Separation — past, present, and future

JAN HODKINSON AND MARK REYNOLDS

1 Introduction

Separation is a remarkable concept, invented by Dov Gabbay in [Gabbay,
1981a), and elaborated in [Gabbay, 1989; Gabbay et al., 1994]. Roughly, a
temporal logic has the separation property if its formulas can be equivalently
rewritten as a boolean combination of formulas, each of which depends only
on the past, present, or future. This seemingly innocent and technical def-
inition has had some far-reaching consequences, and has taken on a life of
its own. Surprisingly, separation is closely connected to the important topic
of expressive completeness, and is one of the main methods for proving ex-
pressive completeness. Separation has applications in executable temporal
logic, and parts of this have been implemented. Separation has found re-
cent uses in simplifying normal form theorems and axiomatising Ockhamist
branching time logic, and in analysing the W3C language XPath.

Separation has attracted attention from the time it was introduced. Its
simplicity and naturalness have made it appealing to many, and its technical
intricacies are still providing employment today.

Reynolds first came across separation through Gabbay in around 1984,
and gave a talk on it to Wilfrid Hodges’ group at Queen Mary College
London, thereby introducing it to Hodkinson who was a Ph.D. student there.
Hodkinson and especially Reynolds worked on it with Gabbay during the
preparation of the monograph [Gabbay et al., 1994], and it has caught our
attention several times since. In this short article, we are happy to return to
the topic. We will discuss the original application of separation, some more
recent activity on it, and some open problems about it. We thank Carsten
Lutz for his ideas and interest, which have improved the ‘Future’ section.

We would like to take this opportunity to wish Dov a very happy birthday
and convey our hopes that his own future will be as prosperous as his past
and present.



2 Tan Hodkinson and Mark Reynolds

2 Separation past

Here, we recall the definition of separation itself, and its connection to
expressive completeness — the context in which it was first introduced.

2.1 Basic temporal logic

We have to begin with some definitions and notation. They are well known
and mostly taken from [Gabbay et al., 1994]. Probably, they can be skipped
by those who are familiar with the field and willing to work out the notation
at sight. (Temporal logic is the province of philosophers, linguists, and
computer scientists, and there seems to be no standard notation in the field
yet.)

A flow of time is a pair (T, <), where T is a non-empty set (the ‘time
points’) and < is an irreflexive transitive relation on 7. Examples: (N, <),
where N = {0,1,2,...}; (Z,<), where Z = {... —1,0,1,2,...}; (Q,<),
where Q is the set of rational numbers; (R, <), where R is the set of real
numbers; and various non-linear flows such as trees. Flows of time are
(special) Kripke frames. The idea of < is that ¢ < u means that u is a later
time than t. We will be using classes of flows of time, such as the linear
flows, dense linear flows, and Dedekind complete linear flows.

We fix a set L of propositional atoms; we write p,q,r, ... for atoms. An
assignment is a map h : L — p(T). For a flow of time (7, <) and an
assignment h, the triple (7, <, h) is called a temporal structure. The idea of
the assignment is that the atom p € L is true in (T, <, h) at the time points
in h(p), and false at all other times.

We can create temporal formulas from the atoms using the boolean opera-
tions =, A, V, —, <=, T, L, and temporal connectives. The main connectives
are F, P,G,H,U,S,T,Y, standing for at some future (past) time, always in
the future (past), Until, Since, Tomorrow, and Yesterday, respectively. The
use of the symbols F, P,G, H in this context is due to Prior, and U, S to
Kamp; we are not sure about the origin of 7,Y. All but U, S are unary
(they take a single formula as argument); U, S are binary (they connect two
formulas). So, if a, 3 are temporal formulas, then Fo, Ga, Ta, U(a, §),
=U(=S(a A B, — H-a), T(aV 3)), etc., are also formulas.

The semantics of formulas is defined by induction as follows. Let M =
(T, <, h) be a temporal structure, and ¢t € T a time point.

1. MijtE=pifft € h(p), forpe L,
2. the booleans are handled as usual,

3. Mt = Fa iff M,u = o for some u € T with u > t,



Separation 3

4. Pa is treated similarly using u < t — i.e., the mirror image of the
preceding clause,

5. Mt E Ga iff M,u =« for all u > t,
6. Ha — the mirror image clause,

7. M,t E U(a, B) iff there is u > t with M, u = o and M, v |= § for all
veT witht <v<u,

8. S(a, ) — mirror image,

9. M,t = T iff there is u > ¢ with M,u |= « and there isno v € T
with t <v < u,!

10. Yo — mirror image.

If desired, we can add more connectives with ‘first-order-style’ definitions
as above. On the other hand, sometimes we want to restrict to certain sets
T of connectives. For simplicity, we will generally call such a 7 a temporal
logic. For example, we refer to ‘the temporal logic US’, by which we mean
the formulas written with the booleans and the connectives U and S.

In this article we are only concerned with syntax and semantics, not with
any kind of reasoning. But it will already be obvious that there are some
connections between formulas. Ha and —-P—a ‘mean the same’; so do Fa
and U(a, T), and Ta and U(c, L). On the other hand, YU (¢, 8) will mean
the same as a V (8 A U(a, 8)) in flows of time like (Z, <), but not in dense
flows like (Q, <). We formalise this ‘relativity’ as follows.

DEFINITION 1. Given a class C of flows of time, we say that temporal
formulas a, 8 are equivalent over C if (T, <,h),t = a < g for all (T, <) €C,
all assignments h: L — o(T) and all t € T..

We write ‘equivalent over linear time’ to abbreviate ‘equivalent over the
class of all linear flows of time’, etc.
2.2 Standard translation and expressive completeness

As in modal logic, temporal formulas can be translated to first-order ones.

DEFINITION 2. Let L’ be the first-order signature consisting of <, and
unary relation symbols P, (Q,... twinned with the atoms p,q,... € L, re-
spectively.

INote that in dense flows of time like (Q, <), T is always false; but it is not ‘mean-
ingless’.



4 Tan Hodkinson and Mark Reynolds

Each temporal formula o has a ‘standard translation’, which is a first-
order L/-formula o®(x) with free variable  (for any first-order variable x),
as follows.

1. Each atom p translates to p*(z) = P(x).

2. The translation —* commutes with the booleans.
3. (Fa)® = Jy(y > x A av).

4. (Ga)® =Vy(y >z — a¥).

5. Ule, B)* =Fy(y >z AoV AVz(x < z <y — (37)).
6. The others are similar.

It is clear that we can view a temporal structure (T, <, h) as an L’-structure
by interpreting P, @, ... as h(p), h(q), . . ., respectively, and that by so doing,
we have

(T, <,h),t = aiff (T,<,h) = a”t]

for all ¢ € T and all formulas a. The translation o — oF is meaning-
preserving. So it makes good sense to extend definition 1:

DEFINITION 3. A temporal formula « is said to be equivalent to an L'-
formula ¢(x) over a class C of flows of time if for all (T, <) € C and all
h:L — o(T), we have (T, <,h) = Vz(a® < ¢(z)).

Not all first-order formulas () will have the form o* for some temporal
formula «. Surprisingly however, sometimes every ¢(x) is equivalent to
some a.

DEFINITION 4. We say that a temporal logic 7 is expressively complete
over a class C of flows of time if for every L'-formula ¢(z), there is a 7-
formula « that is equivalent to ¢ over C.

Kamp proved in the very important [Kamp, 1968] that U and S are
expressively complete over Dedekind-complete linear time. This first ex-
pressive completeness theorem led to a canon of results, continuing today,
and it brings our story finally to separation and Gabbay’s contribution.

2.3 Separation

We now explain formally what separation is. Some jargon will be handy for
this. Given a flow of time (T, <), a time ¢t € T, and assignments g,h : L —
p(T), we say that

e g,h agree on t if for all p € L, we have t € g(p) iff t € h(p).



Separation 5

e g and h agree on the past of t if for all u € T with w < t, and all
p € L, we have u € g(p) iff u € h(p).

e ‘g and h agree on the future of t’ is defined by the mirror image of
the preceding clause.

DEFINITION 5. [Gabbay, 1981a] Let C be a class of flows of time. A
temporal formula « is said to be

e pure past over C, if for any (T,<) € C and any ¢t € T, whenever
g,h: L — o(T) are assignments that agree on the past of ¢, we have
(T, <, 9),t o iff (T, <,h),t =

e pure present over C, if for any (T,<) € C, t € T, and assignments
g,h : L — p(T) that agree on ¢, we have (T,<,g),t E a iff (T,<
h)tE o

e pure future over C, if for any (T,<) € C, any ¢t € T, and any as-
signments g,h : L — @(T) agreeing on the future of ¢, we have
(T, <,9),t = a iff (T, <, h),t = o

e pure over C, if it is pure past, pure present, or pure future over C,

e separated over C, if it is a boolean combination of formulas that are
pure over C.

T is said to have the separation property over C if every 7-formula is equiv-
alent over C to a formula that is separated over C.

So a formula is pure past if its truth value at any time depends only on
the values of its atoms in the past; and similarly for pure present and pure
future. Hq and S(p, ¢ — S(gq,r)) are pure past formulas. The formula
F(g A Hr) is not pure, but it is equivalent over linear time to the separated
formula Hr Ar AU (g,r).

2.4 Gabbay’s theorem

We are now ready to state the important result of Gabbay that relates sepa-
ration to expressive completeness. It was stated in [Gabbay, 1981a, theorem
11] and proved in [Gabbay, 1989] and [Gabbay et al., 1994, §9.3]. The the-
orem is surprising because it connects two seemingly different conditions.?

THEOREM 6. Let C be a class of linear flows of time, and T a temporal
logic able to express F' and P over C. Then T is expressively complete over
C iff it has the separation property over C.

2The legend goes that when Kamp heard this theorem in a seminar, he went out and
bought Dov a cake.



6 Tan Hodkinson and Mark Reynolds

Proof ‘=’ is proved by showing that any first-order L’-formula can be
separated over linear time. Here, we sketch a proof running along standard
model-theoretic lines.? It is entirely ‘classical’, involving no temporal logic.

First observe that we can define equivalence, purity, and separatedness
for L'-formulas p(z) semantically (over linear time). The definitions are
analogous to those for temporal formulas (definitions 1 and 5).

Fix an L'-formula ¢(z) with free variable z, and let L, C L’ be the finite
relational signature consisting of < and the unary relation symbols that
occur in . An Lg-structure has the form (7, <, h), where h is a map that
assigns each unary relation symbol occurring in ¢ to a subset of T'.

We want to show that there is a separated L, -formula that is equivalent
to p(x) over linear time (that is, over all Ly-structures (7', <,h) where
(T, <) is a linear flow of time). We do this using compactness and games.

Let A be a sentence saying that < is an irreflexive linear order. Let X(x)
be the set of all separated L,-formulas o(x) implied by ¢ over linear time:
formally, those such that A -V (p(z) — o(x)).

We first show that ¥ = ¢ over linear time. So suppose that (T, <,h) =
3[t], where (T, <) is a linear flow of time, and ¢t € T. We show that (T, <
h) E el

Let ©(z) be the set consisting of
e all pure L,-formulas 7(x) such that (T, <,h) = 7[t],
o AN p(x).

We claim that © is consistent. If it were not, then by first-order compact-
ness, there would be pure m(z),...,m,(x) € © with (T, <,h) | m;[t] for
each i, such that A - Vz(p(x) — = A, -, mi(x)). But then, - A, mi(z) € E
and so (T, <,h) = = \,<,, m(t]. This is a contradiction, and establishes the
consistency of ©.

So there is a model (77, <’,1’) |= O[t], where (T’,<’) is a linear flow of
time and ¢’ € T'. In short, (T, <, h,t) and (T’,<’,h’,t’) are linear, agree on
all pure L -formulas, and ¢ is true in the latter.

But now, if m(z) is a pure past L-formula then (T, <, h) |= = [t] iff (17", <’
,h') = m[t']. Since we can relativise (the quantifiers in) any L-sentence to
the points in the past of ¢, so obtaining a pure past formula, this means that
the substructures of (T, <, h) and (7", <’, h’) consisting of all time points in
the past of ¢, ', respectively, are elementarily equivalent. The same holds for
pure present and pure future formulas, so the substructures based on ¢, are
elementarily equivalent, and the substructures based on points in the future
of t,t' are elementarily equivalent too. Now an Ehrenfeucht—Fraissé game

3For a more effective proof, see [Gabbay et al., 1994, 9.3.2].



Separation 7

argument (which is legal because L, is finite), or the Feferman-Vaught
theorem (cf. [Hodges, 1993, A.6.2]), will easily show that (7, <,t,h) and
(T, <',t',h) are themselves elementarily equivalent. Since ¢ is true in the
second structure, we have (T, <,h) £ ¢[t] as required.

We know now that ¥ | ¢ over linear time. By compactness, and as
linearity is first-order definable, there is a conjunction o(x) of separated
formulas in ¥ that implies ¢ over linear time. Hence, p(z) and o(x) are
equivalent over linear time. Of course, o is separated.

Having got through this first stage, it is now easy to show that 7 has
the separation property over C. Let a be a 7-formula. By the above, its
standard translation o is equivalent over linear time, and so over C, to a
separated formula — a boolean combination of pure formulas. But 7 is
expressively complete over C, so each of these pure formulas is equivalent
over C to a 7-formula, which is obviously pure as well. The corresponding
boolean combination of these 7-formulas is separated and equivalent to «
over C. This completes the proof.

For ‘«=’, assume that 7 has the separation property over C. We need to
show that any first-order L'-formula ¢(z, Py, ..., P,,), with one free variable
2 and unary relation symbols P, ..., P,, is equivalent over C to some 7 -
formula. We go by induction on the quantifier depth k of ¢.

If k is 0, then ¢ is a boolean combination of formulas of the form P;(x),
r =z, and x < z, so the result is clear. Assume the result for k. It suffices to
express Jyp(x,y, P1,..., P,) as a T-formula, where ¢ has quantifier depth
k. We can suppose that z and y do not occur bound in .

First, we want to remove z from ¢ somehow, to obtain a formula ¢'(y)
to which we can apply the inductive hypothesis. How can we do it? Let us
start by thinking about the atomic subformulas of ¢ involving . They are
of the form P;(z), x =z, x <z, z=2x,x =z, z <z, and x < z, where z is
some other variable than x. We can replace z = z by z = x and leave it for
later. We replace © = x by T, and x < = by L. This leaves z < z, z = z,
x < z, and the P;(x).

Next, we root out the P;(x). The idea here is based on a simple ob-
servation about propositional logic, exemplified in the statement that an
arbitrary propositional formula like =p A ¢ is equivalent to

(p — —\T/\q)
AN(p — -LAg).

The right-hand sides here do not involve p.

Proceeding in this way, for each S C {1,2,...,n}, let ¢ be the result of
replacing each atomic subformula P;(x) of ¢ by T ifi € S, and by L ifi ¢ S.
Then ¢ still has the same quantifier depth, k, but has no occurrences of



8 Tan Hodkinson and Mark Reynolds

any P;(z). (It may involve P;(z) for other variables z.) We see that Jyep is
equivalent to

A (AP@ANP@) = 3@y, P, P).

SC{1,..n} i€S j¢s

The formulas P;(z) are equivalent over C to p;, of course. So it is enough if
we can express the Jyo°(z,y, Py, ..., P,) as 7-formulas.

Hence, we can assume that the original formula ¢ is such a formula. That
is, we suppose that x does not occur in atomic subformulas of ¢ of the form
P;(x), but only in ones of the form z =z, z < z, and = < 2.

It remains to get rid of these too. To do it, we temporarily introduce new
atoms n—, n<, ns, with corresponding unary relation symbols N_, etc. We
replace each atomic subformula z = z in ¢ (where z is any variable) by
N_(z). Similarly, replace z < z by N (z), and z < x by N<(z). This yields
a formula ¢'(y, Py, ..., Py, No, N=, N5 of quantifier depth k¥ and with no
occurrences of x at all. For a while, we will restrict ourselves to structures
interpreting N— as {z}, Nc as {t : t < z}, and N5 as {t : ¢t > z}. Then
each N,(z) is equivalent to the formula it replaced, so Jyp(z,y, P1,..., P,)
will be equivalent to Jy¢’'(y, P1,..., Py, N, N—, Ns).

Inductively, ¢'(y, P1, ..., Pn, N<, N—, N5 ) is equivalent over C to some
T-formula a(py,...,Pn,N<,n=,n~). The flows in C are linear, so Jyy’ is
equivalent over C to § = @V Fa V Pa (here we use the hypothesis that F'
and P are 7-expressible). Thus, under our restriction, the original formula
Jyo(z,y, P, ..., P,) is equivalent over C to B(p1,...,Pn, N<,N=, N ).

Finally, we come to the key step. We remove the temporary n-atoms from
B. We do this using the separation property! We separate (3, obtaining a
boolean combination ¥(p1,...,pn,N<,n=,n=) of pure T-formulas. Con-
sider, say, a pure past formula 6(p1,...,pn, n<,n=,n>) from this boolean
combination. As ¢ is pure past, its truth value at x only depends on the
values of its atoms at points ¢t < z. It is independent of their values at points
t > x. But under our restriction, the values of the n-atoms at points < z is
entirely predictable: n. is true, and the others are false. Accordingly, let
us replace n. in 6 by T, and replace n— and ns by L. We obtain §*(p;,

coyPn) = 6(p1,...,Pn, T,L,1). Then, always under our restriction, the
truth values of §* and § at x are the same.

We adjust each pure formula § in « in a similar way. If  is pure present,
n— is replaced by T, and the others by L. For pure future §, n~ is replaced
by T instead. The result is a boolean combination v*(p1,...,p,), which,
subject to our restriction, is equivalent to Jyp(x,y, P, ..., P,).

But the restriction concerned atoms that do not appear in v*. So it has
no force. Without any restriction on assignments to atoms, v* is equivalent



Separation 9

over C to yp(z,y, P1,. .., P,). This completes the induction and the proof.
a

Given an algorithm to separate a formula over C, the proof above can be
elaborated into an algorithm that will translate any given first-order formula
o(z, P1,...,P,) to a C-equivalent 7-formula. However, it appears that the
complexity of this algorithm is high. Over (N, <), the problem is known to
have non-elementary complexity: that is, there is no translation algorithm
that runs in exponential time, double exponential time, triple exponential
time, etc. A stronger result was proved in [Etessami and Wilke, 2000]: that
there is no elementary bound on the length of a US-formula equivalent to
a first-order one. See section 4 for some related problems on the separation
process.

2.5 Separation and expressive completeness

Not all temporal logics have the separation property. For example, F'P over
linear time does not: the formula F'(¢ A Hr) cannot be separated using only
F and P. We now discuss some temporal logics that do have the separation
property.

THEOREM 7 (Gabbay; see [Gabbay, 1989], [Gabbay et al., 1994, 10.2.9]).
Until and Since have the separation property over (N, <) (i.e., over the class

{(N,<)})-

Hence, Until and Since are expressively complete over (N, <). The proof
involves an induction showing that each formula can be separated.

THEOREM 8 (Gabbay-Reynolds; see [Gabbay et al., 1994, §§10.3-11]).
1. Until and Since have the separation property over (R, <).

2. Until, Since, and the Stavi connectives have the separation property
over the class of all linear flows of time.

Hence, U and S are expressively complete over (R, <), and U, S, and the
Stavi connectives are expressively complete over all linear flows. The Stavi
connectives were mentioned (without definition) in [Gabbay et al., 1980]
and are versions of U, S oriented towards Dedekind cuts in the flow of time;
we refer to [Gabbay, 1981a; Gabbay et al., 1994] for details.

The proof of theorem 8 is broadly similar to that of theorem 7, but more
complicated. Both proofs are effective. The spirit of the proofs suggests a
‘heuristic’ to tell whether a given set of connectives is expressively complete:
as Gabbay said, ‘try to separate and see where you get stuck!” This may
inspire the addition of extra connectives that are expressively complete. For
example, trying to separate F'(¢ A Hr) over linear time shows the need for



10 Tan Hodkinson and Mark Reynolds

Until. We already said that this formula cannot be separated using only F
and P. But a look at what the formula says suggests the addition of U(g,r)
to express what it says about the future. Then F'(¢ A Hr) is equivalent to
Hr Ar ANU(q,r), which is separated over linear time.

The concept of separation is not confined to linear time; generalisations
to non-linear flows have been known since the 1980s. The idea is to break
up the flow of time into suitable ‘regions’ on which the values of the atoms
n<,n—,ns are constant, and that allow the Ehrenfeucht—Fraissé game ar-
gument of theorem 6 to go through. Various separation and expressive
completeness results for trees were proved in [Amir, 1982a; 1982b: 1985;
Amir and Gabbay, 1987; Immerman and Kozen, 1987; Schlingloff, 1992].

2.6 Syntactic separation

The proof of theorem 7 actually shows that over (N, <), every US-formula
« is equivalent to a boolean combination § of U-formulas and S-formulas.
We call such a g3 syntactically separated. This is formally stronger than a
simple ‘semantic’ separation result, and it can be very useful to have. But
on the theoretical level, it is only a marginal improvement. This is for two
reasons.

First, while recognising a syntactically separated formula is trivial, it is
not so hard to tell whether a formula is semantically pure or separated.
The complexity is often the same as for the validity problem, and temporal
logic is frequently advertised in terms of the relatively low complexity of its
validity problem.

LEMMA 9. The problems of deciding whether, over (N,<), a given US-
formula is (a) pure past, (b) pure present, (c) pure future, (d) separated,
are PSPACE-complete.

Proof The proof relies on the PSPACE-completeness of the problem of
validity of U S-formulas over (N, <) [Sistla and Clarke, 1985].
A US-formula a(ps, ..., pn) is pure future over (N, <) iff the formula

(¢

is valid in (N, <). This formula is constructible from « in polynomial time.
By checking its validity, we decide pure future-ness of o in PSPACE. The
other two cases are dealt with similarly. This algorithm is due to Lutz
(personal communication, 2005).

Whether « is separated over (N, <) can then be checked by searching
for a boolean decomposition of « into pure formulas; the search can be
conducted in PSPACE.

.

(pi < qi)) — (a(ph---,pn) o a(q17--~7qn))

i=1



Separation 11

The proof of PSPACE-hardness uses the rather counter-intuitive fact that
for any U S-formula « and any atom ¢ not occurring in «, the following five
conditions are equivalent (all taken over (N, <)): (i) « is valid, (ii) «VGHg
is pure past, (iiv) oV GHgq is pure present, (iv) oV GHgq is pure future, (v)
aVGHq is separated. This is easily checked. If « is valid, so is aVGHgq, so it
is trivially pure and separated. If « is not valid, we can choose h : L — @(N)
and t € N with (N, <, h),t | —«. Then the value of « V GHq at t depends
on whether h(g) = N or not. As this can be varied without changing the
value of ¢ in the past of ¢, we see that oV GHq is not pure past. Similarly,
it is not pure present or pure future. Nor is oV GH g separated, since GHq
is not pure. Thus, we have reduced validity in polynomial time to being
pure or separated, showing PSPACE-hardness of the latter. a

The second reason is that whilst a syntactic separation result is available
over (N, <), it is not possible to obtain one over general flows of time. Over
(R, <) for example, P-U(T,q) is pure past, but is not equivalent to any S-
formula. However, lemma 9 generalises easily to (R, <) using the PSPACE-
completeness of validity of US-formulas over (R, <) proved in [Reynolds,
1999].

In short, we have to live with semantic separation in many cases, and the
algorithmic costs of doing so are not too bad.

3 Separation: present

In this section we consider recent and current work involving separation.
We also mention briefly some earlier uses of separation which have stood
the test of time particularly well: these are cases where a proof or technique
which relies on separation still attracts some current research activity.

3.1 Expressive Completeness

As outlined above, separation can demonstrate expressive completeness of
temporal languages. It gives a theoretical justification for using a particular
language. Separation, along with the construction in the proof of theorem 6
stands as one of the main ways of translating from first-order logic into
temporal logic in such important cases as natural numbers and real numbers
time.

Other ways of approaching such a task do exist but seem to be even
less well developed towards actual implementation. These include the di-
rect syntactical arguments in Kamp [Kamp, 1968], the outline by Stavi in
[Gabbay et al., 1980] and the game-theoretic version of this in chapter 12
of [Gabbay et al., 1994].

Of course, this translation is not done as part of any practical reasoning
application as it seems to be too expensive.



12 Tan Hodkinson and Mark Reynolds

More recently, Marx noticed a connection with temporal logic and used
an original but also quite traditional separation approach to analyse the
expressiveness of XPath, the W3C-standard node addressing language for
XML documents [Marx, 2004]. He was able to add some natural extra
relations to XPath to achieve an expressive completeness result.

3.2 Removing past-time operators

Separation is also called upon to justify mot using past-time operators in
temporal languages which specify systems. It has been well argued [Licht-
enstein et al., 1985] that specifications using past-time operators are more
natural. It is also clear that it is often the case that including the past-time
operators adds no complexity to reasoning tasks [Sistla and Clarke, 1985].
However, across the wide ranging uses of temporal languages we find many
examples where past-time operators are neglected. These include reason-
ing about branching time where the future-only CTL and CTL* are long
established. Reasoning about evolving knowledge using temporal-epistemic
combinations is another example: the basic languages are set out in [Fagin
et al., 1995] and past-time operators are only mentioned briefly to note that
they might complicate the exposition.

The justification for not having past-time operators is often not explicit.
We would agree with [Lichtenstein et al., 1985] in supposing that researchers
are relying on the claim in [Gabbay et al., 1980] that the past-time operators
add nothing to the expressivity of the language with Until over the natural
numbers time.

The claim (Theorem 2.1 in [Gabbay et al., 1980]), which follows easily
from theorem 7, is just that for every formula ¢(x) of the first-order language
of order (L’ from definition 2) there is a temporal formula from the language
with just U which is equivalent to ¢ over (N, <) at time 0. It follows that

LEMMA 10. For any US-formula « there is a U-formula B that is equiva-
lent to a at time 0. That is, for any h: L — p(N), we have (N, <, h),0 |
o« .

To see this, just syntactically separate «, and replace all maximal sub-
formulas S(X,Y) of the result by false. We will call such an equivalence at
time zero, initial equivalence between formulas.

We should note that, in many computer science oriented publications
since [Gabbay et al., 1980], the temporal languages considered use what are
called the non-strict versions of U and S. To distinguish these from the
strict versions which we introduced in section 2 we write them in an infix
manner and as U= and S—. For example, M,t = pU—_q iff there is u > ¢
with M,u |= ¢ and for all v € T, if t < v < u then M, v = p. The language
with U— and T is known as LTL, and if S— and Y are included then we



Separation 13

might call this LTL+PAST (but the notation is not everywhere consistent).

It is clear that on natural number time structures, 7 = (N, <, h), strict
until can be defined by U(3, «) = T'(aU-f) and, equally, the LTL operators
can be defined from U: aU=-3 = 8V (e AU(B,a)) and Ta = U(a, false).
Similarly for strict since.

The claim from [Gabbay et al., 1980] thus tells us that the past-time op-
erators S— and Y do not add anything to the expressivity of the language
with U= and T, provided we are just interested in the satisfiability of for-
mulas at time zero. For specifying the behaviour of a system, of course, it
is natural to just state its desired behaviour as a formula to hold at time
Zero.

It is not clear that there are any other ways, apart from separation, to
remove past-time operators from US-formulas over the natural numbers to
make an initially equivalent U-formula.

3.3 Executable temporal logic

Separation stands as one of the foundations on which the intuitively appeal-
ing “declarative past implies imperative future” idea of [Gabbay, 1989 is
used to allow arbitrary temporal (declarative) specifications to be executed
as (imperative) programs. This idea, and executable temporal logics more
generally, are used for rapid proto-typing in fields from system modelling
[Finger et al., 1993] to multimedia [Bowman et al., 2003] and AI [Jonker
and Wijngaards, 2003].

Considering the particular Metatem approach [Barringer et al., 1996] to
executable temporal logic, we see that separation gives a theoretical justi-
fication for only dealing with specifications given in a “past implies future”
normal form. Alternatively, it gives a process for converting an arbitrary
specification into this normal form. A Metatem program is of the form

n

G(N (& — i)

i=1

where the &; are pure past and the v; are boolean combinations of pure
present and pure future formulas. Note that there are further syntactic
restrictions. The idea is that on the basis of the declarative truth of the
past time &; the program should go on to “do” ;.

The process given in chapter 4 in [Barringer et al., 1996] shows how
an arbitrary formula of the propositional language with U_S_Y T can be
converted into an equally satisfiable formula in this normal form. This
process starts by assuming that the formula will be separated: it is not
easy to see any alternative than to use the separation process described in
[Gabbay et al., 1994].



14 Tan Hodkinson and Mark Reynolds

3.4 The safety-liveness normal form

A more recent application for the separation process is in achieving an-
other normal form for temporal formulas. This is the safety-liveness form
of [Lichtenstein et al., 1985].

One of the many interesting observations made in [Lichtenstein et al.,
1985] is that by using some transformations based on separation, automata
and regular expressions one can find, for any temporal formula (possibly
involving past operators) an equivalent formula in which the only future
operators are unnested and of the form “infinitely often” or “eventually
always”. This form is used to show that any temporal formula is equivalent
to a positive boolean combination of what [Lichtenstein et al., 1985] define
as safety and simple liveness properties— safety properties being those that
must continue to hold forever, and liveness properties being those which
must eventually happen. We thus call this the safety-liveness form.

From [Lichtenstein et al., 1985] we have:

LEMMA 11. Ewvery formula of LTL+Past is initially equivalent to a formula
of the form:

\/(GF%‘) A (FGB;)
i=1
where each «; and B; are formulas without U— or X.

The proof in [Lichtenstein et al., 1985] first uses separation to find a LTL
equivalent. It then proceeds via standard translations of a LTL formula into
an equivalent Biichi automaton (i.e. an automaton that accepts exactly the
structures which are models of the formula). The standard translations use
a result from [McNaughton, 1966] which allows us to find a deterministic
equivalent to any Biichi automaton and so, via a recursive construction,
allows us to find a negation of a given automaton.

The automaton will be what is known as counter-free and this allows us
(via results from [McNaughton and Papert, 1971]) to find star-free regular
expressions which describe various possible limiting behaviours in terms of
finite prefixes of the structure. Finally, these are converted into equivalent
past-time formulas via a reverse translation.

A newer proof of lemma 11 is given in [Reynolds, 2000]. It also uses
separation but relies on a less varied range of other powerful techniques.

We use the stronger separation result appropriate for any Dedekind com-
plete linear order, i.e. (T, <) such that every non-empty subset of T with
an upper bound has a least upper bound. This is used to establish theo-
rem 8 above. The result (Theorem 10.3.20, [Gabbay et al., 1994]) involves
semantic separation and concepts of purity. Here we just need to extract
some ideas from the proof.



Separation 15

We introduce new operators

K*(a) = -U(true, ~a),

K~ (a) = =S(true, —a),

I' (o) = =K*(-~a) AN K~ (-a), and

I'(a) ==K (ma) A KT (-a)
and then add these to the US language to define an extended language,
which we call ESTL. K («) holds at a point when « holds arbitrarily soon
afterwards and the other connectives have similarly intuitive readings.

In the proof of the theorem, some dozens of ESTL equivalences, or ac-
ceptable rewrites, are presented. The general idea is that formulas with past
operators within the scope of future operators (or vice versa) are rewritten
with one less level of such nesting. A recursive procedure is given for eventu-
ally eliminating all such nesting via a series of these rewrites. See [Gabbay
et al., 1994] for details.

In ESTL, we say that a formula is syntactically separated iff it is a boolean
combination of formulas that are either atoms or of the form U(«, ) and
not containing S, S(c, 8) and not containing U, KT (a) and not containing
S, or K~ («) and not containing U. Such subformulas are semantically pure
(as in definition 5) and we will see that over a certain flow of time, which
is nearly everywhere discrete, they have a particularly simple form.

From the proof of Theorem 10.3.20 in [Gabbay et al., 1994] we have the
following:

LEMMA 12. Owver Dedekind complete time, each formula in ESTL can be
acceptably rewritten as an equivalent formula which is syntactically sepa-
rated.

It must be pointed out that despite only involving straightforward syn-
tactic rewrites, the general separation procedure may be rather computa-
tionally complex. In fact, the time complexity of the procedure (and hence
the size blow-up in formulas) is probably nonelementary.

The new proof from [Reynolds, 2000] of lemma 11 based solely on sepa-
ration is as follows.

Proof The idea is to add a point oo after all the natural numbers to get
a new Dedekind complete linear order N*°. We will work in the temporal
logic with U S over propositional structures with N° as the flow of time.

Our first step is to relativize the US version of our formula ¢ to places
where k = U(true, true) holds (via recursive use of such transformations
of Ula, B) to U(k A a, 5 — 3)). Say that the result is ¢T. It is clear that
¢ is true at 0 in a natural number structure iff ¢* is true at 0 in any N*°
extension.

To say that ¢+ holds at time 0 is clearly equivalent to saying that



16 Tan Hodkinson and Mark Reynolds

BT = 8(=S(true, true) A ¢, true) holds at time co. By using the separa-
tion technique Lemma 12, we can find, (effectively via the straightforward
syntactic transformation via the set of rewrite rules), an equivalent formula
~7T, which is a boolean combination of syntactically pure ESTL formulas.
Obviously we can dispense with the present and future parts of this com-
bination (eg, assume that all atoms are false at time co and any formula
U(a, 3) or K*(a) can be replaced by falsity).

The next step is to get rid of K* and I'*. Note that we can rewrite K ~ ()
as —S(true, ~a) so we need only consider maximal subformulas of v* of the
form S(c, 3) in which « and 8 contain no U. The fact that N*° is discrete at
all points < co at which we evaluate such a and 8 (and their subformulas)
allows us to equivalently rewrite each K+ (1)) and '~ (¢) subformula as false
and each I'* (¢) formula as —S(true, —¢). An induction on the construction
of each « or (8 is actually needed here to guarantee that we do only need
to evaluate formulas at points < oo but this is straightforward. Thus we
may assume that v+ is a boolean combination of US formulas of the form
S(a, #) containing no U.

So consider a pure past boolean component of v. It will be in the form
d = S(n,0) with n and 6 being formulas without U. To say that ¢ holds
in the extended structure at time oo is just to say that at time O in the
original structure, 8 A S(n, ) eventually always holds. To say that § does
not hold in the extended structure at time oo is just to say that at time 0
in the original structure, =(6 A S(n, 8)) holds infinitely often. By rewriting
~T in disjunctive normal form we can extract the required a; and 3; from
conjunctions of such 6 A S(n,0) and their negations: use the equivalences
FGa ANFGS « FG(a A B) and GFaV GFf «< GF(aV B) to collect the

conjunctions together. Q

Obviously the new proof calls on a more limited variety of machinery for
finding the formulas: the procedure is just a series of syntactic rewrites.
However, we should again warn the reader that the complexity of the sepa-
ration process (used in both the new proof and the original) and the blow-up
in the size of formulas may be non-elementary. Note that there may even
be an exponential blow-up in translating from TL to the strict language.

An example transformation is set out in [Reynolds, 2000]. The formula
¢ = qU_p rewritten as pV(qAU (p, q)) in strict form is translated (eventually)
to the safety-liveness form, (FGY P(Hfalse A p) A GFtrue) V (FGY P(p A
Y (¢S(Hfalse A q))) A GFtrue).

Safety-liveness form and automata

As shown in [Reynolds, 2000], the safety-liveness form allows us to easily and
naturally find an equivalent deterministic automaton, i.e. one that accepts



Separation 17

exactly the models of the formula. There are immediate advantages in rea-
soning tasks if one happens to already have a formula in safety-liveness form.
For example, the number of states needed in an equivalent automaton is ex-
ponential in the length of the formula: normally, without safety-liveness, a
double exponential blow-up is required.

Alternatively, many of the applications of automata to theorem-proving,
decision procedures, synthesis of models, and executable temporal logic,
can be recast in terms of the properties of formulas in safety-liveness form.
There is no need to translate to automata to carry out these reasoning tasks.
See [Reynolds, 2000] for details.

Using safety-liveness to axiomatize PCTL*

Perhaps the most useful applications of the safety-liveness form are for those
who are developing axiomatizations and theorem-proving methods for ex-
tensions of LTL. The important observation here is that automata are in-
creasingly being used in such proofs (see, for example, [Walukiewicz, 1995],
[Kesten and Pnueli, 1995], [Kaivola, 1996], and [Reynolds, 2001]) but, as in
the last of these references, having an automaton in a completeness proof
may involve problems with describing it within the object language. How-
ever, past operators and the safety-liveness form allow many of the advan-
tages of automata but stay within the confines of the original language.

Here we mention one such application concerning the widely used branch-
ing time logic CTL* from [Emerson and Halpern, 1986]. This logic has been
particularly hard to develop reasoning tools for. The relatively recent ax-
iomatization in [Reynolds, 2001] makes great use of automata and needs to
rely on a special rule of inference to allow the introduction of new atoms
into a proof, which can be used to represent states of an automaton. We
end this section by seeing how the safety-liveness form can be used so that if
past operators are available then a lot of this extra machinery is not needed.
Below we will briefly look at the work in [Reynolds, 2005] where there is a
complete axiomatization for the logic PCTL*, CTL* with the past opera-
tors: an axiomatization involving only the standard rules of inference and
a few dozen simple and intuitive axioms.

It is possible that similar applications may be found in axiomatizations
and theorem-proving methods for many of the large number of currently
interesting extensions of LTL including branching-time logics, logics with
quantified propositions and combinations of temporal and epistemic logics.

PCTL* was defined in [Laroussinie and Schnoebelen, 1994], as the full
branching-time computational tree logic CTL* with the addition of (lin-
ear) past operators. This was also studied in [Zanardo and Carmo, 1993]
and in [Kupferman and Pnueli, 1995]. The latter paper also introduces a
different way of adding past operators to CTL* (and CTL): the semantics



18 Tan Hodkinson and Mark Reynolds

of branching past. See [Kupferman and Pnueli, 1995] or [Laroussinie and
Schnoebelen, 2000] for details.

CTL* has been hard to axiomatize despite its recognized wide applica-
bility. The problem is seen as its limit closure property: roughly the idea
that any increasing sequence of prefixes of paths through a structure is part
of one path. The solution in the axiomatization [Reynolds, 2001] is to bring
in automata and a related special rule of inference. PCTL*, incorporating
CTL*, and all the advantages of past operators, is even more useful but
exhibits the same limit closure problem.

The formulas of PCTL* are built from atomic propositions recursively
using classical connectives, the LTL+Past temporal connectives Y, S—, T,
and U- and the path-switching modality E: if o and 3 are formulas then
so are Yo, aS—_(3, Ta, aU—-3, and Fa. We use the usual LTL+Past abbre-
viations plus Ao = ~FE-a.

Formulas are evaluated in (total) Kripke structures, M = (S, R, g) where:

S is the non-empty set of states
R is a total binary relation C S x S

(i.e. for every s € S, there is some ¢ € S such that (s,¢) € R) and
g S — p(L)is a labelling of the states with sets of atoms.

A fullpath in M is an infinite sequence b = (bg, b1, ba, ...) of states of M
such that for each 4, (b;,b;11) € R.

Truth of formulas is evaluated at indices in fullpaths in structures. We
write M,b,i = « iff the formula « is true of the fullpath b at the index
(time) 7 in the structure M = (S, R, g). This is defined recursively by:

M,b,i = true
M,byi=p it peg(b),anypel
M,b,i |ETa it Mbi+lEa«
M,b,i EaU=3 iff thereissome j > i such that
M,b,j = and for each k,
if i <k <jthen M,bk E «
M,bi EYa iff i>0and M,b,i—1F«
M,b,i =aS_3 iff there is some j < i such that
M,b,j = and for each k,
if j <k <ithen M,bk E «
M,b,i E Ea iff there is a fullpath & such that
(b, ..., bi) = (bp,..., by and M,V ,i = «

We say that « is valid in PCTL* iff for all Kripke structures M, for all
fullpaths b in M, for all indices ¢, we have M,b,i = «.

To find a Hilbert system capable of deriving exactly these validities,
[Reynolds, 2005] extends the axiom system for LTL (given in [Lichtenstein
et al., 1985]) by the usual S5 rules and axioms for path-switching, plus that



Separation 19

propositional atoms only depend on states:
APS p — Ap, for each atomic proposition p
plus some interaction between modalities:
AT ATa — TAa«
AY AYa < YAa
plus the limit closure axiom from [Reynolds, 2001]:
LC AG(Fa— ET((EB)U(Eq))) — (Ea — EG((EB)U(Ew)))

THEOREM 13 ([Reynolds, 2005]). The Hilbert system is sound and com-
plete for PCTL*.

The completeness proof is very similar to that in [Reynolds, 2001] which
shows completeness for a Hilbert system for CTL*. The interesting part is
not the addition of the past operators: these can be handled by standard
linear temporal logic techniques for past operators given that the axioms
virtually define them in terms of the future time operators.

The interesting part of this completeness proof is to show that we do
not need to call on the extra, unusual rule (called AA) which is used in
[Reynolds, 2001]. Space limitations prevent us from introducing AA prop-
erly here. The rule allows new atoms to be brought into a proof provided
that their truth values in a tree structure are determined functionally by
the truth-values of atoms (both new and original) in the past. There are
similarities with the IRR rule of [Gabbay, 1981b]. In using the CTL* proof
system to make a derivation and in giving its completeness proof, this spe-
cial rule allows us to bring a deterministic Rabin automaton into the proof.
The new atoms can be used to represent the states of the automaton and the
automaton can tell us where we are up to in trying to satisfy LTL formulas
along branches of the tree. By making sure certain states do not come up
very often if other states do not (using the acceptance pairs of the automa-
ton) we can guarantee that all branches satisfy a particular LTL formula:
even the uncountable number of branches which appear in the limit of a
construction of such a tree do.

The observation that allows us to modify the completeness proof to cope
with PCTL* without the AA rule is that when past operators are available
in the language and we have the safety-liveness form of the original formula
(and it will be in the original signature) then no new atoms are needed
to record our progress along the branches of the tree. We can build a
deterministic automaton accepting exactly the models of a given LTL+Past
formula by only using (sets or conjunctions of ) LTL+Past formulas in the
original signature to make up the states.

In fact, with the syntactic method of finding the safety-liveness form
there need be no mention of automata at all in the proof. All we have to



20 Tan Hodkinson and Mark Reynolds

do, after translating the formula into the right form, is to make sure that
eventually some [; stays true in our construction (as we build a particular
branch from the root towards the leaf) and make sure «; is true infinitely
often.

See [Reynolds, 2005] for details.

4 Separation: future

As we have seen, separation has proven theoretically interesting and both
theoretically and practically useful. However, it is far from fully understood,
even in the most common situations. We end with some (as far as we know)
open problems about it, which may provide work for future researchers. We
focus on complezity and succinctness, which are of some current interest
and for which there is relevant recent work. We thank Carsten Lutz for
interesting discussions.

4.1 Initial equivalence

We begin with initial equivalence: in (N, <), at time 0. Recall from sec-
tion 3.2 that temporal formulas «, 3 are said to be initially equivalent if
(N, <, h),0 | a < 3 for all assignments h : L — p(N).

REMARK 14.

(i) By lemma 10, we know that for any US-formula «, there is a U-
formula § that is initially equivalent to a.

(ii) If we combine lemma 10 with the separation algorithm obtained from
the proof of theorem 7, we obtain an algorithm to construct 8 from
a, but its complexity appears to be non-elementary. However, [Sch-
noebelen, 2003, footnote 22] notes that an elementary upper bound
on the minimal size of an U-formula initially equivalent to a given
US-formula can be obtained by combining the standard translation
from US-formulas to counter-free Biuichi automata and the elemen-
tary translation from these automata to U-formulas using results from
[Wilke, 1999]. This also gives an elementary algorithm to perform the
translation.

(iii) [Laroussinie et al., 2002, theorem 3.1] showed that US can be ezponen-
tially more succinct than U over (N, <) at time 0. That is, obtaining
0 from « above can introduce an exponential blow-up in size. Hence,
any algorithm to construct 8 from « requires at least exponential time
in the worst case.

This prompts the following questions:



Separation 21

Q1. What is the exact complexity of the problem of constructing 8 from
« in remark 147

Q2. (Succinctness) What is the minimum length of 3 in terms of the length
of a?

4.2 Separation

Similar questions can be asked about separation itself. As we said, the proof
of theorem 7 provides an algorithm that constructs, for any US-formula «,
a US-formula g that is (syntactically) separated and equivalent to « over
(N, <). However, very little is known about the complexity of separation
algorithms and the succinctness of their output.

We pose our questions in the general context of a temporal logic 7 with
the separation property over a class C of flows of time. Assuming that valid-
ity of 7-formulas over C is decidable, it follows from the proof of lemma 9
that there exists an algorithm to separate any 7-formula « over C. We
just enumerate all 7-formulas, stopping when a separated one equivalent to
« is found. Separatedness and equivalence are decidable (cf. lemma 9 for
the former), so this is an effective process; and since 7 has the separation
property, it will terminate.

Q3. Complexity of separation. What is the optimal complexity of algo-
rithms that, given a 7-formula «, output a separated 7 -formula equiv-
alent to a over C?

This problem has many versions, depending on circumstances. The
chief concrete instances of it are
(a) for U, S over (N, <),

(b) for U, S over (N, <), but requiring the output formula to be syn-
tactically separated,

(¢) for U, S over Dedekind-complete time,
(d) for U, S, and the Stavi connectives over linear time.

It follows from remark 14(iii) that over (N, <), all separation algo-
rithms require at least exponential time.

Q4. Succinctness of separation. What can one say about the length of a
shortest separated 7 -formula equivalent over C to a given 7 -formula?

This is asking whether there is an inevitable loss of succinctness when
separating a formula, and if so, how much? Again, there are vari-
ous concrete instances of the problem. For U and S over (N, <), it



22 Tan Hodkinson and Mark Reynolds

follows from remark 14(iii) that separation sometimes incurs an ex-
ponential increase in length. It would be interesting if non-separated
formulas were non-elementarily more succinct than separated ones in
this case, since it follows from [Sistla and Clarke, 1985] that satis-
fiability over (N, <) for both arbitrary US-formulas and for U-ones
(which are certainly separated) is PSPACE-complete, and both have
the exponential-size model property. It would also mark a difference
from the special case discussed in remark 14(ii).

REMARK 15. Questions Q3 and Q4 are connected. The following are
equivalent:

(a) There is an elementary algorithm to separate U S-formulas over (N, <),

(b) There is an elementary upper bound on the length of a shortest sep-
arated US-formula equivalent over (N, <) to a given formula.

(a) = (b) is trivial, since it takes at least as much time to compute the sepa-
rated formula as to output it. For (b) = (a), recall from [Sistla and Clarke,
1985] that there is an elementary (PSPACE) algorithm to decide equivalence
of US-formulas over (N, <). So assuming (b) and given a US-formula «, we
can enumerate all separated US-formulas of length at most the elementary
bound obtained from «, using lemma 9 to verify separatedness, and check-
ing each for equivalence to «. This is an elementary algorithm to separate
Q.

Obviously, there are more refined results, bounding the complexity of
each side in terms of the other.

4.3 Other sets of connectives

Now we consider what might happen when we change the set of connectives.
Consider any temporal logic 7 with finitely many connectives which are
all first-order-definable. As US is expressively complete over (N, <), each
T -formula « can be translated into a US-formula of that is equivalent to o
over (N <). The translation is straightforward. For each n-ary 7-connective
#, we fix a US-formula G4(p1, ..., p,) that is equivalent over (N, <) to £(p1,
..,Pn)- Such a formula §; exists by expressive completeness of US over
(N, <). Now we put

e pf = p for any atom p,
o (anB) =al ABT and (-a)T = —af,

o flag,...,a,) = ﬁu(o/{,...,a;fl).



Separation 23

The translation o — ol entails at most an exponential increase in size
(and such an increase can be attained). To see this, let d(«) be the depth
of nesting of boolean and temporal connectives in the formula «. Formally,
d(p) = 0 for an atom p, d(—a) =1+ d(«a), d(a A B) =1 + max(d(a),d(3)),
and d(f(a1,...,a,)) = 1 + max{d(ai),...,d(as)}, for each temporal con-
nective f. Here, a can be either a 7-formula or a US-formula. Let &k be
the maximal value of d(f¢) (running over all 7-connectives f). We will as-
sume that £ > 1. Then every nested occurrence of a boolean or temporal
connective in « raises the depth of af by at most k. So we see that

d(a') <k-d(a) for all T-formulas a,

and indeed, this is easily proved formally by induction on a.

Write || for the length of «, ignoring commas and brackets for simplicity.
By considering formation trees of formulas, we see that for each U S-formula
B we have || < 24%). For T-formulas a, we trivially have d(a) < |a]. So
the length |af| of the translation is bounded in terms of the length |a| of
the original formula by

|O¢T| < Qd(OéT) < 9k-d(a) < oklal

Clearly, then, the translation o — af is effective and takes at most ex-
ponential time. The main requirements were that the connectives in 7 are
finite in number and have first-order definitions, and that U S is expressively
complete over (N, <). So if 7 is expressively complete as well, the trans-
lation process can be reversed. The translation obviously preserves purity
and being separated, since these are defined semantically. It follows that

PROPOSITION 16. Let T be a finite set of first-order-definable connectives
that is expressively complete over (N, <). Then the following are equivalent:

e There is an elementary algorithm to separate T -formulas over (N, <).

o There is an elementary algorithm that separates US-formulas over
(N, <).

A similar result holds for succinctness. As in remark 15, the complex-
ity estimates can be refined. Still, they do not give exact bounds, so the
following questions are perhaps worth answering:

Q5. Find a finite set 7 of connectives that is expressively complete over
(N, <), and such that the complexity of the problem of separating
T -formulas is least possible.



24 Tan Hodkinson and Mark Reynolds

Q6. Find a finite set 7 of connectives that is expressively complete over
(N, <), and such that the length of the smallest separated 7-formula
equivalent to a given 7 -formula is as small as possible.

There are special problems for other flows of time.

Q7. Over linear time, or over (Q, <):

(a) Is it decidable whether a given US-formula can be separated?

(b) [Rabinovich] Is it decidable whether a given first-order formula
o(x, P1,..., P,) is equivalent to a US-formula?

In each case, if the answer is positive, one can ask about complexity.

We hope that these questions will find interesting solutions before too
long. At any rate, they show that the topic of separation, after more than
20 years, is still very much alive.

BIBLIOGRAPHY

[Amir and Gabbay, 1987] A. Amir and D. M. Gabbay. Preservation of expressive com-
pleteness in temporal models. Information and Computation, 72:66-83, 1987.

[Amir, 1982a] A. Amir. Expressive completeness failure in branching time structures.
Journal of Computer and System Sciences, 34(1), 1982.

[Amir, 1982b] A. Amir. Functional Completeness in Tense Logic. PhD thesis, Bar-Ilan
University, Ramat-Gan, Israel, 1982.

[Amir, 1985] A. Amir. Separation in nonlinear time models. Information and Control,
66:177-203, 1985.

[Barringer et al., 1996] H. Barringer, M. Fisher, D. Gabbay, R. Owens, and
M. Reynolds, editors. The Imperative Future. Research Studies Press, Somerset,
1996.

[Bowman et al., 2003] H. Bowman, H. Cameron, P. King, and S. J. Thompson. Mexitl:
Multimedia in executable interval temporal logic. Formal Methods in System Design,
22:5-38, January 2003.

[Emerson and Halpern, 1986] E. Emerson and J. Halpern. ‘Sometimes’ and ‘not never’
revisited: on branching versus linear time. J. ACM, 33, 1986.

[Etessami and Wilke, 2000] K. Etessami and T. Wilke. An until hierarchy and other
applications of an Ehrenfeucht—Fraissé game for temporal logic. Information and
Computation, 160:88—-108, 2000.

[Fagin et al., 1995] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about
Knowledge. The MIT Press, 1995.

[Finger et al., 1993] M. Finger, M. Fisher, and R. Owens. Metatem at work: Modelling
reactive systems using executable temporal logic. In 6th Intl. Conf. on Industrial and
Engineering applications of AI and Expert Systems, 1993.

[Gabbay et al., 1980] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal
analysis of fairness. In 7th ACM Symposium on Principles of Programming Languages,
Las Vegas, pages 163-173, 1980.

[Gabbay et al., 1994] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal logic: math-

ematical foundations and computational aspects, Vol. 1. Clarendon Press, Oxford,
1994.



Separation 25

[Gabbay, 1981a] D. Gabbay. Expressive functional completeness in tense logic (prelim-
inary report). In U. Monnich, editor, Aspects of Philosophical Logic, pages 91-117.
Reidel, Dordrecht, 1981.

[Gabbay, 1981b] D. M. Gabbay. An irreflexivity lemma with applications to axiomati-
zations of conditions on tense frames. In U. Monnich, editor, Aspects of Philosophical
Logic, pages 67-89. Reidel, Dordrecht, 1981.

[Gabbay, 1989] D. Gabbay. Declarative past and imperative future: Executable tempo-
ral logic for interactive systems. In B. Baniegbal, H. Barringer, and A. Pnueli, editors,
Proceedings of Colloguium on Temporal Logic in Specification, Altrincham, 1987, vol-
ume 398 of Lecture Notes in Computer Science, pages 67-89. Springer-Verlag, 1989.

[Hodges, 1993] W. Hodges. Model theory, volume 42 of Encyclopedia of mathematics
and its applications. Cambridge University Press, 1993.

[Immerman and Kozen, 1987] N. Immerman and D. Kozen. Definability with bounded
number of bound variables. In LICS87, Proceedings of the Symposium on Logic in
Computer Science, Ithaca, New York, pages 236—244, Washington, 1987. Computer
Society Press.

[Jonker and Wijngaards, 2003] C. M. Jonker and W. C. A. Wijngaards. A temporal
modelling environment for internally grounded beliefs, desires and intentions. Tech-
nical Report 040, Utrecht: UU, owi CKI (Artificial intelligence preprint series), 2003.

[Kaivola, 1996] R. Kaivola. Axiomatising extended computation tree logic, in trees in
algebra and programming. In CAAP’96, 21st International Colloquium, Proceedings,
volume 1059, pages 87-101. Springer, 1996.

[Kamp, 1968] H. Kamp. Tense logic and the theory of linear order. PhD thesis, Uni-
versity of California, Los Angeles, 1968.

[Kesten and Pnueli, 1995] Y. Kesten and A. Pnueli. A complete proof system for QPTL.
In Proceedings, Tenth Annual IEEE Symposium on Logic in Computer Science, pages
2-12, San Diego, California, 26-29 June 1995. IEEE Computer Society Press.

[Kupferman and Pnueli, 1995] O. Kupferman and A. Pnueli. Once and for all. In Proc.
10th IEEE Symposium on Logic in Computer Science, pages 25—35, San Diego, June
1995.

[Laroussinie and Schnoebelen, 1994] F. Laroussinie and Ph. Schnoebelen. A hierarchy
of temporal logics with past. In Proc. STACS’94, Caen, France, volume 775 of LNCS,
pages 47-58. Springer—Verlag, 1994.

[Laroussinie and Schnoebelen, 2000] F. Laroussinie and Ph. Schnoebelen. Specification
in CTL+Past for verification in CTL. Information and Computation, 156:236-263,
2000.

[Laroussinie et al., 2002] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal
logic with forgettable past. In Proc. 17th Annual IEEE Symposium on Logic in
Computer Science (LICS’02), pages 383-392. IEEE Computer Society Press, 2002.
Available at www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/LMS-1ics2002.pdf.

[Lichtenstein et al., 1985] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past.
In R. Parikh, editor, Logics of Programs (Proc. Conf. Brooklyn USA 1985), volume
193 of Lecture Notes in Computer Science, pages 196-218. Springer-Verlag, Berlin,
1985.

[Marx, 2004] M. Marx. Conditional XPath, the first order complete XPath dialect. In
Proc. ACM SIGMOD/PODS (Principles of Database Systems), 2004. Available at
www.sigmod.org/pods/proc04/.

[McNaughton and Papert, 1971] R. McNaughton and S. Papert. Counter Free Au-
tomata. MIT Press, 1971.

[McNaughton, 1966] R. McNaughton. Testing and generating infinite sequences by finite
automata. Information and Control, 9:521-530, 1966.

[Reynolds, 1999] M. Reynolds. The complexity of temporal logic over the reals. 1999.
Submitted.



26 Tan Hodkinson and Mark Reynolds

[Reynolds, 2000] M. Reynolds. More past glories. In Fifteenth Annual IEEE Symposium
on Logic in Computer Science (LICS’2000), Santa Barbara, California, USA, June
26-28, 2000, pages 229-240. IEEE, 2000.

[Reynolds, 2001] M. Reynolds. An axiomatization of full computation tree logic. J.
Symbolic Logic, 66(3):1011-1057, 2001.

[Reynolds, 2005] M. Reynolds. An axiomatization of PCTL*. Information and Compu-
tation, 201:72-119, 2005

[Schlingloff, 1992] B-H. Schlingloff. Expressive completeness of temporal logic over trees.
Journal of Applied Non-classical Logics, 2:157-180, 1992.

[Schnoebelen, 2003] Ph. Schnoebelen. The complexity of temporal logic model checking.
In Proc. 4th Workshop on Advances in Modal Logic (AiML’02), pages 393-436. King’s
College Publications, 2003.

[Sistla and Clarke, 1985] A. P. Sistla and E. M. Clarke. The complexity of propositional
linear temporal logics. J. ACM, 32:733-749, 1985.

[Walukiewicz, 1995] 1. Walukiewicz. A complete deductive system for the p-calculus.
Research Series RS-95-6, BRICS, Department of Computer Science, University of
Aarhus, January 1995. 39 pp.

[Wilke, 1999] T. Wilke. Classifying discrete temporal properties. In Proc. 16th Ann.
Symp. Theoretical Aspects of Computer Science (STACS’99), volume 1563 of Lecture
Notes in Computer Science, pages 32-46. Springer-Verlag, 1999.

[Zanardo and Carmo, 1993] A. Zanardo and J. Carmo. Ockhamist computational logic:
Past-sensitive necessitation in CTL. J. Logic Computat., 3(3):249-268, June 1993.

Department of Computing School of CS & SE

Imperial College London University of Western Australia
London SW7 2AZ, U.K. Western Australia, 6009
imh@doc.ic.ac.uk reynolds@csse.uwa.edu.au



