ABSTRACT

A novel framework for music structure analysis is proposed. Each audio recording is represented by a sequence of audio features, which capture the variations between different music segments. Three different features are employed, namely the mel-frequency cepstral coefficients, the chroma features, as well as the bio-inspired auditory temporal modulations. By assuming that the feature vectors, extracted from a specific music segment, are drawn from a single subspace, a feature sequence would lie in a union of as many subspaces as the number of music segments is. Under the aforementioned assumption, it has been shown that each feature vector from a union of independent linear subspaces has a sparse representation with respect a dictionary formed by all other feature vectors, with the nonzero coefficients associated only to feature vectors that stem from its own subspace. This sparse representation reflects the relationships among the feature vectors and is used to construct a similarity graph, the so-called \(t_1 \)-Graph. Thus, the segmentation of the audio features is obtained by applying spectral clustering on the adjacency matrix of the \(t_1 \)-Graph. The performance of the proposed approach is assessed by conducting experiments on the PopMusic and the UPF Beatles benchmark datasets. The experimental results are promising and validate the effectiveness of the approach, which does not need training nor does need tuning multiple parameters.

1. INTRODUCTION

A music signal carries highly structured information at several time levels. At the lowest level, structure is defined by the individual notes, their timbral characteristics, as well as their pitch and time intervals. At an intermediate level, notes build relatively longer structures, such as melodic phrases, chords, and chord progressions. At the highest level, the structural description of an entire music recording or its musical form emerges at the time scale of music sections, such as intro, verse, chorus, bridge, and outro [16, 17].

The musical form of a recording is high-level information that can be employed in several Music Information Retrieval (MIR) tasks, such as music thumbnailing and summarization [3], chord transcription [12], music semantics learning and annotation [1], song segment retrieval [1], remixing [9], etc. Consequently, the interest of MIR community to the problem of automatic musical form or structural analysis has been increased as is manifested by the considerably amount of research that has been done so far [1, 9, 10, 16, 19]. For a comprehensive review the interested reader is referred to [6, 17] (and the references therein). Although many methods have been employed in modern automatic music structural analysis systems, their majority applies a signal processing stage followed by a representation stage. In the first stage, low-level features sequences are extracted from the audio signal in order to model its timbral, melodic, and rhythm content [17]. This is consistent with the findings of Bruderer et al., who state that the perception of structural boundaries in popular music is mainly influenced by the combination of changes in timbre, tonality, and rhythm over the music piece [2]. At the representation stage, a recurrence plot or a similarity matrix is analyzed in order to identify repetitive patterns in the feature sequences by employing Hidden Markov Models, clustering methods, etc. [6, 17].

In this paper, an unsupervised method for automatic music structure analysis is proposed. Each audio recording is represented by a sequence of audio features aiming to capture the variations between different music segments. Since the music structure is strongly determined by repetition, a similarity matrix should be constructed and then analyzed. The main novelty of the proposed method is that the similarity matrix is built by adopting an one-to-all sparse reconstruction rather than an one-to-one (i.e., pairwise) comparisons. By assuming that the feature vectors, that belong to the same music segment, are drawn from a single subspace, the whole feature sequence lies in a union of \(K \) subspaces, where \(K \) is equal to the number of music segments. It has been proved that, under the aforementioned assumptions, each feature vector from a union of independent linear subspaces has a sparse representation with respect a dictionary formed by all the other feature vectors, with the nonzero
coefficients associated to feature vectors stemming from its-own subspace [7]. Since this sparse representation reflects relationships among the feature vectors, it is used to construct a similarity graph, the so-called ℓ_1-Graph [5]. The segmentation of audio features is obtained then by applying spectral clustering on the adjacency matrix of ℓ_1-Graph. Apart from the conventional mel-frequency cepstral coefficients and chroma features, frequently employed in music structural analysis systems, the use of auditory temporal modulations is also investigated here.

The performance of the proposed framework is assessed by conducting experiments in two manually annotated benchmark datasets, namely the PopMusic [10] and the UPF Beatles. The experimental results validate the effectiveness of the proposed approach in music structural analysis reaching the performance of the state-of-the-art music structural analysis systems, without need of training and multiple parameters tuning.

The remainder of the paper is as follows. In Section 2, the audio features employed are briefly described. The ℓ_1-Graph based music structural analysis framework is detailed in Section 3. Datasets, evaluation metrics, and experimental results are presented in Section 4. Conclusions are drawn and future research direction are indicated in Section 5.

2. AUDIO FEATURES REPRESENTATION

Each 22,050-Hz sampled monaural waveform is parameterized by employing three audio features in order to capture the variations between different music segments. The feature set includes the auditory temporal modulations (ATMs), the mel-frequency cepstral coefficients (MFCCs), and the chroma features.

1) Auditory temporal modulations: The representation of ATM is obtained by modeling the path of human auditory processing and seems to carry important time-varying information of the music signal [15]. The computational model of human auditory system consists of two basic processing stages. The first stage models the early auditory system, which converts the acoustic signal into an auditory representation, the so-called auditory spectrogram, i.e., a time-frequency distribution along a logarithmic frequency axis. At the second stage, the temporal modulation content of the auditory spectrogram is estimated by wavelets applied to each row of the auditory spectrogram. In this paper, the early auditory system is modeled by employing the Lyons’ passive ear model [11]. The derived auditory spectrogram consists of 96 frequency channels ranging from 62 Hz to 11 kHz. The auditory spectrogram is then decimated along the time axis by a factor of 150 ms. The decimation allows focusing on a more meaningful time-scale for music structural analysis. The underlying temporal modulations of the music signal are derived by applying a wavelet filter along each temporal row of the auditory spectrogram for a set of 8 discrete rates r, that are selective to different temporal modulation parameters ranging from slow to fast temporal rates (i.e., $r \in \{2, 4, 8, 16, 32, 64, 128, 256\}$ Hz) [15]. Consequently, the entire auditory spectrogram is modeled by a three-dimensional representation of frequency, rate, and time, which is then unfolded along the time-mode in order to obtain a two-dimensional (2D) ATM features sequence.

2) Mel-frequency cepstral coefficients: MFCCs parameterize the rough shape of spectral envelope [13] and thus encode the timbral properties of signal, which are closely related to the perception of music structure [2]. Following [16], the MFCCs calculation employs frames of duration 92.9 ms with a hop size of 46.45 ms, and a 42-band filter bank. The correlation between frequency bands is reduced by applying the discrete cosine transform along the log-energies of the bands. The lowest coefficient (i.e., zeroth order) is discarded and the 12 coefficients following are retained to form the feature vector that undergoes a zero-mean normalization.

3) Chroma: Chroma features are adept at characterizing the harmonic content of the music signal by projecting the entire spectrum onto 12 bins representing the 12 distinct semitones (or chroma) of a musical octave [13]. The chroma features are calculated using 92.9 ms frames with a hop size of 23.22 ms as follows. First, the salience for different fundamental frequencies in the range $80 – 640$ Hz is calculated. The linear frequency scale is transformed into a musical one by selecting the maximum salience value in each frequency range corresponding to one semitone. Finally, the octave equivalence classes are summed over the whole pitch range to yield a 12-dimensional chroma vector.

Finally, each of the aforementioned features is averaged over the beat frames by employing the beat tracking algorithm described in [8]. Thus, a set of beat-synchronous tempo invariant features is obtained.

3. MUSIC STRUCTURE SEGMENTATION BASED ON ℓ_1-GRAPH

Since repetition governs the music structure, a common strategy employed by music structural analysis systems is to compare each feature vector of the audio recording with all the other vectors in order to detect similarities. Let a given audio recording be represented by a feature sequence of N frames, that is $\{x_1, x_2, \ldots, x_N\}$. In conventional music structural analysis systems, the similarities between the feature vectors are measured by constructing the self-similarity matrix (SDM) $D \in \mathbb{R}^{N \times N}$ with elements $d_{ij} = d(x_i, x_j)$, $i, j \in \{1, 2, \ldots, N\}$, where $d(\cdot, \cdot)$ is a suitable distance metric [9, 16, 17]. Common distance metrics employed are the Euclidean (i.e., $d_E(x_i, x_j) = \|x_i - x_j\|_2$) and the cosine distance (i.e., $d_C(x_i, x_j) = 0.5(1 - \frac{x_i^T x_j}{\|x_i\|_2 \|x_j\|_2})$, where $\| \cdot \|_2$
denotes the ℓ_2 vector norm. However, the aforementioned approach suffers from two drawbacks: 1) it is very sensitive to noise, since the employed distance metrics are not robust to noise and 2) the resulting SDM is dense and thus it cannot provide locality information, which is valuable for the problem under study.

In order to alleviate the aforementioned drawbacks, we propose to measure the similarities between the feature vectors in a one-to-all sparse reconstruction manner rather than employ the conventional one-to-one distance approach, by exploiting recent findings in sparse subspace clustering [7].

Formally, let a given audio recording of K music segments be represented by a sequence of N audio features of size M, i.e., $X = [x_1 | x_2 | \ldots | x_N] \in \mathbb{R}^{M \times N}$. By assuming that the feature vectors that belong to the same music segment, lie into the same subspace, the columns of X are drawn from a union of K independent linear subspaces of unknown dimensions. It has been proved that each feature vector from a union of independent linear subspaces has a sparse representation with respect a dictionary formed by all other feature vectors, with the nonzero coefficients associated to vectors drawn from its own subspace [7]. Therefore, by seeking this sparsest linear combination, the relationship with the other vectors lying in the same subspace is revealed automatically. A similarity graph built from this sparse representation (i.e., the ℓ_1-Graph [5]) is used then in order to segment the columns of X into K clusters by applying spectral clustering.

Let $X^i = [x_1^i | x_2^i | \ldots | x_{i-1}^i | x_{i+1}^i | \ldots | x_N^i] \in \mathbb{R}^{M \times (N-1)}$. The sparsest solution of $x_i = X^i c$ can be found by solving the optimization problem:

$$\arg\min_c \|c\|_0 \quad \text{subject to} \quad x_i = X^i c,$$ \hspace{1cm} (1)

where $\|\cdot\|_0$ is the ℓ_0 quasi-norm returning the number of the non-zero entries of a vector. Finding the solution to the optimization problem (1) is NP-hard due to the nature of the underlying combinatorial optimization. An approximate solution to the problem (1) can be obtained by replacing the ℓ_0 norm with the ℓ_1 norm as follows:

$$\arg\min_c \|c\|_1 \quad \text{subject to} \quad x_i = X^i c,$$ \hspace{1cm} (2)

where $\|\cdot\|_1$ denotes the ℓ_1 norm of a vector. It has been proved that if the solution is sparse enough, and $M \ll (N-1)$, then the solution of (1) is equivalent to the solution of (2), which can be solved in polynomial time by standard linear programming methods [4]. The well-posedness of (2) relies on the condition $M \ll (N-1)$, i.e., the sample size must be much larger than the feature dimension. If the ATMs used as audio representation, the sample size (number of beats here) is not much larger than the feature dimension (e.g. $M \approx 768$ and $N \approx 500$ on average in the experiments conducted). Thus c in no longer sparse. To alleviate this problem, it has been proposed to augment X^i by a $M \times M$ identity matrix and to solve [20]:

$$\arg\min_c \|c\|_1 \quad \text{subject to} \quad x_i = Bc,$$ \hspace{1cm} (3)

instead of (2), where $B = [X^i | I] \in \mathbb{R}^{M \times (M+N-1)}$.

Since the sparse coefficient vector c reflects the relationships among x_i and the remaining feature vectors in X^i, the overall sparse representation of the whole feature sequence X can be summarized by constructing the weight matrix W using Algorithm 1. W can be used to define the so-called ℓ_1-Graph [5]. The ℓ_1-Graph is a directed graph $G = (V, E)$, where the vertices of graph V are the N audio feature vectors and an edge $(u_i, u_j) \in E$ exists, whenever x_j is one of the vectors participating to the sparse representation of x_i. Accordingly, the adjacency matrix of G is W. Unlike the conventional SDM, the adjacency matrix W is robust to noise. The ℓ_1-Graph G is an unbalanced digraph.

A new balanced graph G can be built with adjacency matrix W with elements $\tilde{w}_{ij} = 0.5 (|w_{ij}| + |w_{ji}|)$, where $|.|$ denotes the absolute value. W is still a valid representation of the similarity between audio features vectors, since if x_i can be expressed as compact linear combination of some feature vectors including x_j (all from the same subspace - or music segment here), then x_j can also be expressed as compact linear combination of feature vectors in the same subspace including x_i [7].

The segmentation of the audio features vectors can be obtained by spectral clustering algorithms such as Normalized Cuts [18] as illustrated in Algorithm 2.

Algorithm 1 ℓ_1-Graph Construction [5].

Input: Audio feature sequence $X \in \mathbb{R}^{M \times N}$.

Output: Weight matrix $W \in \mathbb{R}^{N \times N}$.

1. for $i = 1 \rightarrow N$ do
3. $\arg\min_c \|c\|_1 \quad \text{subject to} \quad x_i = Bc$.
4. for $j = 1 \rightarrow N-1$ do
5. if $j < i$ then
6. $w_{ij} = c_j$.
7. else
8. $w_{ij} = c_{j-1}$.
9. end if
10. end for
11. end for

4. EXPERIMENTAL EVALUATION

The performance of the proposed music structure analysis system is assessed by conducting experiments on two manually annotated datasets of Western popular music pieces.
Algorithm 2 Music Segmentation via ℓ_1-Graph.

Input: Audio features sequence $X \in \mathbb{R}^{M \times N}$ and the number of segments K.

Output: Audio features sequence segmentation.

1: Obtain the adjacency matrix W of ℓ_1-Graph by Algorithm 1.
2: Build the symmetric adjacency matrix of the new ℓ_1-Graph G: $\tilde{W} = 0.5 \cdot (|W| + |W^T|)$.
3: Employ Normalized Cuts [18] to segment the vertices of G into K clusters.

Several evaluation metrics are employed to assess system performance from different points of view.

4.1 Datasets

PopMusic dataset: PopMusic dataset [10] consists of 60 music recordings of rock, pop, hip-hop, and jazz. Half of the recordings are from a variety of well-known artists from the past 40 years, including Britney Spears, Eminem, Madonna, Nirvana, etc. This subset is abbreviated as *Recent* hereafter. The remaining 30 music recordings are by The Beatles. The ground-truth segmentation of each song contains between 2 and 15 different segments classes. On average the number of classes is 6, while each recording is found to contain 11 segments [1,10]. The subset contains the Beatles recordings is referred to as *Beatses*.

UPF Beatles dataset: The UPF Beatles dataset consists of 174 songs by The Beatles, annotated by musicologist Alan W. Pollack. Segmentation time stamps were inserted at Universitat Pompeu Fabra (UPF) as well. Each music recording contains on average 10 segments from 5 unique classes [19]. Since all the recordings are from the same band, there is less variation in musical style and timbral characteristics than other datasets.

4.2 Evaluation Metrics

Following [1,9,10,16,19], the segment labels are evaluated by employing the pairwise F-measure, which is one of the standard metrics of clustering quality. It compares pairs of beats, which are assigned to the same cluster in the music structure analysis system output against those in the reference segmentation. Let F_A be the set of similarly labeled pairs of beats in a recording according to the music structure analysis algorithm, and F_H be the set of similarly labeled pairs in the human reference segmentation. The pairwise precision, P_{pairwise}, the pairwise recall, R_{pairwise}, and the pairwise F-measure, F_{pairwise}, are defined as follows:

$$P_{\text{pairwise}} = \frac{|F_A \cap F_H|}{|F_A|},$$ \hspace{1cm} (4)

$$R_{\text{pairwise}} = \frac{|F_A \cap F_H|}{|F_H|},$$ \hspace{1cm} (5)

$$F_{\text{pairwise}} = 2 \cdot \frac{P_{\text{pairwise}} \cdot R_{\text{pairwise}}}{P_{\text{pairwise}} + R_{\text{pairwise}}}. $$ \hspace{1cm} (6)

The average number of segments per song in each dataset is reported as well.

The segment boundary detection is evaluated separately by employing the standard precision, recall, and F-measure. Following [1,10,16], a boundary detected the system is considered as correct if it falls within some fixed small distance δ away from its reference, where each reference boundary can be retrieved by at most one output boundary. Let B_A and B_H denote the sets of segments bounds according to the music structure analysis algorithm and the human reference, respectively, then

$$P = \frac{|B_A \cap B_H|}{|B_A|},$$ \hspace{1cm} (7)

$$R = \frac{|B_A \cap B_H|}{|B_H|},$$ \hspace{1cm} (8)

$$F = 2 \cdot \frac{P \cdot R}{P + R}. $$ \hspace{1cm} (9)

In (4)-(9), $|\cdot|$ denotes the set cardinality. The parameter δ is set to 3 sec in our experiments in order to compare our results with those reported in [1,10,16].

4.3 Experimental Results

The structural segmentation is obtained by applying the proposed framework to various feature sequences. Following the experimental setup employed in [1,9,10,16,19], the number of clusters K was set to 6 for the PopMusic dataset, while $K = 4$ for the UPF Beatles dataset. For comparison purposes, experiments are conducted by applying Normalized Cuts [18] apart from the ℓ_1-Graph and the SDM with Euclidean distance metric computed for the three audio features sequences. The structural segmentation results for the PopMusic and the UPF Beatles datasets are summarized in Table 1 and Table 2, respectively.

By inspecting Table 1 and Table 2 it is clear that the ℓ_1-Graph based segmentation outperforms the SDM based segmentation in terms of pairwise F-measure for all the audio features employed in both datasets. Moreover, the ATMs offer a robust representation for the task of music structure analysis, especially when employed in the construction of the ℓ_1-Graph.

1 http://www.dtic.upf.edu/perfe/annotations/sections/license.html
The proposed method achieves boundary detection performance on the PopMusic dataset. EchoNest refers to the commercial online music boundary detection service provided by The EchoNest and evaluated in [1].

By inspecting Table 3, for music boundary detection, the proposed system is clearly inferior to the system tested by Levy and Sandler [10] on both datasets. The success of the latter method can be attributed to the constraints imposed during the clustering, which is not our case. Consequently, the results obtained by the proposed system in music boundary detection could be considered as acceptable, since such results still outperform those reported for many other state-of-the-art approaches with or without imposing constraints (e.g., the EchoNest online service).

Table 1. Segment-type labeling performance on the PopMusic dataset.

<table>
<thead>
<tr>
<th>Method/Reference</th>
<th>Dataset</th>
<th>F_1_{music}</th>
<th>Av. Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM + ℓ_2-Graph based segmentation</td>
<td>Beatles</td>
<td>0.8440</td>
<td>8.8333</td>
</tr>
<tr>
<td>ATM + ℓ_2-Graph based segmentation</td>
<td>PopMusic</td>
<td>0.5855</td>
<td>32.0556</td>
</tr>
<tr>
<td>MFCCs + ℓ_2-Graph based segmentation</td>
<td>Beatles</td>
<td>0.4029</td>
<td>159.3967</td>
</tr>
<tr>
<td>MFCCs + ℓ_2-Graph based segmentation</td>
<td>PopMusic</td>
<td>0.5854</td>
<td>238.2966</td>
</tr>
<tr>
<td>Chroma + ℓ_2-Graph based segmentation</td>
<td>Beatles</td>
<td>0.4419</td>
<td>163.5687</td>
</tr>
<tr>
<td>Chroma + ℓ_2-Graph based segmentation</td>
<td>PopMusic</td>
<td>0.3320</td>
<td>261.9345</td>
</tr>
<tr>
<td>ATM + SDM based segmentation</td>
<td>Beatles</td>
<td>0.4245</td>
<td>145.3366</td>
</tr>
<tr>
<td>ATM + SDM based segmentation</td>
<td>PopMusic</td>
<td>0.4027</td>
<td>125.5283</td>
</tr>
<tr>
<td>MFCCs + SDM based segmentation</td>
<td>Beatles</td>
<td>0.5664</td>
<td>226.5666</td>
</tr>
<tr>
<td>MFCCs + SDM based segmentation</td>
<td>PopMusic</td>
<td>0.5064</td>
<td>200.8368</td>
</tr>
<tr>
<td>Chroma + SDM based segmentation</td>
<td>Beatles</td>
<td>0.5574</td>
<td>216.7379</td>
</tr>
<tr>
<td>Chroma + SDM based segmentation</td>
<td>PopMusic</td>
<td>0.5515</td>
<td>234.4036</td>
</tr>
<tr>
<td>[10] MFCCs constrained</td>
<td>PopMusic</td>
<td>0.5321</td>
<td>11.9</td>
</tr>
<tr>
<td>[1] Chroma constrained</td>
<td>PopMusic</td>
<td>0.51</td>
<td>12</td>
</tr>
<tr>
<td>[10] Mean-field clustering</td>
<td>PopMusic</td>
<td>0.5518</td>
<td>112.3333</td>
</tr>
<tr>
<td>[10] Mean-field clustering</td>
<td>PopMusic</td>
<td>0.5318</td>
<td>N/A</td>
</tr>
<tr>
<td>[10] Mean-field constrained clustering</td>
<td>PopMusic</td>
<td>0.5307</td>
<td>N/A</td>
</tr>
<tr>
<td>[9] Constrained clustering</td>
<td>PopMusic</td>
<td>0.5518</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 2. Segment-type labeling performance on the UPF Beatles dataset.

<table>
<thead>
<tr>
<th>Method/Reference</th>
<th>Dataset</th>
<th>F_1_{music}</th>
<th>Av. Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM + ℓ_2-Graph based segmentation</td>
<td>Beatles</td>
<td>0.8504</td>
<td>8.3333</td>
</tr>
<tr>
<td>ATM + ℓ_2-Graph based segmentation</td>
<td>PopMusic</td>
<td>0.5855</td>
<td>32.0556</td>
</tr>
<tr>
<td>MFCCs + ℓ_2-Graph based segmentation</td>
<td>Beatles</td>
<td>0.4664</td>
<td>101.9059</td>
</tr>
<tr>
<td>MFCCs + ℓ_2-Graph based segmentation</td>
<td>PopMusic</td>
<td>0.5453</td>
<td>104.9059</td>
</tr>
<tr>
<td>ATM + SDM based segmentation</td>
<td>Beatles</td>
<td>0.4111</td>
<td>81.8376</td>
</tr>
<tr>
<td>ATM + SDM based segmentation</td>
<td>PopMusic</td>
<td>0.3985</td>
<td>190.3089</td>
</tr>
<tr>
<td>MFCCs + SDM based segmentation</td>
<td>Beatles</td>
<td>0.4666</td>
<td>104.9059</td>
</tr>
<tr>
<td>MFCCs + SDM based segmentation</td>
<td>PopMusic</td>
<td>0.4666</td>
<td>104.9059</td>
</tr>
<tr>
<td>Method in [10] as evaluated in [10]</td>
<td></td>
<td>0.354</td>
<td>N/A</td>
</tr>
<tr>
<td>[10] Mean-field clustering</td>
<td>PopMusic</td>
<td>0.559</td>
<td>N/A</td>
</tr>
<tr>
<td>[9] Mean-field constrained clustering</td>
<td>PopMusic</td>
<td>0.699</td>
<td>N/A</td>
</tr>
<tr>
<td>[9] Mean-field constrained clustering</td>
<td>PopMusic</td>
<td>0.641</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The average number of segments detected by our system is 11.86 and 8.52, when according to the ground-truth the actual average number of segments is 11 and 10 for the PopMusic and the UPF Beatles dataset, respectively. This result is impressive since no constraints have been enforced during clustering.

Since the performance of our system is clearly inferior when MFCCs or chroma features are employed for audio representation, the low pairwise F-measure and the over-segmentation can be attributed to the fact that the underlying assumptions do not hold for such representations.

The performance of the proposed system deteriorates when either the MFCCs or the chroma features are employed for audio representation. The low pairwise F-measure and the over-segmentation can be attributed to the fact that the underlying assumptions do not hold for such representations.
5. CONCLUSIONS

A novel unsupervised music structure analysis framework has been proposed. This framework resorts to ATMs for music representation, while the segmentation is performed by applying spectral clustering on the adjacency matrix of the ℓ_1-Graph. The method is parameter-free, since the only parameter needed be set is the number of music segments. The performance of the proposed method is assessed by conducting experiments on two benchmark datasets used in the literature. The experimental results on music structure analysis are comparable to those obtained by the state-of-the-art music structure analysis systems. Moreover, promising results on music boundary detection are reported. It is believed that by imposing constraints during clustering in the proposed framework, both the music structure analysis and the music boundary detection will be considerably improved. This point will be investigated in the future. Another feature research direction is to automatically detect the number of music segments.

6. REFERENCES

