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1. Introduction

Recall that the language of S52 is the propositional language based on a fixed
countably infinite set of propositional variables and equipped with the two
modal operators ¤1 and ¤2. For a formula ϕ we let ♦iϕ abbreviate ¬¤i¬ϕ
for i = 1, 2. We recall that S52 is the smallest set of formulas containing all
substitution instances of the following axiom schemas, for i = 1, 2:

1) All tautologies of the classical propositional calculus;
2) ¤i(p → q) → (¤ip → ¤iq);
3) ¤ip → p;
4) ¤ip → ¤i¤ip;
5) ♦i¤ip → p;
6) ¤1¤2p ↔ ¤2¤1p;

and closed under the following rules of inference:

Modus Ponens (MP): from ϕ and ϕ → ψ infer ψ;
Necessitation (N)i: from ϕ infer ¤iϕ.

Recall also that a set of formulas L is called a logic if it contains all
tautologies of the classical propositional calculus and is closed under the
rule of modus ponens. A modal logic is called normal if it contains axiom
schema 2) (see above) and is closed under the rule of necessitation. A logic
L1 is an extension of L2 if L2 ⊆ L1.

It is well known that S52 has the exponential size model property, and
that its satisfiability problem is NEXPTIME-complete [6]. In this paper,
by the complexity of a logic we will mean the complexity of its satisfiability
problem. It is shown in [3] that in contrast to S52, every proper normal
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extension L of S52 has the poly-size model property. That means that there
is a polynomial P (n) such that any L-consistent formula ϕ (that is, ¬ϕ /∈ L)
has a model over a frame validating L and with at most P (|ϕ|) points, where
|ϕ| is the length of ϕ.

It was conjectured in [3] that every proper normal extension of S52 is
finitely axiomatizable and NP-complete. In this paper we prove this con-
jecture. In fact, we show that for every proper normal extension L of S52,
there is a finite set ML of finite S52-frames such that an arbitrary finite S52-
frame is a frame for L iff it does not have any frame in ML as a p-morphic
image. This condition yields a finite axiomatization of L. We also show that
the condition is decidable in deterministic polynomial time. This, together
with the poly-size model property, implies NP-completeness of (satisfiability
for) L.

Finally, we note that general complexity results for (uni)modal logics
were investigated before. Bull and Fine proved that every normal extension
of S4.3 has the finite model property, is finitely axiomatizable and there-
fore is decidable (see [4, Theorems 4.96, 4.101]). Hemaspaandra strength-
ened the second result by showing that every normal extension of S4.3 is
NP-complete [4, Theorem 6.41]. The proof of finite axiomatizability uses
Kruskal’s theorem on well-quasi-orderings [4, Theorem 4.99]. Kracht uses
the same technique for showing that every extension of the intermediate logic
of leptonic strings is finitely axiomatizable [8, Theorem 14, Proposition 15].
This paper takes the same line of research beyond unimodal logics. However,
as we will see below, the theory of well-quasi-orderings does not suffice for
our purposes; instead, we will use better-quasi-orderings.

2. Preliminaries

Recall that a triple F = (W, E1, E2) is an S52-frame (i.e., it validates the
axioms of S52: see, e.g., [5, Corollary 5.10]) iff W is a non-empty set and
E1 and E2 are equivalence relations on W such that

F |= (∀w, v, u)(wE1v ∧ vE2u → (∃z)(wE2z ∧ zE1u)).

For i = 1, 2 we call the Ei-equivalence classes Ei-clusters. The Ei-cluster
containing w ∈ W is denoted by Ei(w), and for X ⊆ W we let Ei(X) denote
⋃

x∈X Ei(x).

We identify non-negative integers with ordinals, so that for n ≥ 0 we
have n = {0, 1, . . . , n − 1}. For positive integers n and m, let n×m denote
the S52-frame with domain n×m and with (x1, x2)E1(y1, y2) iff x2 = y2 and
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(x1, x2)E2(y1, y2) iff x1 = y1. Then it is well known that S52 is complete
with respect to {n × n : n ≥ 1} [11].

Given two S52-frames F = (W, E1, E2) and G = (U, S1, S2), a mapping
f : U → W is called a p-morphism from G to F if for each i = 1, 2,

(∀t ∈ U)(∀w ∈ W )(f(t)Eiw ↔ (∃u ∈ U)(tSiu ∧ f(u) = w)).

It is easy to check that a map f : U → W is a p-morphism iff the f -
image of every Si-cluster of G is an Ei-cluster of F , for i = 1, 2. We say
that F is isomorphic to G if there exists a bijection g : W → U such that
wEiw

′ ⇐⇒ g(w)Sig(w′) for each w, w′ ∈ W and each i = 1, 2. It is easy
to see that F is isomorphic to G iff there is a one-one p-morphism from G
onto F . We call F a p-morphic image of G if there is a p-morphism from G
onto F . It is well known that in this case, any formula valid in G is valid
in F .

We call F = (W, E1, E2) rooted if there is a point w ∈ W that is related
to every point v ∈ W by the reflexive transitive closure of E1∪E2. It is easy
to check that an S52-frame F is rooted iff

F |= (∀w, v)(∃u)(wE1u ∧ uE2v).

Choose a set F
S5

2 of representatives of the isomorphism types of finite rooted
S52-frames. That is, for each finite rooted S52-frame, there is exactly one
frame in F

S5
2 that is isomorphic to it.

Let L be a normal extension of S52. An S52-frame F is called an L-
frame if F validates all formulas in L. Let FL be the set of all L-frames in
F

S5
2 . Then L is complete with respect to FL [1]. Thus, for our purposes it

suffices to consider only finite rooted S52-frames. From now on, we will use
the term “frame” to mean this.

For F ,G ∈ F
S5

2 we put

F ≤ G iff F is a p-morphic image of G.

Then it is routine to check that ≤ is a partial order on F
S5

2 . We write
F < G if F ≤ G and G 6≤ F . Then F < G implies |F| < |G| and we see
that there are no infinite descending chains in (F

S5
2 , <). Thus, for any non-

empty A ⊆ F
S5

2 , the set min(A) of <-minimal elements of A is non-empty,
and indeed for any G ∈ A there is F ∈ min(A) such that F ≤ G.

3. Finite axiomatizability

In this section we will prove the first main result of the paper — that every
normal extension of S52 is finitely axiomatizable.
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First we recall the Jankov-Fine formulas for S52 (see [4, §3.4] and [5,
§8.4 p. 392]). Consider a frame F = (W, E1, E2). For each point p ∈ W
we introduce a propositional variable, denoted also by p, and consider the
formulas

α(F) = ¤1¤2

(

∨

p∈W

(p ∧ ¬
∨

p′∈W\{p}

p′)

∧
∧

i=1,2
p,p′∈W,pEip′

(p → ♦ip
′) ∧

∧

i=1,2
p,p′∈W,¬(pEip′)

(p → ¬♦ip
′)
)

,

χ(F) = ¬α(F).

Lemma 3.1. For any frames F = (W, E1, E2) and G = (U, S1, S2) we have
that F is a p-morphic image of G iff G 6|= χ(F).

Proof. (Sketch) Suppose F is a p-morphic image of G. Define a valuation V
on F by putting V (p) = p for any p ∈ W . Then F 6|=V χ(F) by the definition
of χ(F). Now if G |= χ(F), then since p-morphic images preserve validity
of formulas, we would also have F |= χ(F), a contradiction. Therefore,
G 6|= χ(F).

For the converse, we use the argument of [5, Claim 8.36]. Suppose that
G 6|= χ(F). Then there is a valuation V ′ on G and a point u ∈ U such that
G, u 6|=V ′ χ(F). Therefore, G, u |=V ′ α(F). Define a map f : U → W by
putting f(t) = p ⇐⇒ G, t |=V ′ p, for every t ∈ U and p ∈ W . From G
being rooted and the truth of the first conjunct of α(F) it follows that f is
well defined. The truth of the first two conjuncts of α(F) together with F
being rooted implies that f is surjective. Finally, the truth of the second
and third conjuncts of α(F) guarantees that f is a p-morphism. Therefore,
F is a p-morphic image of G.

Let L be a proper normal extension of S52. By completeness of S52 with
respect to F

S5
2 , the set F

S5
2 \FL is non-empty. Let ML = min(F

S5
2 \FL).

Theorem 3.2. For any proper normal extension L of S52 and G ∈ F
S5

2,
G ∈ FL iff no F ∈ ML is a p-morphic image of G.

Proof. Let G ∈ FL; then since p-morphisms preserve validity of formulas,
every p-morphic image of G belongs to FL and hence can not be in ML.
Conversely, if G ∈ F

S5
2 \FL then there is F ∈ ML such that F ≤ G — that

is, F is a p-morphic image of G.

Theorem 3.3. Every proper normal extension L of S52 is axiomatizable by
the axioms of S52 plus {χ(F) : F ∈ ML}.
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Proof. Let G ∈ F
S5

2 . Then by Theorem 3.2, G ∈ FL iff there is no F ∈ ML

with F ≤ G, iff (by Lemma 3.1) there is no F ∈ ML with G 6|= χ(F), iff
G |= χ(F) for all F ∈ ML. Thus, G |= {χ(F) : F ∈ ML} iff G ∈ FL.

Let L′ be the logic axiomatized by the axioms of S52 plus {χ(F) : F ∈
ML}. From the above it is clear that FL′ = FL. But L (L′) is sound and
complete with respect to FL (FL′ , respectively). So, L′ = L.

It follows that L ⊃ S52 is finitely axiomatizable whenever ML is finite.
We now proceed to show that ML is indeed finite for every proper normal
extension L of S52.

Suppose G ∈ F
S5

2 . For i = 1, 2, we say that the Ei-depth of G is n, and
write di(G) = n, if the number of Ei-clusters of G is n.

Fix a proper normal extension L of S52. Since S52 is complete with
respect to {n × n : n ≥ 1}, there is n ≥ 1 such that n × n /∈ FL. Let n(L)
be the least such.

Lemma 3.4. Let L be as above, and write n for n(L).

1. If G ∈ FL, then d1(G) < n or d2(G) < n.

2. If G ∈ ML, then d1(G) ≤ n or d2(G) ≤ n.

Proof. 1. If G ∈ FL and d1(G) ≥ n and d2(G) ≥ n, then by [3, Lemma 5],
n × n is a p-morphic image of G. So, n × n ∈ FL, a contradiction.

2. If G ∈ ML and both depths of G are greater than n, then again n× n

is a p-morphic image of G. Therefore, n × n < G. However, G is a
minimal element of F

S5
2 \ FL, implying that n × n belongs to FL,

which is false.

Corollary 3.5. ML is finite iff {F ∈ ML : di(F) = k} is finite for every
k ≤ n(L) and i = 1, 2.

Proof. By Lemma 3.4, ML =
⋃

k≤n(L){F ∈ ML : d1(F) = k}∪
⋃

k≤n(L){F ∈
ML : d2(F) = k}. Thus, ML is finite if and only if {F ∈ ML : di(F) = k}
is finite for every k ≤ n(L) and i = 1, 2.

Since ML is a ≤-antichain in F
S5

2 , to show that {F ∈ ML : di(F) = k}
is finite for every k ≤ n(L) and i = 1, 2, it is enough to prove that for any
k, the set {F ∈ F

S5
2 : di(F) = k} does not contain an infinite ≤-antichain.

Without loss of generality we can consider the case when i = 2.
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Fix k ∈ ω. For every n ∈ ω let Mn denote the set of all n× k matrices1

(mij) with coefficients in ω (i < n, j < k). Let M =
⋃

n∈ω Mn. Define 4 on
M by putting (mij) 4 (m′

ij) if we have (mij) ∈ Mn, (m′
ij) ∈ Mn′ , n ≤ n′,

and there is a surjection f : n′ → n such that mf(i)j ≤ m′
ij for all i < n′ and

j < k. It is easy to see that (M,4) is a quasi-ordered set (i.e., 4 is reflexive
and transitive).

Let Fk
S5

2 = {F ∈ F
S5

2 : d2(F) = k}. For each F ∈ Fk
S5

2 we fix
enumerations F0, . . . , Fn−1 of the E1-clusters of F (where n = d1(F)) and
F 0, . . . , F k−1 of the E2-clusters of F . Define a map H : Fk

S5
2 → M by

putting H(F) = (mij) if |Fi ∩ F j | = mij for i < d1(F) and j < k. Recall
that a map f : P → P ′ between ordered sets (P,≤) and (P ′ ≤′) is called
order reflecting if f(w) ≤′ f(v) implies w ≤ v for any w, v ∈ P .

Lemma 3.6. H : (Fk
S5

2 ,≤) → (M,4) is an order-reflecting injection.

Proof. Since F
S5

2 consists of non-isomorphic frames, H is one-one. Now let
F = (W, E1, E2), G = (U, S1, S2), F ,G ∈ Fk

S5
2 , and (mij), (m

′
ij) ∈ M be

such that H(F) = (mij), H(G) = (m′
ij), and (mij) 4 (m′

ij). We need to
show that F ≤ G. Suppose (mij) ∈ Mn and (m′

ij) ∈ Mn′ . Then there
is surjective f : n′ → n such that mf(i)j ≤ m′

ij for i < n′ and j < k.

Then |Gi ∩ Gj | ≥ |Ff(i) ∩ F j | for any i < n′ and j < k. Hence there exists

a surjection hj
i : Gi ∩ Gj → Ff(i) ∩ F j . Define h : U → W by putting

h(u) = hj
i (u), where i < n′, j < k, and u ∈ Gi ∩ Gj . It is obvious that h is

well defined and onto.

Now we show that h is a p-morphism. If uS1v, then u, v ∈ Gi for some
i < n′. Therefore, h(u), h(v) ∈ Ff(i), and so h(u)E1h(v). Analogously, if
uS2v, then u, v ∈ Gj for some j < k, h(u), h(v) ∈ F j , and so h(u)E2h(v).
Now suppose u ∈ Gi ∩ Gj for some i < n′ and j < k. If h(u)E2h(v), then
h(u), h(v) ∈ F j and v ∈ Gj . As both u and v belong to Gj it follows that
uS2v. Finally, if h(u)E1h(v), then h(u) ∈ Ff(i) ∩ F j and h(v) ∈ Ff(i) ∩ F j′ ,

for some j′ < k. Therefore, there exists z ∈ Gi ∩ Gj′ (since z ∈ Gi we have
uS1z) such that h(z) = h(v). Thus, h is an onto p-morphism, implying that
F ≤ G. Thus, H is order reflecting.

Corollary 3.7. If ∆ ⊆ Fk
S5

2 is a ≤-antichain, then H(∆) ⊆ M is a 4-
antichain.

Proof. Immediate.

1By an n × k matrix we mean a matrix with n rows and k columns.
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Now we will show that there are no infinite 4-antichains in M. For this
we define a quasi-order v on M included in 4 and show that there are no
infinite v-antichains in M. To do so we first introduce two quasi-orders v1

and v2 on M and then define v as the intersection of these quasi-orders.
For (mij) ∈ Mn and (m′

ij) ∈ Mn′ , we say that:

• (mij) v1 (m′
ij) if there is a one-one order-preserving map ϕ : n → n′

(i.e., i < i′ < n implies ϕ(i) < ϕ(i′)) such that mij ≤ m′
ϕ(i)j for all

i < n and j < k;

• (mij) v2 (m′
ij) if there is a map ψ : n′ → n such that mψ(i)j ≤ m′

ij for
all i < n′ and j < k.

Let v be the intersection of v1 and v2.

Lemma 3.8. For any (mij), (m
′
ij) ∈ M, if (mij) v (m′

ij), then (mij) 4

(m′
ij).

Proof. Suppose (mij) ∈ Mn and (m′
ij) ∈ Mn′ . If (mij) v (m′

ij), then
(mij) v1 (m′

ij) and (mij) v2 (m′
ij). By (mij) v1 (m′

ij) there is a one-one
order-preserving map ϕ : n → n′ with mij ≤ m′

ϕ(i)j for all i < n and j < k;

and by (mij) v2 (m′
ij) there is a map ψ : n′ → n such that mψ(i)j ≤ m′

ij for
all i < n′ and j < k. Let rng(ϕ) = {ϕ(i) : i < n}. Define f : n′ → n by
putting

f(i) =

{

ϕ−1(i), if i ∈ rng(ϕ),
ψ(i), otherwise.

Then f is a surjection. Moreover, for i < n′ and j < k, if i ∈ rng(ϕ), then
mf(i)j = mϕ−1(i)j ≤ m′

ij by the definition of v1; and if i /∈ rng(ϕ), then
mf(i)j = mψ(i)j ≤ m′

ij by the definition of v2. Therefore, mf(i)j ≤ m′
ij for

all i < n′ and j < k. Thus, (mij) 4 (m′
ij).

Thus, it is left to show that there are no infinite v-antichains in M. For
this we use the theory of better-quasi-orderings (bqos). Our main source of
reference is Laver [9].

For any set X ⊆ ω let [X]<ω = {Y ⊆ X : |Y | < ω}, and for n < ω let
[X]n = {Y ⊆ X : |Y | = n}. We say that Y is an initial segment of X if
there is n ∈ ω such that Y = {x ∈ X : x ≤ n}.

Definition 3.9. Let X be an infinite subset of ω. We say that B ⊆ [X]<ω

is a barrier on X if ∅ /∈ B and:

• for every infinite Y ⊆ X, there is an initial segment of Y in B;
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• B is an antichain with respect to ⊆.

A barrier is a barrier on some infinite X ⊆ ω.

Note that for any n ≥ 1, [ω]n is a barrier on ω.

Definition 3.10.

1. If s, t are finite subsets of ω, we write s C t to mean that there are
i1 < . . . < ik and j (1 ≤ j < k) such that s = {i1, . . . , ij} and
t = {i2, . . . , ik}.

2. Given a barrier B and a quasi-ordered set (Q,≤), we say that a map
f : B → Q is good if there are s, t ∈ B such that s C t and f(s) ≤ f(t).

3. Let (Q,≤) be a quasi-order. We call ≤ a better-quasi-ordering (bqo)
if for every barrier B, every map f : B → Q is good.

Now we recall basic constructions and properties of bqos.

Proposition 3.11. If (Q,≤) is a bqo, there are no infinite antichains in Q.

Proof. Let (ξn)n∈ω be an infinite sequence of distinct elements of Q. As we
pointed out, B = [ω]1 = {{n} : n < ω} is a barrier. Define a map θ : B → Q
by putting θ({n}) = ξn. Since (Q,≤) is a bqo, θ is good. Therefore, there
are {n}, {m} ∈ B such that {n} C {m} (i.e., n < m) and ξn ≤ ξm. So, no
infinite subset of Q forms an antichain.

We write On for the class of all ordinals. Let (Q,≤) be a quasi-order.
Define ≤∗ on the class

⋃

α∈On Qα, and on any set contained in it, by putting
(xi)i<α ≤∗ (yi)i<β if there is a one-one order-preserving map ϕ : α → β such
that xi ≤ yϕ(i) for all i < α.

Let ℘(Q) be the power set of Q. The order ≤ can be extended to ℘(Q)
as follows: For Γ,∆ ∈ ℘(Q), we say that Γ ≤ ∆ if for all δ ∈ ∆ there is
γ ∈ Γ with γ ≤ δ.

Recall that (P,≤′) is called a suborder of (Q,≤) if P ⊆ Q and ≤′ = ≤∩P 2.

Theorem 3.12.

1. (ω,≤) is a bqo.

2. Any suborder of a bqo is a bqo.

3. If ≤ and ≤′ are bqos on Q, then ≤ ∩ ≤′ is also a bqo on Q.
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4. If (Q,≤) is a bqo, then (
⋃

α∈On Qα,≤∗) is also a (proper class) bqo.
Hence, by (2), its suborders (Qk,≤∗) and (

⋃

n<ω Qn,≤∗) are bqos.

5. If (Q,≤) is a bqo, then (℘(Q),≤) is a bqo.

Proof. (1) follows from Lemma 1.2 of [9]. (2) is trivial.
(3): By [9, Lemma 1.8], (Q × Q,≤⊗≤′) is a bqo, where we define

(x, x′) ≤⊗≤′ (y, y′) iff x ≤ y and x′ ≤′ y′. By (2), its suborder ({(q, q) : q ∈
Q},≤⊗≤′) is also a bqo, and this is isomorphic to (Q,≤ ∩ ≤′).

(4) — see [9, Theorem 1.10].
(5) Finally to show (℘(Q),≤) is a bqo we adapt the proof of Lemma 1.3

of [9]. Let B be a barrier and consider f : B → ℘(Q). Suppose f is not good.
Then for each s, t ∈ B with s C t we have f(s) 6≤ f(t). Let B(2) = {s ∪ t :
s, t ∈ B and s C t}. Thus for every element s ∪ t ∈ B(2) there is an element
δst ∈ f(t) such that for every γ ∈ f(s) we have γ 6≤ δst.

Define a map h : B(2) → Q by putting h(s∪t) = δst for every s∪t ∈ B(2).
It can be checked that h is well defined. It is known (see, e.g., [9, p. 35]) that
B(2) is a barrier. Since (Q,≤) is a bqo, h is good, so there exist s∪ t, s′∪ t′ ∈
B(2) with s ∪ t C s′ ∪ t′ and h(s ∪ t) ≤ h(s′ ∪ t′). It is easy to check (see [9,
p. 35]) that t = s′. But now δs′t′ = h(s′ ∪ t′) ≥ h(s ∪ t) ∈ f(t) = f(s′). This
contradicts the definition of δs′t′ , hence f is good and therefore (℘(Q),≤) is
a bqo.

Remark 3.13. A quasi-order ≤ on a set Q is called a well-quasi-ordering
(wqo) if for any sequence (xi)i<ω in Q there exist i < j < ω with xi ≤
xj . As we said in the introduction, wqos have been used to prove finite
axiomatizability results in modal logic on many previous occasions. The
following facts are known about them (cf. Theorem 3.12):

1. Any bqo is a wqo.

2. If ≤ and ≤′ are wqos on Q, then ≤ ∩ ≤′ is also a wqo on Q.

3. (Higman’s Lemma, proved in [7]) If (Q,≤) is a wqo then (
⋃

n∈ω Qn,≤∗)
is also a wqo.

An example of a wqo (Q,≤) with (
⋃

α∈On Qα,≤∗) not a wqo was constructed
by Rado [10]: let Q = {(i, j) : i < j < ω}, ordered by (i, j) ≤ (k, l) iff either
i = k and j ≤ l, or else i, j < k. This is a wqo on Q. Now for i < ω let ξi be
the sequence ((i, i + 1), (i, i + 2), . . .). Then ξi 6≤

∗ ξj for all i < j < ω. This
example can be used to show that for a wqo (Q,≤), in general (℘(Q),≤) fails
to be a wqo, even if we restrict to finite subsets of Q (see also the discussion
on p. 33 of [9]). This failure is why we use bqos and not wqos here.
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By Proposition 3.11, to show that there are no v-antichains in M it
suffices to show that (M,v) is a bqo. It follows from Theorem 3.12(3) that
the intersection of two bqos is again a bqo. Hence, it is enough to prove that
(M,v1) and (M,v2) are bqos.

Lemma 3.14. (M,v1) is a bqo.

Proof. By Theorem 3.12(1), (ω,≤) is a bqo. By Theorem 3.12(4), (ωk,≤∗)
is also a bqo. By Theorem 3.12(4) again, (M,v1) ∼= (

⋃

n<ω(ωk)n,≤∗∗) is a
bqo as well.2

It remains to show that (M,v2) is a bqo.

Lemma 3.15. (M,v2) is a bqo.

Proof. For a matrix (mij) ∈ Mn let mi = (mi0, . . . , mik−1) denote the
i-th row of (mij). Note that each row of (mij) is a 1 × k matrix, and so
mi ∈ M1 for any i < n. We write row(mij) for the set {mi : i < n}.
Obviously, row(mij) ∈ ℘(M1) ⊆ ℘(M). Consider an arbitrary barrier B
and a map f : B → M. We need to show that f is good with respect to
v2. Define g : B → ℘(M) by g(s) = row(f(s)). Since (M,v1) is a bqo, by
Theorem 3.12(5), (℘(M),v1) is also a bqo. Hence, there are s, t ∈ B such
that s C t and g(s) v1 g(t). Therefore, for each δ ∈ g(t) there is γ ∈ g(s)
with γ v1 δ.

Now we show that f(s) v2 f(t). Write (mij) for f(s) and (m′
ij) for f(t).

Suppose that (mij) ∈ Mn and (m′
ij) ∈ Mn′ . We define ψ : n′ → n as

follows. Let i < n′. Then m′
i ∈ g(t). By the above, we may choose ψ(i) < n

such that mψ(i) v1 m′
i. This defines ψ, and we have mψ(i)j ≤ m′

ij for any
i < n′ and j < k. Thus, f(s) v2 f(t), f is a good map, and so (M,v2) is a
bqo.

It follows that (M,v) is a bqo. Therefore, there are no infinite v-
antichains in M. Thus, by Lemma 3.8 there are no infinite 4-antichains
in M.

Now we are in a position to prove the main theorem of this paper.

Theorem 3.16. Every normal extension of S52 is finitely axiomatizable.

Proof. Clearly, S52 is finitely axiomatizable. Suppose L is a proper normal
extension of S52. Then by Theorem 3.3 L is axiomatizable by the S52

2To apply this theorem, we needed to require in the definition of v1 on M that ϕ is
order preserving. This is the only time this assumption is used.
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axioms plus {χ(F) : F ∈ ML}. Since there are no infinite 4-antichains
in M, by Corollary 3.7 there are no infinite antichains in Fk

S5
2 , for each

k ∈ ω. Therefore, {F ∈ ML : di(F) = k} is finite for every k ≤ n(L) and
i = 1, 2. Thus, ML is finite by Corollary 3.5. It follows that L is finitely
axiomatizable.

Corollary 3.17. The lattice of normal extensions of S52 is countable.

Proof. Immediately follows from Theorem 3.16 since there are only count-
ably many finitely axiomatizable normal extensions of S52.

Remark 3.18. In algebraic terminology, Corollary 3.17 says that the lattice
of subvarieties of the variety Df2 of two-dimensional diagonal-free cylindric
algebras is countable. This is in contrast with the variety CA2 of two-
dimensional cylindric algebras (with diagonals), since, as was shown in [2],
the cardinality of the lattice of subvarieties of CA2 is that of continuum.

4. Complexity

Note that Theorem 3.16, and the fact that every normal extension L of
S52 is complete with respect to a class of finite frames (FL) for which (up
to isomorphism) membership is decidable, imply that L is decidable. This
section will be devoted to showing that if L is a proper normal extension,
then its satisfiability problem is NP-complete. Fix such an L. We will
see in Corollary 4.3 below that NP-completeness follows from the poly-size
model property if we can decide in time polynomial in |W | whether a finite
structure A = (W, R1, R2) is in FL (up to isomorphism). It suffices to decide
in polynomial time (1) whether A is a (rooted S52-) frame; (2) whether a
given frame is in FL. The first is easy. We concentrate on the second.

By Lemma 3.4(1), there is n(L) ∈ ω such that for each frame G =
(U, S1, S2) in FL we have d1(G) < n(L) or d2(G) < n(L). So, if both depths
of a given frame G are greater than or equal to n(L) (which obviously can
be checked in polynomial time in the size of G), then G /∈ FL. So, without
loss of generality we can assume that d1(G) < n(L).

By Theorem 3.2, G is in FL iff it has no p-morphic image in ML. Because
ML is a fixed finite set, it suffices to provide, for an arbitrary fixed frame
F = (W, E1, E2), an algorithm that decides in time polynomial in the size
of G whether there is a p-morphism from G onto F . If we considered every
map f : U → W and checked whether it is a p-morphism, it would take
exponential time in the size of G (since there are |W ||U | different maps from
U to W ). Now we will give a different algorithm to check in polynomial
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time in |U | whether the fixed frame F is a p-morphic image of a given frame
G = (U, S1, S2) with d1(G) < n(L).

Lemma 4.1. F is a p-morphic image of G iff there is a partial surjective
map g : U → W with the following properties:

1. For each u ∈ U , there is v ∈ dom(g) such that uS1v.

2. For each v ∈ dom(g), the restriction g ¹ (dom(g) ∩ S1(v)) is one-one
and has range E1(g(v)).

3. For each u ∈ U there is w ∈ W such that

(a) g(v)E2w for all v ∈ dom(g) ∩ S2(u),

(b) for each w′ ∈ W , writing

Xw′ = S1(g
−1(E1(w

′))) ∩ S2(u),
Yw′ = E1(w

′) ∩ E2(w),

we have |Yw′ \ rng(g ¹ [dom(g) ∩ Xw′ ])| ≤ |Xw′ \ dom(g)|.

Proof. Recall that a map f : U → W is a p-morphism iff the f -image of
every Si-cluster of G is an Ei-cluster of F , for i = 1, 2.

Suppose there is a surjective p-morphism f : U → W . Then for each
S1-cluster C ⊆ U , the map f ¹ C is a surjection from C onto E1(f(u)) for
any u ∈ C, so we may choose C ′ ⊆ C such that f ¹ C ′ is a bijection from C ′

onto E1(f(u)). Let U ′ =
⋃

{C ′ : C is an S1-cluster of G}. Then it is easy
to check that g = f ¹ U ′ satisfies conditions 1–2 of the lemma. To check
condition 3, take any u ∈ U , and put w = f(u). Condition 3a is clearly
true. For 3b, fix any w′ ∈ W . Pick any x ∈ S2(u). Note that f(x) ∈ E2(w).
Define Xw′ , Yw′ as in the lemma. Then x ∈ Xw′ iff x ∈ S1(g

−1(E1(w
′))), iff

there is y ∈ U ′ such that xS1y and g(y)E1w
′, iff f(x)E1w

′, iff f(x) ∈ Yw′ .
Now f maps S2(u) onto E2(w), so f(S2(u)) ⊇ Yw′ . It now follows that f
maps Xw′ onto Yw′ . Plainly, f must therefore map a subset of Xw′ \U ′ onto
Yw′ \g(Xw′∩U ′), so we must have |Xw′ \U ′| ≥ |Yw′ \g(Xw′∩U ′)| as required.

Conversely, let g be as stated. We will extend g to a surjective p-
morphism f : U → W . Since U is a disjoint union of S2-clusters, it is
enough to define f on an arbitrary S2-cluster of G. Pick u ∈ U . We will
extend g ¹ S2(u) to the whole of S2(u). Pick w ∈ W according to condition 3
of the lemma. By condition 3a, rng(g ¹ S2(u)) ⊆ E2(w). Now we extend g to
f such that rng(f ¹ S2(u)) = E2(w) and f(x)E1g(v) whenever v ∈ dom(g)
and x ∈ S2(u) ∩ S1(v).
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For each w′ ∈ W , define Xw′ , Yw′ as in the lemma. By conditions 1 and 2,
S2(u) =

⋃

{Xw′ : w′ ∈ W}, and Xw′ ∩ Xw′′ = ∅ whenever ¬(w′E1w
′′). For

each w′ ∈ W , we take the restriction of g to Xw′ (this restriction may be
empty), observe that its range is a subset of Yw′ , and extend it to a surjection
from Xw′ onto Yw′ . By condition 3, |Xw′ \ dom(g)| ≥ |Yw′ \ rng(g ¹ Xw′)|.
So, there exists a surjection fXw′

: Xw′ → Yw′ extending g. Repeating this
for a representative w′ of each E1-cluster in turn yields an extension of g to
S2(u). Repeating for a representative u of each S2-cluster in turn yields an
extension of g to U as required.

It is left to show that f is a p-morphism. But it follows immediately
from the construction of f that f ¹ Si(u) : Si(u) → Ei(f(u)) is surjective for
each u ∈ U and each i = 1, 2. As we pointed out above this implies that f
is a p-morphism.

Corollary 4.2. It is decidable in polynomial time in the size of G, whether
F is a p-morphic image of G.

Proof. By Lemma 4.1 it is enough to check whether there exists a partial
map g : U → W satisfying conditions 1–3 of the lemma. There are at most
n(L) S1-clusters in G, and the restriction of g to each S1-cluster is one-one;
hence, d = |dom(g)| ≤ n(L) · |W |, and this is independent of G. There are
at most d|W | maps from a set of size at most d into W . Obviously, there are
(|U |

d

)

≤ |U |d subsets of U of size d. Hence there are at most d|W ||U |d partial
maps which may satisfy conditions 1 and 2 of the lemma. Our algorithm
enumerates all partial maps from U to W with domain of size at most d,
and for each one, checks whether it satisfies conditions 1–3 or not. It is not
hard to see that this check can be done in p-time; indeed, it is clear that
conditions 1 and 2 can be checked in time polynomial in |U | and there is
a first-order sentence σF such that G |= σF iff G satisfies condition 3. The
algorithm states that F is a p-morphic image of G if and only if it finds a
map satisfying the conditions. Therefore, this is a p-time algorithm checking
whether F is a p-morphic image of G.

Corollary 4.3. Let L be a proper normal extension of S52.

1. It can be checked in polynomial time in |U | whether a finite S52-frame
G = (U, S1, S2) is an L-frame.

2. The satisfiability problem for L is NP-complete.

3. The validity problem for L is co-NP-complete.
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Proof. 1. Follows directly from Theorem 3.2, Corollary 4.2, and the fact
(shown in the proof of Theorem 3.16) that ML is finite.

2. It is a well known result of modal logic (see, e.g., [4, Lemma 6.35])
that if L is a consistent normal modal logic having the poly-size model
property, and the problem of whether a finite structure A is an L-frame
is decidable in time polynomial in the size of A, then the satisfiability
problem of L is NP-complete. The poly-size model property of every
L ⊃ S52 is proven in [3, Corollary 9]. (1) implies that the problem
G ∈ FL can be decided in polynomial time in the size of G. The result
follows.

3. Follows directly from (2).
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