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0: Introduction

We discuss finding a logic characterising the

polynomial-time-computable queries in the

absence of linear order.

Themes:

1. extending fixed-point logic by generalised

quantifiers to capture P on all classes of

structures

2. restricting the classes until fixed-point logic

itself captures P

3. detecting classes on which fixed-point logic

collapses to first-order logic
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Definition 0.1 A (k-ary) query on a class of

structures is a map ρ associating with each

structure A in the class a set ρA ⊆ Ak, such

that if θ : A ∼= B then θ(ρA) = ρB.

Eg: any formula ϕ of a logic defines a query

(A 7→ ϕA).

Fix a class C of finite structures.

• A query is in P on C if, for any A ∈ C and

ā ∈ Ak, it is decidable in P-time in |A| whether

ā ∈ ρA.

• A logic L is said to be in P (‘L ≤ P ’) on the

class if every formula defines a query that is

in P on the class.

• A logic L captures P on the class (‘L = P ’) if

the logic is in P on the class, and every query

in P on the class is definable in the logic.
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We are by now warmly familiar with:

Theorem 0.2 (Immerman,Vardi) On any class

of linearly ordered structures, LFP captures

P.

Aim: dispense with the order.

In general, LFP < P.

So we may try to:

1. extend LFP to get P in all cases

2. find restricted classes of finite structures

on which LFP captures P

3. (subsidiary) find when LFP expresses no

more queries than first-order logic on a

class.
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We will need. . .

• LFP = IFP ≤ Lω
∞ω on finite structures.

• first-order types, Lk-types, Lk
∞ω-types. . .

• For any k there is an LFP-formula lin-

early ordering the Lk
∞ω-types in all finite

structures. [Abiteboul–Vianu]

• Generalised quantifiers (‘GQs’). Uniform

sequences of GQs (to recognise interpre-

tations of arbitrary arity). Counting quan-

tifiers.

As GQs may not be monotone, positive

⇒ monotone may fail.

So we use “FP”: read ‘FP+Q’ as IFP+Q

where Q is a set of GQs. Read ‘FP’ as

either LFP or IFP.
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1: A logic for P?

Would like to capture P on any signature.

Problem: there are limitative results.

Theorem 1.1 (Hella, 1992) For any set Q

of GQs of bounded arity, FP + Q does not

capture P in all signatures.

Is this a problem? Can interpret any M in a

graph G(M), and G(M) in M. So add to FP a

GQ for every P-time graph property (arity 2).

Do we get all P-properties in all signatures?

No, by theorem 1.1.

The trouble is. . . arity of interpretation of G(M)

in M = arity of M.

Need uniform sequences of GQs.

So it is a problem!
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Now what?

A. Try to capture P on fixed signature —

say graphs.

B. Go for it: try to capture P on all signa-

tures.

Plan A: P on fixed signatures?

Take graphs.

Wide open to find a logic for P on graphs.

Theorem 1.2 (Cai–Fürer–Immerman) FP

+ all counting quantifiers does not capture

P on graphs.

Proof generalises to give Hella’s theorem (1.1).
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flip

 

Proof.

• Take a graph G and duplicate its edges:

• nodes become ‘gadgets’ X — ‘synchromesh’

devices with automorphisms flipping even

number of incoming edge-pairs:

In more detail, showing the inside of X:

7



≅

≅

So, if G is connected, flipping an even num-

ber of edge pairs makes no difference to the

isomorphism type:

But flipping an odd number of edges gives a

different graph up to isomorphism:

Don’t care which edges are twisted. They

can be moved around. Only parity of no. of

twisted edges matters.
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Fix k. Play k-pebble Ehrenfeucht–Fräıssé game

(of length ω) between even- and odd-flipped

varieties X(G), X̃(G).

Ajtai: can choose G so that deleting the

nodes of G corresponding to the k pebbled

points in X(G)/X̃(G) always leaves a con-

nected component of size > |G|/2.

Duplicator wins by keeping the twisted edge

(in X̃(G)) in this component — can do this,

as successive cpts. must overlap!

Variation of game does counting quantifiers.

But X(G), X̃(G) differ so minutely that the

number of points with a given Lk
∞ω-property

is same in both.

Thus, for any k there is G s.t. X(G), X̃(G)

are indistinguishable in Lk
∞ω + counting.

But X(G) and X̃(G) can be distinguished in

P-time.

So there are P-time graph properties not ex-

pressible in FP + counting. ♠
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How about higher-arity GQs?

Theorem 1.3 (Dawar–Hella)
FP + finitely many GQs (of any arity) does
not capture P on graphs.

Proof. Only need consider complete graphs!
Show: ∀Q (finite set of GQs): Lω

∞ω +Q < P .

Write A, B for complete graphs. Fix k < ω.

Any Lk + Q-formula is equivalent in a given
A to a disjunction of equality types (as these
are orbits of Aut(A) = automorphism group
of A).

Let ηA be a (‘Scott’) sentence stating, for
each formula of quantifier depth 1, exactly
which disjunction it’s equivalent to, in A.

Claim. For all B, if B |= ηA then A, B agree
on all Lk

∞ω + Q-sentences.

Proof of claim. Show by induction on ϕ ∈
Lk
∞ω + Q that ηA forces ϕ to be equivalent

to the same disjunction of equality types in
B as in A. Claim proved.
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So any sentence σ of Lk
∞ω + Q is equivalent

over complete graphs to
∨

A|=σ ηA.

As Q, L are finite, ∃ finitely many sentences

of the form ηA.

Hence
∨

A|=σ ηA reduces to a finite disjunction

— a ‘first-order’ sentence of Lk + Q.

So on complete graphs, Lk
∞ω + Q ‘collapses’

to first-order logic + Q.

So we can evaluate σ in any B by evaluating

a finite (bounded) number of ηA in B.

Now show that if all quantifiers in Q are in P,

this can be done in time of a fixed polynomial

order, independent of k.
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Time to evaluate ηA for fixed k?

• To evaluate ηA in B, enough to deter-

mine,

– for each q ∈ Q of the form q〈R1, . . . , Rn〉
where Ri has arity mi,

– for each Ei ⊆ Bmi, a disjunction of

equality types over k parameters in B,

whether M = (B, E1, . . . , En) is in q.

• No. of such M is indep. of B. Each such

M can be built in time O(|B|m), where m
bounds the arities of the quantifiers in Q.

• If all quantifiers in Q are evaluable in P-

time, there’s a fixed l such that ‘M ∈
q’ can be evaluated in time O(|M |l) =

O(|B|l).

Hence any ηA can be evaluated in time O(|B|r)
for r = max(m, l).
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We know:

• any Lk
∞ω + Q-sentence σ is equivalent to

a bounded disjunction of ηAs

• any ηA can be evaluated in any B in time

O(|B|r).

So σ can also be evaluated in B in time

O(|B|r).

But r does not depend on k.

Hence any Lω
∞ω + Q-sentence can be evalu-

ated in a complete graph B in time O(|B|r).

But by the polynomial hierarchy theorem, there

are P-time 0-ary queries on complete graphs

not evaluable in time O(|B|r).

Hence FP + Q ≤ Lω
∞ω + Q < P . ♠
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Generalisation of Claim to bounded classes

We’ll need this later.

Fix k and a finite set Q of GQs.

Definition 1.4 A class of structures is said

to be k, Q-bounded if there’s a finite bound

on the number of Lk+Q-types realised in any

of its structures.

We write k-bounded where Q is empty.

The argument up to the claim extends to

these:

Theorem 1.5 (mostly Weinstein)

A class is k, Q-bounded iff Lk
∞ω +Q collapses

to Lk + Q on it.
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Proof. ⇒: Let d∗ bound the number of Lk +

Q-types realised in the class. For A in the

class, there is d ≤ d∗ such that any Lk + Q-

formula of quantifier depth d+1 is equivalent

in A to a formula of quantifier depth ≤ d.

Write a Lk +Q-sentence ηA expressing which

formula each such formula is equivalent to,

in A, and the inclusion relations between for-

mulas of quantifier depth ≤ d in A.

Claim. Any Lk
∞ω+Q-formula ϕ is equivalent

to a particular Lk+Q-formula ϕA of quantifier

depth ≤ d in any model of ηA. As before.

ηA is of quantifier depth ≤ d∗ + 1. There

are finitely many such sentences up to logical

equivalence. Now any Lk
∞ω + Q-formula ϕ is

equivalent over the class to
∨

A ηA ∧ ϕA —

essentially a Lk + Q-formula.

⇐: If infinitely many types get realised in

the class, say p0, p1, . . ., then the Lk
∞ω + Q-

formulas
∨

i∈I
∧

pi (I ⊆ ω) are pairwise in-

equivalent over the class. As Lk+Q is count-

able, there can be no collapse. ♠
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Plan B: P in any signature?

Idea: factor out arity problem. We get a

normal form for a logic for P (if one exists).

Theorem 1.6 (Dawar) TFAE:

1. There’s a problem complete for P w.r.t. first-

order reductions (the reductions must not

use a linear order!!)

2. Can capture P (on all structures, in any sig-

nature) using FP + a uniform seq. of GQs

(generated by a single GQ).

3. Can capture P using FP + r.e. set of GQs.

4. P is recursively indexable.

All are open. But if they fail then P 6= NP.
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Proof (sketch). 1 ⇒ 2 (There’s a problem

complete for P w.r.t. first-order reductions ⇒

can capture P using FP + a uniform seq. of

GQs):

— take the class defining the GQ to be the

complete problem.

2 ⇒ 3 ⇒ 4: obvious.

4 ⇒ 1 (P is recursively indexable ⇒ ∃ problem

complete for P w.r.t. first-order reductions):

‘P is recursively indexable’ says:

• there’s a Turing machine K that, on in-

put n < ω, outputs the code of a P-time

Turing machine Tn accepting a class in P

• every class of structures in P is recog-

nised by some Tn.
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The complete problem is essentially the class

P of structures of the form

A = (M, n,padding), where

1. M : a structure that Tn accepts in time |A|

2. K runs on n to give the code of Tn also

in time |A|.

Then P is P-complete:

• P ∈ P (use UTM to run K on n, then Tn

on M ; reject if don’t finish in time |A|).

• If C ∈ P is recognised by Tn, the map

M 7→ (M, n, ♯), where ♯ is enough padding

to ensure (1–2), can be done by a first-

order interpretation.

This map gives a first-order reduction of

C to P.

♠
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Conclusion of part 1

• FP + counting doesn’t capture P on graphs.

• Neither does FP + any finite set of GQs.

Question: what does?

We found a normal form for any logic cap-

turing P on all structures.

To come: what if we restrict the classes con-

sidered?
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2: When does FP capture P?

When (on which classes) does FP remain as

strong as P?

If there’s an order around, there’s hope of

getting the fixed point operation to work re-

ally well.

But the order may not be accessible to FP,

so we have to be careful.

20



  

Theorem 2.1 (Dawar, Hella–Kolaitis–Luosto)

TFAE in any class of finite structures:

1. the class is of bounded rigidity (it’s k-rigid

for some k — i.e., any two distinct elements

of any structure have different Lk-types).

2. there’s an FP-definable linear order

3. there’s an Lω
∞ω-definable linear order.

Proof. 1 ⇒ 2: Abiteboul–Vianu ⇒ ∃ FP-

definable linear order on the Lk
∞ω-types. (1) im-

plies this linearly orders the structures.

2 ⇒ 3 is clear.

3 ⇒ 1: suppose the order is definable in Lk
∞ω

(k ≥ 2). Clearly, any two distinct elements of

a structure will have different types in Lk
∞ω.

But on a single finite structure, Lk
∞ω col-

lapses to Lk (apply theorem 1.5 [Weinstein]

to a singleton class). ♠
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So on classes of bounded rigidity, there’s an

FP-definable order and FP captures P.

Clearly, the structures in such classes are all

rigid (no nontrivial automorphisms).

Is there an FP-order on rigid structures?

Theorem 2.2 (mainly Gurevich–Shelah)

There is a class of rigid structures (even one

defined by a first-order sentence) that’s not

of bounded rigidity.

Proof. Almost surety of k-extension axioms

and of rigidity gives an example without the

first-order restriction [Hella–Kolaitis–Luosto].

The full result [GS] uses ‘multipedes’ and a

probabilistic argument. ♠

Theorem 2.3 (Hella–Kolaitis–Luosto) TFAE

1. the structures are rigid

2. there’s a linear order definable implicitly in

Lω
∞ω.
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Proof. 1 ⇒ 2 : If they’re all rigid, choose

an arbitrary linear order <A on each A in the

class. Using <A, we regard dom(A) as an

initial segment of the natural numbers.

Let k ≥ 3 bound the arity of the signature

L of the structures. Write a first-order sen-

tence χA of (L ∪ {<})k with a conjunct for

each R(x1, . . . , xk′) ∈ L and each k-tuple n1, . . . , nk′

of numbers < |A|, saying whether R holds or

fails at this k′-tuple in A.

Add another conjunct to χA, saying that <

is a linear order.

By rigidity, <A is the unique interpretation of

< as a linear order in A making χA true. So

χA implicitly defines a linear order on A.

Let χ =
∨

A χA, a sentence of (L ∪ {<})k
∞ω.

Then χ implicitly defines a linear order on

every A in the class.

2 ⇒ 1 : obvious. ♠
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Conjecture 2.4 (Stolboushkin, 1992) For

first-order-definable classes of rigid structures,

there’s a linear order implicitly definable in

first-order logic.

Note: Kolaitis showed FP ≤ IMP(FO), so

this is a natural weakening of the conjecture

(of Dawar) refuted by theorem 2.2. If this

one fails then P 6= NP [HKL], so it seems

fairly safe!
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3: When does FP collapse to FO?

This is interesting subsidiary information: if

FP collapses, we’re not likely to capture P

with it.

Historically its study has been influential, and

nowadays a great deal is known about some

of the classes on which FP collapses.

However, there are grave limitations:

• even if FP doesn’t collapse, it’s not clear

that FP=P: e.g., we may not have an

order

• even if it does collapse, it’s not certain

that FP < P.

25



 

Five examples of collapse

Classes where FP collapses to FO include:

1. complete structures (boring)

2. homogeneous structures

A is homogeneous if any partially-defined

isomorphism : A → A extends to an au-

tomorphism.

3. More generally, classes that are k-trivial

for all k [Dawar] — the automorphism

group of each structure in the class has

a bounded number of orbits on k-tuples

for all k.

Much is known about these: e.g., k = 4

is enough. This follows from a structure

theory for them [Cherlin–Hrushovski], us-

ing some of the deepest ideas from clas-

sical model theory.
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Theorem 3.1 (Dawar–Hella) A class is k-

trivial iff it is k, Q-bounded for any finite set

Q of GQs.

Proof. ⇒: clear.

⇐: the same technique used to prove the

Abiteboul–Vianu theorem on ordering the Lk
∞ω-

types can be used to order the full first-order

k-types.

Let q be a GQ expressing this order. In any

finite structure A, two k-tuples have the same

Lk + q-type iff they have the same full first-

order type, iff they lie in the same orbit of

Aut(A). So for any class of structures, k, q-

bounded implies k-trivial. ♠

By theorem 1.5 (mostly Weinstein), we get:

Corollary 3.2 On k-trivial classes, FP + Q

collapses to FO + Q for any finite set Q of

GQs.
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4. More generally still, there are classes where

we can’t get a recursion going, so ob-

viously FP collapses to first-order logic.

McColm called these classes non-proficient.

Theorem 3.3 TFAE

(a) the class does not support an unbounded

first-order induction (it’s not ‘proficient’)

(b) it’s k-bounded for all k (definition 1.4)

(c) Lω
∞ω collapses to first-order logic on it

a ⇒ c: Kolaitis–Vardi. c ⇒ a: McColm.

Rest: Dawar.
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Proof. a ⇒ b: Assume not, and take a coun-

terexample class. Then FP collapses to FO

on the class; yet for some k, infinitely many

Lk-types are realised in it.

We can order these types by a single FP-

formula [Abiteboul–Vianu]. So by collapse,

there’s a first-order formula that defines ar-

bitrarily long linear pre-orders in structures

in the class. We can now do an unbounded

first-order induction along the order, a con-

tradiction.

b ⇒ c follows from theorem 1.5 [Weinstein].

¬a ⇒ ¬c: In proficient classes we can write in-

finitely many pairwise inconsistent Lk
∞ω-formulas

for some k, picking out the stages of an un-

bounded induction. There are 2ω disjunc-

tions of these, all in Lk
∞ω and all inequivalent

over the class. As FO is countable, collapse

is impossible. ♠

Hence FP = FO on non-proficient classes;

and they include the classes that are k-trivial

for all k.
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5. Certain proficient classes! (McColm had

conjectured this couldn’t happen.)

Theorem 3.4 (Gurevich–Shelah, Immerman)

There is a first-order-definable proficient class

of finite structures on which FP = FO.

Proof. Gurevich–Shelah used a proba-

bilistic argument.

Independently, Immerman used a deter-

ministic constructon involving attaching

cliques to a graph to record the effects of

each fixed point operation. The cliques

are first-order-detectable, giving FP =

FO. ♠

Conjecture 3.5 (Kolaitis–Vardi) On infinite

ordered classes (‘highly proficient’), FP>FO.

True for otherwise unary signatures [Dawar–

Lindell-Weinstein].

Question: find natural necessary and suffi-

cient conditions for collapse of FP to FO.
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Conclusion

We can say when there’s a FP-definable or-

der (need bounded rigidity; rigidity is not

enough).

But maybe FP = P in other cases too. . . ?

Saying when FP collapses to FO is a subtle

business.

Lots of open questions, lots of ideas needed.
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