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Abstract

We give a criterion involving existence of many generic sequences
of automorphisms for a countable structure to have the small index
property. We use it to show that (i) any ω-stable ω-categorical struc-
ture, and (ii) the random graph has the small index property. We
also show that the automorphism group of such a structure is not the
union of a countable chain of proper subgroups.

1 Introduction

Let M be a countably infinite structure, and G be Aut(M). Following [27]
we write automorphisms on the right: so if g ∈ G and a ∈ M we write ag
for the image of a under g. If ā = (a1, ..., an) ∈ M is a (finite) tuple of
elements of M , we write āg for (a1g, ..., ang). We write Gā for the subgroup
{g ∈ G : āg = ā} of G. We will sometimes use the M eq of [25]; note that
essentially G = Aut(M eq) also. If A is a subset of the domain of M eq, we
write Ag for {ag : a ∈ A}, and GA for {g ∈ G : ag = a for all a ∈ A}.

The group G is a topological group for which the basic open sets are
the cosets of the Gā for ā ∈ M . Note that Gāg = gGāg, so that in the
definition we do not need to specify whether cosets are left or right. The
open subgroups form a base of open neighbourhoods of 1. In fact, G is a
Polish space — see §2.

1 The published version, which differs from this postprint, appeared in Journal of the
London Mathematical Society 48 (1993) 204–218. c© Cambridge University Press.

2 Publication no. 391.
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A subgroup H of G is said to have small index in G if |G : H| < 2ω, and
large index otherwise. If ā ∈ M , the right cosets of Gā in G are in bijection
with {āg : g ∈ G}. Hence Gā, and so any open subgroup of G, has small
(indeed countable) index in G. We say that M has the small index property
if the converse holds: every subgroup H ≤ G of small index is open in G.

If M has the small index property, the topological structure of G can
be recovered from its abstract group structure. This has applications in
reconstructing a structure from its automorphism group: [18] has more in-
formation. For related applications of the small index property see [11] and
[12].

Example 1.1 We list some countable structures with the small index prop-
erty.

1. The infinite set without structure: proved first by Semmes [24], and
(later and independently) [4].

2. The countable dense linear ordering (Q, <): proved first by Truss in
[26]. Another proof of this result is given in [22].

3. The countable atomless Boolean algebra: also in [26].

4. A vector space of dimension ω over a finite or countable division ring
(due to Evans [7]; one can add a non-degenerate bilinear form).

5. Any Boolean power of a finite simple group by the countable atomless
Boolean algebra: Evans, unpublished.

6. Any countable 2-homogeneous tree [5].

7. Any ω-categorical abelian group: Evans, [9].

Any 2-homogeneous dense subset of R has the small index property [6].
In [17] it is shown that almost strongly minimal structures have a closely
related property. An example (due to Cherlin and Hrushovski) of an ω-
categorical structure without the small index property is given in [16]. For
more on the small index property and its variants for uncountable structures
see [16], [18] and [19].

We will prove:

Theorem 1.2 If M is a countable ω-stable ω-categorical structure, or if M
is the random graph, then M has the small index property. Also, Aut(M) is
not the union of a countable chain of proper subgroups.
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Our method uses generic automorphisms of M . Recall (for example from
[23] or [27]) that a subset C of a topological space X is comeagre if it
contains a countable intersection of dense open subsets of X. In [27] an
automorphism of M was said to be generic if its conjugacy class in G was
comeagre. If g ∈ G, let us write (M, g) for the expansion of M obtained
by adding a function symbol to the language of M and interpreting it as g.
Since Aut(M) is a Polish space, comeagre sets are non-empty, and hence any
two comeagre sets have non-empty intersection. Thus if g, h are generic then
(M, g) ∼= (M, h).

In the cases we consider, G will contain an open subgroup K such that
for each non-zero n < ω there is a comeagre subset S of Kn consisting of
“generic sequences” of automorphisms: for all (g1, ..., gn), (h1, ..., hn) ∈ S, the
expanded structures (M, g1, ..., gn) and (M, h1, ..., hn) are isomorphic. More-
over, they are homogeneous in that (roughly speaking) there are arbitrarily
large finite subsets A of M such that A is gi-closed for each i ≤ n, and for
such an A, if gidA = hidA for each i then the isomorphism can be chosen
to fix A pointwise. We prove this using amalgamation as in [27], following
Fräıssé.

If a subgroup H of G has small index but is not open, then for each
s ∈ <ω2 we can find gs, θs ∈ G so that for all s:

• gs∧0 ∈ H and gs∧1 /∈ H,

• θ∅ = θs∧0 = 1, and θs∧1 : (M, gsd1, ..., gs, gs∧0) → (M, gsd1, ..., gs, gs∧1) is
an isomorphism.

Using homogeneity we can choose the θs to fix increasing finite amounts of

M as s increases. In this way we can arrange that the product θσ
def
=

∏
i<ω θσdi

exists for each σ ∈ ω2. Let σ, τ be distinct elements of ω2, and suppose that
i < ω is such that σdi = τdi = s (say), σ(i) = 0 and τ(i) = 1. Then by
continuity of the group product operation, θ−1

σ .θτ : (M, gs∧0) → (M, gs∧1) is
an isomorphism, so that θ−1

σ .θτ ∈ G \H. It follows that H has large index in
G. This contradiction proves the small index property for M . The argument
to show that G is not the union of a countable chain of proper subgroups is
similar.

A similar technique can be applied to uncountable structures. Let M be
an L-structure, let I be any set and let fi (i ∈ I) be function symbols not
occurring in L. In [19], a sequence (gi : i ∈ I) of automorphisms of M is
said to be existentially closed if the following holds. Assume that M � N ,
hi is an automorphism of N extending gi (for each i ∈ I), and ϕ(x̄, ȳ) is
a conjunction of (a) L-formulas, (b) formulas of the form fi(v1) = v2 for
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i ∈ I and v1, v2 in x̄∧ȳ. Then for all ā ∈ M , if (N, hi : i ∈ I) |= ∃ȳϕ(ā, ȳ)
then (M, gi : i ∈ I) |= ∃ȳϕ(ā, ȳ). Using amalgamation of existentially closed
sequences of automorphisms, Lascar and Shelah prove that if M is a saturated
model of a first order theory T of cardinality λ = λ<λ > |T |, then whenever
H ≤ Aut(M) has index at most λ, there is A ⊆ M with |A| < λ and

AutA(M)
def
= {g ∈ Aut(M) : ag = a for all a ∈ A} ≤ H. The proofs

will appear in [19] but are similar to the ones we present here. Shelah has
announced that the result also holds when λ is singular (in which case T is
stable).

We remark that the topological arguments we give can often be replaced
by game-theoretic ones, by dint of the Banach-Mazur theorem [23, Theorem
6.1].

The layout of the paper is as follows. In §2 we define the notion of an
amalgamation base for M , and show that if such a base exists then M has
many homogeneous generic sequences of automorphisms of all finite lengths.
In §3 we show that ω-stable ω-categorical structures and the random graph
have amalgamation bases. In §4 we prove that a meagre subgroup (i.e., one
with comeagre complement) of a Polish group has large index. This will be
needed in §5 when we show that the existence of many homogeneous generic
sequences of all finite lengths implies the small index property. Finally in
§6 we establish the result on ascending chains of subgroups. Theorem 1.2
follows from Theorems 2.9, 5.3, 6.1 and the results of §3.

Some history may be helpful. When Shelah visited Hodges in summer
1989, he sketched a strategy for proving that the random graph has the small
index property, and Hodges took notes. Hodkinson later extracted versions
of Theorems 2.9 and 5.3 from these notes, and proved Theorem 4.1. Lascar
improved the argument, and used it and an earlier result of Hrushovski (The-
orem 3.1 below) in showing that ω-stable ω-categorical structures have the
small index property. Finally Hrushovski [14] proved Theorem 3.6, complet-
ing the argument for the random graph, and Lascar obtained Theorem 6.1.

Notation: M will always be a countably infinite structure, with further
conditions where stated. A, B, etc. will generally denote sets of elements;
A ⊆ M (or A ⊆ M eq) will mean that A is a set of elements of the domain
of M (respectively, of M eq). If A ⊆ M eq, we write Aut(A) for the set of
M eq-elementary permutations of A. Except in §4, the symbol G will denote
Aut(M); we will identify Aut(M) with Aut(M eq). We write H ≤ G to mean
that H is a subgroup of G. If g, h ∈ G, we will let gh denote h−1gh. If α is
an ordinal, α2 is the set {f : f : α → 2} of sequences of zeros and ones of
length α. If f ∈ α2, we let f∧0, f∧1 ∈ α+12 denote the extensions f ∗ of f
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with f ∗(α) = 0, 1 respectively. If β ≤ α, t ∈ β2 and s ∈ α2, we write t ≤ s
if sdβ = t. We let <α2 denote

⋃
β<α

β2.
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2 Homogeneous generic sequences of auto-

morphisms

Here we consider generic sequences of automorphisms. We will give a suf-
ficient condition for a countably infinite ω-categorical structure M to have
many homogeneous generic sequences of automorphisms of all finite lengths.

2.1 Generic sequences of automorphisms

Definition 2.1 A base for M is a set B(M) of subsets of M eq satisfying:

1. GA is open in G for all A ∈ B(M).

2. If A ∈ B(M) and g ∈ G then Ag ∈ B(M).

Definition 2.2 Let B(M) be a base for M , and let 0 < n < ω. We say
that (g1, ..., gn) ∈ Gn is B(M)-generic, or just generic, if the following two
conditions hold:

1. If A ∈ B(M) then {GB : A ⊆ B ∈ B(M), Bgi = B for all i ≤ n} is a
base of open neighbourhoods of 1 in G.

2. Let A ∈ B(M) be such that Agi = A (1 ≤ i ≤ n). Let B ∈ B(M)
extend A, and let hi ∈ Aut(B) extend gidA (1 ≤ i ≤ n). Then there is

α ∈ GA such that gi
α def

= α−1giα extends hi for all i.

Recall that a Polish space is a separable topological space that can be
made a complete metric space. If we let M = {an : n < ω} we can metrise
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G by: d(g, h) = 0 if g = h, and 1/2n otherwise, where n is the least natural
number such that ang 6= anh or ang

−1 6= anh
−1. G is complete under this

metric, which yields the topology defined in §1, so G is a Polish space. If
n > 1 then Gn, endowed with the product topology, is also a Polish space.
A sequence (gi : i < ω) of elements of G is a Cauchy sequence if and only
if for every open subgroup K ≤ G there is n < ω such that gig

−1
j ∈ K

and g−1
i gj ∈ K for all i, j > n. Similarly, if pj ∈ G and fj = p0p1...pj for

each j < ω, the sequence (fj : j < ω) is Cauchy if and only if for all open
subgroups K ≤ G there is n < ω such that pj ∈ K ∩ f−1

n .K.fn for all j > n.
We now show that once two generic sequences agree on an element of the

base, they are conjugate over that element.

Proposition 2.3 (homogeneity) Let B(M) be a base for M , let n < ω
be non-zero, and let (g1, ..., gn), (h1, ..., hn) each be B(M)-generic. Let B ∈
B(M) and suppose that gidB = hidB ∈ Aut(B) for each i ≤ n. Then there
is f ∈ GB such that gi

f = hi for all i ≤ n.
(So f : (M, g1, ..., gn) → (M, h1, ..., hn) is an isomorphism.)

Proof. The proof is a standard back-and-forth argument, with the compli-
cation that the elements of B(M) are subsets of M eq. Let us say that an
M eq-elementary map θ is determined on an element a ∈ M if Gdom(θ) ≤ Ga.
Clearly, any two automorphisms extending θ will agree on a. We let Θ be
the set {fdA : f ∈ GB, A ∈ B(M), A ⊇ B, Agi = A for all i ≤ n, hi extends
gi

fd(Af) for all i ≤ n}. Clearly Θ is non-empty, as it contains the identity
map on B.

Claim: Let θ ∈ Θ, and let a ∈ M . Then there is θ′ ∈ Θ extending θ and
determined on a. Similarly, there is θ′′ ∈ Θ extending θ and such that θ′′−1

is determined on a.
Proof of Claim: Let f ∈ GB, A ∈ B(M) be such that fdA = θ. As

(g1, ..., gn) is generic, we can choose A′ ⊇ A in B(M) such that GA′ ≤ Ga and
A′gi = A′ for all i ≤ n. As θ ∈ Θ, the automorphisms gi

f and hi agree on Af
for each i ≤ n. Thus, A′f ∈ B(M) extends Af , and gi

fd(A′f) ∈ Aut(A′f)
extends hid(Af) for all i ≤ n. So as (h1, ..., hn) is generic, there is f ∗ ∈ GAf

such that hi extends gi
ff∗d(A′ff ∗) for all i ≤ n. Then the map θ′ = (ff ∗)dA′

is in Θ, extends θ and is determined on a, as required. The other half of the
claim is proved similarly.

Enumerate the domain of M as {am : m < ω}. By the claim, Θ is in effect
a back-and-forth system, and we can define, by induction in the usual way,
an increasing chain of elements Bm ∈ B(M) for m < ω, all containing B, and
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automorphisms fm ∈ GB for m < ω, in such a way that θm
def
= fmdBm ∈ Θ,

both θm and its inverse are determined on am, and θm+1 always extends
θm. Now if k, k′ ≥ m then fk and fk′ both extend θm, so they agree on
am. Similarly, their inverses agree on am. It follows that (fm : m < ω)
is a Cauchy sequence. Let f be its limit. We check that f is as required.
Certainly f ∈ GB. Let i ≤ n; we check that gi

f = hi. Let m < ω. Then
fdBm = θm ∈ Θ, so hi extends gi

fd(Bmf). Hence gi
fh−1

i ∈ GBmf ≤ Gam ,
so gi

f and hi agree on am. As this holds for all m, we obtain gi
f = hi, as

required. �

2.2 Extending M eq-elementary maps

We will need the following “folklore” lemma (appearing in early papers of
Cameron), and corollaries on extending M eq-elementary maps to automor-
phisms of M .

Lemma 2.4 Assume that M is ω-categorical. Then for each open subgroup
K of G, there are only finitely many subgroups H of G that contain K.

Proof. It suffices to prove the result for K = Gā, for arbitrary ā ∈ M .
Assume ā has length n. By the Ryll-Nardzewski-Engeler-Svenonius theorem
(see [2]), there are only finitely many orbits of G on M2n. If H ≤ G, let Φ =
{(āg, āhg) : g ∈ G, h ∈ H}. Then Φ is a union of orbits of G on 2n-tuples, so
it can take only finitely many values as H ranges over subgroups of G. The
lemma will follow if we show that if Gā ≤ H then H = {f ∈ G : (ā, āf) ∈ Φ},
so that Φ determines H in this case.

Clearly (ā, āh) ∈ Φ for every h ∈ H. For the other direction, let (ā, āf) ∈
Φ, so that (ā, āf) = (āg, āhg) for some g ∈ G, h ∈ H. It is immediate that
g, hgf−1 ∈ Gā. But Gā ≤ H, so g, hgf−1 ∈ H, and it follows that f ∈ H, as
required. �

Corollary 2.5 Assume that M is ω-categorical. Let f be an M eq-elementary
map with domain D ⊆ M eq, and suppose that GD is open. Then there is
g ∈ G extending f .

Proof. Clearly, GD =
⋂

d∈D Gd. So by the lemma, there is finite D0 ⊆ D
such that GD = GD0 . Now as M is saturated, it is easily seen that for all
finite X ⊆ D, the map fdX extends to some fX ∈ G. Let g = fD0 . Then
fX .g−1 ∈ GD0 ≤ GX for all finite X with D0 ⊆ X ⊆ D, so gdX = fXdX =
fdX. As such an X can be found containing any chosen element of D, we
see that g must extend f . �
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Corollary 2.6 Assume that M is ω-categorical. Let A ⊆ M eq be such that
GA is open. Then Aut(A) is (at most) countable.

Proof. Choose finite B ⊆ M with GB ≤ GA. Using the lemma, for each
g ∈ Aut(A) choose g+ ∈ G extending g. Then if g 6= h in Aut(A), the right
cosets GBg+ and GBh+ are distinct. Hence |Aut(A)| ≤ |G : GB| ≤ ω. �

2.3 Existence of many generic sequences

Definition 2.7 Let B(M) be a base for M . We say that M has ample B(M)-
generic automorphisms if for all non-zero n < ω, the set of B(M)-generic
elements of Gn is comeagre in Gn in the product topology.

We say that M has ample homogeneous generic automorphisms if there
exists a base B(M) for M such that M has ample B(M)-generic automor-
phisms.

We will give a sufficient condition for M to have ample homogeneous
generic automorphisms. For this we need another definition.

Definition 2.8 A base A(M) for M is said to be an amalgamation base if
(a) it is countable, and (b) the following conditions hold:

Cofinality: Let e1, ..., en be finite elementary maps from M into M . Let
A ∈ A(M). Then there is B ∈ A(M) containing A, and fi ∈ Aut(B)
extending ei for each i ≤ n.

Amalgamation property: Let A, B, C ∈ A(M) with A ⊆ B, A ⊆ C. Then
there is α ∈ GA such that whenever g ∈ Aut(Bα), h ∈ Aut(C) satisfy
gdA = hdA ∈ Aut(A), then g ∪ h is an elementary map in M eq.

Theorem 2.9 Let M be a countable ω-categorical structure and let A(M)
be an amalgamation base for M . Then M has ample A(M)-generic auto-
morphisms.

Proof. Let n ≥ 1; we show that {ḡ ∈ Gn : ḡ is A(M)-generic} is comeagre
in Gn in the product topology.

Claim 1 Let A ∈ A(M) and ā ∈ M . Then the set X(A, ā)
def
= {(g1, ..., gn) ∈

Gn : ∃B ∈ A(M) (B ⊇ A, B = Bgi for all i ≤ n, GB ≤ Gā)} is an open
dense subset of Gn.
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Proof of Claim 1 Since A(M) is a base for M , we know that GB is open
for all B ∈ A(M), and it follows that X(A, ā) is open in Gn. To prove that
it is dense, let S ⊆ Gn be a non-empty open subset. We show S ∩X(A, ā) 6=
∅. We can replace S by a smaller set, so we can assume it has the form
{(g1, ..., gn) ∈ Gn : gi extends ei for all i ≤ n} for some finite elementary
maps e1, ..., en of M into M , and by Corollary 2.5 we can assume that the
ei are defined on ā. As A(M) is an amalgamation base, by the cofinality
condition there is B ∈ A(M) containing A and the domain and range of
each ei, such that each ei can be extended to fi ∈ Aut(B). By Corollary 2.5
there are gi ∈ G extending fi (all i). Then (g1, ..., gn) ∈ S ∩ X(A, ā). This
proves the claim.

Now suppose that A ⊆ B in A(M), hi ∈ Aut(B) and Ahi = A for each

i ≤ n. Let h̄ = (h1, ..., hn), and write: Y (A, B, h̄)
def
= {(g1, ..., gn) ∈ Gn : if

gidA = hidA (all i ≤ n) then there is α ∈ GA such that (gi
α)dB = hi (all

i ≤ n)}.

Claim 2 The set Y (A, B, h̄) is open and dense in Gn.

Proof of Claim 2 This is similar to Claim 1. As before, Y (A, B, h̄) is open.
To show density, let S = {(g1, ..., gn) ∈ Gn : gi extends ei for each i ≤ n},
where the ei are finite elementary maps on M . We show S∩Y (A, B, h̄) 6= ∅.

Again we can replace S by a smaller set, so as A(M) is an amalgamation
base we can assume that S = {(g1, ..., gn) ∈ Gn : gi extends fi for all i ≤ n},
where fi ∈ Aut(C) extends ei for all i ≤ n, and C ∈ A(M) contains A. Note
that GC is open in G, so S is open in Gn, and by Corollary 2.5, S 6= ∅.

If fidA 6= hidA for some i ≤ n, then S ⊆ Y (A, B, h̄), and we are done.
Assume that we are in the other case. As A(M) is an amalgamation base,
there is α ∈ GA such that for each i, the map fi ∪ hi

α is elementary, so
by Corollary 2.5 extends to an automorphism gi of M . Then (g1, ..., gn) ∈
S ∩ Y (A, B, h̄), proving the claim.

Now A(M) is countable, and by Corollary 2.6, so is Aut(B) for all B ∈
A(M). The theorem now follows, since

{ḡ ∈ Gn : ḡ is A(M)-generic} =
⋂
A,ā

X(A, ā) ∩
⋂

A,B,h̄

Y (A, B, h̄),

a countable intersection of dense open sets. �
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3 Amalgamation bases

We now show that ω-stable ω-categorical structures and the random graph
have amalgamation bases.

Firstly let M be a countably infinite structure whose theory is ω-stable
and ω-categorical. We work in the real M , but we will use M eq a little. In
particular, acl(A) for A ⊆ M will always denote the algebraic closure of A in
M eq. But we will make no distinction between G = Aut(M), and Aut(M eq).
We begin with the following theorem, due to E. Hrushovski (unpublished).

Theorem 3.1 If B ⊆ M is finite and A = acl(B) then GA is open in G.

Proof. Without loss of generality we may assume that B = ∅. We must
find a finite set C ⊆ M such that GC ≤ GA.

For each n < ω and each 0-definable equivalence relation R on n-tuples
of M with a finite number mR of classes, add to the language of M new n-
ary relation symbols UR,1, ..., UR,mR

, and interpret them as the R-equivalence
classes. Let M ′ be the resulting expanded structure.

As M is ω-categorical, two n-tuples in M lie in the same orbit of Aut(M ′)
if they lie in the same R-equivalence class for each finite equivalence relation
R on n-tuples as above. But there are only finitely many M -inequivalent R
of this kind. Hence M ′ is ω-categorical; and clearly it is ω-stable.

Now by [13, Theorem 2.1], the language of an ω-categorical ω-stable
theory is essentially finite. Hence there is a finite subset {U1, ..., Us} of the
UR,m such that all the others are definable from them. Let C be a finite
subset of M such that for each i ≤ s there is c̄i ∈ C with M ′ |= Ui(c̄i). Then
GC ≤ GA. �

This argument also shows that M is G-finite (see [16] for the definition
of G-finiteness).

Definition 3.2 We say that B ⊆ M is homogeneous if for all ā, b̄ ∈ B, if
there is g ∈ G such that āg = b̄, then there is g ∈ G such that Bg = B and
āg = b̄. We write H(M) for {B ⊆ M : B is finite and homogeneous}, and
K(M) for {acl(B) : B ∈ H(M)}.

Clearly K(M) is closed under automorphisms. From this and Theorem
3.1, we deduce that K is a base for M .

Fact 3.3 H(M) is cofinal in the set ℘<ω(M) of all finite subsets of M . See
[3].
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Proposition 3.4 K(M) is an amalgamation base for M .

Proof. Clearly K(M) is countable. Let e1, ..., en be finite elementary maps
on M , and let A ∈ K(M). Choose B ∈ H(M) such that A = acl(B).
Using Fact 3.3 let C ∈ H(M) contain B and the domains and ranges of the
ei. By saturation of M there are g1, ..., gn ∈ G extending e1, ..., en, and by
homogeneity we can assume that Cgi = C for all i. Let D = acl(C) ∈ K(M).
Then Dgi = D for all i. So gidD ∈ Aut(D) extends ei for all i.

Now let A, B, C ∈ K(M) with A ⊆ B, A ⊆ C. There is α ∈ GA such that
Bα and C are independent over A in M eq. The proof is then completed by
quoting:

Fact 3.5 Let A, B, C ∈ K(M) with A ⊆ B, A ⊆ C be such that B and C are
independent over A. If f ∈ Aut(B), g ∈ Aut(C) and fdA = gdA ∈ Aut(A),
then f ∪ g is elementary.

Proof: An easy modification of [16, Theorem 3.3]. �

Secondly let M be the random graph. See [1] for information on the
random graph. We do not use M eq here. We will prove that the base ℘<ω(M),
the set of all finite subsets of M , is an amalgamation base for M .

As M has quantifier elimination, the elementary maps on M are just
the isomorphisms of induced subgraphs of M . Let A, B, C ∈ ℘<ω(M) with
A ⊆ B, A ⊆ C. There is α ∈ GA such that Bα ∩ C = A and there are
no graph edges between Bα \ A and C \ A. Then whenever g ∈ Aut(Bα),
h ∈ Aut(C) satisfy gdA = hdA ∈ Aut(A), the map g ∪ h is M -elementary.
Hence the amalgamation condition of Definition 2.8 holds.

For cofinality it is enough to show that whenever e1, ..., en are isomor-
phisms of finite induced subgraphs of M , there is a finite subgraph A of
M and gi ∈ Aut(A) extending ei for each i ≤ n. As M is homogeneous
and universal for finite graphs, the following theorem, recently proved by
Hrushovski, establishes this.

Theorem 3.6 Let X be a finite graph. Then there exists a finite graph Z
containing X as an induced subgraph, such that any isomorphism between
induced subgraphs of X extends to an automorphism of Z.

Proof. See [14]. �

J. Truss [27] proved earlier in a different way that a single isomorphism
of subgraphs of X may be extended to an automorphism of a larger finite
graph.
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4 Polish groups

In this section we work in the slightly more general setting of a Polish group:
a group G that is also a Polish space with a (countable) set of open subgroups
forming a base of neighbourhoods of the identity. (The group G = Aut(M) is
an example of such a group.) G is a complete metric space; we write d(g, h)
for the metric on G.

A subset S of a topological space X is said to be meagre if X \ S is
comeagre. We will prove the following result, needed in §5.

Theorem 4.1 Any meagre subgroup of G has index 2ω in G.

Remark 4.2 1. By Lemma 2.6 of [16], any subgroup H of G with the
Baire property is either meagre (and so by Theorem 4.1 of large index),
or open. As closed sets have the Baire property (see Chapter 4 of [23]),
Theorem 4.1 implies the result of Evans [8] that for any countable
structure M , any closed subgroup of Aut(M) of small index is open.
(Evans’ result in turn generalises the definability theorem of Kueker
[15].)

2. If H is meagre in G then so is each coset of H; it follows that |G :
H| > ω. So Theorem 4.1 needs no proof if one wishes to assume CH.
If κ < 2ω then MAκ implies that any union of κ meagre subsets of a
Polish space is meagre, so Theorem 4.1 follows trivially from Martin’s
Axiom. See [21] for more information.

3. For the Polish space R, Solovay [21, §4.2] proved by forcing that there
is a model of ZFC + ¬CH in which there exist meagre sets Xi ⊆ R
(i < ω1) such that

⋃
i<ω1

Xi = R.

4. Theorem 4.1 is an easy consequence of the game-theoretic argument of
Hodges [10, Theorem 4.1.5], which is an adaptation of [25, Theorem
IV.5.16].

Definition 4.3 A coset system is a pair (X, λ), where X is a non-empty set
and λ is a map providing for each x, y ∈ X a non-empty open subset λ(x, y)
of G. If there is no ambiguity we write Gxy for λ(x, y), and Gx for λ(x, x).
We require that for all x, y, z ∈ X:

• Gxy = (Gyx)
−1

• Gxy.Gyz = Gxz

12



Here, for subsets S, T ⊆ G, we write S−1 for {s−1 : s ∈ S} and S.T for
{st : s ∈ S, t ∈ T}, as usual.

As an example, if D is an orbit of G = Aut(M) on Mn, then each non-
empty set X and map σ : X → D yields a coset system (X, ν) where

ν(x, y) = {g ∈ G : (σ(x))g = σ(y)}.

Remark 4.4 Let (X, λ) be a coset system and let x, y ∈ X. The axioms
yield λ(x, x) = λ(x, x).λ(x, x)−1. Hence Gx is an open subgroup of G. As
Gxy = Gx.Gxy, it is clear that Gxy is a union of right cosets of Gx. But if
g, h ∈ Gxy, then gh−1 ∈ Gxy.Gyx = Gx. Hence Gxy is a single right coset of
Gx, and so a closed subset of G (for all x, y). Similarly, Gxy is a single left
coset of Gy. If also z ∈ X, choose arbitrary gy ∈ Gxy and gz ∈ Gxz; then
Gyz = g−1

y .Gx.gz. As a special case, Gy is the conjugate of Gx by gy.

Definition 4.5 If (X, λ) and (X, µ) are coset systems, (X, µ) is said to re-
fine (X, λ) if µ(x, y) ⊆ λ(x, y) for all x, y ∈ X.

Lemma 4.6 Let (X, λ) be a coset system, let x, y ∈ X be distinct, and let
S ⊆ λ(x, y) be open and non-empty. Then there is a refinement (X, µ) of
(X,λ) such that µ(x, y) ⊆ S.

Proof. Choose for each z ∈ X an element gz ∈ λ(x, z) in such a way that
gx = 1 and gy ∈ S. Then 1 ∈ S(g−1

y ) ⊆ λ(x, x), and S(g−1
y ) is open. Choose

an open subgroup K ≤ S(g−1
y ), and if z, z′ ∈ X define µ(z, z′) = g−1

z .K.gz′ .
Then (X, µ) is a coset system with the required properties. �

Definition 4.7 If (X, λ) is a coset system, and S ⊆ G, we write (X, λ) ⊆ S
if Gxy ⊆ S for all distinct x, y ∈ X.

Corollary 4.8 Let D ⊆ G be open and dense, and let (X, λ) be a coset
system such that X is finite. Then there is a refinement (X, µ) of (X,λ)
such that (X, µ) ⊆ D.

Proof. Let x, y ∈ X be distinct. By definition, λ(x, y) is open, so that
λ(x, y) ∩ D is non-empty and open. By the lemma, there is a refinement
(X,µ) of (X, λ) such that µ(x, y) ⊆ D. As X is finite, the proposition
follows by induction. �

Definition 4.9 If X is finite and (X,λ) is a coset system, we will write
diam(X, λ) for max{diam(λ(x, y)) : x, y ∈ X}, where if S ⊆ G is non-

empty, diam(S)
def
= sup{d(g, h) : g, h ∈ S} ∈ R ∪ {∞}.
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Using Lemma 4.6, we can also prove:

Corollary 4.10 Let X be finite, let (X, λ) be a coset system, and let ε > 0.
Then there is a coset system (X, µ) refining (X, λ) and of diameter less than
ε.

Proof. If x, y ∈ X are distinct, then choose g ∈ λ(x, y) and let S = {h ∈
λ(x, y) : d(g, h) < ε/2}. Clearly S is non-empty and open. By Lemma 4.6
we can choose a refinement (X, µ) of (X,λ) such that µ(x, y) ⊆ S. Hence
diam(µ(x, y)) < ε. Note that µ(x, x) = K in the lemma can also be taken
to have diameter less than ε. As X is finite, the corollary now follows by
induction, as before. �

Definition 4.11 A homomorphism from a coset system (Y, µ) into a coset
system (X, λ) is a map ν : Y → X such that µ(y, y′) ⊆ λ(ν(y), ν(y′)) for all
y, y′ ∈ Y . A homomorphism ν as above is said to be surjective if it is so as
a map from Y onto X.

Lemma 4.12 Let (X, λ) be a coset system, let Y be any non-empty set and
let ν : Y → X be given. Then there is a canonical coset system (Y, µ) such
that ν is a homomorphism from (Y, µ) into (X,λ).

Proof. Define µ(y, y′) = λ(ν(y), ν(y′)). �

Theorem 4.13 Let C be a comeagre subset of G. Then for each σ, τ ∈ ω2
there is an element gστ ∈ G, such that for all σ, τ, υ ∈ ω2,

• gστ .gτυ = gσυ

• if σ 6= τ then gστ ∈ C.

Proof. Let Di ⊆ G (i < ω) be dense open sets such that
⋂

i<ω Di ⊆ C. We
can assume that if i < j < ω then Di ⊇ Dj. For each n < ω we will define a
coset system Tn = (n2, λn) by induction on n. We will require:

1. Tn ⊆ Dn for all n ≥ 1

2. diam(Tn) < 1/n if n ≥ 1

3. if n < m < ω, the map (s 7→ sdn) for s ∈ m2 is a (surjective) homo-
morphism from Tm onto Tn.
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Define T0 = ({∅}, λ0) by λ0(∅, ∅) = G. Inductively assume that Tn has
been defined. By Lemma 4.12 we can define a coset system T ∗ = (n+12, λ∗)
on n+12 by: λ∗(s, t) = λn(sdn, tdn). By Corollaries 4.8 and 4.10 there is a
refinement Tn+1 of T ∗ of diameter less than 1/(n+1) such that Tn+1 ⊆ Dn+1.
Then (s 7→ sdn) is a homomorphism from Tn+1 onto Tn. This completes the
definition of the Tn.

For each σ, τ ∈ ω2 and each n < ω, choose some gστ,n ∈ λn(σdn, τdn).
It follows from (2) and (3) that (λn(σdn, τdn) : n < ω) is a decreasing chain
of subsets of G and diam(λn(σdn, τdn)) < 1/n. Hence (gστ,n : n < ω) is a
Cauchy sequence; we define gστ to be its limit.

Let σ, τ, υ ∈ ω2. We show gστ .gτυ = gσυ. If K ≤ G is open, then for all
large enough n we have Kgστ = Kgστ,n and (g−1

στ Kgστ )gτυ = (g−1
στ Kgστ )gτυ,n.

Hence Kgστgτυ = gστ (g
−1
στ Kgστ )gτυ = gστ (g

−1
στ Kgστ )gτυ,n = Kgστ,n.gτυ,n for

all large enough n, so (gστ,n.gτυ,n : n < ω) converges to gστ .gτυ. But also,
gστ,n.gτυ,n ∈ λn(σdn, υdn). It now follows from (2) that d(gστ,n.gτυ,n, gσυ,n) <
1/n if n ≥ 1. So we obtain gστ .gτυ = gσυ, as required.

Finally let σ 6= τ in ω2. By Remark 4.4, each λn(σdn, τdn) is closed, so
since gστ,m ∈ λn(σdn, τdn) if m ≥ n, we have gστ ∈ λn(σdn, τdn) for all n.
By (1), for all n so large that σdn 6= τdn, we have λn(σdn, τdn) ⊆ Dn. Since
we assumed that the Dn form a decreasing chain, this is enough to ensure
that gστ ∈

⋂
n<ω Dn ⊆ C. The proof is complete. �

Proof of Theorem 4.1. Suppose that H ≤ G is meagre. Choose
elements gστ ∈ G (σ, τ ∈ ω2) as in Theorem 4.13 such that if σ 6= τ then
gστ /∈ H. Evidently g−1

στ = gτσ for all σ, τ . Let σ ∈ ω2 be arbitrary. If τ, υ
are distinct, gτσ.g

−1
υσ = gτυ /∈ H. Hence the right cosets Hgτσ (τ ∈ ω2) are

all distinct, and so |G : H| = 2ω. �

Corollary 4.14 Assume that H ≤ G has small index but is not open. Let
C ⊆ G be any comeagre set. Then for all open subgroups K ≤ G, we have

1. (C ∩K) ∩H 6= ∅

2. (C ∩K) \H 6= ∅.

Proof. Note that K is also a Polish group in which C ∩K is comeagre.
(1) If C ∩K ⊆ K \ H then H ∩K is meagre in K. Hence by Theorem

4.1 it has large index in K, a contradiction.
(2) If C∩K ⊆ H then H∩K is comeagre in K. By translating, it follows

that all cosets of H ∩K in K are also comeagre in K. But any two comeagre
sets intersect, so K ≤ H and H is open, also a contradiction. �
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5 Generic automorphisms and the small in-

dex property

We can now prove the first part of Theorem 1.2. We let G = Aut(M) again.

Notation 5.1 If X ⊆ Gn+1 (where n < ω) and ḡ = (g1, ..., gn) ∈ Gn (we let
G0 = {∅}), we define:

Xḡ = {g ∈ G : (g1, ..., gn, g) ∈ X}.

We then define:

∂X = {ḡ ∈ Gn : Xḡ is comeagre in G}.

Fact 5.2 (Kuratowski, Ulam) If n < ω is non-zero, and C ⊆ Gn+1 is
comeagre (in the product topology) then ∂C is comeagre in Gn.

Proof. See [23, Theorem 15.1], for example. �

Theorem 5.3 If M is a countable structure with ample homogeneous generic
automorphisms, then M has the small index property.

Proof. Let B(M) be a base for M such that {ḡ ∈ Gn : ḡ is B(M)-generic}
is comeagre in Gn in the product topology for all n ≥ 1. We begin with:

Claim: Let n < ω and let ḡ = (g1, ..., gn) ∈ Gn be generic (or, if n = 0,
empty). Then {f ∈ G : (ḡ, f) is generic} is comeagre in G.

Proof of Claim: If n = 0 the result is given. Suppose n > 0. By
assumption, the set C of generic n + 1-tuples is comeagre in Gn+1. By the
Kuratowski-Ulam theorem, ∂C is comeagre, and hence dense, in Gn. Choose
B ∈ B(M) such that Bgi = B for i = 1, ..., n, and then h̄ = (h1, ..., hn) ∈ ∂C
such that gi and hi agree on B for each i. By Proposition 2.3 there is θ ∈ GB

such that hθ
i = gi for each i ≤ n. Then {f ∈ G : (ḡ, f) is generic} = θ−1.Ch̄.θ,

which is comeagre in G. This proves the claim.

Now assume for contradiction that H is a subgroup of G of small index
that is not open in G. Enumerate the domain of M as {an : n < ω}. We will
define by induction on s ∈ <ω2:

• a set Bs ∈ B(M),

• elements γs, gs∧0, gs∧1 ∈ G.
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We will require that γ∅ = 1, and that for each s ∈ <ω2,

1. If ∅ 6= t ≤ s in <ω2 then Bsgt = Bs.

2. gs∧0 ∈ GBs ∩H, and gs∧1 ∈ GBs \H.

3. If s ∈ n2 for n > 0 then the tuple gs̄ = (gsd1, ..., gsdn) is generic.

4. (gt)
γs = (gt)

γt for all ∅ < t ≤ s.

5. If s ∈ n2 then γs∧0γ
−1
s , γs∧1γ

−1
s ∈ Gai

∩Gaiγ
−1
s

for all i ≤ n.

Let s ∈ n2 for some n < ω, and assume that if t < s then Bt has been
defined, and that if t ≤ s, t 6= ∅, then gt and γt have been defined. We will
define Bs, gs∧0, gs∧1, γs∧0 and γs∧1.

Let A = {a0, ..., an, a0γ
−1
s , ..., anγ

−1
s }. As ḡs (if non-empty) is B(M)-

generic, we can choose Bs ∈ B(M) with GBs ≤ GA, and such that Bsgt = Bs

for all t ≤ s with t 6= ∅. With this choice, (1) holds. By the claim, C = {g ∈
G : (ḡs, g) is generic} is comeagre in G. So given our assumption on H, by
Corollary 4.14 we can choose gs∧0 ∈ (C ∩GBs)∩H and gs∧1 ∈ (C ∩GBs)\H.
Hence gs∧0 and gs∧1 satisfy (2) and (3).

Now (ḡs, gs∧0) and (ḡs, gs∧1) are generic and agree on Bs ∈ B(M). So by
Proposition 2.3 there is fs ∈ GBs such that (gt)

fs = gt for all t ≤ s, and
(gs∧1)

fs = gs∧0. Define:

γs∧0 = γs γs∧1 = fs.γs

Clearly clauses (4) and (5) are satisfied. This completes the construction.
If σ ∈ ω2, then by Clause 5 of the construction, (γσdn : n < ω) is a

Cauchy sequence. Let γσ be its limit. Suppose that σ 6= τ and n, s are such
that σdn = s∧0 and τdn = s∧1. By (4) and continuity of the product, we
have:

(gs∧0)
γσ = limn→∞(gs∧0)

γσdn = (gs∧0)
γs∧0 = (gs∧0)

γs ;

(gs∧1)
γτ = limn→∞(gs∧1)

γτdn = (gs∧1)
γs∧1 = (gs∧0)

γs .

Hence (gs∧0)
γσγ−1

τ = gs∧1. Since gs∧0 ∈ H and gs∧1 /∈ H, we see that
γσ.γ

−1
τ /∈ H. Thus the right cosets Hγσ (σ ∈ ω2) are all distinct, and H has

index 2ω, a contradiction. �
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6 Ascending chains of subgroups

To complete the proof of Theorem 1.2, we use the techniques of §5 again to
show:

Theorem 6.1 Assume M is countably infinite and ω-categorical, and has
ample homogeneous generic automorphisms. Then G = Aut(M) is not the
union of a countable chain of proper subgroups.

Proof. Assume for contradiction that G is the union of an increasing chain
(Hn : n < ω) of proper subgroups. By Lemma 2.4, no Hn is open in G, so
for all ā ∈ M and n < ω, the subgroup Gā∩Hn is not comeagre in Gā. Also,
as the union of countably many meagre sets is meagre, by discarding finitely
many of the Hn we can assume that no Hn is meagre in G. Hence Gā ∩Hn

is not meagre in Gā for any ā and n.
As M has ample homogeneous generic automorphisms, we can undertake

the construction of Theorem 5.3 again. But this time we use the above to
arrange that gs∧0 ∈ Hn and gs∧1 /∈ Hn for each n < ω and s ∈ n2. Define
γσ (σ ∈ ω2) as before. So if s ∈ n2, σ > s∧0 and τ > s∧1 in ω2, then

(gs∧0)
γσγ−1

τ = gs∧1, so that γσγ
−1
τ /∈ Hn.

Now as G =
⋃

n<ω Hn, there are n < ω and uncountable Σ ⊆ ω2 such that
γσ ∈ Hn for all σ ∈ Σ. Choose m ≥ n and σ, τ ∈ Σ such that σdm = τdm
and σdm + 1 6= τdm + 1. Then γσγ

−1
τ /∈ Hm ⊇ Hn, a contradiction. �

The results of Sections 2 and 3 show that any ω-stable ω-categorical
structure satisfies the conclusion of the theorem, as does the random graph.
Macpherson and Neumann [20] prove that the conclusion holds when M is
an infinite set without further structure.
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