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Abstract

We discuss the temporal logic ‘USF’, involving Until, Since and
the fixed point operator ϕ of Gabbay, with semantics over the natural
numbers. We show that any formula not involving Until is equivalent
to one without nested fixed point operators. We then prove that USF
has expressive power matching that of the monadic second-order logic
S1S. The proof shows that any USF-formula is equivalent to one
with at most two nested fixed point operators — i.e., no branch of
its formation tree has more than two ϕ’s. We then axiomatise USF
and prove that it is decidable, with PSPACE-complete satisfiability
problem. Finally, we discuss an application of these results to the
executable temporal logic system ‘MetateM’.

1 Introduction

It is known that conventional temporal logic is insufficiently expressive to
handle issues arising in areas such as concurrency. Several extended tempo-
ral logic systems, with second-order capability, now exist in the literature,
including Wolper’s ETL [Wo] and Banieqbal & Barringer’s calculus [BB]
using minimal and maximal fixed points. Gabbay’s USF [G], of interest in
the current paper, involves a fixed point operator with recursively-defined
semantics. All these systems are as expressive as the monadic second-order
logic S1S over the natural numbers, in which quantification over subsets as
well as elements is allowed.

S1S has been studied extensively; its decidability was proved by Büchi
in 1962, using automata, and as USF is closely related to automata we can
easily elicit the relationship between the two logics, and show that USF is
also decidable and has the same expressive power as S1S in a strong sense.
Nonetheless, USF is itself surprisingly well-behaved, with elegant properties
that can be studied without recourse to automata theory. In this vein we
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will prove that unbounded depth of nesting of the fixed point operator is not
required for full expressive power. For the ‘past’ fragment, this can indeed be
done within USF , and in fact no nested fixed point operators are needed. Our
current proof for full USF goes via the automata connection, and converts
any formula effectively into one in which no fixed point operator is nested
inside more than one other. We will give an example of this construction
(example 6.13 below). We would like to find a more direct proof that avoids
the use of automata; such a proof might yield a more efficient conversion
algorithm.

The recursive definition of the fixed point operator in USF is in the spirit
of the executable temporal logic system MetateM, developed in London and
Manchester and surveyed in [G] and [M]. We will use the results mentioned
above to prove that MetateM has the expressive power of S1S. We can
also derive a simple axiomatisation of USF , and show that its satisfiability
problem is PSPACE-complete.

We should mention that we will be using the logic UY F instead of USF .
This has technical advantages and leads to no loss in expressive power (see
remark 2.9 for a discussion).

Notation

N will be the set {0, 1, 2, . . .} of natural numbers. ℘S will denote the set of
all subsets of the set S. We often write x̄, ā, . . . , for tuples — finite sequences
of variables, atoms, elements of a structure, etc.. Other notations will be
defined when required.
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2 Syntax and semantics of UYF

We start by developing the syntax and semantics of the fixed point operator.
This is not entirely a trivial task. We will fix an infinite set of propositional
atoms, with which our formulas will be written; we write p, q, r, s, . . . for
atoms.
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Definition 2.1 1. The set of formulas of UY F is the smallest class closed
under the following:

(a) Any atom q is a formula of UY F , as is > (true).

(b) If A is a formula so is ¬A. (We let ⊥ abbreviate ¬>.)

(c) If A is a formula so is Y A. We read Y as ‘yesterday’.

(d) If A and B are formulas, so are A∧B and U(A,B). (The latter is
read as ‘until’. A ∨B and A→ B are regarded as abbreviations.)

(e) Suppose that A is a formula such that every occurrence of the
atom q in A not within the scope of a ϕq is within the scope of a
Y but not within the scope of a U . Then ϕqA is a formula. (The
conditions ensure that ϕqA has fixed point semantics.)

2. The depth of nesting of ϕ’s in a formula A is defined by induction on its
formation: formulas formed by clause (a) have depth 0, clause (e) adds
1 to the depth of nesting, clauses (b) and (c) leave it unchanged, and in
clause (d), the depth of nesting of U(A,B) and A∧B is the maximum of
the depths of nesting of A and B. So for example, ¬ϕr(¬Y r∧ϕqY (q →
r)) has depth of nesting of 2.

3. A UYF-formula is said to be a YF-formula if it does not involve U.

4. Let A be a formula and q an atom. A bound occurrence of q in A is
one in a subformula of A of the form ϕqB. All other occurrences of
q in A are said to be free. An occurrence of q in A is said to be pure
past in A if it is in a subformula of A of the form Y B but not in a
subformula of the form U(B,C). So ϕqA is well-formed if and only if
all free occurrences of q in A are pure past.

Semantics of UY F

An assignment is a map h providing a subset h(q) of N for each atom q. If
h, h′ are assignments, and q̄ a tuple of atoms, we write h =q̄ h

′ if h(r) = h′(r)
for all atoms r not occurring in q̄. If S ⊆ N and q is an atom, we write hq/S

for the unique assignment h′ satisfying: h′ =q h, h
′(q) = S.

For each assignment h and formula A of UY F we will define a subset
h(A) of N, the interpretation of A in N. Intuitively, h(A) = {n ∈ N : A is
true at n under h}. We will ensure that, whenever ϕqA is well-formed,

(∗) h(ϕqA) is the unique S ⊆ N such that S = hq/S(A).

Notation 2.2 If S ⊆ N, we write S + 1 (or 1 + S) for {s+ 1 : s ∈ S}.
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Definition 2.3 We define the semantics of UY F by induction on the struc-
ture of formulas. Let h be an assignment. If A is atomic then h(A) is already
defined. We set:

• h(>) = N.

• h(¬A) = N \ h(A).

• h(Y A) = h(A) + 1.

• h(A ∧B) = h(A) ∩ h(B).

• h(U(A,B)) = {n ∈ N : ∃m > n(m ∈ h(A) ∧ ∀m′(n < m′ < m→ m′ ∈
h(B)))}.

• Finally, assume that ϕqA is well-formed, and (inductively) that g(A)
is defined for all assignments g. We will define h(ϕqA).

First define assignments hn (n ∈ N) by induction: h0 = h, hn+1 =
(hn)q/hn(A). We now define

h(ϕqA)
def
= {n ∈ N : n ∈ hn(A)} = {n ∈ N : n ∈ hn+1(q)}.

To establish (∗) we need some definitions and lemmas.

Definition 2.4 1. If n ∈ N, we say that subsets S1, S2 ⊆ N agree before
n if for all m < n, m ∈ S1 if and only if m ∈ S2. We say that S1 and
S2 agree up to n if they agree before n+ 1.

2. Assume that A is a formula of UY F . If n ∈ N, we say that assignments
g, h are A-similar up to n if for all atoms q:

• if all free occurrences of q in A are pure past, then g(q) and h(q)
agree before n;

• if not all free occurrences of q in A are pure past, but still no free
occurrence of q in A is within the scope of an U , then g(q) and
h(q) agree up to n;

• otherwise, g(q) = h(q).

3. A UY F formula A is said to be local if g(A) and h(A) agree up to n
whenever g, h are assignments that are A-similar up to n.

Remark 2.5 From the definitions, if g, h are ϕqA-similar up to n and g(q),
h(q) agree before n, then g, h are A-similar up to n.
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Lemma 2.6 Assume that A is a local UY F formula, and that ϕqA is well-
formed. Then:

1. If g, h are assignments with g =q h, then g(ϕqA) = h(ϕqA).

2. If S ⊆ N and h is an assignment, then hq/S(A) = S if and only if
S = h(ϕqA).

3. ϕqA is local.

Proof.
1. By definition 2.3 it suffices to show that for all n ∈ N, gn(q) and hn(q)

(as in the definition) agree before n. We do so by induction on n. If n = 0
there is nothing to prove. Assume the statement for n. Clearly, gn =q hn.
By remark 2.5 and the inductive hypothesis, gn and hn are A-similar up to
n. As A is local, gn(A) and hn(A) agree up to n: i.e., gn+1(q) and hn+1(q)
agree before n+ 1. This completes the induction.

2. By (1) we can replace h by hq/S. So it is enough to show that for any
h, h(A) = h(q) ⇐⇒ h(ϕqA) = h(q).

⇒: Suppose that h(A) = h(q). First observe that h1(q) = h(A) = h(q), so
that h = h1. It follows by the definition of the hn and induction that h = hn

for all n. But now for all n, n ∈ h(ϕqA) if and only if n ∈ hn+1(q) = h(q),
so that h(ϕqA) = h(q) as required.

⇐: Assuming that h(ϕqA) = h(q), we show that for all n:

(a)n h(A) and hn(A) agree up to n;
(b)n h(q) and hn(A) agree up to n.

It will clearly follow that h(A) = h(q). We proceed by induction on n. (a)0

holds because h0 = h. We now show that ((a)m : m ≤ n) ⇒ (b)n. Let m ≤ n.
Then m ∈ h(q) = h(ϕqA) if and only if m ∈ hm(A) by definition 2.3, if and
only if m ∈ h(A) by (a)m, if and only if m ∈ hn(A) by (a)n. This proves
(b)n.

We now show that (b)n ⇒ (a)n+1. (b)n says that h(q) and hn+1(q) agree
before n+1. Thus, h and hn+1 are A-similar up to n+1. As A is local, h(A)
and hn+1(A) agree up to n+ 1, proving (a)n+1.

3. To prove ϕqA local, we need to show that whenever g, h are assign-
ments that are ϕqA-similar up to n, then g(ϕqA) and h(ϕqA) agree up
to n. By (1) and (2) we can assume that g(q) = g(A) = g(ϕqA) and
h(q) = h(A) = h(ϕqA); the hypothesis and what we have to prove are
unchanged.
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The proof is by induction on n. Assume the result for all m < n and
suppose that g, h are ϕqA-similar up to n. If m < n then g and h are ϕqA-
similar up to m, so by the inductive hypothesis, g(ϕqA) and h(ϕqA) agree
up to m. Hence g(A) and h(A) agree before n. By remark 2.5, g and h are
A-similar up to n, so as A is local, g(A) and h(A) agree up to n, as required.
This completes the proof. �

Proposition 2.7 Every formula A of UY F is local, and for any h, h(A)
depends only on h(q) for those atoms q that have free occurrences in A.

Proof. We show by induction on A that A is local, and that whenever g, h are
assignments agreeing on the atoms occurring free in A, then g(A) = h(A).
In the atomic case and the cases of the boolean connectives the proof is
simple, and the case of ϕqA is covered by the lemma. For A = U(B,C), if
assignments g, h are A-similar up to n then g(q) = h(q) for all atoms q with
free occurrences in A. Clearly, g and h agree on the free atoms of B and of
C, so by the inductive hypothesis, g(B) = h(B) and g(C) = h(C), yielding
g(A) = h(A) — so these two sets certainly agree up to n. This proves both
claims for A.

Now consider the case of A = Y B. Pick n ∈ N and a pair g, h of
assignments that are Y B-similar up to n. We claim that g and h are B-
similar up to n − 1. Let q be an atom. If all free occurrences of q in B are
pure past, then the same holds for Y B, so that g(q), h(q) already agree up
to n − 1. Otherwise, if no free occurrence of q in A is under a U , then all
free occurrences of q in Y B are pure past. Hence again, g(q), h(q) agree up
to n− 1. If none of these apply to q then g(q) = h(q). It follows that g and
h are B-similar up to n − 1, as claimed. By the inductive hypothesis, g(B)
and h(B) agree up to n − 1. So by definition of the semantics of Y , g(Y B)
and h(Y B) agree up to n. The proof that h(A) depends only on h(q) for q
occurring free in A is straight-forward. �

Combining lemma 2.6 and proposition 2.7 yields:

Theorem 2.8 (fixed point theorem) 1. Suppose that A is any UY F
formula and ϕqA is well formed. Then if h is any assignment, there
is a unique subset S = h(ϕqA) of N such that S = hq/S(A). Thus,
regarding S 7→ hq/S(A) as a map α : ℘N → ℘N (depending on h,A), α
has a unique fixed point S ⊆ N, and we have S = h(ϕqA). For any h,
h(A) = h(q) ⇐⇒ h(ϕqA) = h(q).

2. If q has no free occurrence in a formula A and g =q h, then g(A) =
h(A).
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3. If ϕqA is well-formed and r is an atom not occurring in A, then for all
assignments h, h(ϕqA) = h(ϕrA(q/r)), where A(q/r) denotes substitu-
tion by r for all free occurrences of q in A.

Proof. By the proposition, A is local, so (1) follows from the lemma. (2) is
proved in the proposition, and (3) is clear from (1). �

Remark 2.9 We should mention two technical differences between our sys-
tem and the original logic USF of Gabbay. In [G], Gabbay defines USF using
the first-order connectives Until and Since as well as the fixed point operator.
Since is the temporal dual of Until; its semantics are given by h(S(A,B))
= {n ∈ N : ∃m < n (m ∈ h(A) ∧ ∀m′(m < m′ < n → m′ ∈ h(B)))}. We
stress that UY F is just as expressive as USF : Y q is definable in USF by
the formula S(q,⊥), whilst S(p, q) is definable in UY F by ϕrY (p ∨ (q ∧ r)).
Using UY F allows easier proofs and stronger results. Also, we admit rather
more well-formed formulas than does Gabbay in [G]. For ϕqA to be well-
formed, Gabbay requires that all atoms have only pure past occurrences in
A, whilst we only need this for the atom q. As an example, ϕr(U(p, q)∧Y r)
is well-formed for us, whilst ϕr(U(p, q) ∧ S(r,⊥)) is not a formula in USF
as defined in [G].

3 Elementary results

Here we establish some simple results on the way the fixed point operator
interacts with the other connectives of the logic. They are proved using the
fixed point theorem, and some will be needed later.

Definition 3.1 Two UY F -formulas A,B are said to be equivalent if for all
assignments h we have h(A) = h(B). We write A ≡ B if A and B are
equivalent.

Proposition 3.2 Let ϕqA(q) be a UY F -formula. Then ¬ϕqA(q) is equiv-
alent to ϕq¬A(¬q). Here, A(¬q) denotes the result of replacing each free
occurrence of q by ¬q throughout A.

Proof. Let h be any assignment and assume that h(ϕqA(q)) = S ⊆ N.
We wish to show that h(ϕq¬A(¬q)) = N \ S. By the fixed point theorem,
it suffices to show that hq/N\S(¬A(¬q)) = N \ S. But hq/N\S(¬A(¬q)) =
hq/S(¬A(q)) = N \ hq/S(A(q)), and this last is equal to N \ S by the fixed
point theorem again. �

In a similar way we can show:
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Proposition 3.3 Let q, r be distinct atoms and suppose that ϕqϕrA is well-
formed. Then ϕqϕrA ≡ ϕrϕqA ≡ ϕqA(r/q). Here, A(r/q) denotes substitu-
tion of q for all free occurrences of r in A.

Proof. Choose any assignment h. By the fixed point theorem, for all S ⊆ N
we have h(ϕqϕrA) = S if and only if hq/S(ϕrA) = S. Using the theorem
again, this is if and only if hq/S,r/S(A) = S. So by symmetry, ϕqϕrA ≡
ϕrϕqA. Moreover, as clearly hq/S,r/S(A) = S if and only if hq/S(A(r/q)) = S,
the last part follows. �

Now we examine how ϕ interacts with the yesterday connective.

Proposition 3.4 Let B(q) be any formula and write B(Y q) for the result of
replacing every free occurrence of q in B by the formula Yq. Then Y ϕqB(Y q)
≡ ϕqY B(q).

Proof. Let h be given, and let S = h(ϕqB(Y q)), so that the interpretation of
the left-hand side under h is just S+1. By the fixed point theorem, it suffices
to show that hq/S+1(Y B(q)) = S+1. But hq/S+1(Y B(q)) = hq/S(Y B(Y q)) =
1 + hq/S(B(Y q)), and the latter is equal to 1 + S, by choice of S and using
the fixed point theorem once more. �

This result allows us to normalise UY F -formulas, by pushing all Y ’s
inwards until they are next to atoms.

Definition 3.5 1. If A is any UYF-formula, and n < ω, we define Y nA
by induction: Y 0A = A and Y n+1A = Y (Y nA). Formulas of the form
Y nq for atomic q, or Y n>, are called basic.

2. A UYF-formula A is said to be normal if it is built up from basic
formulas (the basic subformulas of A) using only ¬, ∧, U and ϕ (no
Y). A subformula B of A is said to be a normal subformula of A if
every basic subformula of B is a basic subformula of A.

So a ‘basic subformula’ of A is a subformula that is maximal amongst
those subformulas of A that are basic. For example, the basic subformulas of
A = ¬Y q → Y Y q are the first Y q and the Y Y q; neither the two occurrences
of q nor the subformula Y q of the Y Y q are basic subformulas of A. The
normal subformulas of A are just the first Y q, ¬Y q, Y Y q and A.

Lemma 3.6 Let A be any normal formula. Then YA is equivalent to a
normal formula B.
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Proof. We will show in addition that for any atom q, if all free occurrences
of q in Y A are pure past then the same holds for B.

We go by induction on the number of ¬’s, ∧’s, U ’s and ϕ’s in A. If this is 0
then A is basic, so Y A is already normal. The condition on atoms is trivially
valid. It is easily seen that Y ¬A ≡ Y>∧¬Y A, Y (A ∧B) ≡ Y A ∧ Y B, and
Y U(A,B) ≡ Y> ∧ (A ∨ (B ∧ U(A,B))), so the result follows immediately
from the inductive hypothesis in these cases.

Now assume the result for all formulas with no more ∧’s, ¬’s, U ’s and ϕ’s
than A, and consider ϕqA (assumed well-formed and normal). By theorem
2.8(3) we can rename bound atoms of A if necessary, so we can suppose that
all occurrences of q in A are free and (necessarily) pure past. Now A is
normal, so it has the form B(Y q) where B(q) is normal and with the same
number of ¬’s, ∧’s, U ’s and ϕ’s as A. By the inductive hypothesis, Y B(q)
is equivalent to a normal formula C. As all free occurrences of q in Y B(q)
are pure past, the same holds for C, so that ϕqC is well-formed. It is clearly
normal, and by proposition 3.4 is equivalent to Y ϕqA. Finally, note that if
r is any atom all of whose free occurrences in Y ϕqA are pure past, then the
same holds for Y B and so (inductively) for C. Hence all free occurrences of
r in ϕqC are pure past, as required. �

Theorem 3.7 Any UYF-formula A is equivalent to a normal formula.

Proof. By induction on A. The only hard case is Y A, which is dealt with
by the preceding lemma. �

4 Recursive systems

The semantics of the fixed point operator were defined by nested recursion.
We will now see how to unravel the nesting, replacing it by simultaneous
recursion. This will be a main step in our proof of elimination of nested ϕ’s
for Y F .

Definition 4.1 Let n > 0. A recursive system (of width n) is a pair ρ =
(r̄, B̄), where r̄ = (r1, . . . , rn) and B̄ = (B1, . . . , Bn), the ri are distinct atoms
and the Bi are UYF-formulas. We require that for all i, j ≤ n, every free
occurrence of ri in Bj is pure past.

A formula A is said to be ϕ-free if it contains no ϕ-operator. The recursive
system (r̄, B̄) is said to be ϕ-free if each Bj is ϕ-free.
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Semantics of recursive systems

We give them a fixed point semantics, as for ϕ. Let ρ = (r̄, B̄) be a recursive
system. It can be shown using the technique of lemma 2.6 that for any
assignment h there is a unique assignment hρ with hρ =r̄ h and hρ(ri) =
hρ(Bi) for all i ≤ n. hρ can be defined by recursion as before.

Definition 4.2 1. Let ρ = ((r1, . . . , rn),(B1, . . . , Bn)) be a recursive sys-
tem, and let A be a YF-formula. We say that A and ρ are equivalent
if for all h we have h(A) = hρ(B1) (= hρ(r1)).

2. If ρ′ = ((r′1, . . . , r
′
m),(B′

1, . . . , B
′
m)) is another recursive system, we say

that ρ and ρ′ are equivalent if for all assignments h, hρ(ri) = hρ′(r
′
i) for

all i ≤ min(n,m). Note that in general, equivalence is not transitive;
but the definition is no less useful for that.

We begin by showing, in the following proposition, that UY F is at least
as expressive as recursive systems. The idea of the proof is well-known; see,
for example, Bekić’s theorem [Wi, theorem 10.1], a similar result on fixed
points of continuous functions on domains.

Proposition 4.3 Let ρ = ((r1, . . . , rn), (B1, . . . , Bn)) be any recursive sys-
tem. Then there is a UYF-formula A that is equivalent to ρ. If the Bi are
YF-formulas then such an A can be found in YF also.

Proof. By induction on the width n. If n = 1 we let A = ϕr1B1. Assume
the result for n and let ρ = ((r1, . . . , rn+1), (B1, . . . , Bn+1)) be given. Let
ρ∗ = ((r1, . . . , rn), (B∗

1 , . . . , B
∗
n)), where B∗

i = Bi(rn+1/ϕrn+1Bn+1) for each
i ≤ n. We claim that ρ and ρ∗ are equivalent; the result will then follow by
induction.

Let h be any assignment, and let Si = hρ(ri) for each i ≤ n + 1. Since
hρ(rn+1) = hρ(Bn+1), it follows from the fixed point theorem (2.8) that
hρ(ϕrn+1Bn+1) = hρ(rn+1) (= Sn+1). Hence from hρ’s point of view, replacing
rn+1 by ϕrn+1Bn+1 in Bi makes no difference, and we have hρ(B

∗
i ) = hρ(Bi)

for each i. But rn+1 does not occur free in the B∗
i , so letting h∗ = h(ri/Si:i≤n),

we see that h∗(B∗
i ) = hρ(B

∗
i ) for each i. Thus h∗(B∗

i ) = hρ(B
∗
i ) = hρ(Bi)

= Si = h∗(ri) for each i. It follows by uniqueness of the fixed point that
h∗ = hρ∗ , so that ρ and ρ∗ are equivalent. �

The fact that formulas Bi in a recursive system may contain U will be
needed later, but our current aim is to show that nesting of fixed point
operators in Y F can be eliminated. So from now until the end of section
5 we restrict attention to Y F : all formulas will be Y F -formulas. We first
prove a converse to the previous proposition.
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Theorem 4.4 Let A be any YF-formula. Then there is a ϕ-free recursive
system ρ = ((r1, . . . , rn), (B1, . . . , Bn)) for some n, that is equivalent to A.

Proof. By theorem 3.7 we can assume that A is normal. By renaming
bound atoms if need be (cf. theorem 2.8(3)), we can also assume that for any
subformula ϕqB of A, the only occurrences of q in A are in B.

If A is a formula, we write Â for the formula obtained from A by omitting
all ϕ’s. Formally, q̂ = q for any atom q, >̂ = >, ¬̂A = ¬Â, (A∧B)̂ = Â∧ B̂,

Ŷ A = Y Â, and ϕ̂qA = Â. (Later we will also use Â for UY F -formulas; we
then include the clause U(A,B)∧ = U(Â, B̂).) We will find ρ as above, with
the additional property:

(∗) No ri occurs free in A, and each Bi is a normal subformula of Â.
We go by induction on A. If A is basic we let ρ = (r, A) where r is any

atom not occurring in A. Clearly, ρ is equivalent to A, and (∗) holds. If
the recursive system (r̄, B̄) = ((r1, . . . , rn),(B1, . . . , Bn)) is equivalent to A,
and (∗) holds, then ((r0, r̄), (¬B1, B̄)) is equivalent to ¬A, where r0 is a new
atom; and (∗) still holds.

Assume that A∧A′ satisfies the condition on bound atoms, and that the
recursive systems ((r1, . . . , rn), (B1, . . . , Bn)) and ((r′1, . . . , r

′
m), (B′

1, . . . , B
′
m))

are equivalent to A, A′, respectively, (∗) holding for each. Then no ri occurs
free in A. If some ri occurs free in A′, then by the condition on bound atoms
it cannot occur bound in A. Hence it does not occur at all in A, nor in any Bj

(since they are subformulas of Â). In consequence, the functionality of (r̄, B̄)
is unaffected if we replace ri by a new atom not occurring at all in A ∧ A′.
If we do this for all ri where necessary, and undertake similar modifications
for the r′i, then the recursive system ((r0, r̄, r̄′), (B1 ∧B′

1, B̄, B̄
′)), where r0 is

a new atom, satisfies (∗) for A ∧A′; and it is certainly equivalent to A ∧A′.
This completes the case of ∧.

Finally, we consider the case ϕqA (as A is normal, the case Y A does not
arise). Assume ρ = ((r1, . . . , rn), (B1, . . . , Bn)) is equivalent to A, and that
(∗) holds. We let ρ∗ = ((q, r2, . . . , rn), (B1, . . . , Bn)). By (∗), all occurrences
of q in all the Bi are pure past, so ρ∗ is well-formed. (This is where the
assumption that A is normal is used.)

Evidently, (∗) holds for ρ∗, ϕqA. We claim that ρ∗ is equivalent to ϕqA.
Let h be an arbitrary assignment, suppose that h(ϕqA) = S, say, and let
h′ = hq/S. Obviously, h′ρ(Bi) = h′ρ(ri) for each i ≥ 2. But further, h′ρ(B1) =
h′(A) since A and ρ are equivalent; and by the fixed point theorem, h′(A)
= S = h′(q). If q does occur in A then by (∗), q /∈ {r1, . . . , rn}, and if not,
then we can certainly assume this; so h′(q) = h′ρ(q). We have shown that
h′ρ(B1) = h′ρ(q). Hence h′ρ yields a fixed point of ρ∗, and by uniqueness of
fixed points, hρ∗(q) = h′ρ(q) = S = h(ϕqA). So A and ρ∗ are equivalent, as
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claimed. This completes the induction, and with it the proof of the theorem.
�

We can restrict recursive systems further without losing any of their ex-
pressive power.

Definition 4.5 A recursive system ρ = ((r1, . . . , rn), (B1, . . . , Bn)) is said
to be simple if (a) it is ϕ-free, (b) the Bi are normal, and (c) all occurrences
of the rj in the Bi lie under the same number of Y ’s — i.e., there is d > 0
such that every basic subformula of any Bi of the form Y krj (for any j) is
such that k = d. This unique d is called the depth of ρ.

Proposition 4.6 Let ρ = ((r1, . . . , rn), (B1, . . . , Bn)) be a ϕ-free recursive
system. Then ρ is equivalent to a simple recursive system of depth 1.

Proof. By theorem 3.7 we can assume that the Bi are normal. Let k be
maximal such that for some j, Y krj occurs as a basic subformula of some Bi.
Introduce new atoms s`

j for j ≤ n and 1 ≤ ` ≤ k, and define S1
j to be the

(normal) formula obtained from Bj by replacing each basic subformula Y `rj

by Y s`
j (all `), and S`

j = Y s`−1
j for each ` ≥ 2. Then let ρ′ = (s̄, S̄), where

s̄ = ((s`
j : j ≤ n) : ` ≤ k), and similarly for S̄.

Certainly ρ′ is well-formed and simple of depth 1. We claim that it is
equivalent to ρ. Let h be given, and define h′ by:

h′ =s̄ h, h′(s`
j) = hρ(Y

`−1rj) for each j, `.

Then for each j, h′(s`
j) = h′(Y s`−1

j ) = h′(S`
j) if ` ≥ 2, and

h′(S1
j ) = hρ(S

1
j (s

`
i/Y

`−1ri : i ≤ n, ` ≤ k)) = hρ(Bj) = hρ(rj) = h′(s1
j).

Hence h′ is a fixed point assignment for ρ′, and by uniqueness of fixed points,
h′ = hρ′ . As hρ′(s

1
j) = hρ(rj) for each j, ρ′ and ρ are equivalent, as claimed.

�

Unfolding

We need a final result on syntactic manipulation of recursive systems.

Definition 4.7 Let ρ = ((r1, . . . , rn), (B1, . . . , Bn)) be a simple recursive
system of depth 1. Define formulas Bk

i for k < ω by induction:

• B0
i = ri for all i,

12



• Bk+1
i is obtained by normalising Bk

i (rj/Bj : j ≤ n) (i.e., replacing it by
a normal equivalent).

Also define recursive systems ρk = ((r1, . . . , rn), (Bk
1 , . . . , B

k
n)) for each k ≥ 1.

Lemma 4.8 Let ρ = ((r1, . . . , rn), (B1, . . . , Bn)) be a simple recursive sys-
tem of depth 1, as above. Then for each k ≥ 1, the system ρk is simple, of
depth k, and equivalent to ρ — we have hρ = hρk for all h, k.

Proof. By induction on k. Assume the result for k ≥ 1 and let h be any
assignment. Clearly, ρk+1 is ϕ-free. To normalise a ϕ-free formula we move
all Y ’s in through the ∧’s and ¬’s using the rules Y (A∧B) ≡ Y A∧Y B and
Y ¬A ≡ Y>∧¬Y A. These rewrite rules clearly preserve the total number of
Y ’s above each atom, and it follows that ρk+1 is simple and of depth k + 1.

We claim that hρ gives a fixed point of ρk+1; the lemma will then follow by
uniqueness of fixed points. But as hρ(rj) = hρ(Bj) for each j, the substitution
of Bj for rj in Bk

i makes no difference from hρ’s point of view, so that
hρ(B

k+1
i ) = hρ(B

k
i ). By inductive hypothesis this last is equal to hρ(ri),

which completes the proof. �

5 Elimination of fixed point operators

We now prove our first main result, that any formula of Y F is equivalent to
one with depth of nesting of ϕ’s of at most 1.

Theorem 5.1 (elimination of fixed point nesting) Let A be any YF-
formula. Then A is equivalent to a formula A′ without nested ϕ’s — a boolean
combination of YF-formulas of the form ϕqB, where B is ϕ-free. Moreover,
A′ is obtainable effectively from A (in time polynomial in the length of A).

The proof is rather technical. Nesting of the fixed point operator corre-
sponds to recursive systems of width greater than 1. The idea of the proof
is (roughly) to express A as a recursive system of width n, reduce n to 1 by
coding the truth values of its formulas at regular intervals by a single atom,
and obtain the value of A at intermediate times by interpolation.

Notation 5.2 If k, p ∈ N, and p > 0, we write k mod p for the unique i
with 0 ≤ i < p and i ≡ k (mod p). We write kp for k − (k mod p); kp is
the largest multiple of p not greater than k.
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Let A be any Y F -formula. By theorem 4.4 there is a ϕ-free recursive sys-
tem ρ = ((r1, . . . , rn), (B1, . . . , Bn)) that is equivalent to A. By proposition
4.6, ρ can be taken to be simple of depth 1. Study of the proofs in sections
3–4 shows that ρ is obtainable effectively from A in polynomial time.

Let p = 2n+ 3. To prove theorem 5.1 it suffices to show:

Lemma 5.3 For each j ≤ n there is a Y F -formula Dj of the form ϕqC,
where C is ϕ-free, such that for any assignment h and any multiple m of
p, we have m ∈ h(Dj) ⇐⇒ m ∈ hρ(Bj). The formula Dj is obtainable
effectively from ρ in polynomial time.

For, assuming the lemma, we can interpolate to get the values of A at any
time. To see this, observe first that the ‘clock’ formula τ = ϕq¬Y ¬Y p−1q
satisfies h(τ) = {mp : m ∈ N} for any assignment h. We will show:

Claim: A is equivalent to A′ =
∧

0≤i<p Y
iτ → Bi

1(rj/Dj : j ≤ n), where Bi
1

is as in definition 4.7.

Proof of claim: Let h be any assignment, let m ∈ N and let i = m mod p.
Then m ∈ h(A′) if and only if m ∈ h(Bi

1(rj/Dj : j ≤ n)). Now by definition
4.7 and lemma 4.8, Bi

1 is normal and every occurrence of each rj in it is
in a basic subformula of the form Y irj. Moreover, as mp is divisible by p,
mp ∈ h(Dj) if and only if mp ∈ hρ(Bj) = hρ(rj). So as h =r̄ hρ, it follows
that m ∈ h(Bi

1(rj/Dj : j ≤ n)) if and only if m ∈ hρ(B
i
1). But by lemma

4.8, ρi is equivalent to ρ and hence to A, so this is if and only if m ∈ h(A),
proving the claim.

Evidently, A′ has no nested fixed point operators. Moreover, it is obtain-
able effectively from ρ in polynomial time, assuming that the Dj are. So
theorem 5.1 follows from the lemma. �

Proof of lemma 5.3 Assume for simplicity of notation that j = 1; the
proof for other j is the same. By lemma 4.8 we can replace ρ by ρp (effectively
and in polynomial time), and thus assume that ρ is a simple recursive system
of depth p. Choose a surjective function χ : N → {>,⊥, Bi : i ≤ n} with the
following properties:

• χ(m) = χ(m+ p) for all m ∈ N;

• χ(0) = B1;

• if k < p− 3 and k is odd, then χ(k) = ⊥;

• χ(p− 3) = χ(p− 2) = >;
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• χ(p− 1) = ⊥.

We can find such a χ since p is large enough. χ has the important property
that for any assignment h, the sets h(χ(m)), h(χ(m+1)) are both non-empty
if and only if m ≡ p− 3 (mod p)). We will design a ϕ-free recursive system
σ = (s, C) satisfying, for every assignment h,

(∗) ∀m ∈ N (m ∈ hσ(s) ⇐⇒ m ∈ hρ(Y
m mod pχ(m))).

In particular, if m is a multiple of p then m ∈ hσ(s) ⇐⇒ m ∈ hρ(B1). The
formula D1 = ϕsC then satisfies the conclusion of the proposition, as by the
fixed point theorem, h(D1) = hσ(s) for any h.

We let the formula C be:∧
0≤i<p

Y i[¬Y> ∨ (Y 2s ∧ Y 3s)] → Y i[χ(i)(Y prj/Y
p−`js : j ≤ n)].

Here, 0 ≤ `j < p is such that χ(`j) = Bj; `j exists because χ is onto. It is
clear that C is obtainable effectively in polynomial time from the Bj. Hence
the lemma will be established if we can prove that (∗) holds for all m.

We do this by induction on m. Fix an assignment h. Let m ∈ N and
assume that (∗) holds for all m′ < m. We will show that it holds for m.

Claim: For all i < p, Y i[¬Y>∨ (Y 2s∧ Y 3s)] is true at m under the assign-
ment hσ if and only if i = m mod p.

Proof of claim: If i > m then Y iA is false at m for any A under any
assignment, and i 6= m mod p). So we can assume i ≤ m, in which case the
left hand side holds if and only if (†) m− i ∈ hσ(¬Y> ∨ (Y 2s ∧ Y 3s)).

But clearly h′(¬Y>) = {0} for any assignment h′, so (†) holds if and only
ifm = i orm−i−2, m−i−3 ∈ hσ(s). By the inductive hypothesis, this holds
if and only ifm = i orm−i−2 ∈ hρ(Y

(m−i−2) mod pχ(m−i−2)), and similarly
for m− i− 3: i.e., if and only if m = i or ((m− i− 2)p ∈ hρ(χ(m− i− 2))
and (m− i− 3)p ∈ hρ(χ(m− i− 3))). But by choice of χ, this holds if and
only if m = i or m − i − 3 ≡ p − 3 (mod p) — i.e., if and only if m ≡ i
(mod p). This proves the claim.

We now prove (∗) for m. Let i = m mod p. Now m ∈ hσ(s) if and only
if m ∈ hσ(C), so by the claim, we see that we must prove:

m ∈ hσ(Y i[χ(i)(Y prj/Y
p−`js : j ≤ n)]) ⇐⇒ m ∈ hρ(Y

iχ(m)),

or equivalently,

mp ∈ hσ(χ(m)(Y prj/Y
p−`js : j ≤ n)) ⇐⇒ mp ∈ hρ(χ(m)).
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Now χ(m) is >, ⊥ or a normal formula Bk in which all occurrences of
the rj are in normal subformulas of the form Y prj, which in C are replaced
by Y p−`js. So as hσ =r̄,s hρ, we need only check that:

(‡) mp ∈ hσ(Y p−`js) ⇐⇒ mp ∈ hρ(Y
prj) for each j ≤ n.

So let 1 ≤ j ≤ n. First assume that m < p, so that mp = 0. Now
p− `j ≥ 1, so that 0 /∈ hσ(Y p−`js); and clearly 0 /∈ hρ(Y

prj). Hence (‡) holds
in this case. Now assume m ≥ p, so that mp ≥ p. Then mp ∈ hσ(Y p−`js) if
and only if mp − p + `j ∈ hσ(s). As `j < p, mp − p + `j < m, so (using (∗)
inductively) this holds if and only if mp−p+`j ∈ hρ(Y

`jχ(mp−p+`j)), if and
only if mp − p ∈ hρ(χ(`j)) = hρ(Bj) = hρ(rj), if and only if mp ∈ hρ(Y

prj).
Thus (‡) is proved.

So (∗) holds for m, and hence by induction, it holds for all m ∈ N,
completing the proof of the lemma. �

6 Decidability and expressive power

Now we return to the full logic UY F . We will prove that it has the same
expressive power as the monadic second-order logic S1S, the second-order
theory of one successor function. Our argument uses automata and is remi-
niscent of that of McNaughton [McN], though much less sophisticated. De-
cidability of UY F will then follow from the known decidability of S1S. [Gu]
surveys the necessary general knowledge on S1S and automata.

We first explain the need to invoke second-order logic. An older temporal
logic, ‘US’, introduced by Kamp in [K], involves in addition to the boolean
connectives the binary temporal connectives Until and its dual Since. There
is no fixed point operator in US. Now consider the monadic first-order logic
over N. Its signature consists of the first-order signature {=, <}, augmented
with monadic predicate variables Q(x), R(x), . . . associated with the atoms
q, r, . . . of section 2. The semantics are those of first-order logic in the struc-
ture (N, <, h). The assignment h provides the semantics of the unary predi-
cate variables, so that if Q(x) is associated with the atom q, and n ∈ N, then
(N, <, h) |= Q(n) if and only if n ∈ h(q).

It is easily seen by induction on A that for any formula A(q1, . . . , qk) of
US there is an equivalent monadic first-order formula ψA(x,Q1, . . . , Qk): for
all h and n ∈ N, n ∈ h(A) if and only if (N, <, h) |= ψA(n). Kamp proved
that the converse also holds: for each monadic first-order formula there is an
(N-)equivalent US-formula. Other proofs are in [G], [GHR1], [GPSS]. Thus
we say that US is fully expressive with respect to monadic first-order logic
over N.
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The need for second-order logic when treating the fixed point operator is
prompted by the following observation of Wolper:

Proposition 6.1 1. Assume that for every atom q, either h(q) is finite
or N \ h(q) is finite (in the latter case we say: h(q) is cofinite). Then
for all formulas A of US, h(A) is either finite or cofinite.

2. If ψ(x) is a monadic first-order formula, and h(q) is finite or cofinite
for each Q occurring in ψ, then so is {n ∈ N : (N, <, h) |= ψ(n)}.

3. There is no first-order formula ε(x) in the signature {=, <} such that
for all n ∈ N, (N, <) |= ε(n) if and only if n is even.

Proof. 1. By induction on the complexity of A. For atomic A we are given
the result. The set of finite and cofinite subsets of N is closed under the
boolean operations, so the only remaining cases are U(A,B) and S(A,B).
Assume inductively that h(A) and h(B) are finite or cofinite. Inspection of
the semantics of U shows that if n ∈ h(U(A,B)) then there is m > n in h(A),
and that n+1 ∈ h(A) implies n ∈ h(U(A,B)). Hence h(U(A,B)) is finite or
cofinite according as h(A) is. Now assume for contradiction that h(S(A,B))
is neither finite nor cofinite. Hence there are infinitely many n ∈ N such that
n /∈ h(S(A,B)) but n + 1 ∈ h(S(A,B)). Inspection of the semantics of S
shows that n ∈ h(A) for each such n. Hence h(A) is infinite, and so, by the
inductive hypothesis, cofinite. But h(S(A,B)) ⊇ h(A) + 1, so h(S(A,B)) is
also cofinite, a contradiction. This completes the proof.

2. This is immediate from (1) and Kamp’s result.
3. This is a special case of (2). �

But the UY F -formula τ = ϕq¬Y q satisfies h(τ) = {0, 2, 4, . . .} for all h,
so the expressive power of UY F goes beyond that of first-order logic over N.

Recall the definition of S1S. The signature of this logic is as for monadic
first-order logic (above). The formation rules for S1S-formulas are also as
for first-order logic, but with the additional clause: if ψ is a formula and Q
a monadic predicate variable then ∃Qψ is a formula. The semantics of S1S
are as for monadic first-order logic in (N, <, h), with the additional second-
order clause: if ψ(x1, . . . , xn) is a formula, and ā = (a1, . . . , an) ∈ Nn, then
(N, <, h) |= ∃Qψ(ā) if and only if (N, <, h′) |= ψ(ā) for some h′ =q h.

We want to compare the expressive power of UYF and S1S. The natural
definition to make is the following.

Definition 6.2 Let A be a UYF-formula and ψ(x) a formula of S1S with
a single free variable, x. We say that A and ψ are equivalent if for all
assignments h, h(A) = {n ∈ N : (N, <, h) |= ψ(n)}.
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It is easy to show that S1S is at least as expressive as UY F .

Proposition 6.3 Let A be any UYF-formula. Then there is a formula ψA(x)
of S1S that is equivalent to A. There is an algorithm that constructs ψA from
A.

Proof. By induction on A. If A is the atom q we let ψA(x) be Q(x), and
we let ψ>(x) be x = x. The boolean clauses are as expected, ψY A(x) is
∃y < x(ψA(y) ∧ ¬∃z(y < z < x)), and ψU(A,B)(x) is ∃y > x(ψA(y) ∧ ∀z(x <
z < y → ψB(z))). Finally, assume that ϕqA is well-formed and suppose
that we have defined ψA(x). The fixed point theorem shows that for any
h, h(ϕqA) is the unique S ⊆ N such that hq/S(A) = S. So we can define
ψϕqA(x) as ∃Q[Q(x) ∧ ∀y(Q(y) ↔ ψA(y))]. A standard induction on A now
shows that ψA is always equivalent to A, and clearly the construction of ψA

from A is effective. �

Corollary 6.4 UYF is decidable: there is an algorithm that, given a formula
A of UYF, decides whether or not there is an assignment h such that h(A) 6=
∅.

Proof. This is because there is an algorithm that decides whether or not a
sentence of S1S has a model (see [Gu]). We can apply this algorithm to the
sentence ∃xψA(x), which by the proposition is effectively constructible from
A. �

In section 7 we will show that the decision problem for UY F is PSPACE-
complete.

The remainder of this section is devoted to proving the converse of propo-
sition 6.3:

Theorem 6.5 For any formula of S1S with a single free variable, there is
an equivalent UYF-formula, which is effectively constructible.

This will establish that UY F is ‘fully expressive’ with respect to monadic
second-order logic. The proof will use automata.

Definition 6.6 1. Let L be a finite set of atoms. A (Muller) L-automaton
is a 4-tuple M = (S, s0, T, F ) where S is a finite non-empty set (of
states), s0 ∈ S is the initial state, T ⊆ S × ℘L × S is the transition
table, and F ⊆ ℘S is the set of accepting conditions.

2. M (as above) is said to be deterministic if for all s ∈ S and X ⊆ L
there is a unique s′ ∈ S with (s,X, s′) ∈ T . In this case we will often
regard T as a function : S × ℘L→ S.
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3. If M is an automaton as above, and h is an assignment, a run of M
over h is a sequence (sn : n < ω) of states, such that for all n,

(sn, {q ∈ L : n ∈ h(q)}, sn+1) ∈ T.

The run is said to be accepting if

{s ∈ S : s = sn for infinitely many n < ω} ∈ F.

Otherwise it is said to be rejecting.

4. M is said to accept an assignment h if there exists an accepting run of
M over h.

5. Two L-automata are said to be equivalent if they accept exactly the
same assignments.

An L-automaton is thought of as running along N: at each n ∈ N it ‘reads’
which atoms of L are true at n under h, and chooses its next state in the
light of this and its current state. It then advances to n+ 1 and the process
repeats.

The main lemma that we need follows after a definition.

Definition 6.7 If h is an assignment and m ∈ N, we write h≥m for the
assignment given by h≥m(q) = {n ∈ N : m+ n ∈ h(q)}.

Intuitively, an automaton M accepts h≥m if and only if M would accept h if
it started its run at m instead of at 0.

Lemma 6.8 Let M = (S, s0, T, F ) be a deterministic automaton. Then
there is a formula AM of UYF such that for any assignment h and n ∈ N,
n ∈ h(AM) if and only if M accepts h≥n. The formula AM is obtainable
effectively from M.

Proof. The idea is taken from [McN], and we will only sketch it. Suppose
that M has k states. We first describe a deterministic automaton M∗ involv-
ing k + 1 ‘copies’ M0, . . . ,Mk of M . We describe the run of M∗. At each
time t ∈ N, M∗ releases a dormant copy of M . Then for each s ∈ S it checks
to see if more than one currently active copy of M is in state s; if so, it
renders dormant all but the longest-running copy (the one that was released
first). (Thus M∗ must keep track of the order of launch of the currently
active copies of M — it can do this with finitely many extra states.) After
this check, at most k copies of M can be active, so there will always be at
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least one dormant copy. M∗ then advances to t+ 1 by allowing all surviving
copies of M so to advance, and the process repeats.

Consider a copy Mi0 of M that is released at time t0. If it is later deac-
tivated, this is because at some time t1 ≥ t0 it arrives in the same state as
another copy Mi1 of M released before t0. At all times t ≥ t1, Mi1 (if not
itself deactivated) will be in the same state as Mi0 would have been in, had it
survived. If Mi1 is later deactivated then it itself will be replaced by another
copy Mi2 , launched earlier than Mi1 . The resulting sequence Mi0 ,Mi1 , . . . of
‘descendants’ of Mi0 is of length at most k+ 1, since clearly all the Mij were
already active at time t0. Let Mi` be the final descendant of Mi0 . Then Mi`

is never deactivated, and as it is eventually always in the same state as Mi0

would have been in, we see that M accepts h≥t0 if and only if the ‘run’ of Mi0 ,
had it lasted, would have been accepting, if and only if the ‘run’ of Mi` is
accepting. This is the condition that we have to check with UY F -formulas.

We can simulate M∗ by a recursive system ρ = (r̄, B̄). The atoms r̄
involve:

• atoms ris for each i ≤ k, s ∈ S; ris will be true at n if and only if the
copy Mi of M is active and in state s at n.

• atoms oij (i, j ≤ k); oij being true at some point will mean that copies
Mi and Mj of M are both currently active, and Mi was released first.

• atoms pij (i, j ≤ k); pij being true at a point will mean that at that
point, copy Mi was made dormant because it was in the same state as
copy Mj, which was not made dormant (i.e., Mj was the oldest copy
in that state).

It is clear that, knowing the transition table of M , the values of these atoms
at time t+1 are a fixed boolean combination of their values and of the values
of the atoms of L at time t. Thus ρ can in fact be taken to be simple of depth
1; the formulas B̄ will not involve Until. By proposition 4.3, for each atom r
of r̄ there is a Y F -formula Ar such that for all h, h(Ar) = hρ(r).

Let D0
ii = >, D0

ij =⊥ if i 6= j, and for d ≥ 0,

Dd+1
ij =

∨
i′ 6=i

U((pi,i′ ∧Dd
i′,j),

∧
i′′ 6=i

¬pi,i′′).

Dd
ij says that the dth descendant of Mi is Mj. Then let

Cij =
∨
s∈S

ris ∧
∨
d≤k

[Dd
ij ∧

∧
j′ 6=i

¬Dd+1
i,j′ ].
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Then n ∈ hρ(Cij) if and only if Mi is active at time n and its final descendant
is Mj. We can also express that the run of Mj is accepting, by

Bj =
∨

X∈F

(
∧
s∈X

I(rjs) ∧
∧

s′∈S\X

¬I(rj,s′)).

Here, I(q) abbreviates the formula GFq = ¬U(¬U(q,>),>), saying that q
holds infinitely often in the future. The formula AM is now obtained from∧

i≤k(ri,s0 →
∧

j≤k(Cij → Bj)) by substituting Ar for r (for each atom r of
r̄). �

To complete the argument we will need the following standard results
about automata.

Fact 6.9 1. Every automaton is equivalent to a deterministic automaton,
which can be constructed effectively. This was proved in [McN].

2. For every sentence σ of S1S whose free monadic predicates correspond
to atoms in the finite set L, there is an L-automaton M such that for
all assignments h, M accepts h if and only if (N, <, h) |= σ. M can be
constructed effectively from σ. See [Gu], for example.

Now let ψ(x) be an S1S-formula with a single free variable, x. We want to
find a UY F -formula A equivalent to ψ. Let L be the set of atoms occurring
in ψ and let Q be a monadic predicate variable not occurring in ψ. By fact
6.9 we can find a deterministic L ∪ {q}-automaton M = (S, s0, T, F ) that
accepts an assignment h if and only if (N, <, h) |= ∀x(Q(x) ↔ ψ(x)).

Definition 6.10 1. If s ∈ S we write Ms for any deterministic equivalent
of the version of (S, s, T, F ) that ‘guesses’ values of h(q). Formally, Ms

is a deterministic equivalent of the L-automaton (S, s, T ′, F ), where
T ′ = {(s1, X ∩ L, s2) : (s1, X, s2) ∈ T}.

2. We write As for the formula AMs of lemma 6.8.

Clearly, for any h there is a unique h∗ =q h that M accepts, namely the
h∗ satisfying h∗(q) = {n ∈ N : (N, <, h) |= ψ(n)}. We can simulate the run
of M over h∗ from within h, obtaining the following result.

Lemma 6.11 For each s ∈ S there is a UYF-formula Cs such that for all
assignments h and all n ∈ N, n ∈ h(Cs) if and only if the state of M at time
n during its run on h∗ is s.
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Proof. We define a recursive system ρ = ((rs : s ∈ S), (Bs : s ∈ S)) as
follows. If s ∈ S let π(s) = {(s′, X) ∈ S × ℘L : T (s′, X) = s or T (s′, X ∪
{q}) = s}. We let

Bs = As ∧
∨

(s′,X)∈π(s)

Y (rs′ ∧
∧
x∈X

x ∧
∧

y∈L\X

¬y)

for each s ∈ S \ {s0}, and

Bs0 = ¬Y> ∨ [As0 ∧
∨

(s,X)∈π(s0)

Y (rs ∧
∧
x∈X

x ∧
∧

y∈L\X

¬y)].

Note that the Bs are formulas of UY F (and not Y F ). Nonetheless, by
proposition 4.3 we can find for each s ∈ S a formula Cs such that for all
h, h(Cs) = hρ(rs). Thus it suffices to show that for any assignment h, if
s0, s1, . . . is the (accepting) run of M on h∗ then for all n and s, n ∈ hρ(rs)
if and only if s = sn.

This is clear if n = 0. Assume the result for n. Let X = {p ∈ L : n ∈
h(p)}, and define s+ = T (sn, X ∪ {q}), s− = T (sn, X). By definition of the
Bs and the inductive hypothesis, for each s ∈ S we have: n + 1 ∈ hρ(rs) if
and only if

1. s = s+ or s = s−, and

2. n+ 1 ∈ h(As).

And (2) holds if and only if Ms accepts h≥n+1, if and only if there is
h′ =q h that M accepts ‘when started at n+ 1 in state s’.

Claim: (1) and (2) hold if and only if s = sn+1.

Proof of claim: Certainly, sn+1 ∈ {s+, s−}; and M obviously accepts h∗

when started in state sn+1 at n+1 (its run is just sn+1, sn+2, . . .). Conversely,
suppose we are given s ∈ {s+, s−} and h′ as above. We can assume that
h′(q) and h∗(q) agree before n, and that T (sn, h

′−1(n) ∩ (L ∪ {q})) = s. An
accepting run of M on h′≥n+1 when started in state s, when preceded by
s0, . . . , sn, gives an accepting run of M on h′. By uniqueness, h′ = h∗, and
so s = T (sn, h

∗−1(n)∩ (L∪{q})) = sn+1, as required. This proves the claim,
and with it the lemma. �

Corollary 6.12 There is a UYF-formula D equivalent to ψ(x).

Proof. We let D be∧
s∈S,X⊆L

(Cs ∧
∧
x∈X

x ∧
∧

y∈L\X

¬y) → U(AT (s,X∪{q}),⊥).
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Let h be given, and let s0, s1, . . . be the run of M on h∗, as before. Let
n ∈ N, and write X for {p ∈ L : n ∈ h(p)}. Then n ∈ h(D) if and only
if n ∈ h(U(AT (sn,X∪{q}),⊥)), if and only if n + 1 ∈ h(AT (sn,X∪{q})). By
the claim of lemma 6.11, this holds if and only if sn+1 = T (sn, X ∪ {q}).
Now sn+1 = T (sn, X ∪ {q}) or T (sn, X), according as n ∈ h∗(q) or not.
If we had T (sn, X ∪ {q}) = T (sn, X), we could replace h∗ by h′, identical
with h∗ except that n ∈ h′(q) ⇐⇒ n /∈ h∗(q); then s0, s1, . . . would be
an accepting run of M over h′, contradicting the uniqueness of h∗. Hence
T (sn, X ∪ {q}) 6= T (sn, X). So n ∈ h(D) if and only if n ∈ h∗(q) — i.e., if
and only if (N, <, h) |= ψ(n), as required. �

Thus the proof of theorem 6.5 is complete. We remark that the formula
D of the theorem is effectively obtainable from ψ (since M and the Ms are).
By theorem 5.1, D can in fact be taken to have depth of nesting of fixed
point operators of 2 (i.e., no branch of the formation tree of D contains more
than two ϕ’s). Thus, combining proposition 6.3 and theorem 6.5, we see that
any UY F -formula is effectively equivalent to such a formula. I do not know
if one can be constructed in polynomial time.

Example 6.13 We give a very simple example of our construction. We will
construct the formula D equivalent to the S1S-formula ε(x) = ∃P [P (x) ∧
∀y(P (y) ↔ ¬∃z(z < y∧¬∃t(z < t < y)∧P (z)))], defining the even numbers
in N. The automaton M for ∀x(Q(x) ↔ ε(x)) can be taken to have three
states, 0 (initial state), 1 and 2:�

�
�
�

�
�

�
�

2

6

?
���������1

PPPPPPPPPq
Q ¬Q

Q

¬Q
0

1

k

any

The set F of accepting conditions is {{0, 1}}. The version of M that
‘guesses’ Q can accept if and only if it is initiated in state 0 or 1. Hence we
can take A0 = A1 = > and A2 = ⊥. As L = ∅, we obtain B0 = ¬Y>∨ Y r1,
B1 = Y r0, and B2 = ⊥. Applying proposition 4.3 to the recursive system
(r̄, B̄), we obtain (up to equivalence) C0 = E,C1 = Y E and C2 = ⊥, where
E = ϕr0(¬Y> ∨ Y 2r0). Observe that E is true at even numbers only. The
formula D is thus

∧
i≤2(Ci → TAi′), where Tq (‘tomorrow, q’) abbreviates

U(q,⊥), and i′ is the next state of M when currently it is in state i and Q is
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true. Since 0′ = 1 and 1′ = 2′ = 2, we obtain D = (E → T>) ∧ (Y E → T⊥)
∧ (⊥ → T⊥), which is equivalent to > ∧ ¬Y E ∧ >, i.e., to E. Hence we
obtain the formula E as equivalent to ε(x).

7 Eliminating fixed point operators

In this section we show how to eliminate all fixed point operators from a
UY F -formula A, at the cost of restricting the values assigned to the bound
atoms of A. This will yield an axiomatisation of UY F , as well as giving
the complexity of its decision problem. Our main tool is proposition 7.2, a
variant of which was also proved independently by Strulo [S].

We can assume that the bound atoms of A are distinct and do not occur
free in A. We let A† =

∧
(q ↔ B̂), where the conjunction is taken over

all subformulas of A of the form ϕqB, and Â is as defined in the proof of
theorem 4.4. Equivalently we can define A† by induction: q† = >† = > for
any atom q, (¬A)† = (Y A)† = A†, (A ∧ B)† = (U(A,B))† = A† ∧ B†, and
(ϕqA)† = A† ∧ (q ↔ Â).

Lemma 7.1 Let A be a formula of UY F , and let h be an assignment such
that h(A†) = N. Then for all subformulas B of A, h(B) = h(B̂).

Proof. By induction on B. We need only check the case B = ϕqC, as the
other cases are simple. Assume that ϕqC is a subformula of A, and that the
result holds for C. Then q ↔ Ĉ is a conjunct of A†. Hence h(q) = h(Ĉ),
and h(Ĉ) = h(C) by the inductive hypothesis. By the fixed point theorem

(2.8), h(ϕqC) = h(q), and h(q) = h(Ĉ) = h(ϕ̂qC), as required. �

Proposition 7.2 Let A be any UYF-formula with bound atoms r̄. Then for
any assignment h there is a unique assignment hA =r̄ h satisfying hA(A†) =
N. We have hA(Â) = h(A) for all h.

Proof. By induction on A. If A is atomic or >, then r̄ is empty, A† = >
and Â = A, so hA = h and the result is trivial. Assume the result for A.
As Y A has the same bound atoms as A, and (Y A)† = A†, we must have
hY A = hA by the uniqueness part of the inductive hypothesis. But then,
hY A(Ŷ A) = hA(Y Â) = 1 + hA(Â) = 1 + h(A) by the inductive hypothesis,
and this last is h(Y A), as required. The proof for ¬A is similar. Now
consider U(A,B). Suppose the result holds for A,B, having bound atoms ā, b̄
respectively. There are unique hA =ā h, h

B =b̄ h with hA(A†) = hB(B†) = N.
As ā and b̄ are disjoint, we can define h∗ =āb̄ h by h∗ =b̄ h

A, h∗ =ā hB.
Then h∗(U(A,B)†) = N, and h∗ is unique given this condition. Moreover,
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we have h∗(U(A,B)∧) = h∗(U(Â, B̂)), which by the inductive hypothesis is
h(U(A,B)), as required. The argument for A ∧B is similar.

Finally, assume the result for A and consider ϕqA. Let h(ϕqA) = S, and

h∗ = (hq/S)A. Then (i) h∗(ϕ̂qA) = (hq/S)A(Â); by the inductive hypothesis
this is hq/S(A), which is h(ϕqA), by the fixed point theorem. Also, (ii)
h∗(A†) = N since h∗ is of the form h′A; and it follows from (i) that (iii)
h∗(q) = S = h∗(Â). From (ii) and (iii) we obtain (iv) h∗((ϕqA)†) = N.
Hence by (i) and (iv) we can let hϕqA = h∗.

It remains to check uniqueness in this case. Suppose h′ is any assignment
such that h′ =r̄,q h (where r̄ are the bound atoms of A) and h′((ϕqA)†) = N.

Then in particular, h′(q) = h′(Â). As h′(A†) = N, lemma 7.1 applies, and
we get h′(Â) = h′(A). But h′(q) = h′(A) yields h′(q) = S by the uniqueness
part of the fixed point theorem. Hence h′ =r̄ hq/S, and since h′(A†) = N,
we obtain h′ = (hq/S)A = hϕqA by the uniqueness part of the inductive
hypothesis. �

We say that a formula A is valid if h(A) = N for all assignments h.

Theorem 7.3 Let A be any UYF-formula. Then A is valid if and only if the
UY-formula �(A†) → Â is valid, where �(A†) abbreviates A†∧¬U(¬A†,>)∧
¬S(¬A†,>).

Proof. Let h be any assignment, and let t ∈ N. Assume first that A is valid.
If t ∈ h(�(A†)), we want to show that t ∈ h(Â). Clearly, h(A†) = N, so by
lemma 7.1, h(Â) = h(A), which is N since A is valid. Hence t ∈ h(Â), as
required.

Conversely, if �(A†) → Â is valid, we need to show that t ∈ h(A). By
validity, t ∈ hA(�(A†) → Â). By proposition 7.2, hA(A†) = N, so t ∈
hA(�(A†)). Hence t ∈ hA(Â), and as the proposition proved that hA(Â) =
h(A), we obtain the result. �

Thus, in a sense, any UY F -formula A is ‘equivalent’ to the UY -formula
�(A†) → Â, which does not involve ϕ at all. We can draw two corollaries
from this.

Corollary 7.4 There is a sound and complete axiomatisation of UYF.

Proof. We can regard any UY-formula as a formula of US, since the formula
Y q is equivalent to S(q,⊥). Sound and complete axiomatisations for US over
the natural numbers exist: see [R1], [V] and (for U only) [GPSS]. If we add
to such an axiomatisation the inference rule

�(A†) → Â

A
,
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we obtain a sound and complete axiomatisation of UY F over N. For, by
the theorem, the new rule is sound: if the top is valid, so is the bottom.
For completeness, assume that A is a valid UY F -formula. By theorem 7.3,
�(A†) → Â is a valid US-formula. By completeness for US-formulas, it is
provable, and we obtain ` A from the new rule.

Notice that we only need use the new rule once, at the end of a proof of
A, as the rule simply says that it suffices to prove �(A†) → Â, and this can
be done (if at all) within the US proof system. �

Problem: find a finite axiomatisation of UY F using only the conventional
inference rules.

Corollary 7.5 The decision problem for UYF is PSPACE-complete, as is
the decision problem for USF.

Proof. It is shown in [SC] that the problem of deciding whether a formula of
US is valid over N is PSPACE-complete. So the decision problem for USF is
certainly PSPACE-hard. By remark 2.9, this problem reduces in polynomial
time to the decision problem for UY F . But by theorem 7.3, a UY F -formula
A is valid if and only if the UY -formula B = �(A†) → Â is valid, and B
is obtainable in polynomial time from A. By replacing all subformulas Y D
of B by S(D,⊥), as in the preceding corollary, we can obtain from B, in
polynomial time, an equivalent formula C of US. By the result of [SC], the
validity of C over N is decidable in PSPACE.

Of course, the dual, satisfiability problems for USF and UY F are also
PSPACE-complete. �

8 Executable temporal logic

Finally, we discuss the connection of UY F with executable temporal logics
such as MetateM [M]. The MetateM computer system (see [M,R2] for details)
is able to ‘execute’ any formula A of US, building an assignment h such that
h(A) = N. A is regarded as a ‘specification’, which the system meets by
making it true at all times. The method relies on Gabbay’s ‘separation
property’ for US over N, proved in [G] and [GHR2].

Future versions of MetateM will interact with the external environment.
Given a US-formula A(q̄; r̄), the atoms q̄ may be designated as under the
control of the environment, whilst r̄ remain under the auspices of the system.
Given an assignment h, such a system would build a new assignment h∗ =r̄ h
such that h∗(A) = N. (Here we assume that the environment does not
react to the system, so that h can be assumed fixed during its operation. If
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this assumption is not valid, a logic such as S2S is needed to analyse the
execution. See [ALW] and [Gu].)

Corollary 8.1 Assume we have a version of MetateM as above. Then for
any assignment h and subset S ⊆ N, if S = h(A) for some formula A(q̄) of
UY F , then there is a formula A∗(q̄, r̄, s) of US such that if MetateM treats q̄
as environment-controlled atoms and r̄, s as system-controlled, and executes
A∗ over h to construct h∗, then h∗(s) = S.

Proof. Given any formula A(q̄) of UY F , with bound atoms r̄, we can
effectively construct the UY -formula

A∗(q̄; r̄, s)
def
= A† ∧ (s↔ Â).

If MetateM constructs h∗ from h as above, then we will have h∗(A∗) = N.
Hence h∗(A†) = N, so that by proposition 7.2, h(A) = h∗(Â). Since also
h∗(Â) = h∗(s), the proof is complete. �

So MetateM would in principle be able to evaluate any formula of UY F ,
and so by theorem 6.5 to construct any set that is definable from the sets
h(q) (q in q̄) by some S1S-formula. It is striking that the expressive power of
monadic second-order logic — and of the fixed point logic UY F — would thus
be achieved using only formulas of US, which have first-order definitions.

We might ask whether a converse of the corollary can be established.
This depends on the execution strategy adopted by MetateM. For example,
the formula GFs = ¬U(¬U(s,>),>) is validated by any h such that h(s) is
infinite; and there are 2ω such h. Even if the execution strategy is assumed
to be deterministic, whether it yields an h such that h(s) is definable in UY F
in all cases like this remains to be seen. (We believe that the answer will be
positive.)

A related, speculative point concerns the so-called uniformisation problem
for S1S. Given a sentence ψ(P,Q) of S1S such that N |= ∀P∃Qψ(P,Q), we
can ask if there is another S1S-formula χ(P,Q) such that N |= ∀P∃!Qχ ∧
∀PQ(χ→ ψ). (Here, ∃!Q means that there exists a unique Q.) This question
was answered affirmatively in [BL]; see also [Gu]. The corresponding problem
for S2S was given a negative solution in [GS].

Now by theorem 6.5 we can obtain a UY F -formula A(p, q) equivalent
to ψ ∧ x = x. Given h, we might now execute Â ∧ A†, treating p as an
environment atom and the rest as system atoms. We would obtain h∗ such
that h∗(A) = N, so that (N, <, h∗) |= ψ. Thus a MetateM interpreter capable
of handling a fixed external environment could be used to ‘uniformise’ ψ:
for any given h(p) ⊆ N it would construct a set h∗(q) ⊆ N so that N |=
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ψ(h(p), h∗(q)). Again, it remains to be seen whether the execution strategy
of such a system will itself be expressible in UY F or S1S, but if so, an
alternative proof of the uniformisation result of [BL] might be obtained.
(Note that MetateM does involve metalanguage features, which are discussed
in [FH].)
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