩
⋂
j

|P |(fzj , a)

∩
⋂
k

(
Q \ |P |(a, fuk)

)
∩

⋂
l

(
Q \ |P |(fvl, a)

)
∩

⋂
m

|∼|(a, fsm) ∩
⋂
n

(
Q \ |∼|(a, ftn)

)}
↑.

Observe now that

• {a ∈ Q : a ∈ |P |M(a, b)} = {a ∈ Q : a ∈ |∼|M(a, b)} = b/∼ for any
b ∈ Q,

• {b ∈ Q : b ∈ |P |M(a, b)} = Q for any a ∈ Q.

So the set |∃xϕ|f above is[ ⋂
i

(fyi/∼) ∩
⋂
j

Q ∩
⋂
k

(Q \ (fuk/∼)) ∩
⋂
l

∅

∩
⋂
m

(fsm/∼) ∩
⋂
n

(Q \ (ftn/∼))
]
↑.

If the l-conjunction is non-empty — a condition determined by ϕ and inde-
pendent of f — this set is ∅, and so ∃xϕ is equivalent to ⊥. We are done.
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Otherwise, write Y for the set of all variables yi, sm above, and write Z for
the set of all variables uk, tn. Then

|∃xϕ|f =
[ ⋂

y∈Y

(fy/∼) ∩
⋂
z∈Z

(Q \ (fz/∼))
]
↑

=
[ ⋂

y∈Y

(fy/∼) \
⋃
z∈Z

(fz/∼)
]
↑

The set in square brackets here is a Boolean combination of ∼-equivalence
classes. It is therefore of the form

⋃
E for some set E of ∼-classes. So by

Lemma 5.1, the ↑ of the set belongs to Prop. This proves part (2) of the
Proposition.

For part (1), there are two cases, syntactically determined by ϕ.

• If Y = ∅, then |∃xϕ|f = Q for all f , because there are infinitely many
∼-classes in Q and only finitely many of them are eliminated by the
Z-term. So ∃xϕ is equivalent to > in this case.

• if Y 6= ∅, then |∃xϕ|f is Q if all the fy are ∼-equivalent and no fz is
∼-equivalent to them: for then, the set inside the square brackets is a
single ∼-equivalence class, so its ↑ is Q. Otherwise, |∃xϕ|f is ∅. Thus,
for any f ∈ ωI,

|∃xϕ|f =
∣∣∣ ∧

y,y′∈Y

y ∼ y′ ∧
∧

y∈Y,z∈Z

¬(y ∼ z)
∣∣∣f.

So ∃xϕ is equivalent to this (quantifier-free) formula if Y 6= ∅ (and, as
one can see, if Y = ∅ as well).

This completes the proof of Proposition 5.3.

6. Completeness and the Barcan Formulas

Let L be any (consistent) normal propositional modal logic. For a given
signature L, let Q−L be the smallest set of L-formulas that includes

• all tautologies,

• all L-substitution-instances of L-theorems,

• the schema �(ϕ→ ψ) → (�ϕ→ �ψ),

• the schemata UI◦, UD and VQ,
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and is closed under

• detachment for material implication,

• the rule of Necessitation: from ϕ infer �ϕ, and

• the rule UG.

Now in the last section we defined two models for L = {P,∼}, call them
M0 and M1, with R = ∅ and R = the identity relation, respectively. We
noted that the underlying propositional frame (W,R) of one of these models
validates L, by the result of [4]. But then this model itself validates all L-
substitution-instances of L-theorems, by an argument given in the proof of
[2, Theorem 2]. From the soundness results we have proved, and the evident
soundness of Necessitation in any premodel, it then follows that this model
validates Q−L, while falsifying CQ.

It is notable that both the “Barcan formula”

BF ∀x�ϕ→ �∀xϕ

and its converse

CBF �∀xϕ→ ∀x�ϕ

are valid in M0 and M1. This follows from the fact that �ψ is equivalent
to > in M0, and to ψ in M1.

It turns out that for any L, the logic Q−L is complete for the class of
all L-models validating L (i.e. validating all L-substitution-instances of L-
theorems). This can be shown by a Henkin-model construction which reveals
that the axioms UI◦, UD and VQ, together with the rule UG, exactly capture
the ∀-semantics

|∀xϕ| =
l

a∈U

Ea⇒ |ϕ(a)|

of the L-models we have used.
The converse Barcan formula is valid in any L-model satisfying the ex-

panding domains condition

wRv implies Dw ⊆ Dv, (6.1)

equivalent to the requirement that Ea ⊆ [R]Ea for all a ∈ U .
The logic Q−L+CBF is complete for the class of its expanding domain

models. But it is also complete for the class of its models that have constant
domains:

wRv implies Dw = Dv. (6.2)
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This last claim may raise the eyebrows of some readers who are used to
thinking of (6.2) as a condition that also validates the Barcan formula, which
is typically not derivable in Q−L+CBF. But the point is that BF can only
be shown to be valid in the presence of (6.2) when the model is Kripkean in
the sense of (4.3), in which case it also validates CQ.

The schema CQ is not a theorem of Q−L+CBF+BF, as the models M0

and M1 show. The logic Q−L+CBF+BF+CQ can be shown to be complete
for its class of constant-domain Kripkean models. These results indicate
that the main role of the Barcan formula in possible-worlds model theory is
not to provide models that have constant domains, but rather to ensure that
in a Henkin-style construction, the quantifier ∀ can be given the Kripkean
interpretation via

⋂
.

Justification of all these claims will be presented elsewhere.
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