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Abstract

A symbolic proof for establishing that a given arithmetic formula Φ computes the zero
polynomial (or equivalently, that two given arithmetic formulas compute the same polyno-
mial) is a sequence of formulas, starting with Φ and deriving the formula 0 by means of the
standard polynomial-ring axioms applied to any subformula.

Motivated by results in proof complexity and algebraic complexity, we investigate ba-
sic structural and complexity characterizations of symbolic proofs of polynomial identities.
Specifically, we introduce fragments of symbolic proofs named analytic symbolic proofs, en-
joying a natural property: a symbolic proof is analytic if one cannot introduce arbitrary
new formulas throughout the proof (that is, formulas computing the zero polynomial which
do not originate, in a precise manner, from the initial arithmetic formula).

We establish exponential lower bounds on the lengths of analytic symbolic proofs operating
with depth-3 arithmetic formulas, under a certain regularity condition on the structure of
proofs (roughly, mimicking a tree-like structure). The hard instances are explicit and rely
on small formulas for the symmetric polynomials.

Key words and phrases: Algebraic proof systems, proof complexity, arithmetic circuits, polyno-
mial identity testing, equational systems, lower bounds
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1 Introduction

Let F be a field (say, the complex numbers) and let Φ be an arithmetic formula in the input
variables x1, . . . , xn, computing a polynomial in the ring of polynomials F[x1, . . . , xn]. A sym-
bolic operation is any transformation of a subformula in Φ into another subformula, by means
of the standard polynomial-ring axioms (expressing associativity and commutativity of both
addition and multiplication, distributivity of multiplication over addition, equalities involving
only field elements and the laws for the 0 and 1 elements in the field). This paper deals with
the following basic question:

∗Independently of this paper, Pavel Hrubeš recently investigated close problems concerning equational systems
(Hrubeš (2008)). The current paper is about to be merged with Hrubeš (2008).
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and was supported by The Israel Science Foundation (grant no. 250/05).
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How many symbolic operations one needs to perform on Φ in order to make sure
that Φ computes the zero polynomial?

To this end we define the notion of symbolic proofs of polynomial identities as follows: Assume
that the arithmetic formula Φ computes the zero polynomial, then a symbolic proof of this fact
is a sequence of arithmetic formulas, where the first formula is Φ, the last formula is the formula
0, and every formula in the sequence (excluding the first one) is derived from the (immediate)
previous formula in the sequence by a symbolic operation. In this paper we are interested in the
lengths of symbolic proofs of polynomial identities, namely, the number of proof-lines in such
proof sequences.

1.1 Background and Motivation

The problem of deciding whether a given arithmetic circuit (or formula) over some field com-
putes the zero polynomial – namely, the polynomial identity testing problem (PIT, for short)
– is of great importance in algebraic complexity theory, and complexity theory in general. It
is known that when the underlying field is big enough there is an efficient probabilistic proce-
dure for deciding whether an arithmetic circuit computes the zero polynomial (cf. Schwartz
(1980); Zippel (1979)). However, not much is known about the complexity of deterministic al-
gorithms for this problem. Devising an efficient deterministic procedure, or even demonstrating
(non-deterministic) sub-exponential witnesses, for the polynomial identity testing problem is a
fundamental open problem.

The importance and apparent difficulty in finding an efficient deterministic procedure (or
sub-exponential non-deterministic witnesses for that matter) for PIT led researchers to several
different directions. On the one hand, there is a growing body of work dedicated to establish-
ing efficient deterministic procedures for PIT when arithmetic circuits are replaced by more
restrictive models of computing polynomials (cf. Raz and Shpilka (2005); Dvir and Shpilka
(2006); Kayal and Saxena (2007); Karnin and Shpilka (2007); Shpilka and Volkovich (2008)).
On the other hand, in a somewhat more logical vein, evidence or “justifications” for the appar-
ent empirical difficulty in finding efficient deterministic algorithms for PIT were discovered in
Kabanets and Impagliazzo (2004) (see also, Dvir et al. (2008)).

In this paper we propose a different direction of research, relevant both to the polynomial
identity testing problem as well as to proof complexity (namely, the field that studies the sizes
of symbolic proofs – and especially of propositional proofs). Instead of studying algorithms
for the PIT we shall concentrate on proofs, and further restrict our study to symbolic proofs
of polynomial identities, that is, proof sequences that manipulate formulas and which have
clear and natural structure (besides the fact that they can be efficiently recognized). On the
one hand, the choice to study proofs instead of algorithms gives the model more strength (in
comparison to algorithms), as one can use non-determinism. On the other hand, we will restrict
severely the “reasoning” allowed in these proofs, and this will in turn enable us to demonstrate
exponential-size lower bounds on certain proofs of polynomial identities. Apparently, this lower
bound is the first of its kind.

Connections to proof complexity. Research in proof complexity usually focuses on proof sys-
tems for the collection of propositional tautologies. In this setting, a proof of a propositional
tautology τ written in the standard De-Morgan langauge (that is, the language that includes
propositional variables and the logical connectives ∧,∨,¬) is typically a sequence of formulas
(in the same language), such that each formula in the sequence is either an axiom or is derived
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from prior formulas in the sequence by applying some simple (and logically sound) inference
rules, and where the terminal formula in the sequence is τ .

In this paper we shall not deal with proof systems for the collection of propositional tau-
tologies; Instead, we are interested in proof systems for the collection of formulas computing
the zero polynomial over a given fixed field. Nevertheless, the way we define (fragments of)
symbolic proofs of polynomial identities is inspired by notions from proof complexity (that is,
the notion of cut-free or analytic proofs); and moreover, one of the main motivations in studying
such systems comes from research in algebraic propositional proof systems (see below for more
details on this).

1.1.1 Motivations

As discussed above, research into the complexity of symbolic proofs of polynomial identities is
directed, among others, to achieve better understanding of the polynomial identity testing prob-
lem: although it is reasonable to assume that there are polynomial size witnesses (or “proofs”)
of polynomial identities, lower bounds on certain symbolic proofs of polynomial identities might
lead to better understanding of the structure of proofs needed in order to efficiently prove poly-
nomial identities. On the applicative level, our work can be regarded as a contribution to the
understanding of the efficiency of symbolic manipulation systems (like symbolic mathemati-
cal software tools). Nevertheless, a concrete motivation for the study of symbolic proofs of
polynomial identities comes from the realm of algebraic proof systems, as we now explain.

Algebraic proof systems. Algebraic proof systems, which are proof systems operating with
multivariate polynomials over a fixed field, attracts much attention in proof complexity theory.
Such algebraic proofs usually demonstrate that a collection of polynomial equations, derived
from the clauses of an unsatisfiable formula in conjunctive normal form (CNF), has no 0, 1
solutions over the fixed field – in which case the systems are called algebraic propositional proof
systems.

In a typical algebraic proof system, the fact that the a given collection of polynomial equations
has no solutions over the base field is proved by using basic (and sound) algebraic inference rules
(for example, from two polynomial equations p = 0 and q = 0, we can deduce α ·p+β · q, where
α and β are some elements of F; and from p = 0 we can deduce q · p = 0, for any polynomial
q). A sequence of polynomials that starts from the initial polynomial equations, follows the
algebraic inference rules of the system and terminates with (the unsatisfiable equation) 1 = 0,
is an algebraic proof establishing the unsatisfiability of the initial polynomial equations (over
the base field).

One of the most natural complexity measures for algebraic proofs is their algebraic complexity,
namely, the number of symbols it takes to write down an algebraic proof when every proof-line
is written as an arithmetic formula (or circuit). When this complexity-measure is considered, an
algebraic proof is a sequence of arithmetic formulas such that each formula in the sequence com-
putes a formal multivariate polynomial (that is, an element of the polynomial-ring F[x1, . . . , xn],
where F is the base field and x1, . . . , xn are the formal variables of the system). Note however,
that for every polynomial p ∈ F[x1, . . . , xn] there is no unique arithmetic formula computing
p. Thus, each polynomial in the algebraic proof can be written in more than one way as an
arithmetic formula. This means that such algebraic proof systems are semantic proof systems
(and not syntactic), in the sense that the inference of new polynomials from previous ones, via
the algebraic inference rules, is a semantic inference of polynomials from preceding ones, rather
than a syntactic inference of formulas from preceding formulas (for instance, the two inference

3



rules mentioned above are semantic in the sense that every root of p in F is also a root of q ·p in
F [for every polynomial q]; and every common root of p and q in F is also a root of α · p+ β · q,
for any α, β ∈ F).

It stems from the aforesaid, that algebraic proofs operating with arithmetic formulas as
described above might not necessarily be recognizable in polynomial-time (in the sizes of the
proofs): because no polynomial-time procedure for the polynomial identity testing problem is
known, no known polynomial-time procedure can verify that a proof-line in an algebraic proof
was derived correctly from preceding lines in the proof (for instance, the polynomial p might
be written as two completely different arithmetic formulas in a proof-line consisting of p and in
its legitimate consequence proof-line consisting of q · p). Algebraic proof systems of this nature
(alas operating with multilinear arithmetic formulas, instead of general arithmetic formulas)
where investigated in Raz and Tzameret (2008a,b).

Nevertheless, it is sometime preferable to turn to algebraic proofs that are polynomial-time
recognizable. The most natural choice here is to join together the underlying semantic alge-
braic proof system that operates with arithmetic formulas over a field (similar to that men-
tioned above), with a symbolic proof system for establishing polynomial identities. This can be
achieved, for instance, in the following simple manner: A syntactic algebraic proof is defined
now to be a sequence of arithmetic formulas in which each proof-line is either (i) an initial for-
mula; or (ii) was derived from a previous formula in the sequence by one of the derivation rules
pertaining to the symbolic proof system (expressing the polynomial-ring axioms, applicable on
any subformula); or (iii) was derived by the following inference rules that correspond to the
rules of the underlying algebraic proof system: from the formulas ϕ and ψ derive the formula
α × ϕ + β × ψ (for α, β field elements); and from the formula ϕ derive the formula ψ × ϕ for
any arithmetic formula ψ over the base field (the symbol × stands for the product gate).

Precisely this kind of natural syntactic algebraic propositional proof systems operating with
arithmetic formulas were mentioned in Buss et al. (1996/97) and were explicitly introduced in
Grigoriev and Hirsch (2003). Understanding the complexity of symbolic proofs of polynomial
identities is thus essential in order to understand such syntactic algebraic propositional proof
systems operating with arithmetic formulas. Moreover, establishing super-polynomial lower
bounds on symbolic proofs of polynomial identities might yield a super-polynomial separation
between semantic and syntactic algebraic (propositional) proof systems. For instance, the short
algebraic proofs of “hard tautologies” demonstrated in Raz and Tzameret (2008a,b) use in an
essential way the fact that the algebraic proof systems are semantic, and it is not known whether
such short proofs exist for corresponding syntactic algebraic proof systems.

1.2 The Basic Model: Analytic Symbolic Proofs

Recall the underlying model of symbolic proofs of polynomial identities illustrated above. We
now explain the fragment of symbolic proofs we shall study here. With analogy to traditional
research in proof complexity (as well as classical proof theory and automated proofs), we will
consider symbolic proof systems that enjoy a useful property, analogous to some extent with the
so-called subformula property in standard (propositional or predicate sequent calculus) proofs.
The subformula property states that every formula that appears in a proof sequence π of T
also appears in T . Intuitively, this means that the prover is forbidden from introducing notions
not already present in the statement to be proved. Proofs having the subformula property are
sometime called analytic (or cut-free in the framework of the sequent calculus), and we shall
adopt this term here.

Accordingly, we will introduce a proof system for the set of arithmetic formulas computing
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the zero polynomial, called analytic symbolic proofs, in which the following (relaxed form of the)
subformula property holds: if π is a proof sequence that intends to establish that the formula
Φ computes the zero polynomial, then every subformula that appears in some proof-line in π
is “originated” from the initial formula to be proved. More formally, this means that for every
proof-line and every monomial (with its coefficient) that is syntactically computed in the proof-
line, the same monomial is also syntactically computed in the initial proof-line (see Section 3
for more details on this and for the definition of syntactic computation of monomials).

The analytic criterion thus implies, for instance, that one cannot add arbitrary formulas
computing the zero polynomial in the proof (for example, one cannot get from the proof-line ϕ to
the proof-line ϕ+ f − f , where f is some arbitrarily chosen arithmetic formula). The (analytic)
proof system we introduce, is a natural proof system since, first, symbolic manipulations of
polynomial formulas according to the polynomial-ring axioms is something familiar to every
high-school student; and second, the restriction to analytic proofs forbids only “ingenious”
steps as illustrated above (that is, adding a formula f − f , and then using in some clever way
this f to efficiently derive the formula 0 in the system).

1.3 Results

The main technical contribution of this paper is an exponential-size lower bound on analytic
symbolic proofs of certain hard formulas computing the zero polynomial, where proofs operate
with depth-3 formulas and conform to a certain regularity condition on the structure of proofs.

The hard formulas we provide are based on small depth-3 formulas for the elementary sym-
metric polynomials (see Equation (2)). We establish a lower bound rate of 2Ω(

√
`), where ` is

the number of distinct variables in the initial hard formulas.
The regularity condition intends to keep the following condition: once a proof-line A×(B+C)

is transformed into the proof-line A×B+A×C, in no way the two formulas A×B and A×C, as
well as any other two formulas that originate (among others) from A×B and A×C (in a manner
made precise), be united together again into a product formula by means of the distributivity
rule. For instance, in our case, after A× (B+C) was broken into the two sums A×B+A×C,
these two sums (A×B and A×C) cannot be united together again into a product formula by
means of the ‘backward’ distributivity rule, to yield A× (B + C), once more.

Techniques. Our lower bound follows by a structural analysis of symbolic proofs, and specif-
ically, by tracing the “paths” in which monomials and subformulas “move” along the proof.
Some basic algebraic properties of the small depth-3 formulas of the elementary symmetric
polynomials are also exploited in the lower bound proof.

To some extent, the exponential-size lower bounds on analytic regular symbolic proofs we es-
tablish can be compared to the exponential-size lower bounds on cut-free tree-like propositional
sequent-calculus proofs established by Statman (Statman (1978)). In particular, the analyticity
of symbolic proofs of polynomial identities is analogous to the cut-freeness of proofs in Statman
(1978), and the regularity of symbolic proofs roughly stands for the the tree-likeness of the
proofs in Statman (1978).

2 Preliminaries

For a natural number m, we use [m] to denote {1, . . . ,m}. For a graph G we write |G| to denote
the number of vertices in G. For an edge directed from u to v in G, we also say that u points
to v.
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2.1 Arithmetic Formulas

Definition 2.1 (Arithmetic formula) Fix a field F. An arithmetic formula is a labeled or-
dered1 tree, with edges directed from the leaves to the root, and with fan-in at most two. Every
leaf of the tree (namely, a node of fan-in 0) is labeled with either an input variable or a field
element. Every other node of the tree is labeled with either + or × (in the first case the node
is a plus gate and in the second case a product gate). We assume that there is only one node
of out-degree zero, called the root. An arithmetic formula computes a polynomial in the ring of
polynomials F[x1, . . . , xn] in the following way. A leaf just computes the input variable or field
element that labels it. A plus gate computes the sum of polynomials computed by its incoming
nodes. A product gate computes the product of the polynomials computed by its incoming nodes.
The output of the formula is the polynomial computed by the root. The depth of a formula Φ is
the maximal number of alternations between plus and product gates in a path from a leaf to the
root of Φ (given a path p from the root to a leaf, the number of alternations between plus and
product gates is the number of alternations between consecutive blocks of the same gate-labels).
We say that an arithmetic formula has a plus or product gate at the root if the root of the
formula is labeled with a plus or product gate, respectively. An arithmetic with a plus or product
gate at the root is said to be a plus formula or product formula, respectively.

Given an arithmetic formula Φ a subformula of Φ is any (not necessarily proper) subtree of
Φ. We say that an arithmetic formula ϕ occurs in an arithmetic formula ϕ′ if ϕ is a subformula
of ϕ′. In this case we also say that ϕ′ contains ϕ as a subformula.

Notational conventions. In this paper we deal exclusively with arithmetic formulas, and so
we will often use the term “formulas” to mean arithmetic formulas.

Given two formulas Φ1 and Φ2, we write Φ1 + Φ2 and Φ1×Φ2 to designate the formulas with
a plus (respectively, product) gate at the root and Φ1,Φ2 as its two children. We will also use
parenthesis to designate explicitly the structure of formulas. For example, (x1 +x2) + (x3 +x4)
means that (x1 + x2) and (x3 + x4) are the two subformulas attached to the root gate (while,
(x2 +x3), for instance, is not a subformula of the main formula). Most often we will not care for
the associativity and order of multiplication and addition, to the effect that we shall not write
explicitly the parentheses in formulas, like in Φ1 × Φ2 × Φ3. Further, we write

∏
i∈I Φi, where

I is a set of indices, to mean the product formula (see Definition 2.1) whose products are all
Φi (for i ∈ I), where we ignore the associativity of subformulas (formally, every product gate
in this formula is still of fun-in 2; though this is not essential). Similarly, we will write

∑
i∈I Φi

for the plus formula of all Φi (i ∈ I). Also, we will sometime abuse notation by identifying
arithmetic formulas with the polynomials they compute.

We write Φ1 ≡ Φ2 if Φ1 and Φ2 are two syntactically equal formulas (equal as labeled trees;
not to be confused with equality between polynomials). For a formula Φ and a node v in Φ, we
write Φv to denote the subformula of Φ whose root is v. We write Φ{ψ}v to denote the formula
Φ where the subtree rooted by v in Φ is replaced2 by ψ. We write Φ{ψ} (without explicitly
displaying v) to mean that ψ is a subformula of Φ.

1This means that there is an order on the edges coming into a certain node.
2Note that Φv is identified here with the labeled tree rooted in v, and not with all the formulas that are

equivalent to the labeled tree rooted in v. In other words, when we replace Φv by ψ in Φ, we only replace the
subtree of Φ whose root is v, by the tree ψ.
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2.1.1 Constant-depth formulas

We shall consider bounded-depth formulas. This means that there is an a priori constant d that
bounds the number of alternations between plus and product gates in every path in the formula-
graph. A formula Φ is said to be a ΣΠΣ . . . formula (where ΣΠΣ . . . has d ≥ 1 symbols) if
every path in Φ starting at the root and ending in the immediate ancestor of a leaf in the
formula-graph of Φ is labeled with a block of (zero or more) consecutive plus gates followed
by a block of (zero or more) consecutive product gates and so forth (d times). If moreover, a
ΣΠΣ . . . (with d ≥ 1 symbols) formula Φ contains a path starting at the root and ending in the
immediate ancestor of a leaf that is labeled with a block of one or more consecutive plus gates
followed by a block of one or more consecutive product gates and so forth (d times), then we
say that Φ is a proper ΣΠΣ . . . formula. The definition of (proper) ΠΣΠ . . . formulas is dual.

Comment 1 When considering depth-3 formulas we shall slightly change the definition of depth
(see Section 3.1) in order to conform to the standard definition of depth-3 arithmetic formulas.

3 Analytic Symbolic Proofs of Polynomial Identities

Let us fix our underlying field F. Unless otherwise stated, from this point on, all formulas will be
arithmetic formulas computing polynomials in F[x1, . . . , xn]. An arithmetic formula computes
the zero polynomial if the polynomial computed at the root of the formula is the zero polynomial
(e.g., the formula x1 + (−1 × x1)). In this section we describe our underlying proof system,
that is, analytic symbolic proof systems for polynomial identities. The system introduced here
is complete and sound for the set of arithmetic formulas computing the zero polynomial. In
other words, every formula computing the zero polynomial has a proof (completeness), and only
formulas computing the zero polynomial have proofs (soundness).

Definition 3.1 (Derivation rule) A derivation rule is a pair of formulas F,G, written as:

F(?)
G

,

where (?) being the name of the derivation rule. Let Φ be a formula and v a node in Φ. Assume
that Φv ≡ F (that is, Φ ≡ Φ{F}v). Then, given the formula Φ and the derivation rule (?), we
can derive from Φ the formula Φ{G}v, in which case we say that Φ{G}v was derived from Φ
by the derivation rule (?) applied on v.

Notation: Let Φ be a formula and v a node in Φ, such that Φv ≡ F , and suppose that Φ{G}v
was derived from Φ by the derivation rule (?) applied on v. Then we will say that the derivation
rule was applied in or on ψ, in case ψ is a subformula of Φ that contains v. Further, in this
case we call the formula G the consequence of the application of rule (?). We write

Φ{F}v (?)
Φ{G}v

,

to denote the above derivation rule application, where (?) designates the name of the rule that
was applied in order to derive the formula in the lower-line from the formula in the upper-line.
(It should be clear from the context that this latter notation is meant to denote a proof sequence
[see Definition 3.3 below], and not the description of a derivation rule.)

The following definition formulates the standard polynomial-ring axioms, where “non-
analytic” rules are kept out (see discussion below).
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Definition 3.2 (Polynomial-ring analytic derivation rules) The following rules are the
polynomial-ring analytic derivation rules (where Q1, Q2, Q3 range over all arithmetic formulas
computing polynomials in F[x1, . . . , xn]):

Zero element rules:
0×Q1

0
0 +Q1

Q1

Unit element rules:
1×Q1

Q1

Q1

1×Q1

Scalar rules: let α, α1, α2 be elements in F.

α1 + α2 (where α = α1 + α2)α

α1 × α2 (where α = α1 · α2)α
α (where α = α1 · α2)

α1 × α2

Commutativity:
Q1 +Q2

Q2 +Q1

Q1 ×Q2

Q2 ×Q1

Associativity:
Q1 + (Q2 +Q3)
(Q1 +Q2) +Q3

Q1 × (Q2 ×Q3)
(Q1 ×Q2)×Q3

Forward distributivity:
Q1 × (Q2 +Q3)

(Q1 ×Q2) + (Q1 ×Q3)

Backward distributivity:
(Q1 ×Q2) + (Q1 ×Q3)

Q1 × (Q2 +Q3)

Comment 2 It is easy to show that by using the commutativity and associativity (to the left)
rules in Definition 3.2, one can efficiently simulate the associativity to the right rules.

Definition 3.3 (Analytic symbolic proofs of polynomial identities) Let Φ and Φ′ be
two arithmetic formulas (computing the same polynomial in F[x1, . . . , xn]). An analytic sym-
bolic derivation of Φ′ from Φ is a sequence of arithmetic formulas ψ1, . . . , ψm such that ψ1 ≡ Φ,
ψm ≡ Φ′, and for all 1 < i ≤ m, ψi is derived from ψi−1 by applying the polynomial-ring ana-
lytic derivation-rules (applicable on any subformula) from Definition 3.2. If the initial formula
Φ computes the zero polynomial and Φ′ is the formula 0, then we call such a derivation of Φ′

from Φ an analytic symbolic proof of Φ.

The length of an analytic symbolic proof (or derivation) is defined to be the number of
proof-lines in the proof (derivation, respectively).

We shall prove the completeness (and soundness) of analytic symbolic proofs in Section 5.
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Discussion about analytic symbolic proofs and the subformula property. Recall that we aim
at formulating analytic symbolic proofs (Section 1.2), that is, a system that enjoys a sort of
subformula property. The intuitive interpretation of this property in our setting would be to
prevent the prover from using “clever tricks” (or “detours”) when proving polynomial identities,
in the sense that one cannot introduce new algebraic formulas that might help in efficiently
proving the identities (like, introducing new monomials or new formulas, later to be cut-off in
the proof).

The subformula property usually states that every formula that appears in an analytic proof
sequence π of T also appears in the terminal proof-line T . In our setting this should mean that
the consequence (i.e., lower-line) in any rule may only contain subformulas already appearing
in the premise (i.e., upper-line) of the rule. (Note that in a standard sequent calculus proof,
the proof starts with the axioms and terminates in a tautology; this should be analogous, in
our setting, to a symbolic proofs of an arithmetic formula computing the zero polynomial taken
backward : one starts from the “axiom” formula 0 and develops the formula computing the
zero-polynomial; thus, whereas the subformula criterion usually requires that every formula in
an upper-line of a rule occurs as a subformula in the lower-line of the rule, we should require
that every (sub)formula in a lower-line of a rule should appear in some sense in the upper-line
of the rule.) However, in our system we cannot follow precisely this requirement, since the two
distributivity rules might change the structure of subformulas (for instance, (Q1 × Q2) in the
lower-line of the forward distributivity rule is not a subformula of the upper-line Q1×(Q2+Q3)).
Nevertheless, analytic symbolic proofs keep a relaxed subformula property (a “sub-monomial
property”, so to speak), as we now explain.

We say that a monomial is syntactically computed by an arithmetic formula Φ if it occurs
in the set of monomials that results when expanding all the monomials in Φ while using no
canceling of monomials (no canceling of monomials occurs also in any gate of Φ, not just the
root gate).3 In analytic symbolic proofs we have the following “sub-monomial property”: If π
is an analytic symbolic proof and the formula Φ is a proof-line (not a proper subformula in a
proof-line) in π, then every monomial that is syntactically computed by Φ either is syntactically
computed by the initial proof-line (again, not a proper subformula of the initial proof-line), or
is the sum of (two or more) monomials that are syntactically computed in the initial proof-line.
This way, the number of monomials syntactically computed by each proof-line does not increase
along the proof sequence. We shall not prove this statement formally here, and so this idea
should only be kept as an intuition in the mind of the reader.

Consider the following three (sound) derivation rules (absent from our system):

(i) Q1

Q1 + 0
; (ii) 0

0×Q1
; (iii) α

α1 + α2
(where α = α1 + α2, for α1, α2, α ∈ F).

We explain now how the choice not to include the above three rules helps us in keeping the
relaxed form of the subformula property in our proof system. First, given Φ, one cannot simply
derive Φ + ∆−∆ from Φ, where ∆ is any non-empty formula. Note that for this derivation to

3A monomial here means a product of variables with its scalar coefficient.
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be possible, we would need the following derivation sequence that uses rules (i) and (ii) above:

Φ apply rule (i)
Φ + 0 apply rule (ii)

Φ + 0×∆
Φ + (1− 1)×∆

Φ + 1×∆ + (−1)×∆
Φ + ∆ + (−1)×∆ .

Second, if we had the rule (iii) in our proof system it would be possible to add arbitrary
number of new monomials that are syntactically computed by proof-lines throughout the proof,
as the following example illustrates:

3× (x1 × x2)
apply rule (iii)

(2 + 1)× (x1 × x2)
2× (x1 × x2) + 1× (x1 × x2)

. . .

3.1 Depth-3 formulas and depth-3 analytic symbolic proofs

We now consider analytic symbolic proofs of polynomial identities operating with depth-3 arith-
metic formulas. The standard definition of depth-3 (and specifically ΣΠΣ) arithmetic formulas
includes all formulas that can be written as a sum of products of linear polynomials. In other
words, according to the standard definition, a ΣΠΣ formula Φ (in the variables x1, . . . , xn) can
be written as:

Φ ≡
m∑
i=1

di∏
j=1

Lij , (1)

where the Lij ’s are linear polynomials in the variables x1, . . . , xn.
Due to the syntactic nature of our symbolic proof system, we require that a field element

α ∈ F that multiplies a (polynomial computed by a) formula f is written as α × f , where the
product gate × is written explicitly. This makes, in our setting, the polynomial in (1) to be a
depth-4 formula, that is a ΣΠΣΠ (the reason is that variables inside a linear polynomial Lij
might have coefficients, which makes Lij a ΣΠ formula). In order to include polynomials of
the form shown in Equation (1) in our depth-3 proof systems we define the following class of
formulas.

Definition 3.4 (Σ̂ and ΣΠΣ̂ formulas) A Σ̂ formula is a ΣΠΣ arithmetic formula (accord-
ing to Definition 2.1 and Section 2.1.1), such that the bottom ΠΣ level may include only field
elements or products of a single variable with a sum (of zero or more) field elements. (Accord-
ingly a ΣΠΣ̂ formula is a ΣΠΣΠΣ arithmetic formula where the bottom ΣΠΣ level is Σ̂.)

Example: The formula (2 + 4 + 1)×x1 + 3×x2 + (1 + 2)×x3 + 1 , is a Σ̂ formula. The formula
3× 2 is not a Σ̂ formula.

Thus, a Σ̂ formula is a formula computing a linear form (we need to include sums of fields
elements as coefficients and not just a single field element as a coefficient, since this will enable
us to add two linear forms using only Σ̂ formulas). Note that indeed any sum of products of
linear polynomials can be computed by a ΣΠΣ̂ formula.

We conclude that when dealing with depth-3 proof systems we will in fact assume that all
formulas in the proofs are ΣΠΣ̂ formulas.
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Definition 3.5 (Depth-3 analytic symbolic proofs) A depth-3 analytic symbolic deriva-
tion (proof) is an analytic symbolic derivation (proof, respectively) in which every proof-line is
a ΣΠΣ̂ formula.

We shall prove the completeness of depth-3 analytic symbolic proofs in Section 5 (this is done
by proving the completeness of a fragment of depth-3 analytic symbolic proofs).

Example: A typical application of the backward distributivity rule inside depth-3 symbolic
proofs proceeds according to the following scheme:

∆ +
d∏
j=1

Lj × L′ +
d∏
j=1

Lj × L′′

∆ +
d∏
j=1

Lj × (L′ + L′′)

,

where L′, L′′ and the Lj ’s are formulas of linear polynomials in the variables x1, . . . , xn and ∆
is any possibly empty formula (note that the two occurrences of

∏d
j=1 Lj in the upper-line must

be identical).
(When exchanging the upper- and lower- lines, we get a typical application of the forward

distributivity rule.)

4 The Structure of Symbolic Proofs

In this section we develop terminology and concepts for dealing with structural properties of
symbolic proofs. The notions developed here are suitable mainly for dealing with small depth
symbolic proofs, as the notions mainly take into account the top gates of the formulas in the
proofs. This will suffice for stating and proving our main lower bounds.

We will identify a certain graph structure induced by symbolic proofs. The idea is to partition
the graph into levels, each level corresponds to a proof-line. Each node in level i corresponds to
one summand of the formula in the ith line of the proof. From each summand (that is, a vertex
in the graph) there will be edge(s) directed to its “immediate ancestor(s)” in the previous line.
The formal definition follows.

Definition 4.1 (Underlying graph of analytic symbolic proof) Let π = (Φ1, . . . ,Φm) be
an analytic symbolic proof. Define the underlying directed acyclic graph of π denoted Gπ as
follows. The graph Gπ has m levels and edges may only go from level i to level i − 1, for
1 < i ≤ m (the vertices in level 1 have no outgoing edges). For any 1 ≤ i ≤ m, write Φi as
ϕ1+. . .+ϕ`i, for some `i ≥ 1, where every ϕj is either a product formula or a formula containing
only a single leaf. Then, the ith level of Gπ consists of `i vertices, each vertex is labeled by a
different summand ϕj from Φi and if 1 ≤ i < m then the incoming edges of level i (from vertices
in level i+ 1) are defined as follows (we shall sometime abuse notation by identifying a vertex
in the graph Gπ with its label and a level in the graph Gπ with its corresponding proof-line in
π):

(i) In case no rule was applied on ϕj in level i, for j ∈ [`i] (see notation after Definition 3.1),
then ϕj appears (as a single vertex) in both level i and level i+ 1, and we put an incoming
edge from ϕj in level i+ 1 to ϕj in level i.

11



(ii) Assume that a rule different from the forward distributivity rule was applied on ϕj in level
i, for j ∈ [`i]. Since ϕj is in a separate vertex in Gπ and some rule was applied on
ϕj (in the ith step in π) then it must be that ϕj is a product formula (and not a single
leaf formula). It can be verified by a straightforward inspection of the derivation rules
(Definition 3.2) that a consequence of any rule different from the forward distributivity
rule is not a plus formulas, and so the consequence of ϕj in proof-line i+ 1 in π is (still)
a product formula. This implies that there is a single vertex ϕ′j in level i+ 1 which is the
consequence of ϕj. We define ϕj in level i to have a single incoming edged from ϕ′j in
level i+ 1.

(iii) In case the forward distributivity rule was applied on ϕj in level i, for j ∈ [`i], on the root
gate of ϕj (again, see notation after Definition 3.1), then the consequence of ϕj in level
i+ 1 is a sum of two formulas denoted ψ0 +ψ1. Thus (by definition of the vertices in Gπ),
level i+ 1 contains two vertices ψ0 and ψ1, and we define ϕj to have two incoming edges,
one from ψ0 and one from ψ1.

(iv) In case the forward distributivity rule was applied in ϕj in level i, for j ∈ [`i], but not on
the root gate of ϕj, then the consequence of ϕj in level i + 1 must be a product formula
denoted ϕ′j. We define ϕj in level i to have a single incoming edged from ϕ′j in level i+ 1.

(v) In case the backward distributivity rule was applied on ϕj and ϕj+1 in level i, for j ∈ [`i−1]
(note that the backward distributivity rule must be applied on a plus formula, and so it must
involve two vertices in level i of Gπ), then the consequence of ϕj +ϕj+1 in level i+ 1 is a
product formula denoted ψ. We define ϕj to have an incoming edge from ψ in level i+ 1.

Notation: For a vertex v in Gπ we denote by v̇ the formula that labels v and by level(v) the
level of Gπ in which v occurs.

Example. The following derivation:

((x1 × x2) + (2× (x1 + (x1 + 3)) + (−1× (2× (x1 + 3) + x1 × (x2 + 2))))
((x1 × x2) + (2× x1) + (2× (x1 + 3)) + (−1× (2× (x1 + 3) + x1 × (x2 + 2))))

(x1 × x2) + (2× x1) + (2× (x1 + 3)) + (−1× (2× (x1 + 3))) + (−1× (x1 × (x2 + 2)))
(x1 × x2) + (2× x1) + (2× (x1 + 3)) + ((−1× 2)× (x1 + 3)) + (−1× (x1 × (x2 + 2)))

(x1 × x2) + (2× x1) + (2× (x1 + 3)) + (−2× (x1 + 3)) + (−1× (x1 × (x2 + 2)))
(x1 × x2) + (x1 × 2) + (2× (x1 + 3)) + (−2× (x1 + 3)) + (−1× (x1 × (x2 + 2)))

(x1 × (x2 + 2)) + (2× (x1 + 3)) + (−2× (x1 + 3)) + (−1× (x1 × (x2 + 2)))
(x1 × (x2 + 2)) + ((2− 2)× (x1 + 3)) + (−1× (x1 × (x2 + 2)))

(x1 × (x2 + 2)) + (0× (x1 + 3)) + (−1× (x1 × (x2 + 2)))
(x1 × (x2 + 2)) + (−1× (x1 × (x2 + 2)))

(1× (x1 × (x2 + 2))) + (−1× (x1 × (x2 + 2)))
((1− 1)× (x1 × (x2 + 2)))

(0× (x1 × (x2 + 2)))
0

has the corresponding graph structure shown in Figure 1 (we ignore the associativity rule
applications).
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(x1 × x2)

(x1 × x2)

(x1 × x2)

(x1 × x2)

(x1 × x2)

(2× (x1 + (x1 + 3)))

(2× (x1 + 3))

(x1 × 2)

(2× (x1 + 3))(2× x1)

(2× (x1 + 3))(2× x1)

(2× (x1 + 3))(2× (x1 + 3))(2× x1)

(2× (x1 + 3))(2× x1)

(−1× (2× (x1 + 3) + x1 × (x2 + 2)))

(−1× (x1 × (x2 + 2)))(−1× (2× (x1 + 3)))

(−1× (x1 × (x2 + 2)))

(−1× (2× (x1 + 3) + x1 × (x2 + 2)))

(−1× (x1 × (x2 + 2)))((−1× 2)× (x1 + 3))

(−2× (x1 + 3)) (−1× (x1 × (x2 + 2)))(−2× (x1 + 3))

(x1 × x2) (2× (x1 + 3)) (−1× (x1 × (x2 + 2)))(−2× (x1 + 3))

(−1× (x1 × (x2 + 2)))(−2× (x1 + 3))(x1 × (x2 + 2))

(−1× (x1 × (x2 + 2)))((2− 2)× (x1 + 3))(x1 × (x2 + 2))

(−1× (x1 × (x2 + 2)))(0× (x1 + 3))(x1 × (x2 + 2))

(−1× (x1 × (x2 + 2)))0(x1 × (x2 + 2))

(−1× (x1 × (x2 + 2)))(x1 × (x2 + 2))

(1× (x1 × (x2 + 2))) (−1× (x1 × (x2 + 2)))

0

((1− 1)× (x1 × (x2 + 2)))

(0× (x1 × (x2 + 2)))

Figure 1: Underlying graph of an analytic symbolic proof (this proof is also regular [see Definition 4.4]). A
single shaded vertex in a level means that a derivation rule is applied on this vertex (that is,
an application rule is applied on one of the gates [formally, nodes] in the formula labeling the
vertex). Two shaded vertices in a level means that the backward distributivity rule is applied
in π on the plus gate (in the corresponding proof-line in π) that has the two shaded vertices
as its children.

4.1 Regular Analytic Symbolic Proofs

We define here a fragment of analytic symbolic proofs, called regular analytic symbolic proofs,
which mimics to some extent a tree-like structure on analytic symbolic proofs. We shall use the
following two definitions for that purpose.

Atomic formulas are essentially formulas computing single monomials:

Definition 4.2 (Atomic and non-atomic formulas) A formula Φ is atomic if it has the
form φ1× · · · × φk, for k ≥ 1, where each φi (1 ≤ i ≤ k) is either a variable or a sum of one or
more field elements; otherwise, Φ is said to be non-atomic.

Example: The formulas (1 + 2) × x2 × x1 and 1 × 3 × x1 are atomic formulas, as well as the
formula 0 and the formula x1. The formula x2 + 3 is a non-atomic formula.

Definition 4.3 Given a proof π and its underlying graph Gπ let G′ be the subgraph of Gπ
induced by considering only the non-atomic vertices in Gπ, and let v be a vertex in G′. Then,
Tv(Gπ) is defined to be the directed subgraph of G′ induced by all the vertices (in G′) reachable
from v via a directed-path in G′ (including v itself).

The idea of the regularity condition of analytic symbolic proofs we are about to define is to
guarantee that if a forward distribution rule is applied on A×(B+C), which breaks the formula
into the sum of two terms A×B and A×C , then the two formulas A×B and A×C, as well
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as any other two formulas that originate from A × B and A × C (possibly also originating by
other formulas), might not be united together again by means of the backward distributivity
rule (in fact, this rule is the only rule that can “unite” two separate summands into a product
formula) .

In the terminology of the graph structure of analytic symbolic proofs (Definition 4.1) the
regularity condition means that a vertex v in a proof-graph cannot have two edge-disjoint
(directed) paths starting in v and leading to the same vertex.

Definition 4.4 (Regular analytic symbolic proofs) Let π be an analytic symbolic proof.
We say that π is a regular analytic symbolic proof (or regular proof for short), if for every
(non-atomic) vertex v in Gπ, the subgraph Tv(Gπ) is a tree.4

In other words, analytic symbolic proofs are regular if for every (non-atomic) vertex w in their
underlying proof-graph there are no two distinct directed paths originating in w that reach a
common vertex (different from w).

Example: Figure 1 illustrates a regular analytic symbolic proof. One can verify that for every
(non-atomic) vertex w in the graph there are no two distinct directed paths originating in w
that reach a common vertex.

Comment 3 In the definition of regular proofs we need to specifically refer to non-atomic
vertices (through the definition of Tv(Gπ)) for the following reason. If for no vertex v in Gπ
does one get by two distinct (directed) paths from v to a vertex corresponding to an initial
summand (in the initial formula), then some formulas computing the zero polynomial might not
be provable. Consider for example the formula (x1 + 1)× (x1 − 1)− x1 × x1 − 1. This formula
computes the zero polynomial. However, the first term (from the left) is a product formula that
when expanded, contains the two canceling monomials x1 × −1 and 1 × x1. Thus, in order to
reach the formula 0 we must enable these two terms to cancel each other (that is, to derive the
(sub-)formula 0 from them). Hence, this amounts to a vertex labeled ((1− 1)× x1) in Gπ from
which two distinct paths lead to the same initial summand (x1 + 1)× (x1 − 1).

We use the following simple structural proposition in the next sections. Essentially, the
proposition states that if there is a derivation starting with ∆ + Θ and terminates in ∆′ + ϕ,
and ϕ in the terminal line was “originated” only from Θ in the initial line, then there is a
derivation starting in Θ and terminating in ∆′′ + ϕ for some possibly empty formula ∆′′.

Proposition 1 Let Θ and ∆ be two formulas, and assume that ϕ is a product formula (or
a single leaf formula) such that there is a regular analytic symbolic derivation π starting from
∆+Θ and deriving ∆′+ϕ, where ∆′ is any possibly empty formula. Denote by Gπ the underlying
graph of π, and let v be the vertex in the maximal level of Gπ that is labeled with ϕ. Let T be
the set of vertices of Tv(Gπ), let A be the set of all the vertices in level 1 of Gπ, and let B
be the set of all the vertices that are labeled with summands of Θ in the first level of Gπ. If
(T ∩A) ⊆ B , then there is a regular analytic symbolic derivation π′ starting from Θ alone and
deriving ∆′′ + ϕ, where ∆′′ is any possibly empty formula.

Proof: Starting from Tv(Gπ), we construct a new graph G′ that is a legitimate underlying
graph of a regular analytic symbolic proof of ∆′′ + ϕ, where ∆′′ is any possibly empty formula
(we ignore the order of additions).

4The intention here, of course, is that Tv(Gπ) is a tree also when considered as an undirected graph, that is,
when replacing every directed edge in Tv(Gπ) with an undirected one.
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Let G′ := Tv(Gπ).
Step I: For every u ∈ B \T, we add to every level 1 ≤ j ≤ level(v) in5 G′ a new copy of u,

and put an edge from u in level j to u in level (j − 1) in G′ (for 1 < j ≤ level(v)).
Step II: For all vertices w in Tv(Gπ) such that w 6= v, we do the following. Let ` = level(w).

By definition of Tv(Gπ) there is a vertex u ∈ T such that w has an incoming edge from u in
Tv(Gπ) (since there is a directed path from v to w in Tv(Gπ)). Assume that there is a vertex
r ∈ Gπ \T such that w has an incoming edge from r. Then,

(i) we add the vertex r to level `+ 1 in G′; and
(ii) we add an edge from r to w in G′; and
(iii) we add to every level j > `+ 1 in G′ a new copy of r, and put an edge from r in level j

to r in level (j − 1) in G′.

We claim that G′ is the underlying graph of a regular analytic symbolic derivation starting
from Θ and deriving ∆′′ + ϕ, for some possibly empty formula ∆′′. Note that the first level of
G′ consists precisely of the summands of Θ, and that the last level of G′ contains the vertex
v. Moreover, G′ conforms to the regularity conditions: no vertex in G′ has two distinct (non
trivial) directed paths that reach the same vertex in G′.

Thus, we only need to show that G′ constitutes a legal analytic symbolic derivation. To this
end, it suffices to show that every level j > 1 in G′ corresponds to a proof-line that is derivable
from the previous level j − 1, and that the edges from vertices in level j to the vertices in level
j − 1 in G′ are legal (that is, conform to the definition of an underlying graph of an analytic
symbolic proof):

Let w be a vertex in level j > 1 in G′, and consider the following cases:

1. If w 6∈ T and w was added in Step I to G′, then w was added to G′ along with a single
outgoing edge that points into another copy of w in level j − 1 in G′, and so we are done.

2. If w ∈ T, then, by definition, there is an edge from w to another vertex u ∈ T and hence
u is in G′. In case u has fan-in 1 in Gπ we are done.

Otherwise, there is a (unique) vertex r 6= w in Gπ such that r has an edge e pointing to u
in Gπ. By the construction of G′ (Step II, items (i) and (ii) above), both r and the edge e
are in G′, and so both w and r and their outgoing edges correspond to a legal derivation.
This takes care of all the vertices in level j in G′ that are not in T, as well as all the
vertices r added to G′ in level j, in Step II, item (i) above.

3. If w 6∈ T and w was added to G′ in Step II, item (iii) above, then w has a single outgoing
edge that points to a copy of w in level j − 1 of G′, and we are done.

Comment 4 By inspecting the proof of Proposition 1, it is evident that the statement of this
proposition also holds for regular analytic symbolic proofs operating with depth-3 formulas. We
shall use this fact in the sequel.

5 Completeness

Recall that when dealing with depth-3 formulas computing the zero polynomial, we assume that
the formulas are in fact ΣΠΣ̂ formulas (Definition 3.4).

5Clearly, every vertex in Tv(Gπ) retain the same level it had in Gπ.
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Theorem 2 (Completeness of regular analytic depth-3 symbolic proofs) Regular an-
alytic depth-3 symbolic proofs are complete in the sense that every depth-3 formula computing
the zero polynomial has such a proof; and sound in the sense that only formulas computing the
zero polynomial have such proofs.

Proof sketch: Soundness stems from the soundness of the derivation rules: every derivation
rule that is applied on some formula Φ yields a formula computing the same polynomial as Φ.
We turn to proving completeness.

We first expand all the (formulas of) monomials (including their coefficients, and with no
cancelations applied anywhere) in each summand in the initial ΣΠΣ̂ formula. This step requires
only the successive application of the forward distributivity rule. In particular, assume that
Φ ≡ ψ1 + . . . + ψk, for some k ≥ 1, is a ΣΠΣ̂ formula computing the zero polynomial, where
each ψi is a ΠΣ̂ formula. Then, applying the forward distributivity rule on the root product
gate of a summand ψi (for i ∈ [k]), yields a new ΣΠΣ̂ formula.

Next we derive the 0 formula from every group of canceling monomials. Thus, we arrive at a
sum of 0’s formulas. This can be further reduced into a single 0 by the zero element rule.

By simple inspection of the underlying graph of the above proof it is easy to see that the
graph obtained is regular : Every non-atomic vertex has only a single (directed) path that ends
at the vertex labeled with a summand from the initial line. Thus, every non-atomic vertex v
trivially induces a tree, via Tv(Gπ), in the underlying graph, which precisely means that the
proof is regular.

In the same manner we can get the completeness and soundness properties for unrestricted
depth regular symbolic proofs for the set of all formulas that compute the zero polynomial.

Theorem 3 Analytic symbolic proofs are sound and complete for the set of formulas computing
the zero polynomial.

Proof: Soundness stems from the soundness of the derivation rules. For completeness, we first
expand all the (formulas of) monomials (including their coefficients, and with no cancelations
applied anywhere) in each summand in the initial formula (and without taking care for the
depth of formulas). Then we proceed as in the proof of Theorem 2.

6 Lower Bounds

In this section we demonstrate exponential-size lower bounds on the length of regular analytic
symbolic proofs operating with depth-3 formulas of certain polynomial identities. The hard
instances will be built from small depth-3 formulas for the elementary symmetric polynomials
over large enough fields (the. construction of such formulas is due to Ben-Or [cf. Shpilka and
Wigderson (2001)]).

6.1 Hard Formulas

We shall consider from now on all arithmetic formulas to compute polynomials over the field of
complex numbers C. The following depth-3 formula will serve as our hard instance.
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Symn :≡ r0 × (x1 + b0)× (x2 + b0)×· · · × (xn + b0) +
r1 × (x1 + b1)× (x2 + b1)×· · · × (xn + b1) +

· · · (2)
rn × (x1 + bn)× (x2 + bn)×· · · × (xn + bn) −1 ,

where r0, . . . , rn are some n+ 1 complex numbers and b0, b1, . . . , bn are n+ 1 distinct non-zero
complex numbers (each of which is different from 1).

The jth summand in Symn, for 0 ≤ j ≤ n, is a ΠΣ formula (and hence specifically a ΠΣ̂
formula) and is denoted An,j . In other words,

An,j ≡ rj × (x1 + bj)× (x2 + bj)× . . .× (xn + bj) , (3)

and so

Symn ≡
n∑
j=0

An,j − 1 .

Proposition 4 There exist complex numbers r0, . . . , rn and n + 1 distinct nonzero complex
numbers b0, . . . , bn (each of which is different from 1), so that Symn computes the zero polyno-
mial.

The proof of Proposition 4 is given in Section 6.5.

6.2 Key Lemma: Lower Bounds on Deriving One Formula from Another

In this subsection we show a lower bound on the length of regular analytic symbolic deriva-
tions operating with ΣΠΣ̂ formulas needed to derive a certain formula from another formula.
Specifically, we provide two formulas Φ and Ψ, such that starting from Φ one cannot efficiently
derive any formula that contains Ψ as a subformula. This will then facilitate us in the next
subsection (when proving lower bounds on the length of proofs of formulas computing the zero
polynomial, that is, on the derivation length needed to reach the formula 0). Note that the task
of deriving a certain formula from a different formula, and the task of proving that a formula
computes the zero polynomial (by deriving the zero formula) are not necessarily identical tasks
since our derivation rules are asymmetric (Definition 3.2).6

We work in depth-3 from now on, and specifically with ΣΠΣ̂ formulas.

Definition 6.1 (Derivable subformulas) Let Φ be a formula. The collection of all formulas
Ψ for which there is an analytic symbolic derivation of Ψ from Φ are said to be the formulas
derivable from Φ. If B is the set of all formulas derivable from Φ then the set of all subformulas
of formulas in B is called the set of subformulas derivable from Φ, denoted deriv(Φ).

Example: Let Φ be the Σ formula (xi + b1). Then, the derivable formulas from Φ are, e.g.,
(xi + b1), (b1 + xi) and all Σ̂ formulas

∏
i∈I cj ×

(∏
k∈K aj × xi +

∏
j∈J bj

)
, where

∏
i∈I ci =

6To see this, observe that deriving ψ1 from ψ2 means that we can derive ψ1 − ψ1 from ψ2 − ψ1, and thus we
can derive 0 from ψ2−ψ1. On the other hand, deriving 0 from ψ2−ψ1 does not imply that we can derive ψ1

from ψ2 (note that we cannot start from ψ2, add −ψ1 +ψ1 to yield ψ2 −ψ1 +ψ1, and then derive 0 from the
first two summands to yield ψ1; this is because we would need a rule to introduce the formula −ψ1 + ψ1 in
the first step, and we do not have such a rule in analytic symbolic proofs).
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∏
k∈K ak = 1 and

∏
j∈J bj = b1. Note that (xi + b2 + b3) is not derivable from (xi + b1),

even when b2 + b3 = b1 is true in the field; this stems from the definition of our derivation
rules (Definition 3.2). Further, xi, b1 and (xi + b1), for instance, are in derive(xi + b1), while
(xi + b0) 6∈ derive(xi + b1) (in case b0 6= b1) (see Proposition 9 for a proof).

The following definition is basically the transitive closure of a formula under “forward” and
“backward” applications of all rules excluding the two distributivity rules (unless the distribu-
tivity rules are applied inside Σ̂ formulas).

Definition 6.2 (Simple descendants and simple ancestors) Given a formula Ψ we de-
fine Cl(Ψ) as the smallest set of formulas containing Ψ and satisfying the following: Assume
that ∆ is a formula and v is some node in the (tree of) ∆, then:

(i) If ∆{φ+ 0}v ∈ Cl(Ψ), then ∆{φ}v ∈ Cl(Ψ) ;

(ii) If ∆{α1 + α2}v ∈ Cl(Ψ), then ∆{α}v ∈ Cl(Ψ) for α, α1, α2 ∈ F, such that α = α1 + α2 ;

(iii) ∆{φ× 1}v ∈ Cl(Ψ) iff ∆{φ}v ∈ Cl(Ψ) ;

(iv) ∆{α1 × α2}v ∈ Cl(Ψ) iff ∆{α}v ∈ Cl(Ψ) , for α, α1, α2 ∈ F such that α = α1 × α2 ;

(v) ∆{φ2 ◦ φ1}v ∈ Cl(Ψ) iff ∆{φ1 ◦ φ2}v ∈ Cl(Ψ) , where ◦ ∈ {+,×};

(vi) ∆{(φ1 ◦ φ2) ◦ φ3}v ∈ Cl(Ψ) iff ∆{φ1 ◦ (φ2 ◦ φ3)}v ∈ Cl(Ψ) , where ◦ ∈ {+,×};

(vii) ∆
{(∑

j∈J αj +
∑

k∈K αk

)
× xi

}
v
∈ Cl(Ψ) (where |J |, |K| ≥ 1 and for all j ∈ J and

k ∈ K, αj , αk ∈ F ) iff ∆
{

(
∑

j∈J αj)× xi +
(∑

k∈K αk
)
× xi

}
v
∈ Cl(Ψ) ;

(viii) ∆
{(∑

j∈J αj

)
× (xi + xj)

}
v
∈ Cl(Ψ) iff

∆
{(∑

j∈J αj

)
× xi +

(∑
j∈J αj

)
× xj

}
v

, where αj ∈ F (for all j ∈ J) and |J | ≥ 1.

Whenever Ψ′ ∈ Cl(Ψ) we call Ψ′ a simple descendant of Ψ , and Ψ a simple ancestor of Ψ′.
Given a formula Ψ we denote by Cl−(Ψ) the set of all simple ancestors of Ψ, that is, the set of
all Φ such that Ψ ∈ Cl(Φ).

Note: Observe that Cl−(Ψ) is closed under the specified derivation rules when they are applied
“backward” on the formulas in Cl−(Ψ). Also note that the only items in Definition 6.2 that are
asymmetric are items (i) and (ii).

Comment 5 The last two clauses (vii) and (viii) in Definition 6.2 intend to deal with dis-
tributivity rules applied inside Σ̂ formulas only (and those distributivity rule applications whose
consequence is a Σ̂ formula).

We shall use the following abbreviation (this is identical to Symn when excluding the first
summand An,0).

Initn :≡ r1 × (x1 + b1)× (x2 + b1)× · · · × (xn + b1) +
r2 × (x1 + b2)× (x2 + b2)× · · · × (xn + b2) +

· · · (4)
rn × (x1 + bn)× (x2 + bn)× · · · × (xn + bn)

−1 .
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We thus have, by Equation (3):

Initn ≡
n∑
j=1

An,j − 1 . (5)

Definition 6.3 (Proper Σ̂ formulas) A proper Σ̂ formula is a Σ̂ formula which is a plus
formula (that is, it has a plus gate at the root). A proper ΠΣ̂ formula is a proper ΠΣ formula
where the Σ formulas in the bottom levels are replaced by proper Σ̂ formulas. Similarly, a proper
ΣΠΣ̂ formula is a proper ΣΠΣ formula where the Σ formulas in the bottom levels are replaced
by proper Σ̂ formulas.

Note that every proper Σ formula (Section 2.1.1] is a proper Σ̂ formula, while not every proper
Σ̂ formula is a Σ formula.

Lemma 5 (Key lower bound) Let π be a regular analytic symbolic proof operating with ΣΠΣ̂
formulas, and with the initial formula in π being Initn, for some positive n ∈ N. Let Gπ be the
corresponding graph of π. Assume that v is a vertex in Gπ labeled with Φ, which is a simple
ancestor of

ψ ×
m∏
k=1

Ψk ,

where ψ is any possibly empty formula, and for every k ∈ [m], i ∈ [n] and j ∈ [n], Ψk is a
proper Σ̂ formula, such that Ψk 6∈ deriv(xi + bj). Then |Tv(Gπ)| ≥ 2m.

Proof: We go by induction on m. The idea is to build inductively and in a bottom-up fashion,
starting with v, the tree Tv(Gπ), by considering all the possible rules that can derive the formula
Φ.

Base case: m = 1. The formula Φ is a simple ancestor of ψ × Ψ1, where ψ is some possibly
empty formula7 and Ψ1 is a proper Σ̂ formula that is not a subformula derivable from (xi + bj),
for all j ∈ [n] and all i ∈ [n]. Observe that (for any positive n ∈ N) every proper Σ̂ formula
that occurs in Initn has the form (xi + bj), for some j ∈ [n] and i ∈ [n]. Thus, Φ is different
from every subformula in the initial formula Initn, and so the number of proof-lines in π is at
least 2, and we are done.

Induction case: We have that Φ is a simple ancestor of ψ×∏m
k=1 Ψk, where ψ is some possibly

empty formula, m > 1 and the Ψk’s are proper Σ̂ formulas. We shall use the following main
technical lemma (whose proof is given in Section 6.4).

Lemma 6 (Technical lemma) If m > 1 then (under the conditions stated in Lemma 5) there
exists a vertex y in Tv(Gπ), such that there is a path from v to y in Tv(Gπ), and y has two
outgoing edges to two (distinct) vertices u,w, so that: u and w are labeled with two simple
ancestors of the following product formulas

ψ0 ×
m−1∏
k=1

Ψ′k and ψ1 ×
m−1∏
k=1

Ψ′′k , (6)

respectively, where ψ0, ψ1 are some possibly empty formulas, and for all k ∈ [m− 1], i ∈ [n] and
j ∈ [n], Ψ′k,Ψ

′′
k are some proper Σ̂ formulas such that Ψ′k 6∈ deriv(xi+bj) and Ψ′′k 6∈ deriv(xi+bj).

7Note that in this case (i.e., when m = 1), since Ψ1 is a proper Σ̂ formula, ψ is in fact a non-empty formula, as
by definition of Gπ, the vertex v cannot be labeled with a plus formula.
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Given Lemma 6, we can then use the induction hypothesis on the two vertices u,w (whose
existence is guaranteed by the lemma), showing that |Tu(Gπ)| ≥ 2k−1 and |Tw(Gπ)| ≥ 2k−1.
By the regularity condition we know that Tu(Gπ) and Tw(Gπ) have no common vertices (note
that v̇ is a non-atomic formula [Definition 4.2] and so indeed Tv(Gπ) is a tree [Definition 4.4]).
Therefore, |Tv(Gπ)| ≥ |Tu(Gπ)|+ |Tw(Gπ)| ≥ 2k, which concludes the proof of Lemma 5.

In the next section we shall need the following simple genralization of Lemma 5:

Corollary 7 Let π be a regular symbolic proof operating with ΣΠΣ̂ formulas, and with the
initial formula in π being ∆+Initn, for some ΣΠΣ̂ formula ∆ and some positive n ∈ N. Let
Gπ be the corresponding graph of π. Assume that v is a vertex in Gπ labeled with Φ, which is a
simple ancestor of

ψ ×
m∏
k=1

Ψk ,

where ψ is any possibly empty formula, and for every k ∈ [m], i ∈ [n] and j ∈ [n], Ψk is a
proper Σ̂ formula, such that Ψk 6∈ deriv(xi + bj). Let T be the set of vertices of Tv(Gπ) and let
A be the set of all vertices in level 1 of Gπ that are subformulas in ∆ (i.e., those corresponding
to summands in ∆ in the initial line). If T ∩A = ∅, then |Tv(Gπ)| ≥ 2m.

Proof: Immediate from Lemma 5 and Proposition 1.

6.3 Main Lower Bound: Regular Depth-3 Proofs

In this subsection we demonstrate how to use the Key Lemma 5 in order to prove a lower bound
on the proof length of Symn, that is, a lower bound on the size of derivation starting with Symn

and terminating with the formula 0.
The main result of this section is the following:

Theorem 8 Every regular analytic symbolic proof operating with ΣΠΣ̂ formulas of Symn has
length 2Ω(n).

Comment 6 The number of variables in Symn is ` = n · (n + 1), and so Theorem 8 gives a
lower bound of 2Ω(

√
`).

The rest of this subsection is dedicated to the proof of Theorem 8. The proof idea goes as
follows. We begin by considering the summand An,0 in the first line of π. We expand An,0
by applying the forward distributivity rule as much as we like (without using the backward
distributivity rule, but possibly with applying other rules). In case we expand too much (i.e.,
exponentially many) summands, we are done. Otherwise, the expansion of An,0 yields a sum-
mand Φ which is a simple ancestor of ψ×∏m

k=1 Ψk , where m is big enough (that is, m ≥ n/2),
and Φ conforms to the conditions in Key Lemma 5 excluding the fact that the initial line of the
proof is not necessarily Initn. Since, by assumption, no forward distributivity rule applications
are applied on Φ the backward distributivity must be applied on it sometime. We can then show
that in this case there exists a vertex v in the underlying graph Gπ of π that fully conforms
to the conditions stated in Key Lemma 5 (more correctly, v fully conforms to the conditions
stated in Corollary 7), which concludes the lower bound proof.

For every k ∈ [n], we put
Ψk :≡ (xk + b0) .
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Proposition 9 For all k, i, j ∈ [n], Ψk 6∈ deriv(xi + bj).

Proof: By the definition of the derivation rules (Definition 3.2), no rule can increase the number

of plus gates in a formula, except for the forward distributivity rule Q1 × (Q2 +Q3)
(Q1 ×Q2) + (Q1 ×Q3)

:

every plus gate that occurs in (a substitution instance of) Q1 in the upper-line Q1× (Q2 +Q3),
appears twice in the lower-line (Q1×Q2)+(Q1×Q3). Note that for this increase in the number
of plus gates to happen, the upper-line Q1 × (Q2 + Q3) must contain at least two plus gates.
Thus, if Φ′ is derived from Φ via an analytic symbolic derivation, and Φ contains only one plus
gate, then Φ′ contains at most one plus gate. We conclude that for all i, j ∈ [n], any formula
derivable from (xi + bj) contains at most one plus gate.

Assume by a way of contradiction that there is a formula ϕ ∈ deriv(xi + bj), such that there
exists k ∈ [n] for which (xk+b0) occurs inside ϕ. Since ϕ has only one plus gate, ϕ ≡ φ×(xk+b0),
for some possibly empty formula φ (when ignoring associativity of formulas and the order of
multiplication). By the soundness of the proof system, we get that φ× (xk + b0) and (xi + bj)
compute the same polynomial. But, by assumption, bj 6= b0 for all j ∈ [n], and so for all k ∈ [n],
(xi + bj) cannot be factored by (xk + b0).

Fix a regular depth-3 analytic symbolic proof π of Symn, and let Gπ be the corresponding
underlying graph of π. Note that the first line of π is Symn ≡ An,0 + Σn

j=1An,j − 1, and so the
first level of Gπ has a unique vertex labeled with (the product formula) An,0. Let S be the set
of all vertices v in Gπ such that v̇ is non-atomic (Definition 4.2) and every (directed) path that
originates in v terminates in the vertex that is labeled with An,0. Let

T be the subgraph of Gπ induced by the vertices in S .

Proposition 10 The graph T is a binary tree rooted at An,0 (where every vertex is directed
from leaves toward the root).8

Proof: This stems directly from the regularity condition on the structure of π. Formally,
assume by a way of contradiction that there is a (possibly undirected) cycle C in T , and let
u be a vertex in C, where level(u) is the maximal level in Gπ. Since u is in a cycle it has two
edges adjacent to two distinct vertices w, v in C. But then the fan-out of u in Gπ (considered
as a directed graph) is 2, as both v and w must be in a smaller level than the level of u (by
assumption on the maximality of level(u), and since no two vertices in the same level of a proof-
graph are connected with an edge). Both v and w have a directed path leading to An,0 in Gπ,
and so u has two different paths leading to An,0, in contrast to the regularity condition which
forbids this case (since, Tu(Gπ) is a tree, rooted at u). This shows that T is a tree. To show
that T is a binary tree, we only need to note that by definition, every vertex in Gπ has fan-in
at most 2.

Recall the definition of a subformula in a proof-line being the consequence of some derivation
rule (Notation after Definition 3.1). Also recall that a derivation rule is applied outside a
subformula ψ if (in the terminology used in Notation after Definition 3.1) the vertex v is not in
ψ.

8T is a tree also when considered as an undirected graph.
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Proposition 11 No vertex in T is (labeled with) a consequence of the backward distributivity
rule applied outside a Σ̂ formula.9

Proof: By definition no vertex in Gπ is labeled with a plus formula. Hence, all vertices in
T are labeled with (not necessarily proper) ΠΣ̂ formulas (since the proof is restricted to ΣΠΣ̂
formulas only). The upper-line in the backward distributivity rule is (Q1 ×Q2) + (Q1 ×Q3).

Assume, by a way of contradiction, that there is a vertex v in T , such that v is a consequence
of the backward distributivity rule applied on (a substitution instance of) (Q1×Q2)+(Q1×Q3)
and (Q1×Q2) + (Q1×Q3) is not a Σ̂ formula. In case (Q1×Q2) and (Q1×Q3) appear in two
distinct vertices u,w in Gπ, then we get that v has two outgoing edges pointing to u and w. By
the definition of T , this means that both u and w have directed paths reaching the root of T ,
which contradicts the regularity condition.

Otherwise, (Q1 ×Q2) + (Q1 ×Q3) occurs in the label of some single node w. Since no single
node is labeled with a plus formula, it must be that w is labeled with a product formula that
contains (Q1 × Q2) + (Q1 × Q3) as a subformula. This means that w contains a proper ΠΣΠ
formula, where the middle ΣΠ formula is not a Σ̂ formula (since (Q1 ×Q2) + (Q1 ×Q3) is not
a Σ̂ formula). A contradiction to assumption.

The following proposition exploits our restriction to depth-3 formulas.

Proposition 12 Let π be an analytic symbolic proof operating with ΣΠΣ̂ formulas. Let v be a
node in Gπ labeled with a ΠΣ̂ formula and let ` = level(v). If the forward distributivity rule is
applied in v̇ (in the `th proof-line of π), and the rule is applied outside a Σ̂ formula and further
the consequence of the rule application is not a Σ̂ formula, then v must have fan-in 2.

Proof: The idea is that a forward distributivity rule cannot be applied “inside” a product
formula (excluding the case when it is applied inside a Σ̂ formula, or when the consequence of
the rule application is a Σ̂ formula), as this would result in a formula having depth > 3.

Formally, the formula v̇ can be written as L1 × · · · × Lk, for some k ≥ 1, where each Li is a
Σ̂ formula. If k = 1 then the proposition trivially holds, since every application of the forward
distributivity rule would be applied inside a Σ̂ formula, in contrast to the assumption.

Otherwise, k > 1. Suppose that an application of the forward distributivity rule on some
subformula occurring in v̇ was performed outside a Σ̂ formula. A vertex labeled with a formula
on which the forward distributivity is applied either has fan-in 1 or 2 (and not 0). Assume
by a way of contradiction that v has fan-in 1 and let u be the vertex that points to v. By
the definition of the forward distributivity rule (Definition 3.2) u̇ must be a product formula
(since every vertex is labeled either with a product formula or a single leaf; and a single leaf
cannot be the consequence of the forward distributivity rule) that resulted from distributing
some subformula

∏
i∈I Li over some Σ̂ formula Lr ≡ ∆1 +∆2, for some non-empty I ⊆ [k]. This

means that u is labeled with(∏
i∈I

Li ×∆1 +
∏
i∈I

Li ×∆2

)
×
∏
j∈J

Lj ,

for J = ([k] \ I) \ {r}, where J is non-empty (as otherwise, u was a plus formula). Therefore, u
is a ΠΣΠ formula where the middle ΣΠ level consists of formulas that are not Σ̂ formulas (since

9Here we identify the vertices in T with the corresponding vertices in Gπ (where the latter correspond, as
always, to subformulas occurring in π).

22



by assumption the consequence of the rule application
(∏

i∈I Li ×∆1 +
∏
i∈I Li ×∆2

)
is not a

Σ̂ formula). This contradicts our assumption that all proof-lines are ΣΠΣ̂ formulas. We then
conclude that v must have two immediate children.

A simple path in a binary tree is (the set of vertices that are included in) any path in the
tree that starts in a vertex with a sibling (or else starts in the root) and goes down along the
path (further away from the root) until it reaches a vertex that has two sons. Formally, in T ,
we define simple paths as follows:

Definition 6.4 (Simple path) Let P be the path (v1, v2, . . . , vk), for k ≥ 1, in the tree T ,
beginning with the vertex v1 and ending in vk (where v1 is the vertex closest to the root). If the
following three conditions hold then the path P is said to be a simple path in T .

(i) v1 points to no vertex (in which case v1 is the root of T ), or v1 points to a vertex v0 such
that v0 has fan-in 2;

(ii) vk has fan-in 2;

(iii) all vertices excluding vk in the path have fan-in at most 1.

Proposition 13 Let P be a simple path in T , in which the first (that is, closest to the root)
vertex is labeled with a formula from Cl

(
ψ ×∏k∈K (xk + b0)

)
, for some possibly empty formula

ψ, and some K ⊆ [n]. Then, for every vertex v in P , v̇ ∈ Cl
(
ψ ×∏k∈K (xk + b0)

)
.

Proof: Assume that P has more than one vertex (as otherwise the statement is trivial). Suppose
that all the vertices in the simple path, excluding the first one, are not the consequences of
applying one of the two distributivity rules. Thus, the lemma stems directly from the definition
of a simple descendant (Definition 6.2).

Otherwise, there exists a vertex v in the simple path (different from the first vertex in P )
that is a consequence of an application of one of the two distributivity rules.

By Proposition 11, v is not a consequence of the backward distributivity rule. Then, suppose
that v is a consequence of the forward distributivity rule application. In case the forward
distributivity rule was applied inside a Σ̂ formula or the consequence of the forward distributivity
rule application is a Σ̂ formula, then again the lemma stems directly from the definition of a
simple descendant. Otherwise, the forward distributivity rule application meets the conditions
in Proposition 12, and so we obtain a vertex in the simple path P (that is, the vertex to which
v points) that has fan-in 2, in contrast to the definition of simple paths.

Proposition 14 Let v be a vertex in T such that v̇ is a simple descendant of ψ×∏k∈K(xk+b0),
where ψ is any possibly empty formula and K ⊆ [n], such that |K| > 1. Assume that v has two
vertices u,w pointing to it. Then, u,w are the consequences of applying the forward distributivity
rule on v̇ (in π), and u,w are labeled with a simple descendant of ψ′ ×∏k∈K′(xk + b0) and
ψ′′ ×∏k∈K′(xk + b0), respectively, where K ′ ⊆ K and |K ′| ≥ |K| − 1, and ψ′ and ψ′′ are some
two formulas.

Proof: First note that the only derivation rule that can result in v having two sons is the
forward distributivity rule. Thus the forward distributivity rule was applied on v̇ in π.

Given an application of the forward distributivity rule, let us call the (substitution instance
of) the subformula (Q2 +Q3) (in the upper-line of the rule Q1× (Q2 +Q3)), the principal sum.
Thus, every application of the forward distributivity rule must break the principal sum into two
subformulas Q2 and Q3 in the lower-line of the rule Q1 ×Q2 +Q1 ×Q3.
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Under the conditions in the statement of the proposition, there are only two cases to consider.
The first is that the principal sum of the distributivity rule applied on v̇ is a sum (xj + b0), for
some j ∈ K;10 the second, is that the principal sum is some subformula in ψ.

In the first case, we obtain that u,w are labeled with a simple descendant of ψ′×∏k∈K′(xk+
b0) and ψ′′ ×∏k∈K′(xk + b0), respectively, where K ′ = K \ {j} (and so |K ′| = |K| − 1), and
ψ′ and ψ′′ are some two formulas, which is precisely what we need to show.

In the second case, the principal sum that breaks into two subformulas is a part of ψ, and so
both u,w are labeled each with a simple descendant of ψ′×∏k∈K(xk+b0), and ψ′′×∏k∈K(xk+
b0), respectively, for some two formulas ψ′, ψ′′, which concludes the proof of the lemma.

The following proposition is similar to Proposition 14.

Proposition 15 Let w be a vertex in Gπ (not necessarily in T ) and assume that w has fan-out
2 with two edges pointing to the vertices v and u. Suppose that v̇ is a simple descendant of
ψ ×∏k∈K(xk + b0), where ψ is some possibly empty formula and K ⊆ [n] such that |K| > 1.
Then w is the consequence of applying the backward distributivity rule on v and u (in π; in fact
the rule was applied on the plus gate that has v̇ and u̇ as its two sons), and u is labeled with a
simple descendant of ψ′ ×∏k∈K′(xk + b0), where K ′ ⊆ [n] and |K ′| ≥ |K| − 1, and ψ′ is some
possibly empty formula.

Proof: This is similar to the proof of Proposition 14. We omit the details.

Proposition 16 If v is a vertex in T , then v̇ does not compute the zero polynomial.

Proof: The root formula of T is An,0. Without loss of generality, we can assume that r0 in An,0
is nonzero (there must be at least one nonzero ri, for 0 ≤ i ≤ n, as otherwise Symn would not
compute the zero polynomial). Let P be (the set of vertices in) the path in T starting in the
root and leading to the vertex v. We show by induction on the length of P that every vertex in
P is labeled with a formula that can be written as follows (ignoring the order of multiplication
and addition): ∏

k∈K
ck ×

∏
j∈J

xj ×
∏
i∈I

(d× xi + b0) , (7)

for three possibly empty sets of indices J, I ⊆ [n] and K and where the ck’s are nonzero field
elements and d is a possibly empty field element (and so the formula computes a nonzero
polynomial).

The base case is immediate (it is the root formula An,0). For the induction step, we consider
all possible rule applications and show that they preserve the induction statement.

The backward distributivity rule is not applicable in P , by definition of T , unless it is applied
inside a Σ̂ formula, which is impossible in this case.

Note that there are no coefficients multiplying the b0’s. This is because by definition of a
Σ̂ formula, such a formula does not contain a product of two or more field elements. Also,
notice that every rule, different from the distributivity rules applied on the formula (7), keeps
the induction statement (this can be verified by straightforward inspection). For the forward
distributivity rule, it is easy to see that this rule may only transform a formula of the form (7)
into two other formulas, each of the form (7).

10Note that one cannot derive from (xj + b0) any other formulas (ignoring the order) other than (1× xj + b0) as
any other formula will be a non Σ̂ formula, which will result in v̇ to be not a ΣΠΣ̂ formula.
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We now transform the tree T into a full binary tree (that is, a tree in which every vertex has
either fan-in 2 or fan-in 0; a full binary tree might not be balanced, though). This is done by
contracting all simple paths in T (that is, contracting all edges pertaining to a simple path).
Formally, we perform the following process on T . Let u be a vertex in T that has fan-in 1 (in
T ) and denote by w the (single) vertex in T that points to u. Replace w with u (in other words,
the edge from w to u is contracted and the edge(s) going into w now go into u [and u keeps
its label]). Continue this process until there are no vertices of fan-in 1 in the graph. We thus
obtain a full binary tree with the root being the vertex labeled with An,0. Denote by T ′ the
graph just constructed.

Notation:

1. We identify the vertices common to both T and T ′.
2. The level of a vertex v in the full binary tree T ′ should not be confused with the level

level(v) of the same vertex v in Gπ. To avoid confusion we shall explicitly write in what
follows the level of v in T ′ when referring to the former measure.

Lemma 17 For 0 ≤ i ≤ n− 1, let v be a vertex in the ith level of (the full binary tree) T ′ (if
such a level exists in T ′). Then, v̇ is a simple descendant of ψ×∏k∈K(xk + b0), where K ⊆ [n]
and |K| ≥ n− i, and ψ is any possibly empty formula.

Proof: Note that the root of T ′ is labeled with An,0 and that

An,0 ≡ r0 ×
∏
i∈[n]

(xi + b0) ∈ Cl

(
ψ ×

∏
k∈K

(xk + b0)

)
, (8)

for [n] = K and where ψ = r0.
Consider the (not necessarily simple) path P in T (not in T ′) starting from the root and

reaching v. By the definition of T ′, this path (formally, only the vertices of this path) consists
in moving along i consecutive simple paths in T and then moving one edge further to v (if i = 0
then we start from the root of T , and stay there).

By (8) and Proposition 13, all the vertices in the first simple path in P are labeled with
elements of Cl

(
ψ ×∏k∈K(xk + b0)

)
.

Starting in the last vertex of the first simple path we can move along P (further away
from the root) to its son w. By definition the last vertex of every simple path has two
sons (and so w has a sibling in T ). Hence, we can apply Proposition 14 to conclude that
ẇ ∈ Cl

(
ψ′ ×∏k∈K(xk + b0)

)
, for some |K| ⊆ [n] such that |K| ≥ n− 1, and where ψ′ is some

possibly empty formula.
Using the same reasoning, after moving along P through i consecutive simple paths, and then

moving one edge down to v, we conclude that v̇ ∈ Cl
(
ψ′ ×∏k∈K(xk + b0)

)
, where K ⊆ [n] such

that |K| ≥ n− i, and ψ′ is some possibly empty formula.

Concluding the proof of Theorem 8. Let v be a leaf in T ′ having the minimal level ` in the
full binary tree T ′.

Case 1: ` ≥ n/2. In this case T ′ is a full binary tree where all leaves are of level at least
n/2. This means that the number of vertices in T ′ is at least as the number of vertices of a
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complete binary tree with n/2 levels (a complete binary tree is a full and balanced binary tree).
Thus, the number of vertices in T ′ is at least 2n/2 − 1. Since every vertex in T ′ appears in T
and thus also appears in Gπ, we get that |Gπ| = 2Ω(n).

Case 2: ` < n/2. By Proposition 17:

v̇ ∈ Cl

(
ψ ×

∏
k∈K

(xk + b0)

)
, (9)

where K ⊆ [n] such that |K| ≥ n− ` > n/2 (and ψ is some possibly empty formula).
From now on, we will consider v as a vertex in Gπ. By the definition of T , there are only two

cases that account for v being a leaf in T : (i) the vertex v is of fan-in 0 in Gπ; or (ii) there is a
(unique) vertex w in Gπ that has an out-going edge pointing to v and further there is a directed
path in Gπ starting from w and terminating in (the first level of Gπ) in a vertex different from
the root of T (i.e., different from the vertex labeled with An,0).

In case (i), v must be labeled with the formula 0 (this can be checked by inspection of
the derivation rules [Definition 3.2]). But by Proposition 16, v̇ does not compute the zero
polynomial, and so we arrive at a contradiction.

In case (ii), the vertex w has fan-out 2 (since every directed path inGπ starting in v terminates
in the root of T by definition of T ). Thus, w has an out-going edge that goes into v and another
out-going edge that goes into a vertex we denote by u. Now, by (9) and Proposition 15 we
conclude that u is labeled with a simple descendant of ψ×∏k∈K(xk + b0) , where K ⊆ [n] such
that |K| ≥ n− `− 1 > n/2− 1 (and ψ is some possibly empty formula).

By the regularity condition we have that the trees Tv(Gπ) and Tu(Gπ) have no common
vertices. This in turn means that the conditions of Corollary 7 hold for the vertex u (since,
by regularity, u does not have a directed path that reaches An,0 in the initial line in π, and so
every directed path beginning at u must terminate in the initial line in a summand pertaining
to Initn) which implies that |Tu(Gπ)| > 2n/2−1, and so we conclude that |Gπ| = 2Ω(n).

6.4 Proof of Technical Lemma 6

Here we prove the main technical lemma. For the sake of convenience, we repeat it fully here:

Lemma 6 (Technical lemma) Let π be a regular analytic symbolic proof operating with ΣΠΣ̂
formulas, and with the initial formula in π being Initn, for some positive n ∈ N. Let Gπ be the
corresponding graph of π. Assume that v is a vertex in Gπ labeled with Φ, which is a simple
ancestor of

ψ ×
m∏
k=1

Ψk ,

where m > 1 and ψ is any possibly empty formula, and for every k ∈ [m], i ∈ [n] and j ∈ [n],
Ψk is a proper Σ̂ formula, such that Ψk 6∈ deriv(xi + bj). Then, there exists a vertex y in
Tv(Gπ), such that there is a path from v to y in Tv(Gπ), and y has two outgoing edges to two
(distinct) vertices u,w, so that: u and w are labeled with two simple ancestors of the following
product formulas

ψ0 ×
m−1∏
k=1

Ψ′k and ψ1 ×
m−1∏
k=1

Ψ′′k , (10)

respectively, where ψ0, ψ1 are some possibly empty formulas, and for all k ∈ [m− 1], i ∈ [n] and
j ∈ [n], Ψ′k,Ψ

′′
k are some proper Σ̂ formulas such that Ψ′k 6∈ deriv(xi+bj) and Ψ′′k 6∈ deriv(xi+bj).
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Denote by F the set of simple ancestors of all formulas
∏m
k=1 Ψk where each Ψk (from the

statement of the lemma) is substituted by some Ψ′k, such that Ψk is a derivable subformula
from Ψ′k. Formally, we have:

F :=

{
Cl−

(
m∏
k=1

Ψ′k

)
| ∀k ∈ [m], Ψk ∈ deriv(Ψ′k)

}
.

By the definitions of a simple closure (Definition 6.2) and of derivable subformulas (Definition
6.1), we have the following simple properties:

Fact 1 1. deriv(·) is transitive: if φ0 ∈ derive(φ1) and φ1 ∈ derive(φ2), then φ0 ∈ derive(φ2).

2. For all φ ∈ Cl−(Ψ), Ψ ∈ deriv(φ). (On the other hand, Ψ ∈ deriv(φ) does not necessarily
imply φ ∈ Cl−(Ψ) (see Definition 6.1).)

3. From the above two facts: If Ψk ∈ deriv(Ψ′k), then for all φ ∈ Cl−(Ψ′k) it holds that
Ψk ∈ deriv(φ).

Proposition 18 Every formula in F is a simple ancestor of
∏m
k=1 Ψ′k , where, for every k ∈

[m], i ∈ [n] and j ∈ [n], Ψ′k 6∈ deriv(xi + bj), and Ψ′k contains at least one plus gate.11

Proof: Assume by a way of contradiction that Ψ′k ∈ deriv(xi+bj), for some k ∈ [m], i ∈ [n] and
j ∈ [n]. By Ψk ∈ deriv(Ψ′k) , and by the transitivity of deriv(·), we have that Ψk ∈ deriv(xi+bj),
which contradicts the assumption on the Ψk’s (in Lemma 6).

Further, since Ψk ∈ deriv(Ψ′k), for every k ∈ [m] , and since Ψk is a proper Σ̂ formula, every
Ψ′k must contain at least one plus gate (this can be verified by inspecting the definition of
deriv(·) and the derivation rules [Definition 3.2]).

Proposition 19 No member of F occurs as a subformula in the initial proof-line.

Proof: Every formula in F must contain at least m > 1 products of ψk’s, such that k ∈ [m]
and ψk ∈ Cl−(Ψ′k) and Ψ′k 6∈ deriv(xi + bj), for all i ∈ [n] and j ∈ [n]. By Item 3 in Fact 1 and
by Ψk ∈ deriv(Ψ′k) we get that Ψk ∈ deriv(ψk). By assumption (Lemma 6), Ψk 6∈ deriv(xi + bj),
for all i ∈ [n] and j ∈ [n], and so ψk 6∈ deriv(xi + bj) (for all i ∈ [n] and j ∈ [n]).

On the other hand, no formula in F contains products of (non empty) ψk’s for which ψk 6∈
deriv(xi + bj), for all i ∈ [n] and j ∈ [n]. This concludes the proof.

Proposition 20 (Critical transition) There is a directed path (with 0 or more edges) from
v to some vertex y in Tv(Gπ), where level(v) ≥ level(y) > 1, such that: ẏ contains a subformula
which is an element of F , while the preceding level level(y)− 1 corresponds to a proof-line that
does not contain a subformula which is an element of F .

(Note that m > 1 and so Φ and all formulas in F are product formulas, which means that
every formula in F may occur [as a complete formula] only in a label of at most one vertex in
each level.12)

11When considering only ΣΠΣ̂ formulas, the condition that Ψ′k contains at least one plus gate may be replaced
by the condition that Ψ′k is a proper Σ̂ formula (note that in the definition of F we have not restricted the
depth of formulas).

12In other words, there are no two vertices s, t, at the same level and a formula Θ ∈ F , such that one subformula
of Θ occurs in ṡ and a different subformula of Θ occurs in ṫ.
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Proof: Assume by a way of a contradiction that there is no such y. Note that v̇ contains a
subformula from F , since clearly

∏m
k=1 Ψk ∈ F . It is evident (by Definition 4.1) that every

vertex in a proof-graph has a path originating in that vertex and terminating in the first level
of the graph. Therefore, since there is no y that meets the conditions stated in the claim, every
vertex in Gπ, on the path from v to a vertex in the first level, must contain a subformula from
F . Thus, the initial proof line contains a subformula from F , which contradicts Proposition
19.

To conclude for now, let y be the vertex whose existence is guaranteed by Proposition 20, put
` = level(y) and let A{Θ} denote the formula that corresponds to the (whole) level `, where

Θ :≡ ẏ

(note that since Θ is the label of a vertex, Θ is in fact just a summand in A). Then we can
write

A{Θ′}t (?)A{Θ}t
(11)

to denote the transformation made from level (i.e., proof-line) `− 1 to level (i.e., proof-line) `,
obtained by some derivation rule (?), where t is a node in A and:

there exists a subformula θ in Θ such that θ ∈ F (12)
there is no subformula θ in A{Θ′}t such that θ ∈ F . (13)

Proposition 21 Both the formula Θ and the formula θ are proper ΠΣ̂ formulas (Definition
6.3).

Proof: By definition, Ψk is a proper Σ̂ formula, for every k ∈ [m]. Since Ψk ∈ derive(Ψ′k) for all
k ∈ [m], Ψ′k must contain some plus formula, for all k ∈ [m] (this can be verified by inspection
of the derivation rules [Definition 3.2]). Hence, since m > 1, θ ∈ F must contain a product
of at least two formulas, each of which contains a plus formula. Therefore, also the formula Θ
must contain a product of at least two formulas, each of which contains a plus formula. Since
Θ is a label of some vertex, it must be that Θ in this case is a product formula. And since we
work with ΣΠΣ̂ formulas, Θ must be a proper ΠΣ̂ formula. Further, since θ occurs in Θ (and
θ contains a product of two proper Σ̂ formulas), θ is also a proper ΠΣ̂ formula.

In order to prove Lemma 6 we will demonstrate that y above is the vertex stated in the
statement of this lemma. Specifically, we will consider all possible rules (?) that can be applied
in (11) above, and conclude that there must be two outgoing edges from y into two vertices
that meet the requirements of Lemma 6.

Notation: Assume, for example, that the rule (?) applied in (11) is Q1 + 0
Q1

, and let ϕ

be some formula. Then we shall say, for instance, that ϕ occurs in the upper-line Q1 + 0, to
mean that ϕ occurs in some substitution instance ∆ of Q1 + 0 (and that clearly ∆ occurs in
A{Θ′}t from (11)). In other words, when referring to occurrences in upper and lower lines of
rules that are formulated with formulas in the variables Q1, Q2, Q3, we are formally referring to
substitution instances of these variables.

Definition 6.5 (Closure of F under derivation rules) We say that F is closed under
some derivation rule (?) (or under certain instances of the derivation rules), if whenever a
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formula ∆ is transformed via (?) (or via a certain instance of the derivation rule) into ∆′, and
∆′ contains a subformula in F , then ∆ also contains a subformula in F . 13

Case 1: The rule (?) is one of the following: commutativity, associativity, unit element
rules, zero element rules or scalar rules; or the rule (?) is a distributivity rule applied in a Σ̂
formula or the consequence of applying (?) is a Σ̂ formula (the last two options correspond to
the transformations made in the last two clauses in Definition 6.2). By the definition of F (and
by the definition of a simple closure [Definition 6.2]), F is closed under these rules (Definition
6.5). Thus, proof-line ` − 1 contains a formula which is an element in F , and we arrive at a
contradiction with (13).

Case 2: The rule (?) is forward distributivity applied differently from that in Case 1
(that is, it is not applied inside a Σ̂ formula and its consequence is not a Σ̂ formula):

Q1 × (Q2 +Q3)
(Q1 ×Q2) + (Q1 ×Q3)

.

We consider the possible occurrences of the lower line (Q1 ×Q2) + (Q1 ×Q3) in A{Θ}t, and
conclude that this case does not hold.

(i) There is no subformula of Θ that occurs in the lower line (Q1 ×Q2) + (Q1 ×Q3).

Thus, proof-line `− 1 contains Θ as a subformula, in contrast to (13).

(ii) (A substitution instance of) (Q1 ×Q2) + (Q1 ×Q3) is a proper subformula of Θ.

By assumption (made in Case 2) (Q1 × Q2) + (Q1 × Q3) is not a Σ̂ formula. Note that
(Q1 × Q2) + (Q1 × Q3) is a proper ΣΠ formula when considered as a formula in the
propositional variables Q1, Q2, Q3 (and not necessarily as a substitution instance of these
variables). Since (Q1 × Q2) + (Q1 × Q3) is not a Σ̂ formula and since Θ is a proper ΠΣ̂
formula (Proposition 21), we arrive at a contradiction.

(iii) The formula Θ is (a substitution instance of the whole formula) (Q1 ×Q2) + (Q1 ×Q3).

This is contradictory to Θ being a product formula (Proposition 21).

(iv) The formula Θ is (a substitution instance of) (Q1 ×Q2).

Suppose that Q2 is not a Σ̂ formula. Then it ought to be a proper ΠΣ̂ (by Proposition
21). Thus, Q1× (Q2 +Q3) (from the upper-line) is a proper ΠΣΠΣ̂ formula that appears
in proof-line ` − 1 in π. This contradicts our assumption that all proof-lines are ΣΠΣ̂
formulas.

Therefore, Q2 is a Σ̂ formula. Assume that Q2 is Σ̂ formula denoted ∆ that occurs in
θ ∈ F (see (12)). Then, the upper line Q1 × (Q2 +Q3) is just Θ with Q3 added to one of
the Σ̂ products in it. Note that if F ∈ F and F ′ is the result of adding some formula to one
of the Σ̂ products occurring inside F , then F ′ ∈ F ; this is because for every two formulas
∆1,∆2, Ψk ∈ deriv(∆1) implies Ψk ∈ deriv(∆1 + ∆2) (by definition of deriv(·)).14 Thus,
the upper line Q1 × (Q2 +Q3) still contains an element of F in contrast with (13).

(v) The formula Θ is (Q1 ×Q3). This is analogous to the previous sub-case (iv).

13Note that here we demand that F is closed under a derivation rule, if it is closed when the rule is applied
“backward” on a formula in F .

14Here we use the fact that deriv(·) is defined as the derivable subformulas, and not just derivable formulas.
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(vi) The formula Θ is a substitution instance of one of Q1 or Q2 or Q3.

Thus, Θ occurs also in the upper-line (and hence in line `− 1 of the proof), which contra-
dicts (13).

Case 3: The rule (?) is the backward distributivity (Q1 ×Q2) + (Q1 ×Q3)
Q1 × (Q2 +Q3)

, applied

differently from that in Case 1 (that is, it is not applied inside a Σ̂ formula and its consequence
is not a Σ̂ formula15). Thus, (Q1 ×Q2) + (Q1 ×Q3) is not a Σ̂ formula.

We shall consider the possible occurrences of the lower-line Q1 × (Q2 + Q3) in A{Θ}t, and
conclude that the upper-line (Q1×Q2) + (Q1×Q3) constitutes in Tv(Gπ) the two vertices u,w
to which y points, and that u,w meet the conditions stated in the lemma (Lemma 6).

(i) There is no subformula of θ that occurs in the lower-line Q1 × (Q2 +Q3).

Thus, proof-line `− 1 contains θ as a subformula, in contrast to (13).

(ii) There is a only a proper subformula of θ that occurs in Q1 × (Q2 + Q3) (that is, θ does
not occur fully in Q1 × (Q2 +Q3)).

Recall that θ is a product formula (Proposition 21), and so we can write θ as Πi∈Iθi for
some set of formulas θi, i ∈ I. The only possibility in the current case is that there is a
partition of I into two nonempty subsets of indices I = I0]I1, so that θ can be partitioned
into two products; one is the product of all θi, i ∈ I0, and the other is the product of all
θi, i ∈ I1 (we ignore the order in which the θi’s occur in θ), and such that: either Q1 or
(Q2 +Q3) or Q1× (Q2 +Q3) is the formula

∏
i∈I0 θi and the product of all θi, i ∈ I1, does

not occur in the lower-line Q1 × (Q2 + Q3). Since θ ≡ Πi∈Iθi, it must be that
∏
i∈I1 θi

multiplies Q1× (Q2 +Q3) inside A{Θ}t. This means that in A{Θ′}t, the formula
∏
i∈I1 θi

multiplies (Q1 × Q2) + (Q1 × Q3). Since (Q1 × Q2) + (Q1 × Q3) is not a Σ̂ formula, ẏ
contains a proper ΠΣΠ formula, where the middle ΣΠ level does not consist of only Σ̂
formula, which contradicts our assumption that all proof-lines are ΣΠΣ̂ formulas.

(iii) The formula θ occurs (fully) in Q1 × (Q2 +Q3).

(1) θ occurs in one of Q1, Q2, Q3. Thus, θ occurs also in the upper-line (and hence in line
`− 1 of the proof), which contradicts (13).16

(2) θ occurs in (Q2 +Q3) and item (iii1) above does not hold. This is impossible since θ
is a product formula (Proposition 21).

(3) θ occurs in Q1 × (Q2 +Q3), and the above two items (iii1) and (iii2) do not hold.

Assume that there exists a proper subformula τ of θ such that τ ∈ F and τ occurs
fully in Q1. Hence, the upper-line also contains τ and we arrive at a contradiction
with (13).

Otherwise, we are left only with the following case to consider. Write θ as Πi∈Iθi,
for some Σ̂ formulas θi, i ∈ I (since θ is a proper ΠΣ̂ formula [Proposition 21], it
is possible to write θ in this way). It must be that there exists a j ∈ I such that

15In the case of the backward distributivity rule, these two options are the same, since the latter transformation
is also applied inside a Σ̂ formula.

16This subcase can be shown impossible to meet also due to the depth-3 restriction.
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θj ≡ ∆0 + ∆1, where ∆0,∆1 are Q2, Q3, respectively; and Q1 isψ × ∏
i∈I\{j}

θi

 ,

where ψ is some possibly empty formula. Therefore, (Q1 ×Q2) and (Q1 ×Q3) from
the upper-line are:ψ × ∏

i∈I\{j}

θi

×∆0 and

ψ × ∏
i∈I\{j}

θi

×∆1 ,

respectively. Thus, we only need to show that these are precisely the two vertices u,w
as stated in the lemma (Equation (10)). The proof of this is straightforward and we
show it formally for the sake of completeness:

Claim 22 The formula
(
ψ ×∏i∈I\{j} θi

)
× ∆0 is a simple ancestor of the product

formula ψ0 ×
∏
k∈K Ψ′k , where ψ0 is any, possibly empty, formula and K ⊆ [m] such

that |K| = m− 1 and for every k ∈ K, i ∈ [n] and j ∈ [n], Ψ′k is a proper Σ̂ formulas
such that Ψ′k 6∈ deriv(xi + bj).

(The proof of the right hand side formula
(
ψ ×∏k∈I\{j} θi

)
×∆1 is similar.)

Proof of claim: We know that Πi∈Iθi ∈ F , and so by Proposition 18 Πi∈Iθi is a
simple ancestor of ψ0 ×

∏m
k=1 Ψ′k , where ψ0 is some possibly empty formula and for

every k ∈ [m], i ∈ [n] and j ∈ [n], Ψ′k 6∈ deriv(xi + bj), where Ψ′k contains at least one
plus gate. Since each Ψ′k contains at least one plus gate and every proof-line is a ΣΠΣ̂
formula then in fact each Ψ′k is a proper Σ̂ formula.

Therefore,
(
ψ ×∏k∈I\{j} θi

)
× ∆0 constitutes a simple ancestor of ψ0 ×

∏
k∈K Ψ′k ,

where ψ0 is some possibly empty formula and k ∈ K where K ⊆ [m] and |K| = m−1,
and for all i ∈ [n] and j ∈ [n] and k ∈ K, Ψ′k is a proper Σ̂ formulas such that
Ψ′k 6∈ deriv(xi + bj).

This concludes the proof of Lemma 6.

6.5 Proof of Proposition 4 (Existence of Hard Formulas)

The proof of Proposition 4 uses the standard interpolation formula (cf. Shpilka and Wigderson
(2001)).

Consider the polynomial
n∏
i=1

(xi + t)

as a univariate polynomial of degree n in the indeterminate t over the field of complex numbers
C (the xi’s are part of the coefficients). Then

n∏
i=1

(xi + t) = a0 + a1t+ ...+ ant
n, (14)
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where the coefficients a0, . . . , an may contain xi variables. By considering the left hand side of
(14), one observes that an = 1. We thus have



1 t t2 · · · tn−1 tn

. . .
...

...
. . .

1 t t2 · · · tn−1 tn




a0

a1
...

an−1

1

 =



n∏
i=1

(xi + t)

...

...

...
n∏
i=1

(xi + t)


(15)

Let b0, . . . , bn be n+ 1 distinct nonzero elements from C. By Equation (15) we have:



1 b0 b20 · · · bn−1
0 bn0

1 b1 b21 · · · bn−1
1 bn1

. . .
...

...
. . .

1 bn b2n · · · bn−1
n bnn


︸ ︷︷ ︸

B



a0

a1

a2
...

an−1

1


=



n∏
i=1

(xi + b0)
n∏
i=1

(xi + b1)

...

n∏
i=1

(xi + bn)


. (16)

Consider the matrix B as defined in Equation (16). B is a Vandermonde matrix, and since the
bi’s are all distinct elements from C, by basic linear algebra, B has an inverse denoted B−1, and
so:



a0

a1

a2
...

an−1

1


= B−1



n∏
i=1

(xi + b0)
n∏
i=1

(xi + b1)

...

n∏
i=1

(xi + bn)


(17)

Let (r0, . . . , rn) be the nth row in B−1. Then by Equation (17) we get:

1 = r0 ·
n∏
i=1

(xi + b0) + ...+ rn ·
n∏
i=1

(xi + bn) =

n∑
j=0

rj ·
n∏
i=1

(xi + bj) (18)

Notice that there must be at least one nonzero ri (0 ≤ i ≤ n).
Note that (18) is indeed a depth-3 formula with a plus gate at the root. Moving 1 from the

left hand side to the right hand side in Equation (18), completes the proof of Proposition 4.
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