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Abstract

We prove a van Benthem–Rosen-style characterisation theorem for two basic hybrid logics:
modal logic with nominals, and modal logic with nominals and @. In each case, we show that
over all Kripke models, and over all finite Kripke models, every first-order formula that is invariant
under the appropriate bisimulations is equivalent to a hybrid formula, and we give optimal bounds
on its modal depth in terms of the quantifier depth of the first-order formula.

We also show by example that the characterisation for modal logic with nominals does not
extend to arbitrary bisimulation-closed classes of Kripke models.
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1 Introduction

A basic fact about Kripke semantics for modal logic is van Benthem’s theorem [6, 7] that up to
logical equivalence, modal logic ‘is’ the bisimulation-invariant fragment of first-order logic — as far
as formulas φ(x) with at most one free variable are concerned, and in a signature comprising only
unary and binary relation symbols. Modal logic is thus expressively complete for this fragment, and
provides an effective syntax for it (the fragment itself is undecidable). Van Benthem’s proof used the
compactness theorem for first-order logic, and it applies to every elementary class of Kripke models.

This ‘modal characterisation theorem’ has attracted enormous interest, and a vast number of ex-
tensions have been found. Two kinds of extension are directly relevant to this note. On the one hand,
Rosen [18] extended van Benthem’s ‘classical’ result to finite models, showing that every first-order
formula φ(x) that is bisimulation invariant over finite Kripke models is equivalent to a modal formula
over finite models. This does not follow from the classical result because some first-order formulas
are bisimulation invariant over finite models but not over all models [16, 17]. Since its conclusion is
stronger, the classical result is not an immediate consequence of the result in the finite either. One
might ask if it follows with some extra effort, but Rosen rendered this question moot by providing a
uniform argument for both the classical and finite cases, so reproving van Benthem’s original result
in a different way. Rosen’s proof used Hanf locality rather than compactness, which fails in the finite.
Otto [16, 17] gave an ‘elementary’ version of the proof, replacing Hanf locality by a direct application
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of Ehrenfeucht–Fraı̈ssé games, and establishing an optimal bound 2q − 1 on the modal depth of an
equivalent modal formula in terms of the quantifier depth q of φ(x).

On the other hand, different notions of bisimulation have been given for various hybrid logics, and
some characterisation theorems have been proved for them — see, e.g., [2, 10, 4, 14, 3, 5]. So far,
results have been by and large classical, proved using compactness or ultraproducts, and do not cover
finite models. But some do. For example, Abramsky and Marsden [1, theorem 11] characterised the
temporal hybrid logic with ↓ and @ in terms of invariance under generated submodels and/or disjoint
unions, again establishing the classical and finite cases uniformly. They state [1, §7] that the result
still holds in the presence of nominals. Though not directly concerned with hybrid logic, [20] proves
an immensely general coalgebraic characterisation theorem for a range of modal-like logics, again
uniformly for all models and for finite models.

In this note, we prove a characterisation theorem for two basic hybrid logics, providing a uniform
proof that works both classically and in the finite, as Rosen and Otto did, and giving optimal modal
depth bounds as Otto did.

The first hybrid logic is simply modal logic with nominals — special propositional atoms that
are true at precisely one point of each model. We could perhaps call it ‘proto-hybrid logic’. It is, to
be sure, a minimal extension of modal logic, but still a ‘far from negligible’ one [9, p.49]. We use
ordinary modal bisimulations here, showing that both classically and in the finite, proto-hybrid logic
is the bisimulation-invariant fragment of first-order logic in signatures comprising constants as well as
unary and binary relation symbols. Van Benthem’s original theorem shows this in the classical case,
since being a nominal is first-order definable and so the class of relevant models is elementary. But
I have not found a characterisation theorem in the literature for proto-hybrid logic over finite models,
nor any depth bounds.

The second hybrid logic is actually called ‘basic hybrid logic’ [9, §6.2]. It adds the hybrid actual-
ity operator @ to proto-hybrid logic. A classical characterisation theorem is known for this logic —
see [2, theorem 6.1], recalled in [9, theorem 39] — but again, I am not aware of one for finite mod-
els, nor any depth bounds. The appropriate notion of bisimulation [9, definition 37] is now slightly
stronger, and the bisimulation-invariant first-order fragment consequently slightly larger, but the dif-
ference is so slight that we can handle both basic hybrid and proto-hybrid logics here using much the
same proof.

The proof itself follows standard lines. The key is to show that every bisimulation-invariant first-
order formula φ(x) is ‘local’ — that is to say, invariant under passing to a ‘local neighbourhood’ that
the hybrid logic can control. The neighbourhood is typically the set of points ‘near’ to x.

In a little more detail, we want to find a finite set H of hybrid formulas such that any two pointed
Kripke models that agree on H also agree onφ. Forφwill then be equivalent to a boolean combination
of formulas in H.

Locality, if we can establish it, lets us restrict each of the two models to a ‘neighbourhood’ without
changing the value of φ. The two neighbourhoods should also agree on H: and a sufficiently large H
should control them well enough to ensure that they also agree on φ — for example, because they are
bisimilar. We are done.

This trail was blazed by Rosen [18] and most later writers have followed it. What is perhaps
novel here is the choice of neighbourhoods. Modal unravellings [9, §3.2] are often used to simplify
neighbourhoods sufficiently for H to control. (Sometimes H is so powerful that this is unnecessary
[1].) Unfortunately, unravellings involve duplicating points in a model. This is problematic with
nominals, which must remain true at only one point. So we will use fairly obvious but perhaps new
unravellings able to handle nominals. Notwithstanding this, neighbourhoods are more complicated in
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the presence of nominals, and nominals also interfere to a degree with disjoint unions, an ingredient
of the proof of locality. We will therefore interpret the unravellings (in the model-theoretic sense) in
simpler and better-behaved models.

These changes are not wholly trivial, because for basic hybrid logic, the optimal bound on the
depth of the equivalent hybrid formula is larger than Otto’s bound for modal logic. For proto-hybrid
logic, it is larger still. Moreover, unlike for modal logic, the characterisation result for proto-hybrid
logic does not extend to arbitrary bisimulation-closed classes of Kripke models: see example 8.1.

I tried to prove the characterisation theorems in this note because I wanted to know whether they
were true in the finite. This is not a given. As a warning, while van Benthem’s theorem shows
that classically, modal logic is the bisimulation-invariant fragment of first-order logic over transitive
models, this fails in the finite and additional modal connectives are needed [11]. Another (non-modal)
warning example is furnished by two-variable first-order logic [16, 17]. More motivation for the
results will be given in section 9 in the light of the greater context available at that point.

Layout. Sections 2–4 present background material and notation, increasingly specialised as we pro-
ceed, but with few surprises. Readers will most likely be familiar with this material, so the treatment
is brief, but still it takes up around half the paper. Readers may of course skip it and refer back to
it as needed. The real work begins in section 5, where we define and study the unravellings. The
main characterisation theorem is in section 6. Section 7 gives examples to show optimality of modal
depth bounds, and section 8 looks at possible extensions of the theorem to other classes, such as
bisimulation-closed classes. The conclusion in section 9 has some comments, such as on possible
further work.

2 Hybrid logics

This section presents basic definitions and notation, both for general matters and for the hybrid logics
we consider.

We use standard (von Neumann) ordinals. Each ordinal α is the set of smaller ordinals, so the
smallest infinite ordinal ω is {0, 1, . . .}, and n = {0, 1, . . . , n− 1} and n+ 1 = n ∪ {n} for n < ω.
Ordinal sum α+β is defined as usual (as the order type of α followed by β) — for example, 1+ω =
ω < ω+1. We write |S| for the cardinality of a set S, and use ℘ to denote the power-set operation. We
write dom f (resp., rng f ) for the domain (resp., range) of a function f , and for S ⊆ dom f we write
f ↾ S for the restriction of f to S, and f(S) for {f(s) : s ∈ S} (this can be ambiguous but causes us
no difficulties). For sets S, T , we let TS denote the set {f | f : T → S} of functions from T to S, and
S ·∪T denote the disjoint union of S and T . The latter can be defined formally as S×{0}∪T ×{1},
but we generally treat it informally. We generally write binary relations in infix form.

For hybrid logic, we broadly follow the notation in [9]. A hybrid signature is a set σ partitioned
into two sets, PROP and NOM, where PROP denotes the set of propositional atoms (or propositional
variables) and NOM denotes the set of nominals. For a hybrid signature σ = PROP ·∪NOM, we define
the hybrid L3@(σ)-formulas ψ, and their modal depth d(ψ), as follows.

1. Each element of σ is an L3@(σ)-formula, of modal depth 0.

2. ⊤ is an L3@(σ)-formula, also of modal depth 0.

3. If ψ and θ are L3@(σ)-formulas, then so are:
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(a) ¬ψ, and d(¬ψ) = d(ψ),

(b) ψ ∧ θ, and d(ψ ∧ θ) = max(d(ψ), d(θ)),

(c) 3ψ, and d(3ψ) = 1 + d(ψ).

4. If ψ is an L3@(σ)-formula and c ∈ NOM, then @cψ is an L3@(σ)-formula, and d(@cψ) =
d(ψ).

An L3(σ)-formula is a L3@(σ)-formula that does not involve any @ — that is, we drop clause 4
above. So L3(σ)-formulas are just modal formulas, except that they may involve nominals. We
regard ⊥,∨,→,↔,2 as the usual abbreviations (actually we hardly use them). For a nonempty finite
set S = {ψ1, . . . , ψn} of L3@(σ)-formulas, we write

∧
S for ψ1∧ . . .∧ψn and

∨
S for ψ1∨ . . .∨ψn;

the order and bracketing of the ψi is immaterial (semantically). We let
∧
∅ = ⊤ and

∨
∅ = ⊥.

A Kripke model (for σ) is a triple M = (W,RM , V ), where W ̸= ∅ is the set of ‘worlds’, also
called the domain of M , RM ⊆ W ×W is the ‘accessibility relation’, and V : σ → ℘(W ) is the
‘valuation’, satisfying |V (c)| = 1 for each c ∈ NOM — we write cM for the unique element of V (c).
We write dom(M), and more often just M , for its domain W . We say that M is finite if it has finite
domain.

A submodel ofM is a Kripke model of the formN = (U,RM ∩(U×U), VU ), where ∅ ≠ U ⊆W
and VU (p) = V (p) ∩ U for p ∈ σ. (This is a well-defined Kripke model iff cM ∈ U for each
c ∈ NOM.) We say that N is a generated submodel of M if u ∈ U , w ∈ W , and uRMw imply
w ∈ U .

When we consider a hybrid signature τ ⊆ σ, it will be implicit that the type (atom or nominal) of
each symbol in τ is inherited from σ. We write M ↾ τ for the Kripke model (W,RM , V ↾ τ).

We define the semantics of L3@(σ)-formulas in Kripke models M for σ as usual: for w ∈M , we
define M,w |= p iff w ∈ V (p), for p ∈ σ; M,w |= ⊤; M,w |= ¬ψ iff M,w ̸|= ψ; M,w |= ψ ∧ θ
iff M,w |= ψ and M,w |= θ; M,w |= 3ψ iff M,u |= ψ for some u ∈ M with wRMu; and
M,w |= @cψ iff M, cM |= ψ.

A pointed Kripke model (for σ) is a pair (M,w), where M is a Kripke model (for σ) and w ∈M .
We say that (M,w) is finite if M is finite. We say that pointed Kripke models (A, a) and (B, b) for
σ agree on an L3@(σ)-formula ψ if A, a |= ψ ⇐⇒ B, b |= ψ, and agree on a set S of L3@(σ)-
formulas if they agree on every formula in S. ‘Disagree’ will mean ‘do not agree’.

3 Bisimulations and games

Fix, for this section, a hybrid signature σ = PROP ·∪NOM. All Kripke models in this section are for σ.

3.1 Bisimulations

Much of this note is concerned with bisimulations. A 3-bisimulation (generally called just a bisimu-
lation in the literature) between Kripke models A and B is a binary relation Z ⊆ A×B such that for
each a ∈ A and b ∈ B with aZb,

1. (A, a) and (B, b) agree on σ,

2. (‘Forth’) if a′ ∈ A and aRAa′, then there is b′ ∈ B with bRBb′ and a′Zb′,

3. (‘Back’) if b′ ∈ B and bRBb′, then there is a′ ∈ A with aRAa′ and a′Zb′.
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Z is said to be a 3@-bisimulation (called a ‘bisimulation-with-names’ in [9, §6.2]) if it also satisfies:

4. cAZcB for each c ∈ NOM.

The difference is that a plain 3-bisimulation may not relate cA to anything, nor cB . It goes without
saying that every 3@-bisimulation is a 3-bisimulation.

DEFINITION 3.1 For ⋆ ∈ {3,3@}, we say that pointed Kripke models (A, a) and (B, b) are ⋆-
bisimilar, and write (A, a) ∼⋆ (B, b), if there is a ⋆-bisimulation Z between A and B such that aZb.

EXAMPLE 3.2 If A,B are Kripke models and A is a generated submodel of B, then the inclusion
map ι : A ↪→ B is a 3@-bisimulation, so (A, a) ∼3@ (B, a) for every a ∈ A.

Perhaps we should say rather that the graph {(a, ι(a)) : a ∈ A} of ι is a bisimulation, but set-
theoretically, a function is its graph.

FACT 3.3 For each ⋆ ∈ {3,3@}, L⋆(σ)-formulas are ⋆-bisimulation invariant: ie. if (A, a) and
(B, b) are pointed Kripke models and (A, a) ∼⋆ (B, b), then (A, a) and (B, b) agree on all L⋆(σ)-
formulas. See, e.g., [9, lemmas 9 and 38].

3.2 Games

Bisimulations can be simulated by games. Let (A, a) and (B, b) be pointed Kripke models and let
α ≤ ω be an ordinal. We define an α-round game B3

α (A, a,B, b) as follows. There are two players,
∀ and ∃. The successive rounds are numbered 0, 1, . . . , t, . . . for t < α. The initial position, regarded
as chosen by ∀, is defined by a0 = a and b0 = b, and ∃ loses outright, before any rounds are played
and even if α = 0, if (A, a0) and (B, b0) disagree on σ.

At the start of each round t < α, points at ∈ A and bt ∈ B are already chosen. In the round, ∀
chooses some at+1 ∈ A with atRAat+1, or some bt+1 ∈ B with btRBbt+1. He loses if he can’t do
this. With full knowledge of his move, ∃ must respond with some bt+1 ∈ B with btRBbt+1, or some
at+1 ∈ A with atRAat+1, respectively, and she loses if she can’t. That completes the round, and ∃
loses the game at this point if (A, at+1) and (B, bt+1) disagree on σ. ∃ wins if she never loses at any
stage.

The game B3@
α (A, a,B, b) is the same, except that ∀ is allowed to choose the initial position

(a0, b0) to be any pair in the set {(a, b), (cA, cB) : c ∈ NOM}.
A strategy for ∃ in any of the games in this note is a set of rules telling ∃ how to move in any

position. A strategy is said to be winning if ∃ wins any play of the game in which she uses it.

DEFINITION 3.4 Let (A, a), (B, b) be pointed Kripke models, ⋆ ∈ {3,3@}, and α ≤ ω. We write
(A, a) ∼⋆

α (B, b) if ∃ has a winning strategy in the game B⋆α(A, a,B, b).

The following is an elementary games lemma.

LEMMA 3.5 Let (A, a), (B, b) be pointed Kripke models, ⋆ ∈ {3,3@}, and α ≤ ω.

1. (A, a) ∼3@
α (B, b) iff (A, a′) ∼⋆

α (B, b′) for every (a′, b′) ∈ {(a, b), (cA, cB) : c ∈ NOM}.
Hence, if (A, a) ∼3@

α (B, b) then (A, a) ∼3
α (B, b).

2. If (A, a) ∼⋆
α (B, b) then (A, a) ∼⋆

β (B, b) for every β < α.
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3. If (A, a) ∼⋆
1+α (B, b) then the following all hold:

(a) (A, a) ∼⋆
0 (B, b),

(b) for each a′ ∈ A with aRAa′, there is some b′ ∈ B with bRBb′ and (A, a′) ∼⋆
α (B, b′),

(c) for each b′ ∈ B with bRBb′, there is some a′ ∈ A with aRAa′ and (A, a′) ∼⋆
α (B, b′).

The converse implication holds when ⋆ = 3.

4. (A, a) ∼⋆
ω (B, b) iff (A, a) ∼⋆ (B, b).

3.3 Games and formulas

In this subsection we assume that σ = PROP ·∪ NOM is finite.

DEFINITION 3.6 We define, by induction on k < ω, a finite set Fk (also written F3
k ) of L3(σ)-

formulas, and a finite set F3@
k of L3@(σ)-formulas, as follows:

F0 = σ,
Fk+1 = σ ∪ {3(

∧
S ∧ ¬

∨
(Fk \ S)) : S ⊆ Fk},

F3@
k = Fk ∪ {@cψ : c ∈ NOM, ψ ∈ Fk}.

The proof of the following lemma is quite standard, but we include a sketch to illustrate the games
and show how @ is handled.

LEMMA 3.7 Assuming σ finite, let (A, a), (B, b) be pointed Kripke models, ⋆ ∈ {3,3@}, and
k < ω. The following are equivalent:

1. (A, a) ∼⋆
k (B, b),

2. (A, a) and (B, b) agree on all L⋆(σ)-formulas of depth ≤ k,

3. (A, a) and (B, b) agree on F⋆
k .

Proof. For 1 ⇒ 2, by lemma 3.5(2) it suffices to prove by induction on L⋆(σ)–formulas ψ that if
(A, a) ∼⋆

d(ψ) (B, b) then A, a |= ψ iff B, b |= ψ. For ψ ∈ σ ∪{⊤} this is clear. Assume the result for
ψ and θ inductively. The case ¬ψ is very simple, the case ψ ∧ θ follows from lemma 3.5(2), and the
case 3ψ from lemma 3.5(3). For the case @cψ for a nominal c, suppose that (A, a) ∼3@

d(@cψ)
(B, b)

(the case ⋆ = 3 is of course impossible here). By lemma 3.5(1) and because d(@cψ) = d(ψ), we
have (A, cA) ∼3@

d(ψ) (B, c
B), so inductively, A, cA |= ψ iff B, cB |= ψ. So by semantics, A, a |= @cψ

iff B, b |= @cψ, as required.

Part 3 follows from part 2 since all formulas in F⋆
k have depth ≤ k.

We first prove 3 ⇒ 1 for ⋆ = 3. For a pointed Kripke model (M,m), write tpk(M,m) = {ψ ∈
Fk :M,m |= ψ}. Then for S ⊆ Fk we have

tpk(M,m) = S iff M,m |=
∧
S ∧ ¬

∨
(Fk \ S). (1)

We now show by induction on k that if (A, a) and (B, b) agree on Fk then (A, a) ∼3
k (B, b).

For k = 0 it’s clear. Assume the result for k and suppose that (A, a) and (B, b) agree on Fk+1. We
establish (a)–(c) of lemma 3.5(3). For (a), certainly (A, a) ∼3

0 (B, b) since σ ⊆ Fk+1. For (b), take
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any a′ ∈ A with aRAa′, and let S = tpk(A, a
′) and τ =

∧
S ∧ ¬

∨
(Fk \ S). By (1), A, a′ |= τ ,

so by semantics, A, a |= 3τ . This formula is in Fk+1, so B, b |= 3τ as well. By semantics, there
is b′ ∈ B with bRBb′ and B, b′ |= τ — and (1) gives tpk(B, b

′) = S = tpk(A, a
′). So (A, a′) and

(B, b′) agree on Fk. Inductively, (A, a′) ∼3
k (B, b′). Similarly, we can prove that (c) for every b′ ∈ B

with bRBb′, there is a′ ∈ A with aRAa′ and (A, a′) ∼3
k (B, b′). So by the ‘converse implication’ of

lemma 3.5(3), (A, a) ∼3
k+1 (B, b). This completes the induction and proves 3 ⇒ 1 for ⋆ = 3.

Finally suppose that (A, a) and (B, b) agree on F3@
k . By definition of F3@

k and semantics,
(A, a′) and (B, b′) agree on Fk for every (a′, b′) ∈ {(a, b), (cA, cB) : c ∈ NOM}. By the 3-case
above, (A, a′) ∼3

k (B, b′) for every (a′, b′) ∈ {(a, b), (cA, cB) : c ∈ NOM}. By lemma 3.5(1),
(A, a) ∼3@

k (B, b), as required. 2

4 Classical logics

The purpose of this note is to compare basic hybrid logic with classical first-order logic, so we discuss
the latter now. In fact, we go via infinitary logic, which we will use in interpretations below. For more
information see, e.g., [13].

4.1 Classical infinitary logic

A (classical) signature is a set L of relation symbols with specified finite arities, and constants. In this
note, we do not need function symbols and will not consider them. We say that L is relational if it
contains no constants.

The L∞ω-formulas φ, together with the (perhaps infinite) set FV (φ) of free variables of φ and the
(ordinal) quantifier depth of φ, are defined as in first-order logic with equality but allowing conjunc-
tions and disjunctions of arbitrary sets of formulas. See, e.g., Hodges [13, §2.1]. Nearly all formulas
that we consider will have finite quantifier depth. An L∞ω-formula is said to be atomic if it has no
proper subformulas, quantifier-free if it has no quantifiers, and first-order, or just an L-formula, if
every conjunction and disjunction in it is over a finite set.

An L-structure M comprises a nonempty set dom(M), the domain of M , together with an inter-
pretation sM of each s ∈ L as an n-ary relation on dom(M), if s is an n-ary relation symbol, and an
element of dom(M) if s is a constant. We usually identify (notationally) M with its domain. We say
that M is finite if its domain is.

For an L-structure M and an ‘assignment’ h mapping variables into dom(M), we define M,h |=
φ for each L∞ω-formula φ in the usual way. For a formula φ, an index set I , and pairwise distinct
variables xi (i ∈ I), we write φ(xi : i ∈ I) to indicate that FV (φ) ⊆ {xi : i ∈ I}. As usual,
whether M,h |= φ or not depends only on h ↾ FV (φ) (and on M and φ of course). So for a formula
φ(xi : i ∈ I) and elements ai ∈ M (i ∈ I), we can write M |= φ(ai : i ∈ I) if M,h |= φ, where
h(xi) = ai for each i ∈ I .

A substructure of M is an L-structure N with dom(N) ⊆ dom(M) and N |= α(a1, . . . , an) iff
M |= α(a1, . . . , an) for each atomic L-formula α(x1, . . . , xn) and a1, . . . , an ∈ N . The latter holds
iff RN = RM ∩ dom(N)n for each n-ary relation symbol R ∈ L, and cN = cM for each constant
c ∈ L.

Let M,N be L-structures. A map f : M → N is said to be an (L)-homomorphism if for
every atomic L-formula α(x1, . . . , xn) and a1, . . . , an ∈ M , we have M |= α(a1, . . . , an) =⇒
N |= α(f(a1), . . . , f(an)). A partial map f : M → N is said to be an (L)-partial isomorphism if
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M |= α(a1, . . . , an) ⇐⇒ N |= α(f(a1), . . . , f(an)) for every atomic L-formula α(x1, . . . , xn)
and a1, . . . , an ∈ dom f ; if dom f =M , then f is called an (L)-embedding.

If L is relational, the disjoint union M +N of M and N is the L-structure A defined informally
by domA = domM ·∪ domN and RA = RM ·∪ RN for each relation symbol R ∈ L. It is finite if
M,N are finite.

4.2 Correspondence

Central to this note is the correspondence between hybrid and classical logic. For a hybrid signature
σ = PROP ·∪ NOM, the classical ‘correspondence’ signature L(σ) comprises a binary relation symbol
R; a unary relation symbol P for each p ∈ PROP; and the elements of NOM, taken as constants.

A Kripke model M = (W,RM , V ) for σ can be viewed as an L(σ)-structure as follows. The
domain of this structure is W . We interpret R as the binary relation RM on W , we interpret P (for
p ∈ PROP) as the unary relation V (p) onW , and we interpret c (for c ∈ NOM) as cM as defined in §2.
We denote the resulting L(σ)-structure also by M . Conversely, an L(σ)-structure can be construed
as a Kripke model for σ in the obvious way. So we will regard a Kripke model for σ equally as an
L(σ)-structure, making no distinction between them.

Let σ be a hybrid signature and K a class of pointed Kripke models for σ. Let φ(x) be an L(σ)-
formula, and ψ an L3@(σ)-formula. We say that φ and ψ are equivalent over K if M |= φ(w) iff
M,w |= ψ, for every (M,w) ∈ K.

We can also in a sense view L3@(σ)-formulas as first-order L(σ)-formulas, via their standard
translations. See, e.g., [2, proposition 3.1] and [4, proposition 11]. The standard translation of each
L3@(σ)-formula ψ is an L(σ)-formula φ(x) that is equivalent to ψ over every K.

The converse question asks, for given K and ⋆ ∈ {3,3@}, whether every L(σ)-formula φ(x) is
equivalent to some L⋆(σ)-formulaψ over K. By fact 3.3, L⋆(σ)-formulas are ⋆-bisimulation invariant,
so we restrict the question to those φ(x) that are themselves ⋆-bisimulation invariant over K: that is,
A |= φ(a) iff B |= φ(b) whenever (A, a), (B, b) ∈ K and (A, a) ∼⋆ (B, b).

Assuming that φ(x) is ⋆-bisimulation invariant over K, we will answer the question affirmatively
in theorem 6.1, both for K the class of all pointed Kripke models for σ, and the class of finite ones.
The following lemma, showing robustness of bisimulation invariance, will be helpful in that theorem.
The (easy) converse also holds, but we will not need it.

LEMMA 4.1 Let τ ⊆ σ be hybrid signatures, let Kτ (resp., Kσ) be the class of all [or all finite]
pointed Kripke models for τ (resp., σ), let φ(x) be an L(τ)-formula, and ⋆ ∈ {3,3@}. If φ is
⋆-bisimulation invariant over Kσ, then it is also ⋆-bisimulation invariant over Kτ .

Proof. Suppose (A, a), (B, b) ∈ Kτ and (A, a) ∼⋆ (B, b). We show that A |= φ(a) iff B |= φ(b).
This is surprisingly tricky, mainly because σ might have nominals when τ does not.

Write σ = PROP ·∪ NOM. The Kripke model A is for τ . It is easy to find a Kripke model A1 for σ
withA1 ↾ τ = A (see §2 for the notation) and PA1 = ∅ for each p ∈ PROP\τ . Plainly, (A1, a) ∈ Kσ,
and A |= φ(a) iff A1 |= φ(a) because A and A1 agree on symbols in φ.

Define a second Kripke model A2 for σ by adding to A1 a new world w /∈ A ∪ B. Define each
symbol in L(σ) to have the exact same interpretation in A2 as it does in A1 (so w is an isolated world
unrelated by R to any world). Then (A2, a) ∈ Kσ as well. Plainly, A1 is a generated submodel
of A2, so by example 3.2, the inclusion map ι : A1 ↪→ A2 is a ⋆-bisimulation. Since φ is assumed
⋆-bisimulation invariant over Kσ, we obtain A1 |= φ(a) iff A2 |= φ(a).

Finally define a third Kripke model A3 for σ. It is the same as A2 except that each nominal in
NOM \ τ is now interpreted as w. Then A2 |= φ(a) iff A3 |= φ(a), again because the two models
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agree on symbols in φ. Also, (A3, a) ∈ Kσ. Combining the three stages, we see that A |= φ(a) iff
A3 |= φ(a).

Now do the same for B, arriving at (B3, b) ∈ Kσ with B |= φ(b) iff B3 |= φ(b).
By assumption, (A, a) ∼⋆ (B, b). Let Z be a ⋆-bisimulation between A and B with aZb. It can

be checked that Z ∪ {(w,w)} is a ⋆-bisimulation between A3 and B3. Since these models are in Kσ,
over which φ is assumed ⋆-bisimulation invariant, we obtain A3 |= φ(a) iff B3 |= φ(b). Putting all
the steps together proves the lemma. 2

4.3 Ehrenfeucht–Fraı̈ssé games

Let L be a signature, let A,B be L-structures, let I be a possibly infinite index set, and let ai ∈ A
and bi ∈ B for each i ∈ I . Write a = (ai : i ∈ I) and b = (bi : i ∈ I). (When I is a singleton
{i}, we write a as simply ai.) Let q < ω and suppose that I ∩ q = ∅, to make things below well
defined. The q-round Ehrenfeucht–Fraı̈ssé game EFq(A,a, B, b) is played again by our players ∀
and ∃. The successive rounds are numbered 0, 1, . . . , q − 1. In each round t < q, ∀ chooses a ‘left
element’ at ∈ A, or a ‘right element’ bt ∈ B.1 Having seen ∀’s move, ∃ responds by choosing a right
element bt ∈ B or a left element at ∈ A, respectively. That completes the round. At the end of play,
∃ wins if

A |= α(ai1 , . . . , ain) iff B |= α(bi1 , . . . , bin),

for every atomic L-formula α(x1, . . . , xn) and i1, . . . , in ∈ I ∪ q.

DEFINITION 4.2 For q < ω, we write (A,a) ≡∞q (B, b) if A |= φ(ai : i ∈ I) iff B |= φ(bi : i ∈
I) for every L∞ω-formula φ(xi : i ∈ I) of quantifier depth ≤ q.

LEMMA 4.3 If ∃ has a winning strategy in EFq(A,a, B, b), then (A,a) ≡∞q (B, b).

Proof. A standard exercise by induction on φ (like 1 ⇒ 2 in lemma 3.7); or see, e.g., the proof of
[13, theorem 3.5.2]. 2

The converse of the lemma also holds, but we will not need it.

4.4 Gaifman graph

Let L be a relational signature and A an L-structure. The Gaifman graph G(A) of A is the undirected
loopfree graph with dom(A) as its set of nodes, and with edges ab, for all distinct a, b ∈ A such
that for some relation symbol R ∈ L of arity n, say, and some a1, . . . , an ∈ A, we have A |=
R(a1, . . . , an) and a, b ∈ {a1, . . . , an}.

For distinct a, b ∈ A, let dA(a, b) be the length of the shortest path from a to b in G(A), and ∞ if
there is no such path (we take the length of a path to be the number of edges on it). Put dA(a, a) = 0
for all a ∈ A. We call the function dA the Gaifman metric on A. It is an extended metric on A
— a metric except that it may take value ∞ sometimes. It satisfies dA(a, b) = dA(b, a) ≥ 0 and
dA(a, c) ≤ dA(a, b) + dA(b, c) (the triangle inequality), for every a, b, c ∈ A, where ≤ and + are
extended from ω to ω ∪ {∞} in the usual way.

For a family a = (ai : i ∈ I) of elements of A, and l < ω, we write

NA
l (a) = {a ∈ A : dA(a, ai) < l for some i ∈ I},

the open Gaifman neighbourhood of radius l of a in A.
1We need this ‘left–right’ nomenclature in case the game has the form EFq(A,a, A, b). We could rename the second A

as B, but in proposition 4.4 we do not want to do this.
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M = A + B

A ⊆ B

ℓ r

Figure 1: the structure M and embeddings

4.5 Locality

A key step in the modal characterisation theorems of Rosen and Otto was to show that every bisimul-
ation-invariant first-order formula φ(x) is local: invariant under restricting a model to a ‘local neigh-
bourhood’ that, under the right circumstances, the modal logic can control. See [18, lemma 4], [16,
theorem 3.1 step 1], [17, lemma 3.5], and [12, lemma 58]. The proofs were model-theoretic, via Hanf
locality (Rosen) or Ehrenfeucht–Fraı̈ssé games (Otto), and the method continues to be used to the
present day — e.g., [20, theorem 27] and [1, ‘workspace’ lemma 13].

Proposition 4.4 below is a close relative of these results. It combines aspects of Rosen’s and Otto’s
work and the proof is quite simple. The desired locality will follow from the proposition, but not as
directly as in the cited references. We will obtain it in §5.3 via interpretations, discussed in §4.6.

To lay the groundwork for the proposition, let L be a relational signature andA,B be L-structures
with A a substructure of B. Let M = A + B (see §4.1). In hope of clarity, we will make use of the
L-embeddings ℓ, r of A,B (respectively) into M , as shown in figure 1.

We write · : M → M for the partial map (a kind of conjugation) that exchanges the elements
ℓ(a) and r(a), for each a ∈ A: that is, ℓ(a) = r(a) and r(a) = ℓ(a) for a ∈ A, and m is undefined
for m ∈ r(B \ A). This is plainly a partial isomorphism of M (see §4.1), and an involution: if m is
defined then so is m, and m = m.

We also write π : M → M for the projection onto r(B), defined by π(ℓ(a)) = r(a) for a ∈ A,
and π(r(b)) = r(b) for b ∈ B. It is plainly a homomorphism (again see §4.1).

Finally, for m,n ∈M we define

dπ(m,n) = dM (π(m), π(n)),

where dM is the Gaifman metric on M (see §4.4). It follows from the triangle inequality for dM that
for each x, y, z ∈M ,

dπ(x, z) = dM (π(x), π(z))
≤ dM (π(x), π(y)) + dM (π(y), π(z))
= dπ(x, y) + dπ(y, z)

 triangle inequality for dπ. (2)

Now let I be an index set and a = (ai : i ∈ I) a family of elements of A. For each i ∈ I , write
mi = ℓ(ai) and ni = r(ai). Then m = (mi : i ∈ I) and n = (ni : i ∈ I) are families of elements of
M , and mi is defined and is ni for each i ∈ I .

PROPOSITION 4.4 In this context, if q < ω and NB
2q(a) ⊆ A, then (M,m) ≡∞q (M,n).

Proof. By lemma 4.3, it suffices to show that ∃ has a winning strategy in EFq(M,m,M,n). For
each ordinal t < q, we will writemt and nt for the ‘left’ and ‘right’ elements (respectively) chosen by
the players in round t of this game. See §4.3 for the nomenclature. Notwithstanding the use of ‘left’
and ‘right’, each of mt, nt can of course be in either of the two summands of M .
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Player ∃ will play in round t as follows, and also ensure that R1t–R4t below hold at the start of
round t and that R1t+1–R4t+1 hold at the end of round t (so also at the start of round t + 1, when
t+ 1 < q), where

dt = 2q−t.

We assume without loss of generality that I ∩ q = ∅.

R1t Each element of I ∪ t is coloured either black or white.

R2t Suppose that i ∈ I ∪ t is white. Then ni = mi.

R3t Suppose that j ∈ I ∪ t is black. Then mj is defined and nj = mj . Moreover, if m ∈ M and
dπ(m,mj) < dt then m is defined as well.

R4t Suppose that i ∈ I ∪ t is white and j ∈ I ∪ t black. Then dπ(mi,mj) > dt.

These conditions imply that π(mi) = π(ni) for each i ∈ I ∪ t, and a little thought then shows that
each mi can be swapped with ni in the conditions without changing their meaning. So R1–R4 are in
fact left–right symmetric. To get this is why we use dπ rather than dM .

For t = 0, ∃ colours each element of I black. Then R10 holds obviously, and R20 and R40
vacuously. R30 holds because mi is defined and equal to ni for each i ∈ I , and by the assumption
that NB

d0
(a) ⊆ A (see §4.4 for the N -notation).

Let t < q and assume inductively that R1t–R4t hold at the start of round t. Suppose in round t
that ∀ chooses a left element mt ∈M , say (the argument when he chooses a right element nt ∈M is
similar because of the left–right symmetry of R1–R4). ∃ must select a right element nt in response,
and establish R1t+1–R4t+1. There are two cases.

Case 1: dπ(mt,mj) ≤ dt+1 = dt/2 for some black j ∈ I ∪ t. Then ∃ extends the colouring of
I ∪ t given by R1t to I ∪ (t + 1), by colouring t black. Since dπ(mt,mj) ≤ dt+1 < dt, by R3t we
see that mt is defined. ∃ responds to ∀’s move with nt = mt.

We check that R1t+1–R4t+1 hold. R1t+1 and R2t+1 are already clear. R3t+1 for black i ∈ I ∪ t
follows from R3t, since dt+1 ≤ dt. The new case is t. We know that mt is defined and nt = mt.
Let m ∈ M with dπ(m,mt) < dt+1. By the triangle inequality (2) for dπ and the case assumption,
dπ(m,mj) ≤ dπ(m,mt) + dπ(mt,mj) < 2dt+1 = dt, so by R3t, m is defined, as required.

For R4t+1, let i ∈ I ∪ t be white. We show that dπ(mi,mt) > dt+1. If not, then as above,
dπ(mi,mj) ≤ dπ(mi,mt) + dπ(mt,mj) ≤ 2dt+1 = dt, contradicting R4t. All other instances of
R4t+1 follow from R4t.

Case 2: otherwise. This time, ∃ colours t white and sets nt = mt. So R1t+1 and R2t+1 obviously
hold, and R3t+1 follows from R3t as there are no new cases. The only new case to check in R4t+1 is
that dπ(mt,mj) > dt+1 whenever j ∈ I ∪ t is black — and this is exactly the case assumption.

That completes the definition of ∃’s strategy. We check that it is winning. At the end of the game,
R1q–R4q hold, and dq = 20 = 1. Let α(x1, . . . , xk) be an atomic L-formula and I ′ = {i1, . . . , ik} ⊆
I ∪ q. We show that M |= α(mi1 , . . . ,mik) ↔ α(ni1 , . . . , nik).

We can assume without loss of generality that x1, . . . , xk all occur in α. Suppose that M |=
α(mi1 , . . . ,mik). As π is a homomorphism, M |= α(π(mi1), . . . , π(mik)). So by definition of dπ

and Gaifman distance,

dπ(mi,mj) = dM (π(mi), π(mj)) ≤ 1 = dq for each i, j ∈ I ′.
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It follows from R4q that i1, . . . , ik all have the same colour. If this is white, then by R2q, ni = mi for
each i ∈ I ′, so obviously M |= α(ni1 , . . . , nik). If it is black, then ni = mi for each i ∈ I ′, by R3q.
Since · is a partial isomorphism of M , we again obtain M |= α(ni1 , . . . , nik).

The converse is similar, again using left–right symmetry of R1q–R4q. So ∃ won. 2

4.6 Interpretations

We will use interpretations in §5.3 to extend the reach of proposition 4.4. We broadly follow Hodges
[13, §5.3] for the definitions. We will need infinitary interpretations with parameters, but only one-
dimensional quantifier-free unrelativised ones. (Results for more general interpretations can also be
obtained.)

LetK,L be signatures (which here have no function symbols, recall), let I be an index set, and let
vi (i ∈ I) be new pairwise distinct variables taken not to occur in L∞ω-formulas. An interpretation
of L in K with parameters I (more fully, with parameters vi (i ∈ I)) is a map I that provides a
quantifier-free K∞ω-formula I(α)(x1, . . . , xn, vi : i ∈ I) for each atomic L-formula α(x1, . . . , xn).
We extend I to all L∞ω-formulas by induction in the obvious way: I(¬φ) = ¬I(φ), I(

∧
S) =∧

{I(φ) : φ ∈ S}, similarly for
∨
S, and I(∃xφ) = ∃xI(φ). Plainly, I(φ) always has the same

quantifier depth as φ.
Now let A be a K-structure and a = (ai : i ∈ I) ∈ IA. Let M be an L-structure with the same

domain as A. We say that I interprets M in (A,a) if for each atomic L-formula α(x1, . . . , xn) and
m1, . . . ,mn ∈M , we have

M |= α(m1, . . . ,mn) iff A |= I(α)(m1, . . . ,mn, ai : i ∈ I).

There is clearly at most one M that I interprets in (A,a), so when there is one, we can write it as
I(A,a).

LEMMA 4.5 Let K,L, I, I, A,a be as above, and suppose that I(A,a) exists. Also suppose that B
is a K-structure, b = (bi : i ∈ I) ∈ IB, and I(B, b) exists.

1. For each L∞ω-formula φ(x) and a ∈ A,

I(A,a) |= φ(a) iff A |= I(φ)(a, ai : i ∈ I).

2. If f : A→ B is a K-embedding and f(ai) = bi for each i ∈ I , then f : I(A,a) → I(B, b) is
an L-embedding.

3. Let j ∈ I and q < ω. If (A,a) ≡∞q (B, b), then (I(A,a), aj) ≡∞q (I(B, b), bj).

Proof. (1) is straightforward by induction on φ, and follows from the ‘reduction theorem’ of [13,
theorem 5.3.2]. For (2), for each atomic L-formula α(x1, . . . , xn) and a1, . . . , an ∈ A,

I(A,a) |= α(a1, . . . , an)
iff A |= I(α)(a1, . . . , an, ai : i ∈ I) by definition of I(A,a),
iff B |= I(α)(f(a1), . . . , f(an), bi : i ∈ I) since I(α) is quantifier-free

and f a K-embedding,
iff I(B, b) |= α(f(a1), . . . , f(an)) by definition of I(B, b).
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For (3), let φ(x) be any L∞ω-formula of quantifier depth ≤ q. Then the K∞ω-formula I(φ)(x, vi :
i ∈ I) also has quantifier depth ≤ q. So

I(A,a) |= φ(aj) iff A |= I(φ)(aj , ai : i ∈ I) by part 1,
iff B |= I(φ)(bj , bi : i ∈ I) since (A,a) ≡∞q (B, b),
iff I(B, b) |= φ(bj) by part 1 for B. 2

5 Unravellings

The modal notion of ‘unravelling’ is well known: see, e.g., [9, §3.2]. Here, we introduce and study
a modified unravelling that works in the presence of nominals. For the entire section, fix a hybrid
signature σ = PROP ·∪ NOM; all Kripke models will be for this signature. We write L for L(σ) here.
I apologise for the blizzard of structures coming up.

5.1 Unravelling a Kripke model

Until section 5.4, fix an arbitrary pointed Kripke model (A, a) and q < ω, and let l = 2q.

DEFINITION 5.1 We define an L-structure (or Kripke model for σ) Al from A. It is our ‘depth-l
unravelling’ of A, and is finite if A is finite. First, some preliminaries.

• Let N = {cA : c ∈ NOM} ⊆ A.

• For k < ω, a path of length k (in A) is a sequence (a0, a1, . . . , ak) ∈ k+1A, where a0 ∈ A,
a1, . . . , ak ∈ A \N , and A |= aiRai+1 for each i < k. Only the first element of a path can lie
in N .

• For a path t = (a0, . . . , ak) and a ∈ A \ N with A |= akRa, we write t⌢a for the path
(a0, . . . , ak, a).

• For a ∈ A, we usually write â for the path (a) of length 0. This is more compact. For S ⊆ A
we put Ŝ = {ŝ : s ∈ S}.

• For k < ω let Path≤k(A) (resp., Path<k(A)) be the set of paths of length ≤ k (resp., of
length < k) in A.

We now define Al. Its domain is Path≤l(A). We read the symbols in σ according to the last elements
of paths: so we define Al |= P ((a0, . . . , ak)) iff A, ak |= p for each p ∈ PROP, and for each nominal
c ∈ NOM we put cA

l
= (cA), a path in Path≤l(A) of length 0.

For the accessibility relation, let t = (a0, . . . , ak) ∈ Path≤l(A). Then we define:

• Al |= tRu for each u ∈ Path≤l(A) of the form t⌢a, where a ∈ A \N .

• Al |= tRn̂ for each n ∈ N with A |= akRn.

• If k = l, then Al |= tRâ for each a ∈ A with A |= alRa.

These are the only instances of R. Finally let λ : Al → A be the ‘projection’ function that maps each
path (a0, . . . , ak) to its last element ak.

The upshot of the definition of R is that ‘R-arrows’ in Al can come into N̂ from anywhere, and
into Â \ N̂ from paths of length l only. But each path of length k ≥ 1 has a unique R-predecessor,
namely, its initial segment (prefix) of length k − 1.
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LEMMA 5.2 (A, a) ∼3@ (Al, â).

Proof. One can easily verify that λ : Al → A is a 3@-bisimulation and λ(â) = a. We check only
the ‘Back’ property. Suppose that t = (a0, . . . , ak) ∈ Al, so k ≤ l and λ(t) = ak, and let a ∈ A
satisfy A |= akRa. We seek u ∈ Al with Al |= tRu and λ(u) = a. If a ∈ N or k = l, take u = â. If
a ∈ A \N and k < l, take u = t⌢a. 2

DEFINITION 5.3 We let Al<l be the substructure of Al with domain Path<l(A). To reduce clutter,
for λ as above, we write its restriction λ ↾ Al<l as λ : Al<l → A as well.

So Al<l is obtained by simply deleting from Al all paths of length l. The result is nonempty (since
l ≥ 1) and contains all elements of Al named by constants (nominals), so is an L-structure. It can be
‘well controlled’ by hybrid logic, as lemma 5.11 will show. Perhaps we had better point out that Al<l
is not Al−1, since the two give different meanings to R on paths of length l − 1.

The restriction λ : Al<l → A is an L-homomorphism (see §4.1) and preserves atoms and nominals
both ways, but it is not in general a bisimulation, because paths of length l have been deleted, so the
Back property may fail.

5.2 Invoking locality

DEFINITION 5.4 We introduce a new relational signature K, obtained from L by deleting each
constant c (c ∈ NOM) and adding a new unary relation symbol Pa for each a ∈ A. So K comprises
R, a unary relation symbol P for each p ∈ PROP, and the new symbols Pa. It depends on A and may
be infinite.

We define an K-structure Al:K with the same domain and interpretations of atoms in PROP as Al,
and with

• Al:K |= tRu iff Al |= tRu and u /∈ Â. (So u is a path extending t by one.)

• Al:K |= Pa(t) iff Al |= tRâ, for each a ∈ A. (So a ∈ N or t is a path of length l.)

We let Al:K<l be the substructure of Al:K with domain Path<l(A).

In Al:K , we have removed all R-arrows into Â, but the Pa ensure that they are not forgotten. We
also removed the nominals: their values will be remembered ‘by hand’.

We are now going to use A as an index set. Write a = (â : a ∈ A). This is a family of elements
of each of Al, Al<l, A

l:K , and Al:K<l . It is clear from the definitions (see §4.4 for N ) that

NAl:K

l (a) = Al:K<l . (3)

Let M = Al:K + Al:K<l , and let ℓ : Al:K → M and r : Al:K<l → M be the respective K-
embeddings, as in §4.5 but with ‘A’ and ‘B’ swapped. Note that if A is finite then so is M . Write
m = (ℓ(â) : a ∈ A) and n = (r(â) : a ∈ A). By proposition 4.4,

(M,m) ≡∞q (M,n). (4)

The proposition applies since K is relational, and NAl:K

l (a) ⊆ Al:K<l by (3).
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5.3 Invoking interpretations

To get back to L, we use an interpretation.

DEFINITION 5.5 We define an interpretation I of L in K with parameters A. It takes each atomic
L-formula α(x1, . . . , xn) to a quantifier-free K∞ω-formula I(α)(x1, . . . , xn, va : a ∈ A). Here
recall §4.6 — the index set I there is A here, and the pairwise distinct variables va (a ∈ A) are taken
not to occur in L∞ω-formulas.

1. Let I(x = y) be x = y, and let I(P (x)) be P (x) for p ∈ PROP.

2. Let I(xRy) be xRy ∨
∨
a∈A(Pa(x) ∧ y = va).

3. For an atomic L-formula α(x1, . . . , xn, y1, . . . , ym) not involving any constants, and constants
(nominals) c1, . . . , cm ∈ L, define I(α(x1, . . . , xn, c1, . . . , cm)) to be the result of substituting
vcAi

for yi in the formula I(α(x1, . . . , xn, y1, . . . , ym)) defined above, for each i = 1, . . . ,m.

As an example, if c ∈ NOM and cA = b ∈ A, say, then I(x = c) is x = vb; if p ∈ PROP then
I(P (c)) is P (vb); and I(xRc) is xRvb ∨

∨
a∈A(Pa(x) ∧ vb = va).

It should be clear that the L-structures I(Al:K ,a) and I(Al:K<l ,a) exist and are Al and Al<l,
respectively. The L-structures I(M,m) and I(M,n) also exist. In contrast to M , they are not
disjoint unions, because L is not relational (if NOM ̸= ∅), and there may be ‘R-arrows’ running
between ℓ(Al:K) and r(Al:K<l ). Nonetheless, we have the following:

LEMMA 5.6 (Al, â) ∼3@ (I(M,m), ℓ(â)) and (Al<l, â) ∼3@ (I(M,n), r(â)).

Proof. We show that ℓ : Al → I(M,m) is a 3@-bisimulation. Clearly, ℓ : Al:K → M is a K-
embedding. By lemma 4.5(2), ℓ is also an L-embedding from I(Al:K ,a) = Al into I(M,m). It
therefore preserves σ both ways, satisfies Forth, and is defined on all points named by nominals.

For Back, let t ∈ Al and u ∈ M and suppose that I(M,m) |= ℓ(t)Ru. We seek t′ ∈ Al with
Al |= tRt′ and ℓ(t′) = u. We have M |= I(xRy)(ℓ(t), u,ma : a ∈ A) by definition of I(M,m). So
by definition of I(xRy),

M |= ℓ(t)Ru ∨
∨
a∈A

(Pa(ℓ(t)) ∧ u = ma).

But each disjunct here implies u ∈ ℓ(Al): the first by definition of M as a disjoint union, and the
others since ma = ℓ(â) for each a ∈ A. So let t′ = ℓ−1(u) ∈ Al. Then I(M,m) |= ℓ(t)Rℓ(t′). As ℓ
is an L-embedding, Al |= tRt′, as required. Essentially we proved that ℓ(Al) is a generated submodel
of I(M,m).

Similarly we can show that r : Al<l → I(M,n) is a 3@-bisimulation. 2

LEMMA 5.7 (I(M,m), ℓ(â)) ≡∞q (I(M,n), r(â)).

Proof. By (4) and lemma 4.5(3), taking ‘j’ there to be a here, so the jth entry of the family m =
(ℓ(â) : a ∈ A) is ℓ(â), and the jth entry of n = (r(â) : a ∈ A) is r(â). 2
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5.4 Summary so far

We have proved the following:

PROPOSITION 5.8 Let (A, a) be a pointed Kripke model, q < ω, and l = 2q. Then:

(A, a) ∼3@ (Al, â) ∼3@ (I(M,m), ℓ(â)) ≡∞q (I(M,n), r(â)) ∼3@ (Al<l, â).

If A is finite then so are all the structures here.

Proof. By lemmas 5.2, 5.6, 5.7, and 5.6 again, respectively. The finiteness is obvious. 2

5.5 Two connecting lemmas

So far, we have looked at unravellings of a single pointed Kripke model (A, a). Our final two lemmas
draw out connections between the unravellings of two pointed Kripke models.

LEMMA 5.9 Let (A, a), (B, b) be pointed Kripke models, ⋆ ∈ {3,3@}, α ≤ ω, and 1 ≤ l < ω.
Suppose that (A, a) ∼⋆

α (B, b). Then (Al<l, â) ∼⋆
α (Bl

<l, b̂).

Proof. Recall (from just after definition 5.3) that λ : Al<l → A is an L-homomorphism (so preserves
R forwards), and preserves atoms and nominals both ways. There is a similar map taking each path
in Bl

<l to its last element, which we also write as λ : Bl
<l → B. They may not be bisimulations.

Assume that ∃ has a winning strategy in B⋆α(A, a, B, b). She can use it in B⋆α(A
l
<l, â, B

l
<l, b̂) as

follows. In a play of this latter game, let the successive positions be (t0, u0), . . . , (ts, us), . . . , say. ∃
will ensure that

(i) ts ∈ Al<l and us ∈ Bl
<l are paths of equal length, for each s,

(ii) (λ(t0), λ(u0)), . . . , (λ(ts), λ(us)), . . . are successive positions in a play of B⋆α(A, a, B, b) in
which she is using her winning strategy.

If she can do this, then since her strategy is winning, (A, λ(ts)) and (B, λ(us)) agree on σ, for each s.
So by the remarks on λ above, (Al<l, ts) and (Bl

<l, us) also agree on σ for each s, and ∃ will win.
We now explain how she can do it.
Suppose that ∀ chooses (t0, u0) as the initial position in B⋆α(A

l
<l, â, B

l
<l, b̂). If (t0, u0) = (â, b̂),

then clearly, t0 and u0 have equal length 0, λ(t0) = a, and λ(u0) = b. If ⋆ = 3@ and (t0, u0) =

(cA
l
<l , cB

l
<l) = ((cA), (cB)) for some c ∈ NOM, then again t0, u0 have length 0, and λ(t0) = cA

and λ(u0) = cB . So in all cases it is legal for ∀ to choose (λ(t0), λ(u0)) for the initial position in
B⋆α(A, a, B, b). ∃ lets him do so. Then conditions (i) and (ii) above are met.

In round s < α of B⋆α(A
l
<l, â, B

l
<l, b̂), assume that ∃ has kept the two conditions so far, and

suppose that ∀ plays ts+1 ∈ Al<l (the argument is similar if he plays in Bl
<l; and if he cannot move

then ∃ wins at this point and we are done). By the game rules, Al<l |= tsRts+1.
Write a = λ(ts+1). As λ is a homomorphism, A |= λ(ts)Ra too, and it is legal for ∀ to play a in

round s of B⋆α(A, a, B, b). ∃ lets him do it, and responds using her winning strategy with b ∈ B, say.
As her strategy is winning, (†) B |= λ(us)Rb and (‡) (A, a) and (B, b) agree on σ.

We now define ∃’s response us+1 ∈ Bl
<l to ∀ in the main game B⋆α(A

l
<l, â, B

l
<l, b̂). There are

two cases. Suppose first that ts+1 is named in Al<l by some nominal c. Then ts+1 = (cA), a path of
length 0. Plainly, a = cA. By (‡), b = cB . Then ∃ lets us+1 = b̂ ∈ Bl

<l, also a path of length 0.
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Now suppose otherwise, and let the common length of ts, us be n, say. Then ts+1 = ts
⌢a by

definition ofAl<l. This path has length n+1, and n+1 < l because ts+1 ∈ Al<l. Because λ preserves
nominals both ways, a is not named by a nominal. By (‡), neither is b, so us⌢b is a path in B. It has
length n+ 1 as well, so is in Bl

<l since n+ 1 < l. ∃ lets us+1 = us
⌢b.

In each case, ∃ has found us+1 ∈ Bl
<l of the same path length (0 or n+1) as ts+1, with λ(us+1) =

b, and with Bl
<l |= usRus+1 (by (†) and the definition of Bl

<l). So ∃ can legally respond to ∀ with
us+1 in the main game B⋆α(A

l
<l, â, B

l
<l, b̂), and in doing so, keep conditions (i) and (ii) above. Hence,

we have described a winning strategy for her in B⋆α(A
l
<l, â, B

l
<l, b̂). 2

DEFINITION 5.10 For ⋆ ∈ {3,3@}, 1 ≤ l < ω, and n < ω, define

m(⋆, l, n) =


l − 1, if n = 0,

l, if n > 0 and ⋆ = 3@,

l · (n+ 1), if n > 0 and ⋆ = 3.

LEMMA 5.11 Suppose that NOM is finite, let ⋆ ∈ {3,3@} and 1 ≤ l < ω, and write m =
m(⋆, l, |NOM|). Let (A, a), (B, b) be pointed Kripke models satisfying (Al<l, â) ∼⋆

m (Bl
<l, b̂). Then

(Al<l, â) ∼⋆ (Bl
<l, b̂).

Proof. By an R-chain of length n < ω in Al<l, we will mean a sequence t0, . . . , tn of elements of
Al<l with Al<l |= tiRti+1 for each i < n. (The word ‘path’ could be confusing here.) By construction
of Al<l, every R-chain of length ≥ l contains a point named by a nominal. An R-chain in Bl

<l is
defined similarly.

By lemma 3.5(4), it is enough to show that (Al<l, â) ∼⋆
ω (Bl

<l, b̂). By assumption, ∃ has a winning
strategy in B⋆m(A

l
<l, â, B

l
<l, b̂). The idea is for her to use it in B⋆ω(A

l
<l, â, B

l
<l, b̂). Of course, it may

run out, so she may have to reset it frequently.
There are three cases, according to how m = m(⋆, l, |NOM|) is defined.
First take the case NOM = ∅, so m = l − 1. Then each play of B⋆ω(A

l
<l, â, B

l
<l, b̂) comes to

an end after at most m rounds, since no R-chain in Al<l or Bl
<l is longer than this when NOM = ∅.

Hence, ∃ can just use her winning strategy in B⋆m(A
l
<l, â, B

l
<l, b̂). (Since NOM = ∅, the game does

not depend on ⋆.)
Now take the case when NOM ̸= ∅ and ⋆ = 3@, so m = l. By assumption and lemma 3.5(1),

∃ has winning strategies in B3
l (A

l
<l, â, B

l
<l, b̂) and B3

l (A
l
<l, (c

A), Bl
<l, (c

B)) for each c ∈ NOM. She
can use them repeatedly in a play of B3@

ω (Al<l, â, B
l
<l, b̂), as follows. Initially, she chooses whichever

strategy matches ∀’s initial move. As play of B3@
ω continues, consideration of the form of Al<l and

Bl
<l shows that it will either end with a win for ∃ because ∀ can’t move, or will arrive after ≤ l rounds

at a position of the form ((cA), (cB)) for some nominal c. ∃ can then pick up a winning strategy in
B3
l (A

l
<l, (c

A), Bl
<l, (c

B)) lasting another l rounds. Continuing in this way, she will win. (Actually
this argument works for infinite NOM so long as we still define m(3@, l, |NOM|) = l.)

Finally take the case when NOM ̸= ∅ and ⋆ = 3, som = l ·(|NOM|+1). Let us say that elements
t ∈ Al<l and u ∈ Bl

<l match if there is a finite R-chain in Al<l running from â to t, and for some
nominal c we have t = (cA) and u = (cB).

Claim. If t, u match, then ∃ has a winning strategy in B3
l (A

l
<l, t, B

l
<l, u).

Proof of claim. Take a shortest possible R-chain t0, . . . , tn in Al<l from â to t, so t0 = â and tn = t.
By minimality, t0, . . . , tn are pairwise distinct, and at most |NOM| of them are named by a nominal.
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But whenever 0 ≤ s < s+ l ≤ n, some point in {ts, . . . , ts+l} is named by a nominal. It follows that
n ≤ l · |NOM|.

By following the chain, playing in Al<l in each round, ∀ can get from â to t in ≤ l · |NOM| rounds
of a play of B3

m(A
l
<l, â, B

l
<l, b̂). If ∃ uses her winning strategy in such a play, then as it preserves

nominals, she will for sure arrive at u, and her winning strategy will still have ≥ m − l · |NOM| =
l rounds left to run. So ‘continue with the strategy in progress’ is a winning strategy for her in
B3
l (A

l
<l, t, B

l
<l, u). This proves the claim.

We finish as in the preceding case. Let ∀, ∃ play B3
ω (A

l
<l, â, B

l
<l, b̂), with ∃ initially using her

winning strategy in B3
m(A

l
<l, â, B

l
<l, b̂). Play will either end with a win for ∃ because ∀ can’t move,

or arrive after ≤ l rounds at a position (t, u) of the form ((cA), (cB)) for some nominal c. Plainly, t
and u will then match. So by the claim, ∃ can then pick up a winning strategy lasting another l rounds.
Continuing in this way forever, she will win. 2

6 Main theorem

THEOREM 6.1 Let σ be a hybrid signature, let K be either the class of all pointed Kripke models for
σ, or the class of all finite pointed Kripke models for σ, and let ⋆ ∈ {3,3@}. Let φ(x) be a first-order
L(σ)-formula of quantifier depth q and involving n distinct constants (nominals) from L(σ). Assume
that φ is ⋆-bisimulation invariant over K. Then φ is equivalent over K to some L⋆(σ)-formula ψ of
modal depth at most m = m(⋆, 2q, n).

Proof. Write σ = PROP ·∪ NOM. Let τ ⊆ σ be the ⊆-least hybrid signature such that φ is an L(τ)-
formula. It simply collects all symbols of σ that actually occur in φ (after changing p ∈ PROP to
P ∈ L(σ)). First we prove the theorem assuming that σ = τ . (This may be enough for some.) So σ
is finite and |NOM| = n.

Claim 1. If (A, a), (B, b) ∈ K and (A, a) ∼⋆
m (B, b) then A |= φ(a) iff B |= φ(b).

Proof of claim. Write l = 2q. As φ has quantifier depth q and is ⋆-bisimulation invariant over K, by
proposition 5.8 we have

A |= φ(a) ⇐⇒ Al<l |= φ(â) (5)

— note here that since (A, a) ∈ K, all structures mentioned in the proposition are also in K, and so
each of its four steps preserves φ. Similarly, applying proposition 5.8 to (B, b) gives

B |= φ(b) ⇐⇒ Bl
<l |= φ(b̂). (6)

By assumption, (A, a) ∼⋆
m (B, b), so by lemma 5.9, (Al<l, â) ∼⋆

m (Bl
<l, b̂), and thus (Al<l, â) ∼⋆

(Bl
<l, b̂) by lemma 5.11 and since m = m(⋆, l, |NOM|). As already observed, these structures are

in K. As φ is ⋆-bisimulation invariant over K, we obtain

Al<l |= φ(â) ⇐⇒ Bl
<l |= φ(b̂). (7)

Putting (5)–(7) together proves the claim.

The rest of the proof is quite standard. Since σ is finite, we can form the finite set F⋆
m of L⋆(σ)-

formulas of modal depth ≤ m from definition 3.6. Define

tp(A, a) = {ψ ∈ F⋆
m : A, a |= ψ} ∪ {¬ψ : ψ ∈ F⋆

m, A, a |= ¬ψ}, for (A, a) ∈ K,
ψ =

∨{∧
tp(B, b) : (B, b) ∈ K, B |= φ(b)

}
.
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Although K is a proper class, the class following the disjunction is finite since F⋆
m is finite, so ψ is an

L⋆(σ)-formula of modal depth ≤ m.

Claim 2. φ is equivalent over K to ψ.
Proof of claim. Let (A, a) ∈ K. If A |= φ(a) then

∧
tp(A, a) is a disjunct of ψ, and plainly

A, a |=
∧
tp(A, a), so A, a |= ψ.

Conversely, assume that A, a |= ψ. So there is some (B, b) ∈ K with B |= φ(b) and A, a |=∧
tp(B, b). It follows by definition of tp(B, b) that (A, a) and (B, b) agree on F⋆

m. Since σ is finite,
lemma 3.7 applies, giving

(A, a) ∼⋆
m (B, b). (8)

Since B |= φ(b), claim 1 and (8) yield A |= φ(a), proving the claim, and the theorem when σ = τ .

Now we prove the theorem without restrictions on σ. Let Kτ be the class of all (finite, if the
models in K are finite) pointed Kripke models for τ . As φ is assumed ⋆-bisimulation invariant over
K, by lemma 4.1 it is also ⋆-bisimulation invariant over Kτ . So by the case of the theorem already
proved, φ is equivalent over Kτ to an L⋆(τ)-formula ψ of modal depth ≤ m. But of course, φ is
equivalent to ψ over K as well. For let (A, a) ∈ K. Because they agree on symbols in φ, we have
A |= φ(a) iff A ↾ τ |= φ(a). As A ↾ τ ∈ Kτ , this is iff A ↾ τ, a |= ψ. Because A ↾ τ and A agree on
symbols in ψ, this is iff A, a |= ψ, as required. 2

The case NOM = ∅ is just the modal case, and is well known, as made clear in the introduction. We
include it to indicate how, and (see lemma 5.11) why, the bound on the modal depth of the equivalent
formula varies with the choice of language.

7 Optimality of modal depth bounds

Theorem 6.1 showed that every first-order L(σ)-formula φ(x) of quantifier depth q, written with n
nominals, and ⋆-bisimulation-invariant over K, is equivalent over K to a L⋆(σ)-formula ψ of modal
depth ≤ m(⋆, 2q, n). Perhaps surprisingly for a model-theoretic method, but less so in the light of
Otto’s work, this bound is optimal. Of course, sometimes one can find a simpler ψ, but in the worst
case one cannot. We now give examples to show this. Take σ = PROP ·∪ NOM with PROP = {p}. It
makes no difference which K in the theorem is chosen.

First consider the case NOM = ∅, when of course L3(σ) = L3@(σ) is the ordinary modal
language. This case was dealt with by Otto, who mentioned in [16, exercise 3.1] (also with Goranko
in [12, p.283]), and showed in elegant detail in [17, corollary 3.6], that for each q < ω, the modal
formula ψ =

∨
i<2q 3

ip is equivalent over K to a first-order L(σ)-formula φ(x) of quantifier depth q.
(As usual, 30p = p and 3i+1p = 33ip.) Clearly, ψ has modal depth 2q − 1 = m(3, 2q, 0) =
m(3@, 2q, 0). To paraphrase [17], φ(x) is not invariant under ∼3

ℓ for any ℓ < 2q − 1, hence not
equivalent over K to any modal formula of depth less than 2q − 1.

To help with the other cases, for q < ω define a first-order L(σ)-formula ‘xR2qy’ of quantifier
depth q by induction: xR20y is xRy, and xR2q+1

y is ∃z(xR2qz ∧ zR2qy).

EXAMPLE 7.1 Let NOM = {c} and ⋆ = 3@. Let q < ω and l = 2q, so m(⋆, l, 1) = l. Define
φ(x) = cRlc, an L(σ)-formula of quantifier depth q. Over K, φ is expressible in L3@(σ) by @c3

lc,
of modal depth l.

To show that l is optimal, define finite Kripke models A1 = ({a, 0, . . . , l − 1}, R1, V1) and A2 =
({a, 0, . . . , l − 1}, R2, V1), where a /∈ {0, . . . , l − 1}, R1 = {(i, i + 1) : i < l − 1}, R2 = R1 ∪
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{(l − 1, 0)}, and V1(c) = {0}. Then (A1, a), (A2, a) ∈ K. The strategy ‘copy ∀’s moves’ is winning
for ∃ in B3@

l−1(A1, a, A2, a), because the difference in the models is too far away from 0 to reach in
< l rounds. So by lemma 3.7, (A1, a) and (A2, a) agree on all L3@(σ)-formulas of modal depth < l.
But clearly A1 |= ¬φ(a) and A2 |= φ(a), so φ(x) is not equivalent over K to any L3@(σ)-formula
of modal depth < l — nor obviously to any L3(σ)-formula without @, since (A1, a) ∼3 (A2, a), so
φ(x) is not 3-bisimulation invariant.

EXAMPLE 7.2 Finally let NOM = {c1, . . . , cn}, where c1, . . . , cn are pairwise distinct, and ⋆ = 3.
Let q < ω and l = 2q, so m(⋆, l, n) = l(n+ 1) = m, say. Define

φ(x) = xRlc1 ∧ c1Rlc2 ∧ . . . ∧ cn−1R
lcn ∧ cnRlc1.

Again, φ has quantifier depth q. It is equivalent over K to the L3(σ)-formula

3l(c1 ∧3l(c2 ∧ · · · ∧3l(cn ∧3lc1)) · · · ).

This has modal depth l(n+ 1) = m.
Define finite Kripke models A3 = ({0, . . . ,m− 1}, R3, V3) and A4 = ({0, . . . ,m− 1}, R4, V3),

where R3 = {(i, i+ 1) : i < m− 1}, R4 = R3 ∪ {(m− 1, l)}, and V3(ci) = {li} for i = 1, . . . , n.
Then (A3, 0), (A4, 0) ∈ K, A3 |= ¬φ(0), A4 |= φ(0), and again ∃ has the winning strategy ‘copy
∀’s moves’ in B3

m−1(A3, 0, A4, 0), so lemma 3.7 yields that (A3, 0) and (A4, 0) agree on all L3(σ)-
formulas of modal depth < m. Hence, φ(x) is not equivalent over K to any such formula.

Some may have been surprised when we defined d(@cψ) = d(ψ) (rather than 1 + d(ψ)) in the
definition of modal depth in §2. So whilst we gave a bound on the nesting depth of 3s in the L3@(σ)-
formula ψ equivalent to φ(x), perhaps ψ has @s nested to a much greater depth? The answer is ‘no’.
We obtained ψ as a boolean combination of formulas in F3@

m as in definition 3.6, and each formula
in this set has at most one occurrence of @, so the ‘@-nesting depth’ of ψ is at most 1.

8 Bisimulation-closed classes

Theorem 6.1 applies to the class of all pointed Kripke models for σ and the class of all finite ones, for
a hybrid signature σ. Here we consider briefly whether it extends to other classes.

Van Benthem’s classical proof can be used to extend the theorem to any elementary class K of
pointed Kripke models for any σ, though the argument does not provide any modal depth bounds
for ψ.

Following Otto [16], we now consider bisimulation-closed classes. For ⋆ ∈ {3,3@}, a class K of
pointed Kripke models (for some σ) is said to be closed under ⋆-bisimulation if (A, a) ∼⋆ (B, b) ∈ K
implies (A, a) ∈ K.

For modal logic, Otto states the following in [16, corollary 4.1] (we paraphrase):

Let C be a class of pointed Kripke models closed under bisimulation, and Cfin the
class of finite structures within C. Then a first-order formula φ(x) of quantifer depth q
is invariant under bisimulation over C [over Cfin ] iff φ(x) is logically equivalent over C
[over Cfin ] to a modal formula of modal depth ≤ 2q − 1.

It appears that this positive result generalises to basic hybrid logic (with 2q replacing 2q − 1), but to
give details would take us too far out of our way. However, it can fail for proto-hybrid logic, and we
end with an example showing this.
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EXAMPLE 8.1 All Kripke models here will be for the hybrid signature σ with just two nominals,
c and d, and no propositional atoms. We call 3-bisimulations simply ‘bisimulations’ and write ∼3

as ∼. For each n < ω, define finite Kripke models An and Bn as follows:

An = ({0, . . . , n}, {(i, i+ 1) : i < n}, Vn), where Vn(c) = Vn(d) = {n},
Bn = ({0, . . . , n+ 1}, {(i, i+ 1) : i ≤ n}, V ′

n), where V ′
n(c) = {n} and V ′

n(d) = {n+ 1}.

Let C be the class of all pointed Kripke models (M,m) such that (M,m) ∼ (An, 0) or (M,m) ∼
(Bn, 0) for some n < ω. Since ∼ is an equivalence relation, C is closed under bisimulation. Let Cfin
be the class of finite structures within C.

Now let φ(x) be the L(σ)-formula c = d. We will show that φ is bisimulation invariant over C
but not equivalent even over the subclass Cfin to any L3(σ)-formula.

First, observe that for each pointed Kripke model (M,m) and each n < ω,

if (M,m) ∼ (An, 0) then M |= φ(m),
if (M,m) ∼ (Bn, 0) then M |= ¬φ(m).

(9)

For suppose that (M,m) ∼ (An, 0). Let Z be a bisimulation between M and An with mZ0. By
n successive applications of the Back property for Z, we see that there is m′ ∈ M with m′Zn, so
(M,m′) and (An, n) agree on c and d. Hence, M,m′ |= c ∧ d and M |= φ(m). The argument when
(M,m) ∼ (Bn, 0) is similar: we end up with M,m′ |= c∧¬d and so M |= ¬φ(m). This proves (9).

Again since ∼ is an equivalence relation, it follows from (9) that φ is bisimulation invariant over
C and so also over Cfin . (It is obviously not bisimulation invariant in general.)

Suppose for contradiction that φ(x) is equivalent over Cfin to some L3(σ)-formula ψ. Let n =
d(ψ) + 1. It is plain that (An, 0) ∼3

d(ψ) (Bn, 0), so by lemma 3.7, (An, 0) and (Bn, 0) agree on ψ.
But An |= φ(0) and Bn |= ¬φ(0). Since (An, 0), (Bn, 0) ∈ Cfin , this is a contradiction.

So where does the proof of theorem 6.1 go wrong for C and Cfin? The answer is of course that
claim 1 in the proof fails. The quantifier depth q of φ above is zero. Let l = 2q = 1 and m =
m(3, l, |NOM|) = 3. Consider (A4, 0), (B4, 0) ∈ Cfin . As above, (A4, 0) ∼3

m (B4, 0), but A4 |=
φ(0) and B4 |= ¬φ(0). So claim 1 fails for these two models.

Where does the proof of the claim fail? Write A = (A4)
l
<l and B = (B4)

l
<l. They work out as

A = ({0̂, . . . , 4̂}, {(3̂, 4̂)}, V̂ ), where V̂ (c) = V̂ (d) = {4̂},
B = ({0̂, . . . , 5̂}, {(3̂, 4̂), (4̂, 5̂)}, V̂ ′), where V̂ ′(c) = {4̂} and V̂ ′(d) = {5̂}.

From this, (A, 0̂) and (B, 0̂) are indeed bisimilar, as the proof of the claim shows, but A |= φ(0̂) and
B |= ¬φ(0̂), so they disagree on φ. Hence, (7) in the proof of the claim fails.

This does not contradict the argument that led to (7), because (A, 0̂) and (B, 0̂) are plainly not
in C. So even though they are bisimilar, we cannot deduce that they agree on φ, which is known to be
bisimulation invariant only over C.

9 Conclusion

We have proved characterisation theorems for proto-hybrid logic (modal logic with nominals) and
for basic hybrid logic (modal logic with nominals and @), uniformly over arbitrary and finite Kripke
models, and with optimal modal depth bounds. We also showed that the theorem for proto-hybrid
logic does not extend to arbitrary bisimulation-closed classes.
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I do not claim that these are major results at all. They are profoundly incremental, they fly in the
face of the modern trend to generality in the subject (e.g., [3, 20, 5]), and the classical cases (though
perhaps not the modal depth bounds) are already known. Still, the finite-models cases may fill a
narrow but striking gap in knowledge. In particular, proto-hybrid logic is a rather small and obvious
extension of modal logic — just add nominals. So whether it is, like modal logic, characterised by
invariance under modal bisimulations in the finite seems a basic question to which modal and hybrid
logicians ought to have an answer. Now they do.

Bisimulation characterisation theorems over finite models are still relatively rare. Whilst they do
sometimes follow from very general results, such as [20], at other times they can be challenging or
even impossible to achieve [11]. So it may be of some value to add two more for hybrid logics, as we
have done here. And the methods we have used, in particular unravelling compatibly with nominals
and the use of interpretations, may be helpful elsewhere.

One might ask about characterisation theorems in the finite for more powerful hybrid logics. The
picture there may not be so rosy. Another problem is to prove characterisation theorems over particular
classes of finite models. Results for modal logic over finite transitive models are known [11], and it
may be interesting to extend them to hybrid logics. Finally, we have mentioned characterisation
theorems that hold classically but not in the finite. It might be interesting to find characterisation
theorems ‘in the wild’ that hold in the finite but not classically. Certainly there are trivial illustrative
examples (not using bisimulations). Every first-order formula φ(x) is equivalent to a propositional
boolean formula over the class of pointed Kripke models based on finite irreflexive dense linear orders,
because each such order is just a solitary irreflexive point. This fails for the class of all irreflexive dense
linear orders.

One final remark: although the result proved in [20] is extremely general, apparently our results
here cannot be derived from it, because as it stands, nominals are not admitted. However, coalgebraic
semantics has been developed for hybrid logic [15, 19], and [20] may well be extended to hybrid logic
in due course.

References
[1] S. Abramsky and D. Marsden, Comonadic semantics for hybrid logic, 47th International Symposium on

Mathematical Foundations of Computer Science (MFCS 2022) (Dagstuhl, Germany) (S. Szeider, R. Ga-
nian, and A. Silva, eds.), Leibniz International Proceedings in Informatics (LIPIcs), vol. 241, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 7:1–7:14.

[2] C. Areces, P. Blackburn, and M. Marx, Hybrid logics: Characterization, interpolation and complexity, J.
Symbolic Logic 66 (2001), 977–1010.

[3] C. Areces, F. Carreiro, and S. Figueira, Characterization, definability and separation via saturated models,
Theoretical Comp. Sci. 537 (2014), 72–86.

[4] C. Areces and B. ten Cate, Hybrid logics, in van Benthem et al. [8], pp. 821–868.

[5] G. Badia, D. Gaina, A. Knapp, T. Kowalski, and M. Wirsing, A modular bisimulation characterisation for
fragments of hybrid logic, 2023, https://arxiv.org/abs/2312.14661.

[6] J. van Benthem, Modal correspondence theory, Ph.D. thesis, Mathematical Institute, University of Ams-
terdam, 1976.

[7] , Modal logic and classical logic, Bibliopolis, Naples, 1985.

[8] J. van Benthem, P. Blackburn, and F. Wolter (eds.), Handbook of modal logic, Studies in Logic and
Practical Reasoning, vol. 3, Elsevier, Amsterdam, 2007.

22



[9] P. Blackburn and J. van Benthem, Modal logic: a semantic perspective, in van Benthem et al. [8], pp. 1–84.

[10] B. ten Cate, Model theory for extended modal languages, Ph.D. thesis, University of Amsterdam, 2005,
ILLC Dissertation Series DS-2005-01.

[11] A. Dawar and M. Otto, Modal characterisation theorems over special classes of frames, Ann. Pure. Appl.
Logic 161 (2009), 1–42.

[12] V. Goranko and M. Otto, Model theory of modal logic, in van Benthem et al. [8], pp. 249–329.

[13] W. Hodges, Model theory, Encyclopedia of mathematics and its applications, vol. 42, Cambridge Univer-
sity Press, 1993.

[14] I. Hodkinson and H. Tahiri, A bisimulation characterization theorem for hybrid logic with the current-state
binder, Rev. Symbolic Logic 3 (2010), 247–261.
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