
H̊astad’s Separation of Constant-Depth Circuits Using
Sipser Functions

Iddo Tzameret∗

May 22, 2015

Abstract

This note contains a full proof of the exponential separation of depth-d circuits from
depth-(d + 1) circuits due to H̊astad [Has89]. The separating functions are the Sipser
functions, denoted fd+1,n. We use a simplified proof of H̊astad’s second switching
lemma due to Neil Thapen [Tha09].

Key words and phrases: Circuit complexity, switching lemmas, random restrictions, lower bounds

1 Preliminaries

A Boolean formula is a tree with edges directed from the leaves toward the root and whose
internal nodes are labeled with the unbounded fan-in connectives ∨,∧,¬ (standing for OR,
AND and NOT, respectively), and whose leaves are labeled with either 0 , 1 (standing for
false and true, respectively) or Boolean variables denoted x1, x2, The depth of a
formula is the maximal nesting (not alternations) of ∧,∨ connectives. The ¬ connective
does not increase the depth. Variables and their negation have depth 0. The size of a
formula is the number of nodes in its underlying tree.

1.1 Chernoff’s Bound

Let X1, . . . , Xn be n mutually independent indicator random variables (that is, random
variables taking 0, 1 values with probability 1

2
for each value), and let μ = E (

∑n
i Xi) be

the expectation of their sum. Then, the (variant of the) Chernoff bound we shall use is the
following (cf. [MU05]):

Pr

[
n∑

i=1

Xi < μ/2

]

< e−μ/8

∗Royal Holloway, University of London. email: iddo.tzameret@gmail.com

1

2 Switching Lemma for Blocks

In this section we follow Neil Thapen’s proof of H̊astad’s second switching lemma [Tha09].
This is a simplification of the (already simplified) version of the original switching lemmas,
provided by Razborov [Raz95] (and independently by Alan Woods). The idea governing
this type of switching lemma is that we need to come up with a distribution on partial
restrictions that will not collapse (with high probability) the Sipser functions (Definition
3.1) into a constant function. We will show that the switching lemma for blocks preserves
the Sipser function in Section 4.

Definition 2.1 (Random restrictions R+
q,B and R−

q,B) Let x̄ be a set of variables and
let 0 < q < 1. Partition the set of variables x̄ into pairwise disjoint blocks B1, . . . , Br. We
define ρ ∈ R+

q as ρ : {x} → {0, 1, ∗} in the following way. Independently for every block Bj,
j = 1, ..., r, do the following:

(i) with probability q, let sj = ∗, and otherwise sj = 0;

(ii) for every variable xi ∈ Bj independently with probability q let ρ(xi) = sj, and otherwise
ρ(xi) = 1.

Define the random restriction g(ρ) to be ρ such that for every block containing ∗’s (and
possibly 1; but no 0), replace all ∗’s to 1’s, except for the first ∗ (we assume some ordering,
for the sake of definiteness).

The random restriction R−
q,B is defined similarly, where 0 is flipped with 1.

Definition 2.2 (Query tree) Let X := {xi1 , . . . , xik} be a set of variables (the ordering of
the variables will not matter). The query tree for X is defined by induction on k as follows.
If k = 0, then the tree is a single unlabeled node. If k > 0, the tree is rooted with a node
labeled xi1 from which two edges emanate: one edge labeled 0 and the other edge labeled 1.
Each of these two edges leads to the decision tree for xi2 , . . . , xik . Every branch starting from
the root and ending at a leaf in the query tree determines a unique total truth assignment to
the variables X (formed by the answers given to the queries along the branch).

Definition 2.3 (Decision tree with blocks btree(F�ρ)) Given a kDNF F =
∨

i∈I Ci

and a restriction ρ from either R+
q,B or R−

q,B, the decision tree btree(F�ρ) is defined as the
binary tree, constructed by the following queries:

1. If for all i ∈ I, Ci�ρ ≡ 0, then the tree consists of the single node labeled 0.

2. Otherwise, let C1 be the first conjunct such that C1� ρ 6≡ 0. Let ρ−1
C1

(∗) denote the set
of variables in C1 assigned ∗ by ρ, and let blocks(ρ−1

C1
(∗)) be the list of blocks in which

these variables appear.

Consider the set of variables first∗[blocks(ρ−1
C1

(∗))] of all the variables xj that appear in
some block in blocks(ρ−1

C1
(∗)) such that g(ρ)(xj) = ∗ (in each block that has ∗’s under

ρ, there is only one [the first] such variable under g(ρ)).

2

The tree will be a query tree for the variables first∗[blocks(ρ−1
C1

(∗))]. Denote the terminal
node in this query tree by u.

Let π1 be the assignment which consists of the answers given to the queries of
first∗[blocks(ρ−1

C1
(∗))] and that gives value 1’s to all the other variables in blocks(ρ−1

C1
(∗))

(that is, π1 gives 1 to the variables in blocks(ρ−1
C1

(∗)) excluding those variables in
first∗[blocks(ρ−1

C1
(∗))]). 1

3. For the leaf u above: if C1�ρπ1 = 1, the label of u is 1; otherwise, u is replaced by the
tree induced by returning to step (1) with ρ← ρπ1 (that is, ρ is replaced by ρπ1). The
label on a leaf in btree(F�ρ) is said to be the output of the tree, given the answers to
the queries in the path leading to the leaf.

Claim 2.1 Given a tDNF, a restriction ρ and a partition of the variables into blocks Bi,
the tree btree(F � ρ) decides F � g(ρ) correctly, in the sense that for every assignment v,
F�g(ρ)v ≡ 1 iff btree(F�ρ) outputs 1 when the queries are answered according to v.

Proof of claim: The assignments π1 decided along a branch are compatible with the
assignments that are provided by g(ρ): a query is done always on a ∗ variable in g(ρ) (that
is, the first ∗ variables xj such that ρ(xj) [note that these variables stay ∗ variables under
g(ρ) by definition]). Further, all ∗ variables in ρ that are not the first ones in their blocks
get the value 1 in π1, and this is compatible with the definition of g(ρ). Now, the values that
btree(F�ρ) outputs are decided (in parts (1) and (3), in Definition 2.3) by these π1’s and by
C1�ρ’s, and so this is equivalent to deciding according to Ci�g(ρ), for some i. Claim

Claim 2.2 If the height of btree(F�ρ) is at most s, then F�g(ρ) can be written both as an
sCNF (namely, a conjunction of clauses of size s) and as an sDNF (namely, a disjunction
of conjuncts of size at most s).

Proof of claim: Each path in btree(F � ρ) that terminates with a node labeled with 1
corresponds to a conjunct of literals. So, by Claim 2.1, taking the disjunction of all these
conjuncts defines correctly F� g(ρ). This gives us an sDNF computing btree(F�ρ). For the
sCNF, we simply flip every leaf in the tree, obtaining a tree deciding ¬F � g(ρ). So we can
write ¬F�g(ρ) as an sDNF, and by negating this sDNF (and transforming it into a negation
normal form) we get an sCNF that computes F�g(ρ). Claim

The following is the (second) switching lemma by H̊astad [Has89], as simplified by Neil
Thapen:

1Note that assigning 1’s to all the variables in blocks(ρ−1
C1

(∗)) excluding this variables in
first∗[blocks(ρ−1

C1
(∗))] is precisely what g(ρ) does, since every block that is assigned ∗ cannot be assigned

0. Thus, π1 provides (together with ρ) a complete assignment to the blocks in blocks(ρ−1
C1

(∗)). Also note
that the only variables to be queried are the ∗ variables from F � g(ρ) (that is, those unset in F � g(ρ)).
Furthermore, observe that if Ci � ρ ≡ 0 we skip it, and if Ci � ρ ≡ 1, by definition, we do not query any
variable (because there are no ∗’s in it), and so we just arrive at Part (3) and output 1.

3

Theorem 2.3 (Second switching lemma; switching lemma for blocks) Let F be a
tDNF over the variables X := {x1, . . . , xm}. Let Bi be a partition of the variables in X
into Bi (pairwise disjoint) sets. Then,

Prρ∈R+
q,B

[height (btree(F�ρ)) ≥ s] ≤ (13qt)s

The rest of this section is devoted to the proof of this theorem.
Let S be the set of restrictions ρ such that height(btree(F� ρ)) > s. We show that the

probability of ρ ∈ S, when ρ is chosen from R+
q,B, is at most (13qt)s. We sometimes denote

a probability of event like S by |S|.

Notation:

• Assume that π is the first (according to some ordering on the branches in the tree) path
in btree(F�ρ) of length > s. Suppose that C1, C2, . . . , Ck, β1, β2, . . . , βk, π1, π2, . . . , πk

are the terms, lists of blocks, and assignments encountered along π. (Note that πi is
the complete assignment given by g(ρ) to all blocks listed in βi and by the answers to
the queries of the first starred variables in these blocks. [In coding those πi’s via π′

i,
we will only code the variables that were queried along the corresponding path.])

• Let σi, for i = 1, . . . , k, be the assignments that assign 1 to all the starred variables
that appear positive in Ci� ρπ1 . . . πi−1, and assign 0 to every other starred variable
in every block Bj ∈ βi. Let σ := σ1σ2 . . . σk. Note that σ sets the same variables as
π1π2 . . . πk does.

Comment 1 Note that for every block Bj ∈ βi, only starred variables in Bj may be
assigned 0 via σi, and so if we know σi and βi, then we know that every variable that
is assigned 0 in σi is a starred variable in Bj ∈ βi. Thus, we only need to know what
are the starred variables that are assigned 1 under σi to recover fully all the starred
variables in all Bj ∈ βi. This is why we need γi’s as follows:

• Let γi, for i = 1, . . . , k, be the set of variables assigned ∗ in Ci�ρπ1 . . . πi−1 that appear
as positive literals (in Ci�ρπ1 . . . πi−1 – all of these variables appear in the blocks βi).

Encoding.

• β′
i codes βi. This is done by a list of ≤ 2t numbers, as follows. First, note that if we

know Ci, then we only need to point on the positions of variables in that term, and
this would determine the blocks. (We want to code ρ, but we want to avoid writing
ρ explicitly, as otherwise the code would be too long [that is to say, its probability,
or “density”, would not decrease in our injective mapping, and so we would not get
the desired bound on the probability].) Since we can indeed find out in the decoding

4

process what are the Ci’s, we can just list the positions of the variables in Ci that
come from the blocks in βi: for every block in B ∈ β we list the position in Ci of the
variable that comes from B; further, for each position entry we put a another number
indicating whether it is the end of βi or no. This amounts to (2t) possible codewords
for each βi, and a total of (2t)s codewords for the whole concatenation of the β′

i’s,
denoted β′.

• πi is coded by π′
i, which is the string of answers to the queries along Ci � ρ. Thus,

coding π1π2 . . . πk amounts to 2s possible codewords.

• γi is coded by a string γ′
i of t bits, indicating whether a variable in Ci is starred and

appears positive in Ci�ρπ1 . . . πi−1. Let γ′ := γ′
1 . . . γ ′

k. There are 2ts possible codewords
for γ′.

Note we do not include Ci’s in the coding.

Decoding. We define the mapping

θ : ρ −→ (ρσ, β ′, π′
1 . . . π′

k, γ
′) .

Claim 2.4 The mapping θ is injective.

Proof of claim: We show that given (ρσ, β ′, π′
1 . . . π′

k, γ
′) and knowing F and F�ρσ, we can

deterministically recover the source ρ = θ−1 ((ρσ, β ′, π1 . . . πk, γ
′)).

1. We can find out what is C1 as follows. Look for the first Ci� ρσ 6≡ 0. If there is no
such Ci then it means that there is no Ci� ρ 6≡ 0 (since, σi is consistent with Ci by
definition). Thus, we get that s = 0 in contrast to the assumption. Otherwise, we
claim that the Ci found is C1. This is because, Ci cannot come before C1 (since then
it would mean that Ci� σ 6≡ Ci� ρ, but then there must be starred variables in Ci� ρ
which means that Ci�ρ 6≡ 0 and so this contradicts the assumption that C1 is the first
with this property). And also, Ci cannot come after C1, since C1� ρ 6≡ 0 implies also
C1�ρσ 6≡ 0 (as σ is consistent with C1 by definition).

2. Now that we know C1, we can recover β1 out of β ′: we can recover β′
1 as it is encoded

directly (recall that along each variable we put one bit indicating if it is the end of
β′

1). Then β′
1 just codes the position of variables within C1 – and we can find the

corresponding blocks of these variables.

3. Knowing C1 and γ′
1 we find out γ1 (recall that γ′

1 points to the positions of variables
appearing positively in C1�ρ). Therefore, by Comment 1, we can find out who are all
the starred variables in the blocks in β1. But these variables are precisely those variables
that were assigned by σ1, and so by considering ρσ and assigning these variables ∗ we
can recover ρρ2 . . . ρk.

5

4. This process can be iterated when C1 ←− C2, ρσ ←− ρσ2 . . . σk, and similarly for
i = 3, . . . , k, until we fully recover ρ.

Claim

In what follows, Pr [ρ] denotes the probability that ρ was chosen from the distribution
R+

q,B. Let us note the following facts (which stem directly from the definitsions):

Fact 1

1. Let σ be an assignment σ : Bi → {∗, 0, 1}, that assigns a stars and c ones. Then,

Prρ∈R+
q,B

[ρ�Bi = σ] = qa+1 ∙ (1− q)c

(choose si = ∗ with probability q then choose si for a many times and then choose one
for c times).

2. Let σ be an assignment σ : Bi → {∗, 0, 1}, that assigns b zeros and c ones. Then,

Prρ∈R+
q,B

[ρ�Bi = σ] = (1− q)b+1 ∙ (1− q)c

(choose si = 0 with probability 1− q then choose si for b many times and then choose
one for c times).

3. Let σi’s be a collection of assignments σi : Bi → {∗, 0, 1}, and let ρ be the (unique)
assignment consistent with all σi’s. Then,

Pr [ρ] = Prρ′∈R+
q,B

[
∧

i

ρ′�Bi = σi

]

=
↑

By independence of the
assignments to each block

∏

i

Prρ′∈R+
q,B

[ρ′�Bi = σi] .

4. Assume that xi1 , . . . , xim ∈ Bi are assigned ∗ by σ′. If σ : {xi1 , . . . , xim} → {0, 1},
where ` variables in σ assigned 1 (and m− ` are assigned 0), then, in case m− ` ≥ 1:

Prρ∈R+
q,B

[ρ�Bi = σ′] = Pr [ρ�Bi = σ] ∙

(
1

q

)`

︸ ︷︷ ︸
unselect ` ∗’s

∙ (1− q)`

︸ ︷︷ ︸
instead select ` 1’s

∙
1

q
︸︷︷︸

unselect ∗
for block Bi

∙ 1− q
︸ ︷︷ ︸

instead select 0
for block Bi

;

Otherwise, in case m− ` = 0:

Pr [ρ�Bi = σ′] = Pr [ρ�Bi = σ] ∙

(
1

q

)`

︸ ︷︷ ︸
unselect ` ∗’s

∙ (1− q)`

︸ ︷︷ ︸
instead select ` 1’s

∙
1

q
︸︷︷︸

unselect ∗
for block Bi

.

Thus, in both cases we have:

Pr [ρ�Bi = σ′] ≥ Pr [ρ�Bi = σ] ∙

(
1− q

q

)`+1

.

6

From the last item in the Fact above we get:

Corollary 2.5 Going from ρ to ρσ according to θ, where m is the number of starred variables
in ρ assigned either 0 or 1, we have:

Pr [ρσ] ≥ Pr [ρ] ∙

(
1− q

q

)m+s

.

The following concludes the proof of the theorem (the Second Switching Lemma):

Lemma 2.6
Prρ∈R+

q,B
[ρ ∈ S] < (13qt)s .

Proof: Fix some β ′, π′ and γ′. Define θ1 to be the projection of θ on the first coordinate,
when θ is restricted to β′, π′, γ ′, that is, θ1 : ρ −→ ρσ. Assume that m many starred variables
in ρ assigned 0 or 1 in σ. Since θ is injective, so does θ1. Let Sβ′,π′ γ′ be the source of θ1. By
the injectivity of θ1 we get that each ρ ∈ θ1 is mapped to a distinct ρσ (see Figure 1 for an
illustration of this). Therefore, we have (we write Pr [ρ] to denote Prρ∈R+

q,B
[ρ]):

Pr [ρ ∈ Sβ′,π′ γ′] =
∑

ρ∈Sβ′,π′ γ′

Pr [ρ]

(by Corollary 2.5) ≤
∑

ρ∈Sβ′,π′ γ′

Pr [θ1(ρ)] ∙

(
q

1− q

)m+s

=

(
q

1− q

)m+s

∙
∑

ρ∈Sβ′,π′ γ′

Pr [θ1(ρ)]

︸ ︷︷ ︸
by injectivity of θ1 (Claim 2.4)

the sum is ≤ 1

,

and thus,

Pr [ρ ∈ Sβ′,π′ γ′] ≤

(
q

1− q

)m+s

. (1)

Equation (1) holds for every β′, π′, γ ′, such that m many starred variables in ρ assigned
0 or 1 in σ. The maximal value for such m is ts. Thus, we can compute the probability

7

Pr [Sβ′,π′] (running over all |γ′| = 0, . . . , ts), as follows (assuming that q < 1
2t

):

Pr [ρ ∈ Sβ′,π′] =
∑

γ′

Pr [ρ ∈ Sβ′,π′,γ′] ≤
ts∑

m=0

∑

|γ′|=m

Pr [ρ ∈ Sβ′,π′,γ′]

≤
ts∑

m=0

(
ts

m

)

∙

(
q

1− q

)m

∙

(
q

1− q

)s

=
↑

by bino-
mial ex-
pansion

(

1 +
q

1− q

)ts

∙

(
q

1− q

)s

≤ e
qts
1−q ∙

(
q

1− q

)s

≤
↑

Since q < 1
2t

(
3q

1− q

)s

If we now consider the sources of S (without restriction to some fixed β′, π′, γ ′’s), then we
can sum up everything by the inequalities above:

Pr [ρ ∈ S] ≤ (2t)s2s

(
3q

1− q

)s

=

(
12qt

1− q

)s

giving the desired result.

Sβπγ

R
R

θ1

ρ ρσ

Figure 1: The θ1 mapping. The mapping θ1 maps (injectively) an assignment ρ to an extension of
it ρσ which has a bigger probability in R+

q,B (abbreviated by R in the figure). Thus, θ1 maps (the
event that ρ is taken from) Sβ′,π′ γ′ into an event with a bigger probability.

8

3 The Sipser Functions

Definition 3.1 (Sipser function fd,n) A Sipser function fd,n is a d-layered formula over
the variables xi1,...,id, for (i1 . . . id) ∈ [n]d, denoted X, whose form is:

√
n

log n∧

i1=1

n∨

i2=1

∙ ∙ ∙

√
1
2
dn log n∧

id=1

xi1,...,id , if d is odd, and

√
n

log n∧

i1=1

n∨

i2=1

n∧

i3=1

∙ ∙ ∙

√
1
2
dn log n∨

id=1

xi1,...,id , if d is even .

Note that every variable appears once in (the bottom level of) a Sipser function. The
number of variables in fd,n, is

m =

√
n

log n
∙ nd−2 ∙

√
1

2
dn log n = nd−1 ∙

√
d/2 .

4 Function Preserving

Definition 4.1 A
∧S,t

d formula is a formula of depth at most d + 1, and if it is of depth
exactly d + 1 then the uppermost connective is ∧, and such that the following hold:

(i) The bottom level connectives are of fan-in at most t;
(ii) The total number of connectives above the bottom level (that is, the connectives ex-

cluding the bottom level) is at most S.

Theorem 4.1 (Function preserving) Let C be an
∧S,t

d circuit computing fd,n and assume
that Bi is a partition of the variables in C that corresponds to the bottom level variables in
fd,n. Let q = 1√

n
2d log n

and suppose that ρ ∈ R+
q,B. Then, with probability ≥ 2/3, C � g(ρ)

contains a copy of a circuit that computes the function fd−1,n (that is, by setting some
[possibly none] of the variables of C�g(ρ) we get a circuit computing f d−1,n).

Proof of Theorem 4.1. We consider the defining circuit of fd,n. We apply to this circuit
a random restriction and we claim that the circuit would contain with high probability a
Sipser function of depth d − 1. Thus, for C that computes fd,n (which may be completely
different from the defining circuit of fd,n) it must be that C�g(ρ) will also compute the Sipser
function of depth d − 1 (note that if two different circuits compute the same function then
restricting them to the same partial assignment will result in two circuits that compute the
same function).

We consider the case where d is odd (the other case where d is even is similar). Thus, in

fd,n the d− 1 level is an OR of ANDs, that is, a DNF with bottom fan-in
√

nd log n ∙ 1
2
.

9

Claim 4.2 The probability that an AND gate Ci in the bottom level of fd,n is not assigned
si under g(ρ) is:2

(1− q)|Bi| ≤ e−d log n .

Proof of claim: Note that the event that a conjunct Ci is not assigned an si is the same
event that Ci is assigned 1 which is the same event that every variable in Ci is assigned a 1.
This happens with probability (1 − q)|Bi|. We have:

(1− q)|Bi| = (1−
1

√
n

2d log n

)
√

1
2
dn log n .

Since (1− 1
x
)y = (1− 1

x
)x∙ y

x ≤ e−y/x, then (1−q)|Bi| ≤ e−
√

1
2
dn log n∙

√
2d log n

n = e−
√

dn log n∙ d log n
n =

e−d log n . Claim

Corollary 4.3 The probability that all blocks Bi in the bottom level (there are approximately
nd−1 such blocks) are assigned si is at least 5/6.

Proof: By the previous claim, the probability that a single block Bi is not assigned si is
≤ e−d log n, and so by the union bound we get that the probability that all (at most) nd−1

blocks Bi are not assigned si is ≤ e−d log n ∙ nd−1 ≤ n−d ∙ nd−1 < 1/6. 3

Lemma 4.4 Let Υ be the event that every block Bi in the bottom level is assigned si under
g(ρ). Then, conditioned on the event Υ, with probability at least 5/6 all OR gates at the

d − 2 level are assigned at least
√

1
2
(d− 1)n log n inputs that are ∗ (that is, each of the n

many OR gates have at least that much [unassigned] input variables).

Proof: We need to show the probability of the event that for every OR (out of the < nd−2

such gates) in the second level from below, there are at least
√

1
2
dn log n variables (that

is, ∗). First, we determine the probability that for some fixed OR gate there are less than√
1
2
dn log n variables (that is, ∗). Then, we use the union bound to determine the probability

that none of these “bad” events happen (which is the probability we need to determine).

Claim 4.5 For any given OR gate, with probability at most e−
√

1
32

dn log n there are less than√
1
2
(d− 1)n log n variables (that is, ∗) coming into this OR gate.

2In this case, all literals in Ci are assigned 1; and hence, also the OR gate that leads to Ci is 1 under the
restriction.

3It is unclear why [Has89] multiplies in nd, and then gets the 1/6 bound. I believe that the probability
is polynomially small, and not just constant, because the number of blocks is smaller than nd. However, the
former is sufficient for the proof, of course.

10

Proof of claim: By Chernoff’s bound. Let X be the sum of n independent random variables
with success probability q = 1√

n
2d log n

. The expectation of X is

μ = E(X) =
n

√
n

2d log n

=
√

2dn log n,

and so √
1

2
dn log n =

√
2

4
dn log n =

√
2dn log n

2
=

μ

2
.

Thus, by Chernoff’s bound:

Pr

[

X <

√
1

2
dn log n

]

< e−
μ
8 = e−

√
1
32

dn log n .

Since Pr
[
X <

√
1
2
(d− 1)n log n

]
< Pr

[
X <

√
1
2
dn log n

]
we conclude the claim. Claim

Now, by the union bound, and using the previous claim, the probability that the event

in the statement does not hold is at most nd−2 ∙ e−
√

1
32

dn log n = o(1). Thus, for sufficiently
large n, the event in the statement holds with probability at least 5/6.

The following claim is sufficient to complete the proof of Theorem 4.1:

Claim 4.6 With probability at least 2/3, every OR gate in the level d−2 in fd,n is (logically

equivalent) to an OR of ≥
√

1
2
(d− 1)n log n variables (where each OR has distinct and

disjoint sets of input variables), under g(ρ), for sufficiently large n.

Proof of claim: By Corollary 4.3, with probability ≥ 5/6 every block Bi in the bottom
level is assigned si under g(ρ). Conditioned on this event, by Lemma 4.4, with probability

≥ 5/6 every OR gate in level d − 2 has ≥
√

1
2
(d− 1)n log n input variables (for sufficiently

large n). Thus (since Pr [A & B] = Pr [A|B] ∙ Pr [B]), the probability of the event in the
statement is ≥ (5

6
)2 > 2/3, for sufficiently large n. Claim

5 The Lower Bound

Theorem 5.1 (Main) Let cd = 1
27

√
2d

and let t ≤ cd

√
n

log n
. Then, for every

∨S,t
d formula

computing fd,n, S ≥ 2
cd

√
n

log n .

Proof: By induction on d.
Base case: d = 2.

11

Claim 5.2 For any S, there is no
∨S,t

1 (that is, a tDNF) formula and no
∧S,t

1 (that is,

tCNF) formula computing f 2,n, for t ≤ cd

√
n

log n
, if cd < 1. (Note that a tDNF has only

one node in its second level, and so the size measure S has no effect here.)

Proof of claim: We need to show that there is no tDNF with t ≤ cd

√
n/ log n that computes

the function f 2,n, that is,
∧√ n

log n

i1=1

∨√
n log n

i2=1 xi1,i2 (when cd < 1). An assignment α satisfies

f 2,n iff for all 1 ≤ i1 ≤
√

n/ log n there exists 1 ≤ i2 ≤
√

n log n such that xi1,i2 is assigned 1

under α. But this means that every minterm of f 2,n is of size ≥
√

n/ log n > cd

√
n/ log n = t

(because cd < 1).
Similarly, we can show that there is no tCNF with t ≤ cd

√
n/ log n that computes f 2,n.

Claim

Induction step: Assume, by a way of contradiction that there exists a
∨S,t

d circuit com-

puting fd,n, where t ≤ cd

√
n/ log n and S < 2cd

√
n/ log n. Assume that in level d − 1 there

are tDNFs (the case for tCNFs is similar). Apply a random restriction from R+
q,n, with

q = 1√
n

2d log n

and with each block Bi corresponding to variables in a bottom AND gate. Let

s = cd−1

√
n

log n
. By the switching lemma (Theorem 2.3), for each bottom tDNF denoted F ,

with probability ≤ (13qt)s we cannot write F�g(ρ) as an sCNF. Thus, by the union bound
and since by assumption the number of gates in level d − 1 is at most S, with probability
≤ S ∙(13qt)s there exists (at least one) bottom tDNF, F , such that F�g(ρ) cannot be written
as an sCNF. In other words, with probability at least

1− S ∙ (13qt)s > 1− 2
cd

√
n

log n ∙

13 ∙
1

√
n

2d log n

∙ cd

√
n

log n

cd−1

√
n

log n

= 1− 2
cd

√
n

log n ∙
(
13 ∙
√

2d ∙ cd

)cd−1

√
n

log n

= 1− 2
1

27
√

2d
∙
√

n
log n ∙

(

13 ∙
√

2d ∙
1

27
√

2d

) 1

27
√

2(d−1)

√
n

log n

>
↑

1
27

√
2d

< 1
27

√
2(d−1)

1−

(
26

27

) 1

27
√

2d
∙
√

n
log n

>
↑

for n big
enough

1

6

we can transform all the bottom tDNFs into sCNFs, and then merge the AND gates in the

d − 2 and d − 1 levels into one level. This yields a
∨S,t

d−1 circuit C , where S < 2
cd

√
n

log n

and t ≤ cd
n

log n
. But, by Theorem 4.1, after applying the random restriction g(ρ) on

12

the circuit, with probability 5/6 the circuit contains the Sipser function fd−1,n. Since

S < 2
cd

√
n

log n < 2
cd−1

√
n

log n and t ≤ cd

√
n

log n
< cd−1

√
n

log n
, we arrive at a contradiction

to induction hypothesis. We thus conclude that there is no
∨S,t

d circuit computing fd,n,

where t ≤ cd

√
n/ log n and S < 2cd

√
n/ log n.

Acknowledgments

I wish to thank Wang Zhengyu for referring my attention to several typos and inaccuracies
in this note.

A Parameters

number of variables in fd,n nd−1 ∙
√

d/2 (2)

top fan-in for fd,n

√
n

log n
(3)

bottom fan-in for fd,n

√
1

2
dn log n (4)

number of blocks Bi in fd,n nd−2 ∙
√

n

log n
(5)

probability of choosing si = ∗ q =
1

√
n

2d log n

(6)

probability of choosing xj = si, for xj ∈ Bi
′′ (7)

lower bound for bottom fan-in in depth-d circuits c

√
n

log n
(8)

lower bound for gates in depth ≥ 2 in depth-d circuits 2
c
√

n
log n (9)

c =
1

27
√

2d
(10)

tDNF switchs to sCNF with probability ≤ (13qt)s (11)

References

[Has89] Johan Hast̊ad. Advances in Computer Research, volume 5, chapter Almost optimal
lower bounds for small depth circuits, pages 143–170. JAI Press, 1989. (document),
2, 3

13

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing – Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. 1.1

[Raz95] Alexander A. Razborov. Unprovability of lower bounds on circuit size in certain
fragments of bounded arithmetic. Izv. Ross. Akad. Nauk Ser. Mat., 59(1):201–224,
1995. 2

[Tha09] Neil Thapen. Note on switching lemmas. manuscript, Feb. 2009. (document), 2

14

