
The Proof Complexity of Polynomial Identities

Pavel Hrubeš∗
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Abstract

Devising an efficient deterministic – or even a non-
deterministic sub-exponential time – algorithm for testing
polynomial identities is a fundamental problem in alge-
braic complexity and complexity at large. Motivated by this
problem, as well as by results from proof complexity, we
investigate the complexity of proving polynomial identities.
To this end, we study a class of equational proof systems,
of varying strength, operating with polynomial identities
written as arithmetic formulas over a given ring. A proof
in these systems establishes that two arithmetic formulas
compute the same polynomial, and consists of a sequence
of equations between polynomials, written as arithmetic
formulas, where each equation in the sequence is derived
from previous equations by means of the polynomial-ring
axioms. We establish the first non-trivial upper and lower
bounds on the size of equational proofs of polynomial
identities, as follows:

1) Polynomial-size upper bounds on equational proofs
of identities involving symmetric polynomials and
interpolation-based identities. In particular, we show
that basic properties of the elementary symmetric poly-
nomials are efficiently provable already in equational
proofs operating with depth-4 formulas, over infinite
fields. This also yields polynomial-size depth-4 proofs
of the Newton identities, providing a positive answer to
a question posed by Grigoriev and Hirsch [6].

2) Exponential-size lower bounds on (full, unrestricted)
equational proofs of identities over certain specific
rings.

3) Exponential-size lower bounds on analytic proofs oper-
ating with depth-3 formulas, under a certain regularity
condition. The “analytic” requirement is, roughly, a
condition that forbids introducing arbitrary formulas
in a proof and the regularity condition is an additional
structural restriction.

4) Exponential-size lower bounds on one-way proofs (of
unrestricted depth) over infinite fields. Here, one-way
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proofs are analytic proofs, in which one is also not
allowed to introduce arbitrary constants.

Furthermore, we determine basic structural characteriza-
tions of equational proofs, and consider relations with
polynomial identity testing procedures. Specifically, we show
that equational proofs efficiently simulate the polynomial
identity testing algorithm provided by Dvir and Shpilka [4].

1. Introduction

Let F be a field (say, the complex numbers) and
let Φ be an arithmetic formula in the input variables
x1, . . . , xn, computing a polynomial in the ring of poly-
nomials F[x1, . . . , xn]. An elementary operation is any
transformation of a subformula in Φ into another subfor-
mula, by means of the standard polynomial-ring axioms
(expressing associativity and commutativity of addition and
multiplication, distributivity of multiplication over addition,
field element equalities and the laws for the 0 and 1 elements
in the field). This paper is centered around the following
question:

WHAT IS THE MINIMAL NUMBER OF ELEMEN-
TARY OPERATIONS ONE NEEDS TO PERFORM ON
Φ IN ORDER TO VALIDATE THAT Φ COMPUTES
THE ZERO POLYNOMIAL?

To deal with this and related problems, we introduce
a family of equational proof systems, which are proof
systems operating with equations between arithmetic for-
mulas over rings (and fields). Specifically, assume that the
arithmetic formulas Φ1,Φ2 compute the same polynomial
in F[x1, . . . , xn]. An equational proof of Φ1 = Φ2 is a se-
quence of equations, terminating with the equation Φ1 = Φ2,
starting from polynomial-ring axioms, and identities like
ϕ = ϕ, and such that every other identity in the sequence
is derived from previous ones by simple rules, expressing
basic (logical) properties of equalities.

The purpose of this paper is, first, to argue that the
study of the complexity of proofs establishing polynomial
identities deserves deep attention and is an issue relevant to
both algebraic complexity and proof complexity; second, to



lay the basics of such investigation by introducing a class of
equational proof systems establishing polynomial identities,
as well as determining their basic structural properties; and
third, to prove non-trivial upper and lower bounds on the
size-complexity of proofs in these systems, with a special
focus on equational proofs of (depth-3) identities involving
symmetric formulas and interpolation-based identities.

1.1. Background and Motivation

The problem of deciding whether a given arithmetic
circuit (or formula) over some field computes the zero
polynomial – namely, the polynomial identity testing prob-
lem (PIT, for short) – is of great importance in algebraic
complexity theory, and complexity theory in general. It is
known that there is an efficient probabilistic procedure1

for testing whether an arithmetic circuit computes the zero
polynomial (cf. [13], [17]). However, not much is known
about the complexity of deterministic algorithms for this
problem. Devising an efficient deterministic algorithm, or
even a non-deterministic sub-exponential one, for PIT is an
open problem.

The difficulty of finding an efficient deterministic proce-
dure for PIT led researchers to several different directions.
On the one hand, there is a growing body of work dedicated
to establishing efficient deterministic procedures for PIT
when arithmetic circuits are replaced by more restrictive
models for computing polynomials (cf. [4], [8], [9], [11],
[14]). On the other hand, in a somewhat more logical
vein, evidence or justifications for the empirical difficulty
of finding efficient deterministic algorithms for PIT were
discovered in [7] (see also, [5]).

In this paper we propose a different direction of research,
relevant both to the polynomial identity testing problem as
well as to proof complexity (the field that studies the sizes of
symbolic proofs – mainly propositional proofs). Instead of
studying algorithms for PIT, we concentrate on proofs, and
further restrict our study to symbolic proofs of polynomial
identities, that is, proof sequences that manipulate algebraic
formulas. Abstractly, one can think of these proof systems as
non-deterministic algorithms for PIT. On the one hand, non-
determinism makes the proof system potentially stronger
than a deterministic algorithm. On the other hand, proofs are
restricted to syntactic manipulations of arithmetic formulas,
which limits the power of the system.

If it turns out that every polynomial identity has a
polynomial-size proof (consisting of only manipulations of
algebraic formulas), then we would have an efficient non-
deterministic algorithm for PIT. Conversely, showing that
there are identities that do not have polynomial-size proofs,
would imply that any (deterministic or non-deterministic)
algorithm for PIT must use more sophisticated techniques

1. More precisely, PIT is in coRP .

than merely algebraic manipulations of formulas. In this
respect, the study of the complexity of proofs of polynomial
identities aims at better understanding of the polynomial
identity testing problem: understanding the strengthes and
weaknesses of symbolic proofs of polynomial identities
would at least partially delimit possible form and strength
of PIT algorithms.

This paper is a first, somewhat modest, step towards
this goal. We introduce the notion of equational proofs
of polynomial identities, and we prove several non-trivial
lower and upper bounds on sizes of proofs. In accordance
with recent research made on PIT algorithms and related
problems, we devote special attention to depth-3 arithmetic
formulas. We also discuss connections with polynomial iden-
tity testing procedures, and we show that equational proofs
can efficiently formalize the Dvir-Shpilka PIT algorithm for
depth-3 circuits of constant top fan-in [4].

The second motivation for the study of symbolic proofs
of polynomial identities comes from the field of proof
complexity, which is predominantly concerned with com-
plexity of propositional proofs. The basic propositional proof
system considered is the so called Frege system, and very
little is known about the complexity of propositional Frege
proofs. The Frege proof system for propositional logic can
be viewed as a straightforward extension of the equational
proof system considered in this paper, when taken over the
field F2. Thus, a progress in understanding the latter system
can potentially help in better understanding of the structure
of propositional Frege proofs.

There is a close connection between proofs of polyno-
mial identities and so called algebraic propositional proof
systems, which are propositional proof systems that operate
with multivariate polynomials over a field (although there are
also significant differences; see Comment 2). In this setting,
a propositional tautology is viewed as a (multivariate) arith-
metic formula Φ over some fixed field, such that Φ = 0 holds
for all 0, 1 inputs (in contrast to our framework, where Φ = 0
intends to mean that Φ defines the constant polynomial
0). This viewpoint of propositional logic is well studied
in the proof complexity literature. Algebraic propositional
proof systems include relatively weak proof systems such as
Nullstellensatz [1] and the Polynomial Calculus [3], but also
systems as strong as Frege. Such strong algebraic systems
were considered (among other systems) in both [2] and [6],
and both of these works are close to the proof systems
presented here (since all of these systems incorporate the
polynomial-ring axioms in them).

1.2. The Basic Model: Equational Proofs of Poly-
nomial Identities

We now introduce the basic proof system for proving
polynomial identities.



Note: The definition of equational proof systems below
(Definition 1.2) is a general one. This means that by adding
different set of axioms, one can obtain many proof systems
establishing all sorts of languages, e.g., propositional proof
systems (that is, proof systems for Boolean tautologies) as
strong as Frege systems, and also proof systems for other
languages. We shall discuss mainly proofs of polynomial
identities (as in Definition 1.3).

We consider arithmetic formulas (formulas, for short) as
labeled trees, where internal nodes have fan-in two and are
labeled with product (×) and plus (+) gates, and leaves are
labeled either with ring elements or with input variables, and
such that edges are directed from leaves toward the root. An
arithmetic formula (whose leaves are labeled with elements
from a ring R) computes a polynomial over R in the natural
way, that is, leaves compute the ring element or variable
that labels them, and plus and product gates compute the
sum (respectively, product) of the polynomials computed by
the nodes that have incoming edges to them. The size of a
formula is the number of nodes in it. For two formulas f, g,
an equation is an expression f = g .

Definition 1.1 (Derivation rule). A derivation rule (or just
a rule, for short) is a k + 1-tuple of equations e0, . . . , ek,
for k ≥ 1, written as

e1, . . . , ek

e0
.

Given the equations e1, . . . , ek we can derive the equation
e0, in which case we say that e0 was derived from e1, . . . , ek

by applying the derivation rule above.

Definition 1.2 (Equational proof system). An equational
proof system E is described by a set of equations A that
are said to be the proper axioms of E . The axioms of E are
the elements of A together with all equations of the form:

f = f .

The derivation rules of an equational proof system E are
the following:

f = g
(1)

g = f

f = g g = h
(2)

f = h

f1 = g1 f2 = g2(3)
f1 + f2 = g1 + g2

f1 = g1 f2 = g2(4)
f1 × f2 = g1 × g2

A proof in E of an equation f = g (also called an equational
proof [in E ]) is a sequence of equations that terminates with
the equation f = g, and such that every equation is either
an axiom or has been derived from previous equations by
one of the above four rules. In case there is an E -proof of
f = g we write E ` f = g. The size of an equational proof
is the total size of all formulas in all proof-lines. The number
of steps respectively, number of lines in an equational proof
is the total number of equations in it.

Comment 1. Note that in the definition of a size of a
formula, and hence of a proof, we count only the number of
symbols in the formula. In particular, a constant symbol is
understood to have size one regardless of the ring element it
denotes. (In an extreme case, the constant may represent a
superexponentially large integer or even a transcendent real
number.)

Next, we introduce a particular equational proof system
intended to prove polynomial identities over a ring. The first
five sets of axioms describe general properties of polynomi-
als, the Ring identities reflect the structure of the particular
ringR. The system resembles the system of equational logic
introduced in [2] (see Comment 2). Note also that all rings
in this paper are assumed to be commutative.

Definition 1.3. (The system P(R): proofs of polynomial-
identities over R): Let R be a (commutative) ring. P(R) is
the equational proof system whose set of proper axioms A
consists of the following equations:

Commutativity f + g = g + f f · g = g · f
Associativity f + (g + h) = (f + g) + h

f · (g · h) = (f · g) · h
Distributivity f · (g + h) = f · g + f · h
Zero element f + 0 = f f · 0 = 0
Unit element f · 1 = f
Ring identities c = a+ b d = a′ · b′ ,

(where in the Ring identities a, a′, b, b′, c, d ∈ R are
such that the equations c = a + b and d = a′ · b′ hold in
R).

Convention: 1. When speaking about equational proofs over
some ring R we refer to the systems P(R).

2. Associativity of addition allows us to identify (a+b)+c
with a+(b+ c), or simply a+ b+ c. We can also abbreviate
a1 + · · ·+an with

∑n
i=1 ai, and similarly for multiplication.

Theorem 1.1 (Soundness & Completeness). Let R be a
ring. Then P(R) ` f = g iff f and g compute the same
polynomial.

Proof: The implication (⇒) is a straightforward in-
duction on the number of lines in a proof. The opposite
implication follows from the fact that by the means of the
rules and axioms in P(R), one can express any formula
f in normal form, that is, as a sum of monomials. More
exactly, there exists a formula f? which has the form∑

j cj
∏

i xi, such that, P(R) ` f = f?. If f and g
define the same polynomial, they have the same normal
form, up to associativity and commutativity of addition and
multiplication. Hence P(R) proves f = f?, g = g? and
f? = g?. Hence also P(R) ` f = g.

Comment 2. (i) The main difference between P(R) and



algebraic propositional proof systems is the following. The
system P(R) establishes that two arithmetic formulas com-
pute the same formal polynomial over R (that is, the two
polynomials have the same vector of coefficients for their
monomials), or, equivalently, that an arithmetic formula
computes the identically zero polynomial over R. On the
other hand, propositional algebraic proof systems usually
prove that a set of polynomial equations does not have a
0, 1 solution, or that a certain polynomial equation outputs
0 for every 0, 1 input. Over the two element field F2, P(F2)
proves Φ = 0 iff Φ defines the zero polynomial, whereas
in an algebraic propositional proof system, Φ = 0 would
mean that Φ computes the identically zero function. (Note
that x2 + x defines the zero function over F2 but it is not a
zero polynomial.) P(F2) defines a coRP language, whereas
the set of all formulas computing the zero function is coNP.

(ii) P(R) is essentially the system of equational logic
mentioned in [2]. However, they focus on the case where
R is a finite field (of some characteristic p), with additional
axioms of the form xp − x = 0. This means that f = g is
understood as equivalence of functions rather than of poly-
nomials (this is a different example of the general equational
proof system E , and is an extension of P(Fp)). Their system
in [2] is intended to prove propositional tautologies, and the
question of the complexity of proofs of polynomial identities
is not addressed there.

(iii) In propositional proof complexity one usually requires
a proof system to be polynomially verifiable, in the sense
that there exists a polynomial-time algorithm that decides
whether a string of symbols is a correct proof in the system.
This is true about P(R), if the underlying ring is finite.
In general, however, the system P(R) does not have this
property. One reason is that we do not consider the structure
of constant symbols in the notion of size of a formula and
a proof; however, if the ring R is efficiently presented, this
problem can be avoided by accommodating the notion of size
(of a formula or a proof) to measure also the size of constant
symbols. Another reason, is that the ring R itself may have
large computational complexity, in the sense that we cannot
efficiently test whether a + b = c holds for a, b, c ∈ R. On
the other hand, we may think of R as a kind of an oracle, in
which case proofs of P(R) will be polynomially verifiable
with respect to the oracle.

1.3. Summary of Results

We present three kinds of results regarding equational
proofs of polynomial identities:

Structural results. The first kind of results are basic
structural results concerning equational proofs. We introduce
an alternative formulation of the general proof system E
(Definition 1.2), namely, straight-line proofs, and prove that
this formulation is essentially equivalent to the original one
(namely, that it is polynomially equivalent with respect to the

number of proof-lines with tree-like E proofs). Furthermore,
we introduce several fragments of the system P(R) (Defini-
tion 1.3), each obtained by imposing certain restrictions on
the structure of proofs.

Upper bounds. The second kind of results concern
polynomial upper bounds on sizes of equational proofs of
certain polynomial identities in P(R). We focus on identities
based on depth-3 symmetric polynomials and interpolation-
based formulas. One reason to study these identities is that
– as suggested in [6] – they seem to be hard candidates
for equational proofs. Our results refute this suggestion
already for equational proofs operating with bounded-depth
formulas, over infinite fields: we show that the properties
of the symmetric polynomials are provable with depth-4
equational proofs.

Additional evidence of the strength of equational proof
systems is provided by observing that equational proofs can
simulate the Dvir-Shpilka [4] polynomial identity testing
algorithm for depth-3 formulas of constant top fan-in.

Lower bounds. The third kind of results are exponential
lower bounds on equational proofs.

First, we prove an exponential lower bound on the number
of P(R) proof-lines, for a certain specific ring R. This result
is an unconditional one (that is, there are no restrictions
made on the proofs or their structure). The ring R is
specifically tailored for the purpose of the lower bound.

Second, we prove exponential lower bounds for two
fragments of P(R), namely analytic depth-3 proofs under
a certain regularity condition and one-way proofs (defined
in Section 2.2).

Analytic proofs are proofs where one is not allowed to
introduce arbitrary formulas in a proof. This requirement is
akin to the analytic (or cut-free) requirement in propositional
proofs. We consider analytic proofs operating with formulas
of depth 3 under a certain regularity condition on the
structure of proofs.

One-way proofs are obtained by further restricting an-
alytic proofs, in the sense that we are not allowed to
introduce even new constants in a proof. Here we prove an
exponential-lower bound on unrestricted-depth proofs. The
hard identities are considerably simple, and so this gives
evidence that one-way proof systems are quite weak.

The first and third lower bounds have the merit of exploit-
ing the possibility of working over an infinite underlying ring
R. Hence, the proof methods differ substantially from the
standard techniques used in proof complexity.2

1.4. Organization of the Paper

In Section 2 we give basic structural results on equational
proof systems and introduce several fragments. Section 3 is

2. It might be worth mentioning that we do not use the interpolation
technique from proof complexity. The term interpolation in this paper
stands for the algebraic notion of polynomial interpolation.



devoted to prove upper bounds as well as to connections
with PIT algorithms. Section 4 presents our lower bounds.
Some proofs are omitted from the text. They will appear in
the full version of this paper.

2. Basic Properties and Fragments of Equa-
tional Proofs

We now introduce an alternative formalization of equa-
tional proofs, which we call straight-line proofs. We use
this formulation to define fragments of the system P(R).

2.1. Straight-line Proofs

The idea of a straight-line proof is that if we prove f = g
then we should be able to transform f into g, by means of
the axioms of the proof system.

Let E be an arbitrary equational proof system. An elemen-
tary operation is an ordered pair 〈f, g〉, such that f = g or
g = f is a proper axiom of E . An elementary operation will
be written as f → g. Hence, an axiom f = g defines two
elementary operations, f → g and g → f . An application of
f → g to h is the result of replacing at most one occurrence
of f in h by g (that is, substituting a subformula f inside h
by the formula g).

Definition 2.1 (Straight-line proof in E ). An E -straight-line
proof of the equation f = g, is a sequence of formulas
f1, . . . , fm such that f1 is f and fm is g and fi+1 (for
i ∈ [m− 1]) was obtained from fi by an application of one
of the elementary operations corresponding to an axioms of
the equational proof system E .3

We say that an equational proof in E is a tree-like proof
if every proof-line is used at most once in a derivation rule
application in the proof. Otherwise, the proof is called dag-
like (when we do not state explicitly whether the proof is
tree-like or dag-like, we mean dag-like). It is easy to show
that any straight-line proof of size s can be converted to a
tree-like E -proof of size O(s). The converse is slightly more
intricate:

Proposition 2.1. Let E be an equational proof system, and
assume that E proves f = g. Then, there exists an E
straight-line proof of f = g. Moreover:

1) If f = g has a tree-like proof with m proof-lines and
size s, then it has a straight-line proof with O(m) proof-
lines, and size polynomial in s.

3. Specifically, the elementary operations of straight-line proofs of poly-
nomial identities over R are: f +g ↔ g+f , f ·g ↔ g ·f , f +(g+h)↔
(f +g)+h , f · (g ·h)↔ (f ·g) ·h , f · (g +h)↔ f ·g +f ·h , f +0↔
f , f · 0 ↔ 0 , f · 1 ↔ f , and c ↔ a + b , d ↔ a′ · b′ , where
a, a′, b, b′, c, d ∈ R , such that c = a+ b , d = a′ · b′ , are true in R. (We
write f ↔ g to denote the two operations f → g and g → f .)

2) If f = g has a dag-like proof with m proof-lines, then
it has a straight-line proof with O(m) applications of
distinct elementary operations.

The following shows that in the case of the particular
system P(R), general and tree-like equational proofs are
polynomially equivalent, as far as the number of steps is
concerned. (The proposition is analogous to the result in
[10] concerning propositional proofs.)

Proposition 2.2. Assume that the identity f = g has a P(R)
proof with m proof-lines. Then, f = g has a tree-like P(R)
proof with O(m2) proof-lines.

2.2. Fragments

We now define several fragments of the system P(R). The
restrictions are of two kinds: one is the restriction on the
depth of formulas, and it applies to both general equational
proofs and straight-line proofs. The other kind is obtained
by restricting the operations used in straight-line proofs.

Constant-depth proofs. We define constant-depth for-
mulas. Since the equational proofs as defined above work
with formulas of fan-in two, it is convenient to define the
depth of formulas as the maximal number of alternations
between different gate-labels in a path in the formula. We
write, for instance, ΣΠΣ to denote the class of formulas
of depth-3, where the gate at the root is a plus gate (and
similarly, for other classes of constant-depth formulas).

Comment 3. When considering depth-3 formulas we refer to
ΣΠΣ formulas and we assume that coefficients multiplying
variables do not increase the depth of formulas. Hence a
linear form

∑n
i=1 αixi is assumed to be a (Σ) depth-1

formula (and not ΣΠ depth-2 formula). This conforms to the
standard definition of depth-3 arithmetic formulas as sums
of products of linear forms.

Definition 2.2 (Depth-d equational proof). A depth-d equa-
tional proof is an equational proof in which each formula
occurring in the proof is of depth at most d. (The same
terminology applies for all other variants [and fragments]
of equational proof systems [that is, straight-line proofs,
analytic proofs and one-way proofs defined in the sequel].)

Analytic Proofs. We introduce analytic proofs as
straight-line proofs where one cannot introduce arbitrary
formulas along proofs. This resembles the so-called subfor-
mula property in standard (propositional or predicate sequent
calculus) proofs.

Definition 2.3 (Analytic straight-line proofs). A P(R)
straight-line proof is called analytic if it contains no appli-
cations of the rule 0→ f · 0 . (The converse rule f · 0→ 0
is allowed.)

The analytic criterion implies, for instance, that one



cannot derive the formula f + x− x from the formula f , if
x does not occur in f .

One-Way Straight-Line Proofs. A one-way proof is an
analytic straight-line proof, where one is also forbidden to
introduce new (arbitrary) constant symbols via the elemen-
tary operations a→ b+c and a→ b′·c′ (even when a = b+c
and a = b′ · c′ are true in the underlying ring).

Definition 2.4 (One-way straight-line proofs). An analytic
straight-line proof is called one-way if it contains no appli-
cations of the rules a→ b+c and a→ b′ ·c′ (for a, b, b′, c, c′

constants symbols). (We do allow the converse operations,
that is, b+ c→ a and b′ · c′ → a.)

Comment 4. Note that both analytic and one-way proofs are
complete for the set of equations f = 0. However, both of
these proof systems are not complete for the set of equations
f = g. In other words, there exist formulas f, g defining the
same polynomial, but there is no analytic proof of f = g.
For example y−y = z−z has no analytic proofs. Also note
that there may exist f, g such that there is an analytic proof
of f = g but not of g = f , and if both proofs do exist, they
may have different sizes.

3. Upper Bounds

In this section we illustrate the power of equational
proofs by presenting efficient proofs for several polynomial
identities.

3.1. Symmetric Polynomials and Interpolation over
Fields

We consider identities connected to counting and interpo-
lation. We show that they have polynomial-size bounded-
depth proofs over large enough fields. We start with
the elementary symmetric polynomials. For k ≥ 0, let
Sk

n(x1, . . . , xn) denote the elementary symmetric polyno-
mial of degree k, that is:

Sk
n(x1, . . . , xn) :=

∑
I⊆[n]
|I|=k

∏
i∈I

xi .

We set S0
n(x1, . . . , xn) := 1 and Sk

n(x1, . . . , xn) := 0, for
k > n.

It is known that over large enough fields there are
polynomial-size (in n, the number of variables) arithmetic
formulas of depth-3 for the symmetric polynomials. Our
results show that basic properties of such formulas are
already provable with depth-4 equational proofs, in the
sense of the following theorem (“polynomial-size” means
polynomial-size with respect to the number of variables n):

Theorem 3.1. Let F be an infinite field. For k, n ≥ 0,
there exist-polynomial size depth-3 formulas Sk

n(x1, . . . xn),

computing Sk
n, such that the following identities have

polynomial-size depth-4 equational proofs:

1) S0
n(Xn) = 1, Sk

n(Xn) = 0, k > n;

2) Sk
n(Xn) = xn⊗Sk−1

n−1(Xn−1) + Sk
n−1(Xn−1) 0 < k ≤

n;

3)
n∏

i=1

(xi+y) =
n∑

k=0

(
yn−k ⊗ Sk

n(Xn)
)

with y a variable.

In the theorem, we denote

Xn := {x1, . . . , xn}

and we use the following abbreviation: for a (depth-3) ΣΠΣ
formula f and a ΠΣ formula g, denote by g ⊗ f the ΣΠΣ
formula obtained by distributing g over the plus gates of f .
That is, if f =

∑
iAi then g ⊗ f =

∑
i(g ·Ai).

The following theorem is due to M. Ben-Or (cf. Theorem
5.1 in [15]). We give the proof of this theorem since it is
relevant to the construction of the small equational proofs
below, and also to Section 3.3.

Theorem 3.2 (Ben-Or). Let F be a field, let X be a
set of n variables {x1, . . . , xn}, where n < |F|, and let
r0, . . . , rn be any sequence of distinct field elements. For
every elementary (multilinear) symmetric polynomial over
X (over the field F) there is a polynomial-size (in n) depth-
3 formula computing it, of the following form:∑

j=0,...,n

cj ·
∏

i=1,...,n

(xi + rj) , (1)

where the cj’s are field elements.

Proof of Theorem 3.2: Observe that for all j = 0, . . . , n:∏
i=1,...,n

(xi + rj) =
∑

k=0,...,n

Sk
n(x1, . . . , xn) · rn−k

j .

Thus, we obtain(
Sn

n(Xn),Sn−1
n (Xn), . . . ,S0

n(Xn)
)
·V =(

n∏
i=1

(xi + r0),
n∏

i=1

(xi + r1), . . . ,
n∏

i=1

(xi + rn)

)
,

where V is the Vandermonde matrix

1 1 . . . 1
r0 r1 . . . rn

r2
0 r2

1 . . . r2
n

...
...

. . .
...

rn
0 rn

1 . . . rn
n


Since V is a Vandermonde matrix it is invertible, and the
formulas Sn

n(Xn),Sn−1
n (Xn), . . . ,S0

n(Xn) can be defined



as

(
Sn

n(Xn),Sn−1
n (Xn), . . . ,S0

n(Xn)
)

:=(
n∏

i=1

(xi + r0),
n∏

i=1

(xi + r1), . . . ,
n∏

i=1

(xi + rn)

)
·V−1 .

The formulas are of depth-3 and size O(n2).
We now consider proofs operating with depth-4 formulas.

By depth-4 formulas we specifically refer to formulas with
a product gate at the top (that is, ΠΣΠΣ formulas).

Proof of Theorem 3.1: Let r0, r1, . . . be an infinite se-
quence of distinct elements of F. We set Sk

n(x1, . . . , xn) :=
0 whenever k > 0 and S0

0 := 1. Otherwise, the formulas
Sk

n(x1, . . . xn), for k ≤ n, are defined to be of the form

∑
j=0,...,n

c
(k)
j,n ·

∏
i=1,...,n

(xi + rj) , (2)

where c
(k)
j,n are constants from F, such that every

Sk
n(x1, . . . , xn) computes the symmetric polynomial

Sk
n(x1, . . . , xn), according to Theorem 3.2.
For n ≥ 0, let A0

n denote the equation

S0
n(Xn) = 1 ,

and Ak
n, for k = 1, . . . , n, denotes the equation

Sk
n(Xn) = xn ⊗ Sk−1

n−1(Xn−1) + Sk
n−1(Xn−1) .

Let Bn(y) be the equation

n∏
i=1

(xi + y) =
n∑

k=0

(
yn−k ⊗ Sk

n(Xn)
)
.

The proofs of Ak
n, Bn(y) will be constructed inductively,

using the two following claims:

Claim 3.3. There exists a polynomial p such that for every
n, Bn(y) has a depth-4 proof of size p(n) from the set of
equations Ak

m, m = 0, . . . , n, k = 0, . . . ,m (that is, a
proof where the equations can be used as axioms).

Proof of claim: We construct the proofs by induction on
the number of variables n.

Base case: n = 0. B0(y) is a true identity of constant
size and hence it has a constant size proof.

Induction step:

n∏
i=1

(xi + y) = (xn + y) ·
n−1∏
i=1

(xi + y)

by induction
hypothesis
↓=

(xn + y) ·
n−1∑
k=0

(
yn−1−k ⊗ Sk

n−1(Xn−1)
)

=

n−1∑
k=0

(
(yn−1−k · xn)⊗ Sk

n−1(Xn−1)
)

+

n−1∑
k=0

(
yn−k ⊗ Sk

n−1(Xn−1)
) by rearranging

↓=

yn · S0
n−1(Xn−1)+ (3)
n−1∑
k=1

yn−k ·
(
xn ⊗ Sk−1

n−1(Xn−1) + Sk
n−1(Xn−1)

)
+ xn ⊗ Sn−1

n−1(Xn−1) .

A0
n and A0

n−1 gives S0
n−1(Xn−1) = 1 = S0

n(Xn), An
n and

An−1
n−1 gives xn · Sn−1

n−1(Xn−1) = Sn
n(Xn). Ak

n, 0 < k < n

gives xn⊗Sk−1
n−1(Xn−1) +Sk

n−1(Xn−1) = Sk
n(Xn) and we

can derive that the last sum in (3) equals

n∑
k=0

(yn−k ⊗ Sk
n(x1, . . . , xn)) .

Overall, the constructed proof is of depth-4 and has polyno-
mial size. Claim

Claim 3.4. There exists a polynomial q s.t. for every n and
k = 0, . . . n, Ak

n has depth-4 proof of size q(n) from the set
of equations Bn−1(rj), j = 0, . . . n.

Proof of claim: Let us construct the proof of Ak
n , for

some 1 ≤ k ≤ n (k = 0 is analogous), i.e., of the equation

Sk
n(Xn) = xn ⊗ Sk−1

n−1(Xn−1) + Sk
n−1(Xn−1).

We need to prove:

n∑
j=0

c
(k)
j,n ·

n∏
i=1

(xi + rj) = xn⊗Sk−1
n−1(Xn−1) +Sk

n−1(Xn−1) .

(4)
Consider the left hand side of (4):

n∑
j=0

(
(xn + rj) · c(k)

j,n ·
n−1∏
i=1

(xi + rj)

)
. (5)

Bn−1(rj) gives

n−1∏
i=1

(xi + rj) =
n−1∑
k=0

(
rn−1−k
j ⊗ Sk

n−1(Xn−1)
)
.



and hence

(xn + rj) · c(k)
j,n ·

n−1∏
i=1

(xi + rj) = (6)

(xn + rj) · c(k)
j,n ·

n∑
k=0

(
rn−k
j ⊗ Sk

n(Xn)
)

=

c
(k)
j,n ·

n∑
k=0

((
(xn + rj) · rn−k

j

)
⊗ Sk

n(Xn)
)
.

Hence (5) is equal to
n∑

j=0

n−1∑
i=0

((
(xn + rj) · c(k)

j,n · r
n−i−1
j

)
⊗ Si

n−1(Xn−1)
)
.

(7)

Line (7) is a depth-3 formula that can be easily proved equal
(with a depth-3 proof) to the following term:

xn ⊗

(
n−1∑
i=0

εi ⊗ Si
n−1(Xn−1)

)
+

n−1∑
i=0

δi ⊗ Si
n−1(Xn−1) ,

(8)
where εi, δi are some constants. By the soundness of the
proof system, (8) is equal to xn ⊗ Sk−1

n−1(x1, . . . xn−1) +
Sk

n−1(x1, . . . xn−1) . Since xn occurs only in the left term
in (8), this left term equals xn⊗Sk−1

n−1(x1, . . . xn−1) and the
right term in (8) equals Sk

n−1(x1, . . . xn−1) . Since for every
0 ≤ i ≤ n−1, Si

n−1(x1, . . . xn−1) computes a homogeneous
polynomial of degree i, we have εk = 1 and for all i 6= k,
εi = 0; similarly, δk = 1 and for all i 6= k, δi = 0 . Hence,
we can prove (using the zero element axioms) that (8) equals
xn ⊗ Sk−1

n−1(x1, . . . xn−1) + Sk
n−1(x1, . . . xn−1) . Claim

Claims 3.3 and 3.4 imply that for every n and k =
0, . . . , n Ak

n has depth-4 proofs from the set of equations
{Ak

m;m < n, k = 0, . . . ,m}, the proof being of size
≤ (n+ 1) · p(n) + q(n). Hence, we may conclude that Ak

n

has polynomial size depth-4 size proofs.

Corollary 3.5. Over an infinite field F, any true identity of
the form

n∑
j=0

cj ·
n∏

i=1

(xi + rj) = c , (9)

cj’s, rj’s and c being field elements, has polynomial-size
depth-4 equational proofs.

We apply the short equation proofs of the properties of the
symmetric polynomials to prove related algebraic identities,
as shown in the next section.

3.2. Newton’s Identities

In this section we establish polynomial-size depth-4 equa-
tional proofs of the Newton identities over large enough
fields.

Let Sk
n(x1, . . . , xn) be the depth-3 formulas for the ele-

mentary symmetric polynomials (as in the previous subsec-
tion). The following are the Newton identities:

(Newtonn)
n∑

i=0

(−1)i · Si
n(x1, . . . xn) ·

n∑
j=1

xn−i
j

 = 0 .

(10)
As written in (10), the identities are depth-5 formulas. By

appropriate opening of brackets in (10), we can write them
as polynomial-size depth-3 formulas.

The fact that the Newton identities are true identities
can be easily proved using the properties of elementary
symmetric polynomials.

Theorem 3.6. Over an infinite field F, there are polynomial-
size (in n) depth-4 equational proofs of Newtonn .

This provides a positive answer to a question posed by
Grigoriev and Hirsch [6] on whether there exist short proofs
of the Newton identities using only elementary transforma-
tion of arithmetic formulas. (Our equational proof systems
for polynomial identities are certainly of the type considered
by Grigoriev and Hirsch; in fact the [implicit] proof system
for polynomial identities considered in [6] is the same as
our definition of straight-line proofs.)

3.3. Interpolation over General Points and Deter-
minants of Vandermonde Matrices

Here we deal with identities that involve determinants
of Vandermonde matrices. We construct polynomial-size
depth-4 equational proofs for these identities.

Given a set X of n+1 variables {x0, . . . , xn} we define

Vn[X] :=
∏

0≤i<k≤n

(xk − xi) .

Thus, Vn[X] is just the determinant of the following n +
1× n+ 1 Vandermonde matrix:

1 1 . . . 1
x0 x1 . . . xn

x2
0 x2

1 . . . x2
n

...
...

. . .
...

xn
0 xn

1 . . . xn
n


Let X := {x0, . . . , xn+1} and let Y := {y1, . . . , yn}. We
consider the following depth-3 identities, denoted (Vann) in
both the X and Y variables:

(Vann)
n+1∑
i=0

(−1)i ·Vn [X \ {xi}] ·
n∏

j=1

(yj + xi)

 = 0 .

That (Vann) is a true identity can be proved using Cramer’s
rule. We show that the identities (Vann) can be efficiently



proved with equational proofs of depth-4 over large enough
fields.

Theorem 3.7. The identities (Vann) have polynomial-size
(in n) depth-4 proofs over an infinite fields F.

The theorem entails that identities expressing basic prop-
erties of determinants of Vandermonde matrices have effi-
cient depth-4 proofs.

3.4. Connections with Polynomial Identity Testing
Algorithms

As noted in the introduction, an efficient determinis-
tic algorithm for polynomial identity testing (PIT) is not
known. Even for depth-3 ΣΠΣ formulas, no polynomial-
time deterministic algorithm is known. However, feasible
PIT algorithms were designed for ΣΠΣ formulas, where
the fan-in of the top plus gate is a constant. First, Dvir and
Shpilka [4] designed a quasipolynomial deterministic PIT
algorithm for ΣΠΣ with a constant top fan-in. Subsequently,
Kayal and Saxena [9] gave a polynomial algorithm for the
same class of formulas (see also [12]). In what follows we
show that the PIT algorithm of Dvir and Shpilka can be
simulated by equational proof systems.

Let f be a ΣΠΣ formula (over some base ring) of the
form

k∑
i=1

Ai

such that f is identically zero. The formula f is minimal, if
the sum of any proper subset of A1, . . . , Ak is not identically
zero; f is simple, if there is no linear form occurring in
every A1, . . . , Ak (up to a scalar multiple). The rank of f ,
rank(f), is the rank of the set of linear forms computed
by all the bottom plus gates in f (where a linear form is
identified with the vector of its coefficients). The core of
the PIT algorithm in [4] is the following:

Theorem 3.8 ( [4]). Let F be a field. Let f be a minimal
and simple ΣΠΣ formula which is identically zero. Let f
have degree d ≥ 2, and assume that the fan-in of the top
plus gate in f is k ≥ 3. Then, rank(f) ≤ 2O(k2)(log d)k−2.

Whether a formula f of size m, degree d and rank r is iden-
tically equal to zero, can be tested in time poly(m, (d+r)r),
for we may first express f as a formula in r variables, and
then expand the modified formula as a sum of monomials.
If k is constant, by Theorem 3.8, this can be done in
quasipolynomial time.

We observe that a similar reasoning applies to equational
proofs. Assume that f has degree d, rank r and size m, and
that f is identically zero. Then there exists an equational-
proof of the polynomial identity f = 0 of size poly(m, (d+

r)r). For let f contain the variables x1, . . . , xn. Then we can
find a polynomial-size formula f? in variables y1, . . . , yr

and degree d, and linear functions g1(x), . . . , gr(x), such
that:

1) f?(y1, . . . , yr) is identically zero, and
2) the identity f(x) = f? (y1/g1(x), . . . , yr/gr(x)) has a

polynomial-size proof.
f? can be expressed as a sum of

(
d+r−1

r−1

)
≤ (d+r)r mono-

mials, and hence f? = 0 has a proof of size poly(m, (d +
r)r). Hence also f?(y1/g1(x), . . . yk/gk(x)) = 0 and f = 0
have proofs of size poly(m, (d+ r)r).

Finally, when proving f = 0, we can assume without
loss of generality that f is simple and minimal (if f is
not minimal, we can prove each of the partial sums that
equals 0 separately; and if f is not simple we can factor
out the common linear forms). Thus, Theorem 3.8 gives
quasipolynomial size proofs of f = 0, for a fixed k.

Thus, we obtain the following theorem:

Theorem 3.9. For all identically zero depth-3 formu-
las over a field F with a constant top fan-in there are
quasipolynomial-size P(F) proofs. (The proofs have bounded
depth.)

For the PIT algorithm of Kayal and Saxena the problem
of simulation by equational proofs is open. The algorithm
of Kayal and Saxena is an example of an elegant algorithm
that cannot be prima facie formalized as an equational proof.
Moreover, it can be noted that the identities (Vann) (dis-
cussed in Section 3.3) can be easily recognized as identities
by the [9] heuristics, whereas their equational proofs are
quite cumbersome.

4. Lower Bounds

4.1. Full Equational Proofs over a Specific Ring

We now construct a ring S and give an example of a
polynomial-size identity over S, such that every equational
proof of the identity has exponential size. Basically, the
lower bound is a trick that exploits the high complexity
of the underlying ring. We believe that the construction is
interesting, for it shows that unconditional lower bounds
can be obtained at least for some rings. Moreover, it is
not impossible that similar arguments might work for more
natural rings or fields.

Let F be a field. Let R := F[u1, . . . , un, v1, . . . , vn], that
is, R is the ring of polynomials over F in the variables
u1, . . . , un, v1, . . . , vn. For any X ⊆ [n], define the follow-
ing polynomial (in R):

ΓX :=
∏
i∈X

ui ·
∏

i∈[n]\X

vi .

Let I ⊆ R be the ideal generated by the polynomials ΓX , for
all X ⊆ [n]. That is, I := ideal〈ΓX : X ⊆ [n]〉. Finally,



let S := R/I , that is, S is the quotient ring of R by I .
Consider the following identity in the ring of polynomials
over S with variables x1, . . . , xn (that is, S[x1, . . . , xn]):

(E)
∏

i=1,...,n

(ui · xi + vi) = 0 .

We will show that any P(S)-proof of (E) has exponential
in n number of lines.

Claim 4.1. (E) is a true identity over S. Moreover, for every
ideal J ⊆ R, (E) is an identity in R/J iff I ⊆ J .

Proof of claim: It suffices to prove the second statement.
We can rewrite (E) as

∑
X⊆[n]

∏
i∈X

ui · xi ·
∏

i∈[n]\X

vi

 =
∑

X⊆[n]

ΓX ·
∏
i∈X

xi = 0 .

(11)
Thus, for every X ⊆ [n] the coefficient of the monomial∏

i∈X xi in (E) is ΓX . Therefore, (E) is an identity over
R/J iff for all X ⊆ [n], ΓX is the zero element in R/J .
The latter happens iff I ⊆ J . Claim

In order to prove the lower bound (Theorem 4.3 below),
we first prove the following lemma:

Lemma 4.2. Let H ⊆ R. If ideal〈H〉 = I , then |H| ≥ 2n.

Proof: For a polynomial h, let h(k) denote its kth
homogeneous part. The ideal I is generated by monomials
of degree n, and hence for every g ∈ I and k < n,
g(k) = 0. Thus, for every h ∈ H it holds that h(k) = 0
for all k < n (as otherwise ideal〈H〉 6= I). Therefore, if
ΓX =

∑
h∈H h · gh then ΓX =

∑
h∈H h(n) · g(0)

h . Hence,
we can assume without loss of generality that for all h ∈ H
and all k > n, it holds that h(k) = 0. In other words,
every h ∈ H is a homogeneous polynomial of degree n.
If H consists of homogeneous polynomials of degree n
such that ΓX ∈ ideal〈H〉, then ΓX is a linear combination
(with coefficients in F) of the polynomials in H . Hence
the size of H is at least the dimension of the vector space
{ΓX : X ⊆ [n]}, where a polynomial is identified with
the vector of its coefficients. The set {ΓX : X ⊆ [n]} is
linearly independent, and is of size 2n, and hence |H| ≥ 2n.

Theorem 4.3. Every equational proof of (E) over S contains
at least 2n lines.

Proof: Let P be a P(S) proof of (E) with m lines. Let
us concentrate on the constant symbols and rules occurring
in P (that is, the ring S identities). We can assume that
the constant symbols in P are presented as elements of the
polynomial ring R, in such a way that different elements of
R represent different elements of S. Let us define the set
H ⊆ R as follows: if P contains the constant axioms (that

is, the S ring identities) g3 = g1+g2 respectively g3 = g1·g2,
we add to H the corresponding polynomials g3 − (g1 + g2)
respectively g3 − (g1 · g2). Then |H| ≤ m. Since P is a
proof in P(S), we have H ⊆ I and hence ideal〈H〉 ⊆ I .
Now, P is also a proof in R/ideal〈H〉, since every line
of P is satisfied in this ring. Therefore (E) is an identity
in R/ideal〈H〉. Hence, by Claim 4.1, I ⊆ ideal〈H〉, and
finally ideal〈H〉 = I . By the previous lemma |H| ≥ 2n, and
therefore m ≥ 2n.

Comment 5. (i) The “catch” in the theorem seems to
be the fact that the underlying ring S itself has a high
computational complexity. (It is not known whether S can
be presented in such way that one can decide in polynomial
time whether a+b = c, respectively a ·b = c for a, b, c ∈ S.)
However, the real issue is that S is not a field. It would be
of great interest to prove a lower bound for P(F) for some
field F, no matter how complicated and artificial the field
would be.

(ii) Theorem 4.3 gives one identity (E), whereas in fact
we want an infinite sequence of identities (En) (all over the
same ring). This could be achieved by constructing (En) and
In with disjoint variables as in Theorem 4.3, and defining
I as the ideal generated by

⋃
n∈N In.

4.2. One-Way Proofs

We present a lower bound on one-way straight-line proofs
over an infinite field. Let us consider the equation

(D)
∏

i=1,...n

(ai ·xi +bi)+
∏

i=1,...n

(ci ·xi +di) = 0,

where xi, i = 1, . . . , n are variables and ai, bi, ci, di ∈
Z, i = 1, . . . , n. We show that the parameters in (D) can
be chosen in such a way that (D) is an identity, but every
one-way proof of (D) has an exponential-size:

Theorem 4.4. Let F be an infinite field. Then there exist field
elements ai, bi, ci, di, i ∈ [n] such that (D) is an identity,
and every one-way proof of (D) must have at least 2n proof-
lines. If F contains rational numbers, the coefficients can be
chosen as p

q , where p, q are integers with |p|, |q| ≤ 2O(n2).

Comment 6. Recall that we ignore the magnitude of co-
efficients in the definition of formula size, and hence (D)
has polynomial size in our setting. However, this would
be the case even if we assumed the integers to be written
in binary notation, and included the length of the binary
representations in the size of (D).

Proof idea. We choose the coefficients in (D) to be
sufficiently independent, in the sense that every constant
(different from 0 and 1) occurring in any possible one-way
proof of (D) can be uniquely expressed from the coefficients
ai, bi, ci, di, i = 1, . . . , n. The existence of such elements is
proved non-constructively (this is not necessary). We then



look at monomials in the variables x1, . . . , xn in a proof of
(D). (D) has the form D1 + D2 = 0, where D1 defines a
polynomial of the form∑

X⊆[n]

rX ·
∏
i∈X

xi,

where rX ∈ Z, and D2 defines the polynomial∑
X⊆[n]

sX ·
∏
i∈X

xi .

If D1+D2 = 0 then sX = −rX . In other words, D1 contains
2n monomials, and D2 contains the same monomials with
opposite signs. In a proof of (D), every monomial from
D1 will, at some point, cancel with a monomial from D2.
The independence of the coefficients allows us to control
the movement of monomials in a proof. In particular we get
that in given line, at most one monomial can be canceled.

4.3. Depth-3 Analytic Regular Proofs

Notice that the polynomial size proof of the basic prop-
erties of the symmetric polynomials Sk

n, given in section
3.1, and of related identities like (Vann), is, first, of depth-
4 and second, non-analytic. In fact, the best analytic upper
bound (in an unrestricted-depth) we know for those identities
is of quasipolynomial size. We are convinced that proving
a lower bound – even in a very restricted model such as
analytic depth-3 proofs – is quite difficult.4 Nevertheless,
we can prove the result under an additional restriction, that
the depth-3 analytic proof is also regular.

The regularity condition guarantees the following: once a
proof-line A × (B + C) is transformed into the proof-line
A×B+A×C, the two formulas A×B and A×C, as well
as any other formulas that originate from A×B and A×C,
cannot be again united into a product formula by means of
the distributivity rule. For instance, after A× (B + C) was
expanded into A × B + A × C, the formulas A × B and
A× C cannot be again factorised to yield A× (B + C).

With this additional assumption simple identities do not
have polynomial-size proofs, such as the identity

(Binn) (x+ y)n +
n∑

i=0

ai · xiyn−i = 0 ,

where the ai’s are constants with values −
(
n
i

)
.

Theorem 4.5. Every regular depth-3 analytic straight-line
proof of (Binn) must have 2Ω(n) number of lines.

The identity (Bin)n contains only two variables, and it
has a simple polynomial-size analytic depth-3 proof. Thus,

4. We attempted to prove a lower-bound on the size of proofs for
those identities (e.g., (Vann)) for analytic depth-3 proofs (and thus to
exponentially separate this fragment from depth-4 equational proofs [by
the upper bound in Section 3.3]). An error in our proof was spotted by
Emil Jeřábek to whom we are grateful.

this theorem stands as an observation on the weakness of
regular proofs.
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2001).

[7] Valentine Kabanets and Russell Impagliazzo. Derandomizing
polynomial identity tests means proving circuit lower bounds.
Comput. Complexity, 13(1-2):1–46, 2004.

[8] Zohar Karnin and Amir Shpilka. Deterministic black box
polynomial identity testing of depth-3 arithmetic circuits with
bounded top fan-in. In Proceedings of the 23th Annual IEEE
Conference on Computational Complexity, 280–291, 2008.

[9] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for
depth 3 circuits. Comput. Complexity, 16(2):115–138, 2007.
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