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Abstract. We prove that there is no algorithm that decides whether a finite relation algebra

is representable.
Representability of a finite relation algebra A is determined by playing a certain two player

game G(A) over ‘atomic A-networks’. It can be shown that the second player in this game has

a winning strategy if and only if A is representable.
Let τ be a finite set of square tiles, where each edge of each tile has a colour. Suppose τ

includes a special tile whose four edges are all the same colour, a colour not used by any other

tile. The tiling problem we use is this: is it the case that for each tile T ∈ τ there is a tiling of
the plane Z× Z using only tiles from τ in which edge colours of adjacent tiles match and with

T placed at (0, 0)? It is not hard to show that this problem is undecidable.

From an instance of this tiling problem τ we construct a finite relation algebra RA(τ) and
show that the second player has a winning strategy in G(RA(τ)) if and only if τ is a yes-

instance. This reduces the tiling problem to the representation problem and proves the latter’s
undecidability.
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1. Introduction

In this paper we address an old question in algebraic logic: is there an algorithm that tells us
whether or not a finite relation algebra is representable? We have not been able to pin down the
origin of this problem precisely, but in all probability it originated with Roger Maddux. Maddux
and McKenzie discussed it in the early 1980s, Maddux suggesting a solution by tiling (our approach
here). It was raised again by McKenzie at a recent conference on universal algebra and lattice
theory (Szeged, Hungary, 1996). The problem is listed in [AMN91, page 730, open problem 3]
(credited to Maddux). There is a discussion of the question in [Ma94, problems 13 and 14, page
463], where it is observed that the finite relation algebras can be partitioned into three classes:
(a) the non-representable ones, (b) those that are representable over some finite set, and (c) the
finite representable relation algebras with no representation over a finite set. It is not hard to
show that (a) and (b) are recursively enumerable.1 The (isomorphism types of) finite relation
algebras is clearly a recursive set. Consequently, (a), (b) and (c) are all recursive if and only if
(c) is recursively enumerable. Maddux conjectures that the answer is no in both cases. In this
paper we show that (a) is not recursive, thus confirming Maddux’s conjecture. Hence the set of
(isomorphism types of) finite representable relation algebras with no finite representation is not
recursively enumerable. One problem remains open: is (b) recursive — i.e., given a finite relation
algebra, is it decidable whether it has a representation over a finite set?

We will reduce the tiling problem to the question of whether a finite relation algebra is repre-
sentable. That will show that the question is undecidable. This is utterly unsurprising, but our
proof is rather complicated.
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1Strictly, we have to consider the isomorphism type of members of these classes, so that we are dealing with
sets and not classes.

1



It is interesting to consider alternatives to this approach. For example, it has been known for
some time that the representable relation algebras cannot be defined by a finite number of axioms
[Mon64], and this of itself suggests that for finite relation algebras the representability problem is
undecidable. However, finite axiomatisability and decidability are not the same. If a class is finitely
axiomatisable then this does give us a decision method to test whether a finite object belongs to
the class or not. But the converse is false: Németi shows that the relativized cylindric set algebras
of any finite dimension greater than two are not finitely axiomatisable [HMT85, 5.5.12, 5.5.13,
credited to Németi], yet it is decidable whether a finite structure is in this class or not [Nem96].
He further shows that the equational theory of this class is decidable.

One of the main motivations for Tarski’s study of relation algebras was to define an alternative
foundation for set theory. In [TG87] it is shown that relation algebra can act as a vehicle for set
theory and hence all of mathematics. It would seem then, that undecidability results for relation
algebra should be obtainable by this result. However we have not been able to obtain the result
of the present paper in that way.

Our construction originated in [Hir95] and has been used in different forms in [HH97a, Hod97].
We assume some familiarity with relation algebras. The uninitiated might try [JT48, JT52,

Ma91b, Ma91a], for example.

2. Representability and Games

There have been a number of attempts to axiomatise the representable relation algebras (RRA),
a key one being Tarski’s axiomatisation of the relation algebras [JT52, Definition 4.1]. This
axiomatisation turned out not to be complete [Lyn50, Mon64] and Lyndon proposed a stronger,
infinite axiomatisation [Lyn50] which we will refer to here as the Lyndon conditions. It turned out
that the Lyndon conditions were not sound over RRA: there are representable relation algebras
that fail some of the Lyndon conditions. Lyndon explained the error in his first axiomatisation and
produced a rather complex but correct axiomatisation in [Lyn56]. Three separate axiomatisations
of the closely related class of representable cylindric algebras appeared in [HMT85], and alternative
axiomatisations of representable relation and cylindric algebras appeared in [HH97b].

However, the Lyndon conditions do correctly characterise the representable relation algebras
among the finite relation algebras; and in this paper, where we deal only with finite relation
algebras, we will use a variant of these conditions to test representability.

In [HH97a] the Lyndon conditions are expressed in terms of a winning strategy for the second,
‘existential player’ in a certain two-player game, played over a relation algebra.2 Here we define a
variant of these games that characterises representability for finite relation algebras.

2.1. Atomic Networks. Let A = (A,+,−, 0, 1, ;,^ , 1′) be a finite relation algebra. We define
an atomic network N = (D,h) to consist of a finite set of nodes D and a labelling function
h : D ×D → At(A), where At(A) is the set of atoms of A, such that for all d, e, f ∈ D,

h(d, e) ≤ 1′ ⇔ d = e

h(d, e) = h(e, d)^

h(d, f) ≤ h(d, e) ;h(e, f)

In this paper we deal only with atomic networks, so we may refer to them simply as networks.
Elsewhere a weaker definition is given for networks where only the right to left implication is
required for the first rule. A network in which a two-way implication holds is called strict. However,
in this paper all networks are assumed to be strict.

Let M = (D, f), N = (E, g) be networks. If D ⊇ E and f |E×E = g then we say that M is an
extension of N and that N is a subnetwork of M . We write N ⊆ M .

2This simplified the conditions and showed a certain connection between the Lyndon conditions and the com-

pletely representable relation algebras — in fact, the Lyndon conditions axiomatise the theory of the completely

representable relation algebras, though this class turns out not to be closed under elementary equivalence, so there
are relation algebras that satisfy all the Lyndon conditions but have no complete representation.
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In the following we will use the same symbol N to refer to the network, the set of nodes, and
the labelling function, distinguishing the cases by their context. Thus, n ∈ N means that n is a
node in the network N , and N(m,n) stands for the label on the edge (m,n) ∈ N ×N .

2.2. Games.

DEFINITION 1. Let A be a finite relation algebra, as before. G(A) is a game of countable
length in which two players, ∀ (male), and ∃ (female), build an increasing sequence of atomic
networks

N0 ⊆ N1 ⊆ N2 ⊆ . . .

In his first move, ∀ picks any atom a ∈ At(A), and ∃ responds with a network N0 with nodes
m,n ∈ N0 such that N0(m,n) = a. That completes the zero’th round of the play.

Suppose at the end of the (k − 1)th round that ∃ played the network Nk−1 (k > 0). In
the kth round, ∀ picks any two nodes m,n ∈ Nk−1 and two atoms a, b ∈ At(A) such that
a ; b ≥ Nk−1(m,n). ∃ responds with any network Nk ⊇ Nk−1 such that there is a node p ∈ Nk

with Nk(m, p) = a and Nk(p, n) = b. That completes the kth round.
It is possible that in some round of the play ∃ is unable to make the required extension. In that

case ∀ has won. If she does make a legal move in every round k (for k < ω), then she has won.

CONVENTION 1.
(1) There is no advantage to ∃ in adding more than a single node to the current network

in each round of the play, and we assume throughout that she never does so, so that
|Nk| ≤ |Nk−1|+ 1 for all k > 0.

(2) If ∀ picks nodes m,n ∈ Nk−1 and atoms a, b ∈ A, and if there is already a node p ∈ Nk−1

such that Nk−1(m, p) = a and Nk−1(p, n) = b, then ∃ does not need to make a proper
extension but can let Nk = Nk−1. As this kind of ∀-move is rather trivial, we will assume
throughout that he never makes a move of this kind. With this assumption, ∃ is always
forced to add a new point, and so |Nk| = |Nk−1| + 1 for all k > 0. If ∀ cannot make a
move in some round then ∃ wins straight away.

(3) We regard ∀ as choosing the labels on the edges (m, p), (p, m), (p, p), (p, n), and (n, p), in
the notation of definition 1 above. (Of course, (m, p) determines (p,m), etc.) All other
labels on edges of Nk involving p are regarded as having been chosen by ∃. This will be
crucial later.

THEOREM 1. Let A be a finite relation algebra. A is representable if and only if ∃ has a
winning strategy in G(A).

Proof. See, for example, [HH97b, theorem 9] or [HH97a, proposition 13]. The idea is essentially
in [Lyn50] and is well known (e.g., [Ma82]).

3. The Tiling Problem

An instance τ of the tiling problem is a finite set of square tiles τ = {T0, . . . , Tk−1}. Each tile
has a colour on each of its four edges: the four colours on the tile Ti are Top(Ti), Bot(Ti), Lt(Ti)
and Rt(Ti). See figure 1. Note that the tiles have a fixed orientation.

Such an instance is said to be a yes-instance if it is possible to tile the plane Z × Z. That is,
there is a function f : (Z× Z) → {0, . . . , k − 1} such that for all x, y ∈ Z we have Lt(Tf(x+1,y)) =
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Rt(Tf(x,y)) and Bot(Tf(x,y+1)) = Top(Tf(x,y)). We call such an f a tiling. If there is no such tiling
then we have a no-instance.

The tiling problem (given an instance, is it a yes-instance or a no-instance?) is known to be
undecidable [Ber66]. It is not hard to show from this that the following problem is also undecidable.
Given a finite set of tiles {T0, . . . , Tk−1} as above, is it the case that for each i < k there is a tiling
f i of the plane with Ti placed at (0, 0) (formally f i(0, 0) = i)?

We lose no generality if we assume that one tile, T0, is a special tile such that all of its four
edges have the same colour but this colour is not used on any edge of any other tile. Thus, there
is certainly a tiling f0 with f0(0, 0) = 0 given by f0(x, y) = 0 (all x, y ∈ Z). T0 can tile the plane
on its own but not in combination with any of the other tiles. So given an arbitrary set of tiles
{T1, . . . , Tk−1}, if we add the special tile T0 then {T1, . . . , Tk−1} is a yes-instance if and only if the
augmented set {T0, . . . , Tk−1} is a yes-instance.

It is this version of the tiling problem that we use here.
Now, roughly, given an instance τ of the tiling problem we construct (by an algorithm) a finite

relation algebra RA(τ) such that τ is a yes-instance if and only if RA(τ) is representable. Strictly,
RA(τ) is what Maddux calls a weakly associative algebra (WA) [Ma82, definition 1.2.4] — an
algebra of the same type as a relation algebra satisfying all the Tarski axioms for relation algebras
except, perhaps, the associativity axiom, but satisfying instead the weak associativity axiom

((1′ . x) ; 1) ; 1 = (1′ . x) ;(1 ; 1)

RA(τ) is a relation algebra if and only if it is associative.3 We prove: (i) if RA(τ) is associative
(and so a relation algebra), then if it is representable, τ is a yes-instance (theorems 1 and 3);
(ii) if τ is a yes-instance then RA(τ) is associative (theorem 4 and lemma 7), and representable
(theorems 1 and 4). This suffices to prove the undecidability of the representation problem for
finite relation algebras. To see this, note that the problem of deciding whether a finite weakly-
associative algebra is associative is certainly decidable. If the representation problem for finite
relation algebras were decidable, then given a tiling instance τ , we could construct RA(τ) and
decide if it is associative. If not, τ is a no-instance, by (ii). If it is associative, then by (i,ii) it is a
yes-instance if and only if RA(τ) is representable. Hence the tiling problem would be decidable,
a contradiction.

4. The Definition of RA(τ)

Notation. A representation of a relation algebra A is a map X providing a binary relation X(a)
on some set, the domain of X, for each element a of A. Of course, X respects the algebraic
operations and is 1–1.

In this section we define the algebra RA(τ). We’ll see (lemma 2) that RA(τ) is a weakly associa-
tive algebra, but not integral4 — in fact, the identity 1′ is the disjunction of three units e0, e1, e2.
If RA(τ) is representable, then in any representation X, the domain D of the representation will
be the disjoint union of three subsets — D = D0 ∪D1 ∪D2 — and for any point d ∈ D and i < 3
we have

(d, d) ∈ X(ei) ⇔ d ∈ Di.

As is standard for weakly-associative algebras every atom a has a start unit st(a) = 1′ . (a ; ă) and
an end unit end(a) = 1′ . (ă ; a) [Ma82, definition 5.10], which are atoms [Ma82, Lemma 5.12.1].
Let st(a) = ei and end(a) = ej (some i, j < 3). If RA(τ) has a representation X with domain D,
this tells us that for any pair of points (e, d) ∈ X(a) we have e ∈ Di and d ∈ Dj . We’ll call such
an atom an (i− j)-atom.

We will give the atoms of RA(τ) subscripts to indicate their start and end units. If the subscripts
are equal, we generally write just one of them. E.g., a01, e22 = e2, etc.

3It turns out that RA(τ) is associative if and only if the following condition is met: for each tile Ti ∈ τ there is

a tile Tj ∈ τ such that Rt(Tj) = Lt(Ti), along with three other conditions for the other sides of Ti.
4A suitable integral algebra RA(τ) can also be constructed, but we will not do so here.
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If n is any node in a RA(τ)-network N , there is a unique unit ei such that N(n, n) = ei (some
i < 3). We’ll call such a node an i-node. If n is an i-node and m is a j-node of a network N then
the label N(n, m) must be an (i− j)-atom. (n, m) is called an (i− j) edge.

We will often use subscripts to denote implicitly the kind of node we are talking about. For
example, ni ∈ N is implicitly stated to be an i-node, m1 and m′

1 are 1-nodes, and so on.

4.1. The Atoms. If τ is a tiling instance with k tiles T0, . . . , Tk−1 then RA(τ) has 2k+28 atoms.
They are

start end Atoms
0 0 e0, w0

0 1 g01, u01, v01, w01

0 2 g02, u02, v02, w02

1 1 e1,+11,−11, w1

2 2 e2,+12,−12, w2

1 2 T i
12 (i < k), w12

plus the converses of the (0− 1), (0− 2) and (1− 2) atoms. If i, j < 3, i 6= j, and aij is any (i− j)
atom, we write aji for ăij . Thus, the converse of g02 is g20. We consider some of the atoms to be
coloured: the atoms g01, g10, g02, and g20 are green, and the atoms w0, w1, w2, w01, w02, w12 and
their converses are white.

4.2. The Atom Structure. To define RA(τ) it remains to define the operations of converse and
composition on the atoms. The operations on arbitrary elements are then defined by distribution
over disjunction: see [Lyn50]. For converse, we have already defined the converse of atoms with
distinct subscripts. All the rest are self-converse except the following: the converse of +11 is −11

and the converse of +12 is −12, and vice versa.
Now we define composition. We do this by listing the inconsistent triangles (a, b, c) of atoms.

This is defined to mean that a ; b . c̆ = 0. Recall that the Peircean transforms of the triangle
(a, b, c) are (b, c, a), (c, a, b),(ă, c̆, b̆), (c̆, b̆, ă), and (b̆, ă, c̆). By the Peircean law in WAs, it follows
from the inconsistency of (a, b, c) that its Peircean transforms must also be inconsistent. The
following triangles, plus all Peircean transforms of them, are defined to be inconsistent. Firstly,
any triangle where the indices do not match is inconsistent: e.g., (xij , ykl, a) and (xj , ykl, a) are
inconsistent if j 6= k, for any atom a. Secondly, a triangle (ei, x, y) is inconsistent unless x = y̆.
Thirdly, the following are all inconsistent (the last column but one indicates the type of nodes in
the triangle).

(g10, g02, w21) 0, 1, 2 (1)

(T i
12, T

j
21,+11) any i, j < k, unless Lt(Ti) = Rt(Tj) 1, 1, 2 (2)

(u10, g02, T
i
21) any i with 1 ≤ i < k 0, 1, 2 (3)

(v10, g01,±11) 0, 1, 1 (4)

There are three dual rules for inconsistent triangles, obtained from rules 2, 3 and 4 by swapping
the subscripts 1 and 2 throughout and replacing Lt,Rt by Bot, Top, respectively. We write ±11

as an abbreviation for ‘either +11 or −11’. We will refer to these inconsistent triangles by ‘rules 1
to 4’.

All other triangles are defined to be consistent. This suffices to define composition. The
resulting operation may not be associative (see [Lyn50, page 710]), but we will prove associativity
later (lemma 7), in the case that is important to us. Note that 1′ = e0 + e1 + e2 follows from this
definition of consistency.

Clearly, we can obtain RA(τ) from τ effectively (by an algorithm).

LEMMA 2. For any instance of the tiling problem τ , RA(τ) is a weakly associative algebra.

Proof. Let C be the set of consistent triangles of RA(τ). By theorem 2.2.3 of [Ma82]5 it suffices
to show that (i) C is closed under Peircean transforms, (ii) if (ei, x, y) ∈ C then x = y̆ and (iii)

5Maddux defines (a, b, c) to be consistent iff a ; b ≥ c whereas here we mean that a ; b ≥ c̆.
5



�
�����*

H
HHH

HHY
-a0 b0

c

T i
12

g01 g02

�
���

��*

H
HHH

HHY
-T i

12

g01 g02

6

�
�

�
�

�
��

+12g02

a0 b0

b1

c

Figure 2. (a) (b)

��
���

��*

HH
HHH

HHY
-

T i
12

g01 g02

6

�
�

�
�

�
�
��

+12

g02

a0

b1

c

6
























�

6

@
@

@
@

@
@

@I

+12

g02

+11

a1

b0

b2

g01

Figure 3. the play after five rounds

for any atom aij of RA(τ) (ei, aij , aji) ∈ C. This is rather easy to verify from the definition
of the atom structure of RA(τ), bearing in mind that the only inconsistent triangles involving a
unit ei are those where the indices do not match and those which break requirement (ii) of this
paragraph.

Remarks. It is helpful to think of the atoms T i
12 as corresponding to the tiles Ti (i < k). Because

of this correspondence, we call an edge (n1, n2) of a network N a tile edge if N(n1, n2) = T i
12 (some

i < k). (Recall our convention that n1 is a 1-node here, so that N(n1, n1) = e1, and similarly for
n2.) The atoms T i

12 : i < k are called tile atoms.
Rule 2 (and its dual) force the tile edges to form a tiling pattern, as we’ll see in theorem 3.

5. Winning strategy implies tiling

THEOREM 3. Let τ be a set of tiles such that T0 is a special tile with all four of its edges equal
to each other but distinct from the colours used by any other tile. If ∃ has a winning strategy for
G(RA(τ)) then for each i < k there is a tiling of the plane with Ti at (0, 0), so τ is a yes-instance.

Proof. Suppose ∃ has a winning strategy and let ∀ make the following moves. First he plays the
atom T i

12, and in the next round he picks atoms g10, g02, so forcing the triangle in figure 2(a) (in
the diagram we have labelled (c, a0) with g01 instead of labelling (a0, c) with g10, but of course
this is equivalent). Then he picks the edge (b0, c) and the two atoms +12, g20, as in figure 2(b).
∃ has to fill in and label the missing edge (a0, b1). She can do so because she has a winning

strategy. The label must lie under (g10 ; g02) . (T i
12 ; +12). By rule 1 she cannot choose w12, so the

label must be T j
12 for some j < k. By rule 2 she must choose j so that Bot(Tj) = Top(Ti).

∀ continues with the two moves shown in figure 3. In this way ∀ constructs two sequences of
nodes a0, a1, a2, . . . and b0, b1, b2, . . .. He can also extend the sequences backwards (. . . , a−1, a0, a1,
. . .) by playing suitable moves. ∃ has to label each edge (ax, by) : x, y ∈ Z and in each case the
only consistent choices are T j

12 for some j < k.
It is fairly simple (by rule 2) to see that this defines a tiling f i of the plane with Ti at (0, 0).

Formally, if the edge (ax, by) is labelled by T j
12 then let f i(x, y) = j.
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6. Tiling implies winning ∃-strategy

To complete the reduction of the tiling problem to the representation problem we need to prove
the converse to theorem 3.

THEOREM 4. Let τ be an instance of the tiling problem where each tile is part of a tiling of the
plane, and one tile T0 ∈ τ is a special tile with all four edges the same colour, a colour not used
by any other tile. Then ∃ has a winning strategy in the game G(RA(τ)).

Proof. Assume the hypotheses. Let f i be a tiling function where f i(0, 0) = i (each i < k). We
will provide a winning strategy for ∃ in the game G(RA(τ)).

Initially, if ∀ plays the atom aij of RA(τ) then ∃ responds with a network N0 consisting only of
the nodes ni, nj , equal if aij is a unit and distinct if not, with N0(ni, nj) = aij , N0(nj , ni) = aji,
N0(ni, ni) = ei, and N0(nj , nj) = ej . By the second part of the definition of consistency of
triangles, this is clearly a well-defined network (in particular, if aij ≤ 1′ then aij = ei = ej).

Suppose, at some stage in the continuing play of G(RA(τ)), that the current network is N .
∀ picks two nodes ni, nj ∈ N and two atoms ail, bl′j such that ail ; bl′j ≥ N(ni, nj). Necessarily,
l = l′. An ∀-move of this kind is called an l-move, and, bearing in mind convention 1(2), it forces
∃ to add an l-node to N . She has to find a network M extending N containing a node nl ∈ M
such that M(ni, nl) = ail and M(nl, nj) = blj .

CONVENTION 2. Throughout, if we define the labelling of an edge M(p, q) = c ∈ At(A) then
the labelling on the converse edge is implicitly defined by M(q, p) = c̆.

∃ first builds a complete but partially labelled graph N∀ whose nodes are N ∪ {nl}, where nl

is a new l-node, not in N . (i.e. every pair of nodes in N∀ forms an edge, but not all edges are
labelled.) N∀ extends N , so that if p, q ∈ N then N∀(p, q) = N(p, q). Also, N∀(ni, nl) = ail,
N∀(nl, nj) = blj , and N∀(nl, nl) = el. As with convention 2, labels on the reverse edges (nl, ni)
and (nj , nl) are now specified as well. (These are the edges we regard as being labelled by ∀ —
recall convention 1). It can be checked that this is well-defined if ni = nj . No other edges are
labelled in N∀. Clearly, N∀ is consistent — for any three nodes p, q, r ∈ N∀, if all three edges
of the triangle (p, q, r) are labelled in N∀ then N∀(p, r) ≤ N∀(p, q) ;N∀(q, r), else ∀ has made an
illegal move.

We now define a strategy for ∃ in choosing an atom for each unlabelled edge of N∀. Such
edges have the form (nl,m) for m ∈ N \ {ni, nj}. Employing this strategy results in a completely
labelled graph, say M .

We show that the strategy is winning for ∃ by showing that the graph M is in fact an atomic
network. In order to do this, we have to show for any three nodes p, q, r ∈ M that the triangle
(p, q, r) is consistent, i.e., that M(p, r) ≤ M(p, q) ;M(q, r). If all three edges (p, r), (p, q) and (q, r)
are labelled in N∀ then we may assume that the triangle is consistent. If not, then if two of p, q, r
are equal, consistency is assured by convention 2 and our definition of M(nl, nl) = el, so long as ∃
always uses an i, j-atom to label an (i− j)-edge (and she will). So it suffices to check consistency
of the triangles with three distinct nodes and an edge labelled by ∃ in the current round of the
game. We will do this as we define the strategy: for each edge unlabelled in N∀, we will explain
which atom ∃ chooses to label it, and check that any triangle containing it conforms with rules 1–4
of the definition of RA(τ).

REMARK 1. Since all this takes up what remains of the paper, it may help the reader if we
discuss the underlying idea a little, before plunging in. The critical part of the strategy is where
∃ is forced to choose a (1 − 2)-atom — a tile atom or w12 — to label a (1 − 2) edge. The atom
w12 is a sort of ‘wild card’ which may be adjacent to any tile as it is not mentioned in rule 2. So
where possible, she chooses the atom w12 to label such edges.

However, rule 1 prohibits the use of w12 in some circumstances. When rule 1 applies, ∃ is
forced to choose a tile atom. To help decide which one, we will assume that each tile edge in N
is associated with a genuine tiling of the plane, in the same way as happened in theorem 3. This
means that every tile edge (n1, n2) in N has an associated tiling function f(n1,n2) ∈ {f0, . . . , fk−1},
and sometimes also a pair of co-ordinates Co(n1, n2) ∈ Z×Z, so that the tile atom labelling (n1, n2)
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Figure 4. ∃’s strategy, case II(1,2)

is given by the tile Tf(n1,n2)(Co(n1,n2)) if f(n1,n2) 6= f0, and by T0, otherwise. Except in ∀’s current
triangle, which is in N∀ so is assumed to be consistent, the tilings and co-ordinates will have to
fit together in a coherent way rather as in theorem 3.

These tilings and co-ordinates will be assumed (inductively) to be given for N , and one of ∃’s
tasks will be to extend them to M . (The u- and v-atoms play an important role here: the way her
strategy deployed v01 and v02 in earlier rounds of the game will ensure that she can define tiling
functions for new tile edges coherently, and u01, u02 do the same job for the co-ordinates.) When
she has done this, it will be easy for her to decide which tile atom should label each new tile edge
— she will just choose the one given by its tiling function and co-ordinates. Consistency of her
choices will follow from the fact that the tiling function is a genuine tiling of the plane.

The details of the tiling and co-ordinate functions will be discussed below, when we come to
describe ∃’s strategy for choosing tile atoms in full.

6.1. ∃’s strategy. Here is ∃’s strategy for labelling edges of M , unlabelled in N∀. We will define
it so that:

(α): ∃ never chooses a green atom, ±11, or ±12 to label an edge.
(β): she never chooses a tile atom M(n1, n2) = T i

12 unless there is a node n0 ∈ N such that
N∀(n0, n1) = g01 and N∀(n0, n2) = g02. In particular, she never chooses a tile atom unless
one of the atoms chosen by ∀ in the current round of the game is green.

I: (0− 0), (1− 1), and (2− 2) edges: For each of these types of edges she chooses the label
wi for suitable i. Since wi is not mentioned in any of rules 1 to 4, it follows that any
triangle containing such an edge must be consistent.

II: (0− 1) and (0− 2) edges: We define the strategy for a (0−1) edge (n0, n1); the strategy
for (0− 2) edges is similar. ∃ always chooses either u01, v01 or w01 for a (0− 1) edge.
(1) Suppose there is a cycle of distinct 1-nodes of N∀, say γ = 〈g0, g1, . . . , gl−1〉 (some

l ≥ 3), such that
(a) n1 ∈ γ
(b) N∀(gi, gi+1) = ±11 (each i < l − 1), and N∀(gl−1, g0) = ±11

(c) for all gi ∈ γ, if gi 6= n1 then N∀(n0, g
i) = g01.

Then ∃ lets M(n0, n1) = u01.
(2) If there is a chain of 2-nodes C = 〈c2, . . . , d2〉 ⊆ N , with c2 6= d2, such that

(a) for each α2 ∈ C, N∀(n0, α2) = g02

(b) each edge between two consecutive nodes in the chain C is labelled by ±12 in
N

(c) N∀(n1, c2) = T i
12 and N∀(n1, d2) = T j

12 (some i, j < k),
then she lets M(n0, n1) = v01.

(3) Otherwise she lets M(n0, n1) = w01.
See figure 4.
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We should check first that this strategy is well-defined — i.e., cases 1 and 2 do not apply
simultaneously. So suppose both cases apply to the edge (n0, n1). Since case 1 applies,
there is a cycle γ as described above; and since case 2 applies, there is a chain C as above
with endpoints c2 and d2. As the edge (n0, n1) is just being labelled by ∃, either n0 or n1 is
currently being added to the network. Now the new node, whichever it is, is incident with
at most two labelled edges in N∀, the ones labelled by ∀ in the current round. But both n0

and n1 are incident with at least four such edges, because N∀(n0, g) = g01 (g ∈ γ \ {n1})
and N∀(n0, α2) = g02 (α2 ∈ C), while N∀(n1, c2), N∀(n1, d2) are labelled in N∀ (they are
tile atoms) and the two edges connecting n1 to its neighbours in γ are also labelled (with
±11) in N∀. This is a contradiction, and shows that the strategy is well-defined.

Next we check that it is consistent: that when the labelling of all edges of M has been
completed, no triangle containing an edge labelled by case II of the strategy is inconsistent.
Though we have not yet described the rest of the strategy, so we don’t know exactly how
edges of M are labelled, we promise that conditions (α) and (β) will in the end be met,
and these are all we need.

First, we check that if ∃ chooses the atom u01 for the edge (n0, n1) then there is no
2-node n2 such that the triangle (n0, n1, n2) violates rule 3 in M . Suppose this happened:
so M(n0, n1) = u01, M(n0, n2) = g02, and M(n1, n2) = T i

12 for some i with 1 ≤ i < k.
(Recall that rule 3 does not apply to T 0

12.) Now n0 is incident with at least three green
edges — two labelled g01 into the cycle γ that caused the use of u01 and one labelled g02

to n2 — so by (α), n1 must be the node added in the current round. n1 is incident with
two edges labelled ±11 in the cycle γ, so by (α), these are the two edges chosen by ∀ in the
current round. But then, as neither of ∀’s atoms is green, by (β) ∃ would not have chosen
a tile atom for M(n1, n2). Thus we have a contradiction. So if ∃ chooses M(n0, n1) = u01

then any triangle involving this edge is consistent.
The second possible inconsistency that we have to check for is when ∃ chooses v01 for the

edge (n0, n1), and there is a 1-node m1 such that the triangle (n0, n1,m1) violates rule 4.
So suppose there is a chain C with endpoints c2 6= d2, with N∀(n1, c2) and N∀(n1, d2) both
tile atoms, as in case 2 of the strategy, and with N∀(n0,m1) = g01 and N∀(m1, n1) = ±11.
As before, because the labels g02 on the edges (n0, c2) and (n0, d2) must have been chosen
by ∀, this could only happen if n1 is the node currently added, as c2 6= d2. Now the edges
(n1, c2) and (n1, d2) are in N∀, and as this exhausts the labelled N∀-edges incident with
n1, the edge (n1,m1) must be labelled by ∃ in the current round. This conflicts with (α),
because ∃ never uses ±11 to label an edge. Thus, the situation described does not arise.

Hence, if this strategy is used, any triangle in M involving a (0− 1) edge labelled by ∃
must be consistent. Similarly, triangles involving (0− 2) edges chosen by ∃ are consistent.

Having dealt with all (0 − 1), (0 − 2), (1 − 1) and (2 − 2) edges now, we can see that
(α) is indeed a true property of ∃’s strategy.

III: (1− 2) non-tile edges: ∃ now proceeds to deal with the new (1−2)-edges not occurring
in N∀. Let (n1, n2) be such an edge. If it is consistent with N∀, she lets M(n1, n2) = w12.
In more detail, if there is no node m0 ∈ N such that N∀(m0, n1) = g01 and N∀(m0, n2) =
g02, then she lets M(n1, n2) = w12. Such an edge cannot be part of an inconsistent triangle
in M , because the only inconsistent triangles involving the atom w12 are those mentioned
in rule 1 and because ∃ never chooses green atoms. The edges so labelled are not tile
edges.

This means that (β) is also a true property of ∃’s strategy.
IV: (1− 2) tile edges: Finally, ∃ has to label the remaining (1−2)-edges of M , if any. These

are the edges of the form (n1, n2) such that for some node m0 ∈ N , N∀(m0, n1) = g01 and
N∀(m0, n2) = g02. ∃ is not allowed to choose the atom w12 for (n1, n2) because of rule 1
— she must use a genuine tile atom here.

To choose tile atoms for these edges, ∃ will take advantage of certain tilings and (possi-
bly) co-ordinates associated with existing tile edges; and to continue winning later on, she
will also have to extend these tilings and co-ordinates to the new tile edges constructed in
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the current round. This includes any new tile edges labelled by ∀, so that ∃ may have to
define tilings/co-ordinates even if there are no new tile edges for her to label.

These tilings and co-ordinates will be assumed inductively to comply with the conditions
T1, T2 and T3 below. To specify these, we need to define some terms.

DEFINITION 2. Let X ∈ {N,M}.
• Let p, q, r be distinct nodes of X. The triangle (p, q, r) is said to be an ∀-triangle if

it was constructed by ∀ in some round of the game. More formally, suppose (without
loss) that node r was the most recently constructed node out of p, q, r as the game
progressed. Then triangle (p, q, r) is an ∀-triangle if in the round when r was added,
∀ chose p, q as his nodes (and X(p, r), X(r, q) as his atoms). The order of the nodes
p, q, r is not significant here, so if (p, q, r) is an ∀-triangle then so are (q, r, p) and
(q, p, r).

• Recall that a tile edge is one labelled with T i
12 for some i < k. Two edges (m1,m2)

and (m1,m
′
2) of X are said to be attached to each other if they are both tile edges,

N(m2,m
′
2) = ±12, and the triangle (m1,m2,m

′
2) is not an ∀-triangle. Similarly,

if (m1,m2) and (m′
1,m2) are both tile edges, N(m1,m

′
1) = ±11, and the triangle

(m1,m
′
1,m2) is not an ∀-triangle, then the two edges are attached.

In a nutshell, two tile edges are attached if they form two sides of a non-∀-triangle,
the third side of which is labelled by a ±1 atom.
In this definition, we are not concerned with the orientation of the edges — we regard
them as undirected edges.

• Two tile edges (m1,m2) and (m′
1,m

′
2) are said to be linked in X if and only if they

are equal or there is a chain of tile edges in X from (m1,m2) to (m′
1,m

′
2) with each

edge in the chain attached to the next one. Thus, ‘linked’ is the reflexive, transitive
closure in X of the ‘attachment’ relation. It is an equivalence relation on tile edges.

At this stage ∃ has labelled all the edges of M except the (1− 2) tile edges. Although
she has not yet labelled these, she knows which edges are going to be tile edges (by (β)),
and she knows the labels on all (1−1) and (2−2) edges. She also knows which triangles ∀
has picked during the game, of course. Therefore it makes sense to say that two tile edges
of M are attached or linked to each other in M .

6.2. Tiling and Co-ordinate Requirements for N . We require (inductively) that each
tile edge (n1, n2) of N — whether its label was chosen by ∃ or ∀ — is associated with a
tiling f = f(n1,n2) ∈ {f i : i < k} in such a way that

T1: if the tile edges (n1, n2), (n′1, n
′
2) are linked in N then f(n1,n2) = f(n′

1,n′
2)

.
If f = f0 we do not need co-ordinates. (Recall that all four edges of the tile T0 have

the same colour.) If f 6= f0 we need co-ordinates Co(n1, n2) = (x, y), say, where x, y ∈ Z,
such that:

T2: If (n1, n
′
2) is attached to (n1, n2), f(n1,n2) = f(n1,n′

2)
6= f0, N(n2, n

′
2) = +12, and

Co(n1, n2) = (x, y), then Co(n1, n
′
2) = (x, y + 1).

Similarly, if (n′1, n2) is attached to (n1, n2), the associated tiling is not f0, N(n1, n
′
1) =

+11, and Co(n1, n2) = (x, y), then Co(n′1, n2) = (x + 1, y).
T3: For each tile edge (n1, n2), if f(n1,n2) = f0 then N(n1, n2) = T 0

12. If f(n1,n2) =

f i (i > 0) and Co(n1, n2) = (x, y) then N(n1, n2) = T
fi(x,y)
12 .

It is easy to arrange that the requirements T1, T2, and T3 hold in the initial network
N0. It will involve at most one tile edge (at most one edge of any kind!), and if its label
is T i

12, we let the associated tiling be f i, and if i > 0 we assign the co-ordinates (0, 0).
Now assume inductively that tilings and co-ordinates are defined for N , satisfying T1–

T3. First, we will describe how to extend them to M . Then, when all tilings and co-
ordinates have been defined, we will check that T1 and T2 are satisfied. Finally, T3 will
tell ∃ which tile to use for each new tile edge, and then we can check consistency of triangles
involving them.
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6.3. Tiling functions and co-ordinates for ∀’s tile edges. The first step is to define
tiling functions and co-ordinates for any tile edges chosen by ∀ in the current round. If ∀
chooses N∀(n1, n2) = T j

12, say, then let f(n1,n2) = f j , and if j > 0 let Co(n1, n2) = (0, 0),
in agreement with T3.

6.4. Tiling functions for ∃’s new tile edges. ∃ must now find tilings and perhaps
co-ordinates for the new tile edges in M , if any. Suppose that there are some. Suppose
also that the new node is a 2-node: i.e., the nodes of M are those of N plus a new node
n2 /∈ N . The other case, where the new node is a 1-node, is dealt with similarly, using the
(1− 2)-symmetry of the rules 1–4 defining the atom structure. This n2 will be fixed in the
notation from now on. The new tile edges are precisely those of the form (n1, n2), where
n1 ∈ N and N(m0, n1) = g01, N∀(m0, n2) = g02 for some m0 ∈ N . ∃ has to associate a
tiling function f(n1,n2) with each such edge. She does this as follows:
• If (n1, n2) is linked (in M) to a tile edge t of N∀, then she associates with (n1, n2)

whatever tiling function is associated with t. That is, she sets f(n1,n2) := f(t).
• Otherwise, she lets f(n1,n2) = f0.

Of course, we have to show that this is well-defined. This is done by the following lemma.

LEMMA 5. Under the above assumptions (in particular, that n2 is the new node and
(n1, n2) a tile edge to be labelled by ∃, so that N∀(m0, n2) = g02 and N(m0, n1) = g01 for
some m0 ∈ N):
(1) If (n1, n2) is linked in M to a tile edge of N∀ that is not in N , then (n1, n2) is not

linked in M to any other tile edge of N∀.
(2) Let t, t′ be tile edges of N . If t and t′ are linked in M , then they are linked in N .

For suppose that (n1, n2) is linked in M to two distinct tile edges t, t′ of N∀. By (1) of
the lemma, t, t′ are edges of N . Because ‘linked’ is an equivalence relation on tile edges,
t, t′ are linked in M . By (2) of the lemma, they are linked in N , so by T1 for N , f(t) = f(t′).
Thus, ∃’s definition of f(n1,n2) := f(t) is well-defined.

Proof. (1) Assume the hypotheses. Then ∀’s chosen atoms in the current round must have
been g02 and a tile atom. Neither of them was ±12.

Suppose that (n1, n2) are linked to a tile edge t in N . Then there is a chain of attached
tile edges proceeding from (n1, n2) to t. At some stage, this chain crosses into N . This is
impossible unless some edge of M incident with n2 is labelled ±12. But ∀ did not choose
±12, and ∃ never does (by (α)). So (n1, n2) is not linked to any tile edge of N . As there
is a unique tile edge of N∀ that is not in N , this proves part (1).

(2) Assume not. Take a counterexample pair of tile edges t, t′ of N , linked in M but
not in N , with shortest possible chain of attached tile edges ei (1 ≤ i ≤ s) of M linking
t with t′: so t is attached to e1, e1 to e2, . . . , es−1 to es, and es to t′, and s ≥ 1 is least
possible. Clearly, no ei is an edge of N , or a counterexample with a shorter chain would
be possible. Also, the ei are all distinct. So the ei have the form (ni

1, n2) for distinct
nodes ni

1 ∈ N (1 ≤ i ≤ s). Since t, t′ are edges of N , we must have t = (n1
1,m2) and

t′ = (ns
1,m

′
2) for some 2-nodes m2,m

′
2 ∈ N with M(n2,m2) = ±12 and M(n2,m

′
2) = ±12.

Hence (n2,m2), (n2,m
′
2) are edges of N∀, chosen by ∀ in the current round. Now by the

assumption of the lemma, ∀ also chose a green atom: N∀(m0, n2) = g02. Because he only
chose two edges, we must have m2 = m′

2. Because t 6= t′, we see that n1
1 6= ns

1, so s ≥ 2.
As ∀ did not choose a tile atom this round, the tile edges (ni

1, n2) are going to be labelled
by ∃, so by (β) we must have N(m0, n

i
1) = g01 for all i. By considering the different labels

on the edges (x, n2) for x ∈ {m0,m2, n
i
1 : 1 ≤ i ≤ s}, we see that m0, m2, and the ni

1 are
all distinct. See figure 5.

We claim that N(m0,m2) = g02. Given the claim, we have:
(1) the edges (ni

1,m2) are all tile edges of N (by rule 1, since N(m0, n
i
1) = g01 for each

i).
11
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(2) for each 1 ≤ i < s, (ni
1,m2) is attached to (ni+1

1 ,m2).
For if not, (ni

1, n
i+1
1 ,m2) must be an ∀-triangle: two sides of it were chosen by ∀ when

its last node was constructed. So if m0 was already in existence when this triangle was
completed, the label on the edge from the last node of the triangle to m0 must have
been chosen by ∃. But this last node is connected to m0 by a green edge (we use the
claim again here in the case where the last node was m2), and ∃ never chooses green
labels. So m0 must have been constructed after the triangle (ni

1, n
i+1
1 ,m2). This is

also impossible, since it is connected to all three nodes of the triangle by green edges
and at least one of these edges must have been labelled by ∃. See figure 6.

(3) Hence t is linked to t′ in N , via the chain t = (n1
1,m2), (n2

1,m2), . . . , (ns
1,m2) = t′.

This is what we wanted to show.
To prove the claim, suppose for a contradiction that N(m0,m2) 6= g02. We have a chain

of 1-nodes
C = 〈n1

1, . . . , n
s
1〉 ⊆ N

such that N(m0, n
i
1) = g01 for all ni

1 ∈ C and consecutive nodes in the chain are connected
by ±11 (figure 5). We know that the chain C has distinct endpoints: n1

1 6= ns
1 ∈ C. Which

node out of C∪{m0,m2} was most recently added? The interior nodes n2
1, . . . , n

s−1
1 of C, if

any, are incident with at least three edges within C∪{m0,m2} chosen by ∀ (consider green
atoms and ±1, as usual) and therefore none of these could be the most recently added
node. The endpoints of C, n1

1 and ns
1, are each incident with one edge labelled ±11 and

another labelled g01. If n1
1 (or ns

1) was the most recently added then, as N(m0,m2) 6= g02

by assumption, we cannot account for the fact that N(n1
1,m2) (respectively, N(ns

1,m2))
is a tile atom. So this can’t happen. Thus, the most recently added node must be m0 or
m2.

If ∃ chose the edge (m0,m2) then, by her strategy for (1− 2) edges and because of the
prior existence of the chain C, she would have chosen N(m0,m2) = v02. But then, in the
current round, ∀’s move must be illegal, as g02 ;±12 6≥ v02 (rule 4). So this can’t happen,
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and it must be ∀ who chose the edge (m0,m2). Hence, the most recently added node was
in fact m2, for m0 is incident with at least three edges, those to m2, n

1
1, n

s
1, chosen by ∀.

We are supposing that (m0,m2) is not green and we know now that this edge was
labelled by ∀. Therefore, at least one of the two tile edges (n1

1,m2), (ns
1,m2) was labelled

by ∃. So by (β), ∀ must have chosen the edge N(n0,m2) = g02, for some n0 ∈ N . Since
(n0,m2) is green and (m0,m2) is not, we have n0 6= m0. Hence ∀’s two edges were (m0,m2)
and (n0,m2). He chose neither of the tile edges (n1

1,m2), (ns
1,m2): both were chosen by

∃, and for her to do this we must have N(n0, n
1
1) = N(n0, n

s
1) = g01. See figure 7.

But now we consider which node from C ∪ {m0, n0} was most recently added. The
interior nodes of C are incident with three edges chosen by ∀: two edges within C labelled
±11, and one to m0, labelled g10, so it was not any of those. Nor was it either of the end
nodes n1

1, n
s
1, as they are each incident with a ±11 edge within C and two green edges, to

n0 and m0. So it must have been either n0 or m0. These are both connected to n1
1 and

ns
1 by edges labelled by g01, so in this round, ∀ must have chosen the nodes n1

1, n
s
1 (recall

that these are distinct) and the atoms g10, g01.
But this is in contravention to convention 1, since there was a suitable node (namely

whichever of n0,m0 already existed) in N already, so ∀ would not have made such a move.
This is a contradiction and completes the proof of the claim.

Now we have a well-defined association of tiling functions to all new tile edges not in
N .

6.5. Co-ordinates. Next, we have to assign co-ordinates Co(n1, n2) to each new tile edge
(n1, n2) of M which is not an edge of N∀ and with f(n1,n2) = f i for some i > 0.

If there are no such edges, there is nothing to do. So assume that there is at least one;
let (n1, n2) be such an edge. Now, i > 0 means that (n1, n2) is linked to a tile edge of
N∀ — either an edge of N , in which case ∀’s second atom must be ±12, or a tile edge
chosen by ∀ in the current round, in which case ∀’s second atom is a tile atom (cf. the
proof of lemma 5(1)). Either way, we see that in the current round, ∀ chose exactly one
green atom — say, N∀(m0, n2) = g02, for some unique m0 ∈ N . Like n2, this m0 will be
fixed in our notation from now on.

Let
Γ = {n1 ∈ N : N(m0, n1) = g01}.

∃ has to give co-ordinates to each of the edges (n1, n2), for n1 ∈ Γ, if its tiling function is
not f0. Define a set of 1-nodes Γ+ by
• Γ+ = Γ if ∀’s second atom is ±12,
• Γ+ = Γ ∪ {m1} if ∀’s second atom is N∀(m1, n2) = T j

12 (some necessarily unique
m1 ∈ N and j < k).
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The tile edges incident with n2 in M are {(n1, n2) : n1 ∈ Γ+}.
Define a graph G with nodes Γ+ and with an edge connecting two nodes a, b of G if

and only if N(a, b) = ±11.

LEMMA 6. The graph G is acyclic.

Proof. First, suppose that ∀’s second atom is ±12, so that Γ+ = Γ. Assume for contradic-
tion that there is a cycle in G — say γ = 〈g0, . . . gt−1〉 ⊆ G (some t ≥ 3) with graph edges
of G connecting g0 to g1, g1 to g2, . . . , gt−1 to g0. We ask the question: in the course of
the game, which node of γ ∪ {m0} was most recently added to N? Whichever it is, it can
be connected to the rest of γ ∪ {m0} by at most two edges labelled by ∀. Now each node
in γ is incident with two edges labelled ±11 (because it is in the cycle γ) and one green
edge connecting it to m0 (because it is in Γ), and all of these edges are only chosen by ∀.
Thus, none of these can have been the most recently added node, and the last-added node
must be m0. But |γ| ≥ 3, and m0 is connected to every node of γ by a green edge. As
before, this is impossible, since ∃ never chooses green labels. So G is acyclic in this case.

Now suppose instead that ∀ chooses N∀(m1, n2) = T j
12 (some j), so Γ+ = Γ ∪ {m1}.

We claim that j > 0. To see this, recall that we are supposing that there is at least one
edge (n1, n2) with n1 ∈ Γ and f(n1,n2) = f i for some i > 0. By definition of f(n1,n2), this
means that (n1, n2) is linked to a tile edge e in N∀ with tiling function f i. However, as in
lemma 5(1), when the two edges chosen by ∀ in the current round are N∀(m0, n2) = g02

and N∀(m1, n2) = T j
12, (n1, n2) cannot be linked to an edge in N , so it must be linked

to the edge (m1, n2) and to no other edge of N∀. The tiling function for this edge is
f(m1,n2) = f j . So j = i > 0, as claimed.

Suppose, for contradiction, that there is a cycle γ ⊆ G (|γ| ≥ 3). Now, if m1 6∈ γ then
we revert to the situation in the previous case: each node in γ ∪ {m0} is incident with
more than two ∀-edges within γ ∪ {m0}, which is impossible. So assume m1 ∈ γ. Which
node of γ ∪ {m0} was most recently added to the network? The most recent node should
be incident with at most two edges in γ ∪{m0} chosen by ∀. As above, each node in Γ∩γ
is incident with two edges within γ labelled ±11 and one green edge connecting it to m0,
and all of these edges are only chosen by ∀. Therefore, either m0 or m1 was most recently
added, and the edge (m0,m1) must have been chosen by ∃ — otherwise m0 and m1 are
also incident with three edges chosen by ∀, since m1 ∈ γ.

So which atom would ∃ have chosen for the edge (m0,m1)? Her strategy for (0 − 1)
edges tells her to choose u01 because of the existence of the cycle γ. But then, the current
∀ move is illegal, as j > 0 and g02 ;T j

21 6≥ u01 by rule 3, so that the triangle (m0,m1, n2)
is inconsistent. This gives us a contradiction and proves the lemma.

This lemma allows us to define an integer valued rank r(n1) for each node n1 of Γ+

such that

if n1, n
′
1 ∈ Γ+ and N(n1, n

′
1) = +11 then r(n′1) = r(n1) + 1.

Now we can define co-ordinates for each new tile edge (n1, n2) with n1 ∈ Γ and f(n1,n2) =
f i for i > 0.

Case A. Suppose that the two atoms chosen by ∀ are N∀(m0, n2) = g02 and N∀(m1, n2) =
T j

12 (for some m1 ∈ N and j < k). Here, m1 ∈ Γ+; obviously, it is unique. We define
co-ordinates for (n1, n2) by

Co(n1, n2) = (r(n1)− r(m1), 0).

Case B. Suppose now that ∀ chooses the two edges N∀(m0, n2) = g02 and N∀(m2, n2) =
+12 (the case where he chooses the atom −12 is similar). Again, m2 is uniquely defined.

As f(n1, n2) 6= f0, (n1, n2) must be linked to a tile edge of N . In fact, consideration
of a shortest linking chain shows that it must be linked to one of the form (n′1,m2), for
some n′1 ∈ Γ, by a chain of attached tile edges of M that are not edges of N . We have
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f(n′
1,m2) = f(n1,n2) 6= f0, so (n′1,m2) has co-ordinates in N . Let Co(n′1,m2) = (x, y), say.

The co-ordinates of the new edge (n1, n2) in M are now defined to be

Co(n1, n2) = (x + r(n1)− r(n′1), y + 1).

(If ∀’s second atom is −12 then replace y + 1 by y − 1.)
We have to show that this is well-defined. Suppose that (n1, n2) is linked to two distinct

such tile edges (n′1,m2) and (n∗1,m2) by chains of the form stated. Then (n′1,m2) and
(n∗1,m2) are themselves linked in M by such a chain — there is a chain of new tile edges

(n′1, n2) = (n1
1, n2), (n2

1, n2), . . . , (ns
1, n2) = (n∗1, n2)

of M , each successive pair being attached, with (evidently) (n′1,m2) attached to (n′1, n2)
and (n∗1, n2) attached to (n∗1,m2). We have n1

1, . . . , n
s
1 ∈ Γ. The proof of the claim in

lemma 5(2) now applies, to show that N(m0,m2) is green, the (ni
1,m2) (1 ≤ i ≤ s)

are all tile edges of N , and that (ni
1,m2) is attached to (ni+1

1 ,m2) for each i < s. So
(n′1,m2) = (n1

1,m2), (n2
1,m2), . . . , (ns

1,m2) = (n∗1,m2) is a chain of attached tile edges of
N .

Clearly, n1
1, n

2
1, . . . , n

s
1 is a path in G. So by T2 (in N) and the definition of the rank r, we

have, for any x, y ∈ Z, Co(ni
1,m2) = (x + r(ni

1), y) ⇐⇒ Co(ni+1
1 ,m2) = (x + r(ni+1

1 ), y)
for each i < s. We now obtain

(∗) if Co(n′1,m2) = (x, y) then Co(n∗1,m2) = (x + r(n∗1)− r(n′1), y),

by induction on s. Thus, the co-ordinate function is well-defined.
We have now defined tilings for all tile edges of M that are not in N , and co-ordinates

for those whose associated tiling is not f0.

6.6. Conditions T1, T2 hold for M . Let us now check that M satisfies conditions T1
and T2. It is sufficient to check that if the tile edges e, e′ of M are attached then they
share a tiling function and, if appropriate, their co-ordinates match according to T2. Since
T1 and T2 hold for N , we can assume that e, e′ are not both edges of N .

It follows that e, e′ are not both edges of N∀. For if they were, then being attached,
they form two sides of a triangle ∆ which is not a ∀-triangle, the third side of ∆ being
labelled by a ±1 atom. Because ∃ never chose a ±1 label in this (or any) round, the third
side of ∆ is also labelled in N∀. So all three sides of ∆ are labelled in N∀. But by the
preceding paragraph, ∆ does not lie within N , so ∆ must in fact be ∀’s triangle in the
current round. This is a contradiction.

So we may assume that e is not an edge of N∀. This means that e is a tile edge labelled
by ∃ in the current round. Say, e = (n1, n2) for some n1 ∈ N .

Case 1: Assume that e′ is an edge of N . So e′ must have the form (n1,m2) where
m2 ∈ N and M(m2, n2) = ±12. Then as e, e′ are certainly linked in M , by the well-
definedness of the tiling function we have f(e) = f(e′), so T1 holds for e, e′. Moreover,
if f(e) 6= f0, then by the well-definedness of the co-ordinates, if Co(e′) = (x, y) and
M(m2, n2) = +12, say, we have Co(e) = (x, y +1). Thus, the condition in T2 is met.
The case where M(m2, n2) = −12 is similar.

Case 2: Assume that e′ is an edge of N∀ but not an edge of N . Thus, it was chosen
by ∀ in the current round, and has the form (m1, n2), where N(m1, n1) = ±11. Its
co-ordinates, if any, are (0, 0). As in the previous case, f(e) = f(e′), so T1 is satisfied.
If f(e) 6= f0 and N(m1, n1) = +11, say, then again by definition of the co-ordinates
we have Co(e) = (1, 0). If N(m1, n1) = −11, Co(e) = (−1, 0). Hence, T2 is met.

Case 3: Assume finally that e, e′ are both edges of M that are not in N∀. Then they
are linked in M . As ‘linked’ is an equivalence relation, if e is linked to a tile edge e∗

of N∀ then so is e′, and we have f(e) = f(e′) = f(e∗). If e is not linked to any tile
edge of N∀, then neither is e′ and we have f(e) = f(e′) = f0. Hence f(e) = f(e′) in
any case, and T1 is met.
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Let e′ = (n′1, n2), and assume that N(n1, n
′
1) = +11 (the case N(n1, n

′
1) = −11 is

similar). If f(e) 6= f0 then e, e′ are assigned co-ordinates as above, and there are two
ways this can happen.

Case 3a: Suppose first that e is linked in M to a tile edge e∗ = (m1, n2) chosen
by ∀ in the current round. (So ∀’s atoms were N∀(e∗) and the green atom
forcing the existence of the tile edges e, e′.) Then e′ is also linked to e∗, and
we have

Co(e) = (r(n1)− r(m1), 0)
Co(e′) = (r(n′1)− r(m1), 0).

As N(n1, n
′
1) = +11, the rank r satisfies r(n′1) = r(n1)+1, and this yields that

Co(e) and Co(e′) are in accordance with T2.
Case 3b: Suppose now that e is linked in M to a tile edge e∗ of N by a chain

of attached tile edges of M that are not in N . Then so is e′ (by extending the
chain by the extra link (e′, e)). We saw that e∗ can be taken to be of the form
(n∗1,m2), where N∀(m2, n2) = ±12 — say, −12. Let Co(e∗) = (x, y). Then the
definition of the new co-ordinates (above) gives

Co(e) = (x + r(n1)− r(n∗1), y − 1)
Co(e′) = (x + r(n′1)− r(n∗1), y − 1).

From the definition of the rank r, r(n′1) = r(n1) + 1, so that if Co(e) = (z, t)
then Co(e′) = (z + 1, t), in accordance with T2.

6.7. Tile atoms for the new edges, and consistency. Now we have a tiling function
and (if necessary) co-ordinates for each new tile edge to be labelled by ∃. For each such
edge e, ∃ lets

M(e) =

{
T 0

12, if f(e) = f0;

T
f(e)(Co(e))
12 , otherwise,

in accordance with T3. It remains to check that triangles involving these edges are con-
sistent. There are two rules involving tile edges: rules 3 and 2.

For rule 3, suppose for a contradiction that the new tile edge (n1, n2) lies in a triangle
∆ in M whose other sides are labelled by g01 and u02, or alternatively g02 and u01. There
can only be a problem with rule 3 if M(n1, n2) = T i

12 for some i with i > 0. Now ∃ only
chooses T i

12 with i > 0 if (n1, n2) is linked to a tile edge of N∀. That means that in the
current round, ∀ must have chosen one green atom g02 and either ±12 or a tile atom T j

12

(some j). All other edges incident with n2 were chosen by ∃. The edge (m0, n2) (say) of
N∀ labelled g02 is not in ∆, as we know that N(m0, n1) = g01 (else ∃ would not choose a
tile to label (n1, n2)). So it follows that ∃ must have chosen a second side of the triangle ∆
as well as (n1, n2). ∃ never chooses a green atom, so this second side must be labelled with
the u-atom. But we have already checked (when we considered her strategy for (0−1) and
(0 − 2) edges) that no triangles involving u-labelled edges chosen by ∃ are inconsistent.
Thus, rule 3 cannot be violated.

That leaves the crucial rule 2. Suppose ∃ chooses M(n1, n2) = T i
12, and this edge is

part of a triangle (n1, n2, n
′
1) say, with M(n′1, n2) = T j

12 and M(n′1, n1) = +11, say (the
other three cases, in which +1 is replaced by −1 and/or n′1 is replaced by a 2-node n′2,
are entirely similar).

This triangle (n1, n2, n
′
1) is not an ∀-triangle, because if it were it would be in N∀,

whereas in fact one of its edges is a tile edge labelled by ∃. Hence the two tile edges in
it are attached. By T1, they share a tiling function, say f l. If l = 0 then by T3 we have
i = j = 0, so there is no problem with rule 2. If l > 0, by T2 we have Co(n′1, n2) = (x, y)
and Co(n1, n2) = (x + 1, y) for some x, y ∈ Z. By T3, f l(x, y) = j and f l(x + 1, y) = i.
Because f l is a valid tiling, Lt(Ti) = Rt(Tj). Hence the labels on the triangle (n1, n2, n

′
1),

which are (T i
12, T

j
21,+11), are consistent with rule 2.

Thus triangles involving new edges are consistent with all the rules.
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Figure 8. associativity of RA(τ)

This completes ∃’s strategy. In each case she is able to choose an atom without creating any
inconsistent triangles and she is able to define coherent tilings and co-ordinates where appropriate.
In this way she can continue forever and win the game G(RA(τ)).

7. Associativity and conclusion

LEMMA 7. Suppose that ∃ has a winning strategy in the game G(RA(τ)). Then RA(τ) is
associative.

Proof. This is well-known. Let r, s, t ∈ RA(τ). We show that (r ; s) ; t ≤ r ;(s ; t). Take an atom
x ≤ (r ; s) ; t. Because for any p, q ∈ RA(τ) we have

p ; q =
∑

{a ; b : a, b atoms of RA(τ), a ≤ p, b ≤ q},

we see that there are atoms y ≤ r ; s and c ≤ t with x ≤ y ; c. Similarly, there are atoms a ≤ r,
b ≤ s with y ≤ a ; b.

Let ∀ begin a play of G(RA(τ)) with the atom y. Using her winning strategy in this game, ∃
will respond with a network N0 with nodes 1, 3, say, not necessarily distinct, with N0(1, 3) = y.
Let ∀ continue by picking the edge (1, 3) and atoms a, b, and then the edge (1, 3) again and atoms
x, c̆. (We suspend convention 1(2), to allow ∀ to make any consistent moves he likes. This is quite
harmless.) ∃ responds after these two moves with a network N2 = N with nodes 1,2,3,4 such that
N(1, 2) = a,N(2, 3) = b, N(3, 4) = c, and N(1, 4) = x. See figure 8.

Let N(2, 4) = z. Then because N is a network and z an atom, we have z ≤ b ; c, so that z ≤ s ; t,
and x ≤ a ; z, so that x ≤ r ;(s ; t). Because the atom x ≤ (r ; s) ; t was arbitrary, and RA(τ) is
atomic, we have (r ; s) ; t ≤ r ;(s ; t).

A similar argument shows that (r ; s) ; t ≥ r ;(s ; t). This proves associativity.

Assume that τ is a yes-instance of the tiling problem. From theorem 4, we get that ∃ has
a winning strategy in G(RA(τ)). By lemma 7, RA(τ) is associative, so by theorem 1, it is
representable. Now assume that τ is a no-instance. Then either RA(τ) is not associative (and this
is decidable), or else it is, in which case by theorems 1 and 3, RA(τ) is not representable. So we
obtain our result:

THEOREM 8. The problem of deciding whether a finite relation algebra is representable or not
is undecidable.

COROLLARY 9. The set of isomorphism types of representable finite relation algebras possess-
ing only infinite representations is not recursively enumerable.

For a proof, see the discussion in the introduction.

Added after posting
There is an error in the proof of part 2 of lemma 5 of the originally posted article. In the proof

of the claim that N(m0,m2) = g02, the statement that “If ∃ chose the edge (m0,m2) then, by
her strategy for (1 − 2) edges and because of the prior existence of the chain C, she would have
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chosen N(m0,m2) = v02” is not correct, as we do not know that the tile edges (m2, n
1
1), (m2, n

s
1)

are labelled in N∀ in the round when ∃ labels (m0,m2), as required by ∃’s strategy.
We therefore alter the definition of ∃’s strategy by dropping the requirement that these edges are

labelled in N∀. Now, we only require that they be tile edges. There are consequential amendments
to the checks that the strategy is well-defined and consistent. The corrections are listed below;
they affect only the page or so of §6.1 between II and III.

Definition of ∃’s strategy

After the definition of condition (β), insert:
“Remark A. Clearly, (β) completely determines which edges of M will be tile edges and which
will not: an edge of M will be a tile edge iff either it is already labelled in N∀ with a tile atom,
or it forms one side of a triangle in M whose other two edges are labelled green in N∀.”

In ∃’s strategy, case II, replace condition 2(c), “N∀(n1, c2) = T i
12 and N∀(n1, d2) = T j

12 (some
i, j < k),” by the following:
“(n1, c2) and (n1, d2) will be tile edges of M (cf. Remark A above),”

Check that the strategy is well-defined

Replace the 5 lines “But both n0 and n1 are incident with at least four such edges . . . strategy
is well-defined” by the following:
“But n0 is incident with four such edges, because N∀(n0, g) = g01 (g ∈ γ \{n1}) and N∀(n0, α2) =
g02 (α2 ∈ C). So the node being currently added must be n1. The two edges connecting n1 to its
neighbours in γ are labelled with ±11 in N∀, so by (α), these must be the two edges chosen by ∀
in the current round—in particular, he chose no green atoms. By (β), ∃ does not choose any tile
atoms in this round, so the tile edges (n1, c2), (n1, d2) must also be labelled by ∀ in the current
round. This contradicts the fact that n1 is incident with only two labelled edges in N∀, and shows
that the strategy is well-defined.”

Check that the strategy is consistent

Replace the 9 lines “Suppose there is a chain C with endpoints c2 6= d2 . . . Thus, the situation
described does not arise.” by the following:
“ Suppose there is a chain C with endpoints c2 6= d2, with (n1, c2) and (n1, d2) both tile edges of
M , as in case 2 of the strategy, and with N∀(n0,m1) = g01 and N∀(m1, n1) = ±11. As before,
because the labels g02 on the edges (n0, c2) and (n0, d2) must have been chosen by ∀, this could
only happen if n1 is the node currently added, as c2 6= d2.

Since the edge (n1,m1) is labelled in N∀, at most one of the two tile edges (n1, c2), (n1, d2)
can also be labelled in N∀, so ∃ is going to label at least one of them with a tile atom. So by
(β), ∀ must have chosen a green atom in the current round. His choices of atoms and nodes were
therefore ±11, g01, and m1, p0, say, for some p0 ∈ N : N∀(p0, n1) = g01. Hence, ∃ labelled both tile
edges (n1, c2), (n1, d2). By (α), (p0, n1) is the only green edge incident with n1; so by (β), we
must have N(p0, c2) = N(p0, d2) = g02. Note that p0 6= n0, since M(n1, n0) is not green.

But now we consider which node from C ∪ {n0, p0} was most recently added, as the game
progressed through earlier rounds. Whichever it is, it can be connected to the rest of C ∪{n0, p0}
by at most two edges labelled by ∀. Nodes in C \ {c2, d2} are incident with three edges chosen
by ∀—two edges within C labelled ±12, and one to n0, labelled g20—so it was not any of those
(if there are any). Nor was it c2 or d2, as they are each incident with a ±12 edge (within C) and
two green edges, to p0 and n0. So the most recently added node must have been either n0 or p0.
These are both connected to c2 and d2 by edges labelled by g02. Because c2 6= d2, we see that in
the round when the last of n0, p0 was built, ∀ must have selected the nodes c2, d2 and the atoms
g20, g02. But this is in contravention to convention 1, since there was a suitable node (namely
whichever of n0, p0 already existed) in the network already, so ∀ should not have made such a
move. This contradiction shows that if ∃ chooses M(n0, n1) = v01 then any triangle involving this
edge is consistent.”
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