Uniform, Integral and Feasible Proofs for the
Determinant Identities’

Iddo Tzameret' Stephen A. Cook?

November 13, 2020

Abstract

Aiming to provide weak as possible axiomatic assumptions in which one can develop basic
linear algebra, we give a uniform and integral version of the short propositional proofs for the
determinant identities demonstrated over GF'(2) in Hrubes-Tzameret [HT15]. Specifically,
we show that the multiplicativity of the determinant function and the Cayley-Hamilton the-
orem over the integers are provable in the bounded arithmetic theory VINC?; the latter is a
first-order theory corresponding to the complexity class NC? consisting of problems solvable
by uniform families of polynomial-size circuits and O(log2 n)-depth. This also establishes
the existence of uniform polynomial-size propositional proofs operating with NC2-circuits
of the basic determinant identities over the integers (previous propositional proofs hold only
over the two element field).

“A version of this paper is to appear in the Journal of the ACM (JACM).
"Department of Computer Science, Royal Holloway, University of London. Iddo.Tzameret@gmail.com
*Department of Computer Science, University of Toronto. sacook@cs.toronto.edu

Contents

1

Introduction

L1 Overview e
1.1.1 Note on the Choiceof Theory
1.1.2 Organization

2 Preliminaries
2.1 TheTheory VO
2.2 Definability in Bounded Arithmetic
2.3 The Complexity Class NC?2
24 TheTheory VNC?
2.5 Introducing New Definable Functionsin V0 and VNC?
2.6 Some Basic Formalizationsin VO

2.6.1 Example: Binary Tree Constructionin VO
2.7 Polynomials and Algebraic Circuits
2.8 Equational Proofs of Polynomial Identities
2.9 Circuits and Proofs with Division

Encoding Circuits and Proofs in the Theory

3.1 Encoding Circuits
3.1.1 Encoding of Algebraic Circuits in the Theory
3.1.2 Circuit with Division for the Determinant
3.1.3 Constructing the Circuit Det ;.1 in VO
3.2 Encoding and Witnessing Polynomial Identity Proofs

Existence of Proofs with Division for the Determinant Identities

41 Overview
42 ProvablyGoodNodes
4.3 Constructing the P, 1(Z)-Proofs in the Theory

Homogenization in V'

Preliminaries for Division Elimination

6.1 Overview L
6.2 Approximating Inverses by Power Series
6.3 Division Normalization

From a Rational Function to the Determinant as a Polynomial

7.1 OVerviewo
7.2 Elementary Row and Column Operations
7.3 Extracting Polynomial Coefficients: Taylor Expansion
7.3.1 Witnessing Syntactic-Degrees
7.3.2 Algorithmforcoeff Lo
7.4 From Determinant as Rational Function to a Polynomial in P, (Z)

7.5 Reducing the Syntactic-Degree of the Determinant Polynomial

Eliminating Division Gates

81 Overview e
8.2 Eliminating Division

(@)

10

10
11
12
13
14
15
17
18
19
20
21

22
22
22
23
24
26

28
28
29
31

38

9 Eliminating High Degrees From the Proofs 61

10 Balancing Algebraic Circuits and Proofs in the Theory 63
10.1 Overview o e 63
10.2 Background Concepts for the Balancing Algorithm 64
10.3 Preliminaries for the Balancing Algorithm 66

10.3.1 Taking Care of Nodes with High djb Values 68
10.4 Formal Description of the Balancing Algorithm 69
10.5 Balancing Proofsin VINC?2 72

11 Reflection Principle and Wrapping Up 77
11.1 Algebraic NC2-Circuit Value Problem 77
11.2 Proving the Reflection Principle for Pe(Z) oo oo 80
11.3 Wrapping Up o o o e e e 84

12 Corollaries 84

13 Conclusions and Open Problems 86

1 Introduction

The complexity of linear algebraic operations such as matrix inverse and the determinant is well
studied (cf. Cook [Co085]). It is well known that many linear algebraic operations like the deter-
minant can be computed quickly in parallel, and specifically are in NC?, which is the class of all
languages that can be decided by uniform families of O(log® n)-depth and polynomial-size cir-
cuits. This class captures fast parallel computation in the sense that a language in it can be decided
in time O(log® n) while using polynomially many processors working in parallel. In fact, within
the NC := UX,NC' hierarchy, which consists of all polynomial-size circuit families of poly-
logarithmic depth, NC? is the weakest class known to compute the determinant (formally, the
weakest circuit class computing integer determinants is the class DET that lies between NC* and
NC?; see below).

In this work we are interested not in the complexity of computing the determinant per se, but
in the complexity of the concepts we need to use in order to prove the basic properties of the deter-
minant, and more generally to prove and develop basic linear algebra.

The field that studies the computational complexity of concepts needed to prove different state-
ments is called bounded arithmetic, and constitutes the proof-theoretic approach to computational
complexity. Bounded arithmetic is in fact a general name for a family of weak formal theories
of arithmetic (that is, natural numbers). These theories are characterized by their axioms, usually
starting from a basic set of axioms providing the most basic properties of numbers each bounded
arithmetic theory possesses different additional axioms postulating the existence of different sets
of numbers, or different kinds of induction principles. Based on its specific axioms each the-
ory of bounded arithmetic proves the totality of functions from different complexity classes (e.g.,
polynomial-time functions, NC? functions, etc.). We can typically consider such theories as work-
ing over a logical language that contains the function symbols of that prescribed complexity class.
In this sense proofs in the theory use concepts from a specific complexity class, and we can say that
the theory captures ‘reasoning in this class’ (e.g., ‘polynomial-time reasoning).

While the first theory for polynomial-time reasoning was the equational theory PV considered
by Cook [Coo075], bounded arithmetic goes back to the work of Parikh [Par71] and Paris-Wilkie
[PW85]. In a seminal work Buss [Bus86] introduced other theories of bounded arithmetic and laid
much of the foundation for future work in the field.

Theories of bounded arithmetic correspond not only to complexity classes but also to propo-
sitional proofs by way of propositional translations (going back to [Coo75], and the later indepen-
dent work of [PW85]): if a statement of a given form is provable in a given bounded arithmetic
theory then the same statement is suitably translated to a family of propositional formulas with
short (polynomial-size) proofs in a corresponding propositional proof system (cf. [CN 10, Chapter
VII] for a systematic treatment of this).

One goal of bounded arithmetic is to serve as a framework in which the ‘bounded reverse math-
ematics’ program is developed (in an analogy to Friedman and Simpson reverse mathematics pro-
gram [Sim99]). In this program one seeks to find the weakest theory capable of proving a given the-
orem. Special theorems of interest are those of computer science and computational complexity
theory. The motivation here is to shed light on the role of complexity classes in proofs, in the hope
to delineate for example those concepts that are needed to progress on major problems in computa-
tional complexity from those that are not. For instance, it has been identified that apparently most
results in contemporary computational complexity can be proved using polynomial-time concepts
(e.g., in PV) (cf. [Pic15]), and it is important to understand whether stronger theories and concepts
are needed to prove certain results.

Some examples of results in bounded reverse mathematics and meta-mathematics of complex-
ity are Jordan Curve theorem in ACO—reasoning [NCO7] (where AC? is the class of languages
computable with families of constant depth Boolean circuits), Barrington’s Theorem in NC*-
reasoning [Ngu08] (cf. [CN 10, Sec. IX.5.5]), prime factorization theorem in polynomial-time rea-
soning [CN10, Exercise V1.4.4], sorting network in an extension of NC!-reasoning [Jei11], ex-
pander graph construction in NC*-reasoning [BKKK20], Toda’s Theorem in bounded arithmetic
[BKZ15] and many parts of complexity theory (including the PCP theorem) in polynomial-time
reasoning [Pic15].

Due to its basic nature, linear algebra, which naturally underlies many theorems in com-
puter science and computational complexity, has been identified by many works as important
in bounded arithmetic and proof complexity. In particular, it has been conjectured that since
the integer determinant is computable in NC? the multiplicativity of the determinant function
DET(A) - DET(B) = DET(AB), for two matrices A, B, or the related Cayley-Hamilton theorem
can be proved in NC2-reasoning. Cook and Nguyen presented this specific conjecture in their
monograph [CN 10, Table 2, page 8, and Open Problems section IX 7.1]. This conjecture was first
considered essentially in [SC04] (see also [CF12, Sol01]), and before that in the propositional setting
by Cook and Rackoff and specifically Bonet et al. [BBP95] (see also [BP98]). That the determinant
properties can be proved within a theory that captures NC?2-reasoning is aligned with the intuition
that basic properties of many constructions and functions of a given complexity class are provable
without the need to use concepts beyond that class.

The weakest theory known to date to prove the multiplicativity of the determinant is the the-
ory PV for polynomial-time reasoning; this was shown essentially by Soltys and Cook [SC04]
(cf. [CF12, Jer05]). Their work introduced three formal theories of increasing strength for reason-
ing about linear algebra. The weaker of them is the quantifier free theory LA that allows the basic
ring properties of matrices to be formulated and proved. The intermediate theory LAP adds the
matrix powering operator to LA. Berkowitz’s algorithm [Ber84] reduces the determinant function

to matrix powering (over any field), and the determinant function in LAP is thus defined using this
algorithm. Accordingly, LAP can be considered as a formal theory for reasoning with concepts
in the complexity class DET for which the determinant is complete [Co0o85]. LAP can prove that
the co-factor expansion of the determinant, the multiplicativity of the determinant and the Cayley-
Hamilton theorem are all provable from each other. However, it cannot apparently prove any of
these statements by themselves. For this purpose [SC04] extended the theory LAP to VLAP which
includes induction over formulas with bounded universal matrix quantifiers. VLAP can be con-
sidered a feasible theory tailored for reasoning about matrices that incorporate polynomial-time
computable concepts (close to Buss’s S [Bus86] or PV): [SC04] showed an interpretation of YLAP
(when the underlying field is finite or the rationals) into Buss’s S3 theory. In this relatively strong
theory they were able to prove the multiplicativity of the determinant and hence also the Cayley-
Hamilton theorem and the co-factor expansion of the determinant. Subsequent work of Thapen
and Soltys [TS05] showed that some linear algebra, namely Gaussian elimination, can be developed
in a weaker theory than VLAP: using the theory LA plus existential induction on matrices, denoted
JLA, they were able to prove the commutativity of matrix inverse in the theory. However, LA is
also quite strong, as it was shown [TS05] to interpret the second-order version of polynomial-time
reasoning V1.

The induction used in VLAP to prove the determinant identities is beyond the strength of NC?-
reasoning and it remained open until now whether the determinant identities, and the basic state-
ments of linear algebra like Cayley-Hamilton theorem and the co-factor expansion of the determi-
nant can be proved using concepts not going beyond the computational complexity class of linear
algebra itself, namely NC?-reasoning.

The main goal of this work is to provide a positive answer to this question, over the integers,
namely providing proofs of the multiplicativity of the determinant, the Cayley-Hamilton theorem
and the co-factor expansion of the determinant using NC2-reasoning. Our proof in the theory for
NC?-reasoning is completely different from [SC04] and depends instead on the work of Hrubes
and Tzameret [HT15] who constructed NC?2-Frege propositional proofs of the determinant identi-
ties over the two-element field.

We define the determinant in the theory based on an evaluation of an algebraic circuit with divi-
sion simulating in essence Gaussian elimination (using Schur complement). We then build a witness
for the determinant identities in the form of a line-by-line algebraic equational proof of the identi-
ties as constructed in [HT15]. This algebraic equational proof was originally constructed in [HT15]
by induction on the dimension n of the matrices, and used concepts computable by polynomial-size
algebraic circuits with division. We show that this equational proof can be constructed already in
NC?2-reasoning. Though the witness is constructible in the theory, before it can be used it needs
to be converted in the theory into something that NC?-reasoning can prove its correctness, namely
(a sequence of) O(log” n) depth Boolean circuits, the evaluation of which is a complete problem
for NC? and constitutes the basis of the theory for NC2-reasoning denoted VINC? in [CN10].
These constructions and conversions are highly non-trivial and depend on many results in struc-
tural algebraic circuit complexity.

Note that although [HT15] showed that in the propositional case the multiplicativity of the de-
terminant over G F'(2) can be proved with polynomial-size propositional proofs operating with
N C?2 Boolean circuits, this does not lend itself immediately to the uniform framework of bounded
arithmetic. That is, the fact that a statement admits polynomial-size propositional proofs in a cer-
tain proof-system does not imply that the same statement (suitably translated to first-order logic)
is provable in the bounded arithmetic theory corresponding to the proof-system. For example, a

short propositional proof may be shown to exist but without knowing whether it could be con-
structed uniformly, and let alone in a restricted computational model such as uniform-NC?2. For
instance, [HT'15] crucially used elimination of division gates from algebraic circuits which we do
not know how to do using uniform weak computational models like uniform-INC? (for division
elimination one needs to use a non-constructive existential statement by Strassen [Str73] about
field assignments that do not nullify a given polynomial; this statement is based on the Schwartz-
Zippel lemma [Sch80, Zip79]). Further a priori existential constructions in [HT'15] are the Valiant
el al. [VSBR83] balancing of algebraic circuits, homogenization and division normalization of al-
gebraic circuits [Str73]. We explain our construction in the theory and some of the differences
between our construction to [HT'15] in the overview section below.

1.1 Overview

Our goal is to prove the multiplicativity of the determinant over the integers with NC2-reasoning.
For NC2-reasoning we take the theory VINC? defined in [CN10] as a two-sorted formal theory
of natural numbers, in which the first sort is for natural numbers and the second sort is for finite
sets of natural numbers intended to encode bit-strings (see Section 2). It is usual to consider the
first sort of natural numbers as “first-order objects” and the second sort of sets of natural numbers
as “second-order objects”. Integers in the theory are represented as binary strings (hence, second-
order objects), and matrices are encoded as a two-dimensional array of integers (cf. [CF12]). We
will use the term numbers in the theory to refer to the first-sort of natural numbers and integers to
refer to their bit-strings representation as a second-sort.

We wish to define the determinant function DET(-) over the integers such that VINC? proves
that for every n and m and a pair of n X n matrices A, B with integer entries of bit-length m

DET(A) - DET(B) = DET(AB), (1)

and for every (lower or upper) triangular n X n matrix with integer entries of bit-length m with
Ci1, - - - , Cpp ON the diagonal
DET(C) = C11* " Cpn- (2)

Note that these two identities can be considered as the defining identities of the determinant
polynomial, in the sense that every polynomial for which these two identities hold is the deter-
minant polynomial. One way of seeing this is to observe that every square matrix is equal to a
product of triangular matrices (this in turn follows from the fact that every square matrix is equal
to the product PLU with P a permutation matrix and L, U lower and upper triangular matrices,
respectively; as well as the fact that every permutation matrix can be shown to be a product of
triangular matrices corresponding to elementary matrix transformations).

It is known that we can prove elementary facts about matrices, such as the definability of ma-
trix products AB, the statement expressing associativity and commutativity of matrix products
A(BC) = (AB)C and A + B = B + A, resp., and so forth, in the theory VINC!, the theory
for NC!-reasoning [Sol01, SC04, CF12]. However, these identities are computationally seemingly
simpler than the multiplicativity of the determinant for example, since additions and multiplica-
tion of matrices have lower known computational complexity (polynomial-size threshold circuits
of constant depth would suffice for these operations over the integers), while the determinant is
only known to be computable in NC2,

We note that in this work the circuit class NC? is assumed to be a uniform circuit class. For-
mally, we require uniformity in the sense that the extended connection language of the circuit fam-
ily is in FO (see [CN10, Chapter A.5] for the definition).

Let us now sketch briefly how we define the determinant function in the theory and then how
we prove its identities in the theory.

Defining the determinant function in the theory. Given ann X n integer matrix, the prov-
ably total (formally in our case E? -definable; see Section 2.2) string function (recall that we encode
integers as strings) in VINC? for the determinant is defined by evaluating an algebraic circuit sim-
ulating Gaussian elimination.

In particular, the determinant function first constructs an algebraic circuit (equivalently, a
straight-line program) computing the symbolic n X n determinant with division gates (“symbolic”
here means that the algebraic circuit computes the determinant as a formal polynomial over n?
distinct variables). This algebraic circuit captures the recursive formula as in Schur complement.
Then, eliminate the division gates in the algebraic circuit using, among other conversions, substitu-
tions of power series in the circuit (cf. Strassen [Str73]). Then, homogenize the circuit getting rid
of high degrees [Str73], balance the circuit to achieve the squared logarithmic depth O(log® n) (fol-
lowing [VSBR83]), and more precisely O(log n)-depth circuit with unbounded fan-in plus gates
and fan-in two product gates (following [Vin91]). We now evaluate the algebraic circuit over the
input integer matrix. This consists of several steps: convert the algebraic circuit into an O(log® n)-
depth Boolean circuit computing the same polynomial over the integers (coded as bit-strings). This
is done by simulating additions and products by carry-save adders and binary integer products.
Then layer the Boolean circuit so that each node connects only to the subsequent layer. And finally
evaluate the Boolean circuit using the fact that the NC? circuit evaluation problem is in NC?2.

Note that since we show that the determinant function as defined above is X2-definable in
VNC?, by [CN10] it means that this function, including all the constructions in it, are in (uniform)

NC2.

Proving the determinant equalities in the theory. Informally, the basic argument formalized
in the theory is that there exists a line-by-line algebraic proof over the integers (as in [HT15]; see
Section 2.8) of these identities. Thus, by soundness of these proofs which we show is provable in
VNC?, these identities must be true.

More precisely, an algebraic proof of a polynomial identity, in symbols a P.(Z)-proof (intro-
duced in [HT09]), is a sequence of equations between algebraic circuits over 7Z, each of which is
either an instance of the polynomial-ring axioms (such as commutativity, distributivity, etc.) or
was derived by addition or multiplication of previous equations.

We demonstrate a X2 -definable function in VINC? that given an input n in unary, outputs
IP.(Z)-proofs of the determinant identities as in (1) and (2) (for n X n matrices). In this P.(Z)-proof
every proof-line is an equation between depth O (log® n) algebraic circuits (without division gates)
of a polynomial syntactic-degree. To finish the argument, we transform this algebraic proof into a
corresponding line-by-line Boolean proof and then use evaluation of O (log2 n)-depth Boolean cir-
cuits to conclude the soundness of the proofs: using (number) induction on proof-length we argue
that for every assignment of integers, the determinant identities must hold. Since the determinant
function in the theory is defined by itself as the evaluation of the circuit computing the determinant,
the argument is concluded.

Overall, in our argument the main “non-syntactic” property we need the theory to express is
the evaluation of O(log® n)-depth Boolean circuits. The axioms of VINC? are tailored for this
purpose, as they include the existence of a string evaluating any given monotone Boolean circuit of
O(log® n)-depth and polynomial-size (see Definition 2.6), which we show is sufficient to evaluate
general polynomial-size algebraic circuits of polynomial degree over the integers (see definition of
Eval, in Sec. 11.1 Step (iii)). An additional ability of VNC?is to express and reason about matrix
powering and we use this when balancing circuits.

Technical Challenges

Showing that the long and nontrivial constructions from [HT15] can be carried out in VNC?
requires quite a lot of work. The main new technical obstacles that we face are uniformity and
parallelism as we explain in what follows.

Uniformity here means that we need the whole proof to be constructible in uniform-NC?2.

In order to simulate Gaussian elimination we start with algebraic proofs and circuits with di-
vision gates, denoted IP_ 1 (Z)-proofs. To get the division-free IP,(Z)-proofs which then can turn
into Boolean proofs, as mentioned above, we need to eliminate division gates from certain alge-
braic circuits and proofs. To eliminate division gates like u /v (for two circuits u, v), one needs to
find an assignment to the variables in which the polynomial computed by v is nonzero. In general
we do not know how to do this in the theory, since this requires an existential statement based
on Schwartz-Zippel lemma [Zip79, Sch80]. We solve this problem by showing that if we assign
the variables for matrix entries with 0-1 values based on the identity matrix we do not nullify the
division gates in our circuit and proofs.

Moreover, the initial P, (Z)-proofs are of high syntactic-degree and unbounded depth. But
in order to show that the resulting P.(Z)-proofs are correct (sound) we need to start from correct
P_1(Z)-proofs. For P! (Z)-proofs however the correctness is semantic: the division rule is a se-
mantic rule since it requires that the circuit in division does not compute the zero polynomial, a
property which we do not know how to compute in NC?2.

To solve this problem we introduce the technical concept of a provably good division gate: a
division gate u ! is provably good whenever there exists a witness that 1 is nonzero. For us, this
witness will be a certain kind of P, !(Z)-proof of u | p = 1, where p is an assignment to the
variables of matrix entries in u that corresponds to the identity matrix.

Accordingly, to express that a P, (Z)-proof is correct we express its syntactic-correctness to-
gether with explicit witnesses demonstrating that each division gate u~! is provably good. (In
particular, we strengthen the results of [HT15] that demonstrated the cases in which the]P’c_l (Z)-
proofs of the determinant identities are definable, into provable definability: we show that not
only the P 1(Z)-proofs do not contain zero division, but that the theory can prove the existence
of witnesses for this.)

Parallelism here means that the construction of the algebraic P.(Z)-proofs from [HT15] must be
done by itself in NC?2. To make the construction parallel we need to devise several AC’- and NC?2-
algorithms. We show that most parts of the construction can be carried out already in AC" (or its
functional version FAC"), namely we carry out the construction in a theory for AC°-reasoning
denoted VY [CN10]. Among the algorithms we devise are the following:

(1) Division normalization: converting algebraic circuits with division gates into circuits with
a single division gate at the output gate (in FAC); This follows Strassen’s algorithm [Str73]. (ii)
Converting algebraic circuits C' into a sum of their syntactic-homogeneous components, given

as input an upper bound on the syntactic-degree of C; i.., each summand C'®) is a syntactic-
homogeneous circuit computing the degree i homogeneous component of C' (in FAC); This also
follows Strassen’s algorithm [Str73], only that we show that for most purposes there is no need to
compute syntactic-degrees of nodes, rather upper bounds on syntactic-degrees suffice. Such upper
bounds are easy to compute in AC”. (iii) An FINC? algorithm for balancing an algebraic circuit of
size s and syntactic-degree d into a poly(s, d)-size algebraic circuit of depth O(log s-log d-+log? d),
given as input an upper bound on the syntactic-degree of C. This part combines the original bal-
ancing algorithm by Valiant et al. [VSBR83] with ideas from Miller et al. [MRK88], and further new
ideas entailed by the need to work in FINC?. Specifically, we use matrix powering to power adja-
cency matrices of graphs to find out, for example, whether a node has a directed path to another
node, as well as to compute coefficients of linear polynomials computed by circuits with syntactic-
degree 1.

By first balancing an input circuit and then evaluating it (both in FNC?) our results give rise to:
(iv) an FNC? evaluation procedure for algebraic circuits of any depth, given as input an upper bound
on their syntactic-degree and assuming the syntactic degree of the circuit is polynomial'. This
algorithm is different from the previously known algorithm by Miller et al. [MRK88] (their algo-
rithm does not require the syntactic-degree as input) and that of Allender et al. [A]MV98] (which
is implicit in that work, and can be extracted from the text [All18]; see also Vinay [Vin91]).

Proving parallel algorithms for structural results on algebraic circuits is not enough. We further
need to show that the correctness of these algorithms can be formalized efficiently with P.(Z)- and
PP 1(Z)-proofs and that these proofs are constructible in V? and VINC?, in order to conclude that

VNC? proves the existence of a (uniform-INC?) function that constructs the low depth P.(Z)-
proofs of the determinant identities.

Apart from uniformity and parallelism, working in bounded arithmetic allows us to work more
easily over the integers, where previously short NC2-Frege proofs of the determinant identities
were known only over G F'(2). Note also that unlike [HT'15] we do not need to simulate small fields
in big ones since we work over Z.

1.1.1 Note on the Choice of Theory

It is interesting to consider whether the theory in which the determinant identities is proved can be
pushed even further down to a theory that corresponds to a complexity class that lies somewhere
between NC* and NC2,

Cook and Fontes [CF12] developed a bounded arithmetic theory V#L, corresponding to DET,
where DET is the class of functions that can be computed by uniform families of polynomial-size
constant-depth Boolean circuits with oracle access to the determinant over Z (where integer entries
of matrices are presented in binary). In other words, DET is the AC"-closure of integer determi-
nants. Complete problems for the class DET include computing matrix powers and the determi-
nant itself. We have the following class inclusions (we ignore here the distinction between function
and decision classes): NC! C DET C NC?, to which the theories VNC! C V#L C VNC?
correspond.

Our argument cannot be carried out in V' #L since the evaluation of algebraic circuits, even
those with squared logarithmic depth (or those in algebraic- AC") over the integers, which is cru-
cial to our argument, is apparently not definable in V#L. Note that excluding the evaluation of

'Formally, we need to assume that the syntactic-degree of every node in the circuit when constant nodes are re-
placed by corresponding variables is polynomially bounded.

low-depth algebraic circuits all our arguments seem to carry over to V' # L. This also includes for
example our algorithm for balancing algebraic circuits.”

Note also that the two classes #SAC1 C TC! that are above DET but below NC?2 (namely,
DET C #SAC1 C TC! C NC?), can compute the required depth reduction and the evaluation
of algebraic circuits. We believe that our construction can be carried out more or less the same in theories
corresponding to these classes. However, for these two classes we are not aware of established bounded
arithmetic theories, hence we shall work in VINC?2,

1.1.2 Organization

The preliminaries for this work are somewhat long and are given in Section 2. They consist of
basic definitions from bounded arithmetic, the uniform complexity class NC?, the corresponding
theory VINC? [CN10], basic definitions of algebraic circuits, as well as equational proof systems
operating with algebraic circuits [HT09, HT15]. Section 3 explains in some detail the encoding
scheme for algebraic circuits and proofs in the theory. Sections 4 to 10 are dedicated to the con-
struction of the P.(Z)- and P_'(Z)-proofs in the theory. Section 11 establishes the reflection
principle for P, (Z)-proofs, and Section 12 demonstrates VINC? proofs of further basic statement
in linear algebra. We finish with conclusions and open problems in Section 13.

2 Preliminaries

In this section we present some of the necessary background from bounded arithmetic as well as
algebraic circuit complexity. Specifically, we describe the two-sorted bounded arithmetic theory
VNC? as developed by Cook and Nguyen [CN10] and show how to define the evaluation of alge-
braic circuits over the integers in the theory, and then define algebraic circuits computing formal
polynomials and proof systems for polynomial identities [HT09, HT15] (cf. [PT16] for a survey).
We start with an exposition of bounded arithmetic.

Bounded arithmetic is a general name for weak formal systems of arithmetic, namely, fragments
of Peano Arithmetic (though formally the language of bounded arithmetic theories is sometimes
different from that of Peano Arithmetic, the theories can be interpreted in Peano Arithmetic nev-
ertheless). The bounded arithmetic theories we use are first-order two-sorted theories, having a
first-sort for natural numbers and a second-sort for finite sets of numbers, representing bit-strings
via their characteristic functions (for the original single-sort treatment of theories of bounded arith-
metic see [Bus86, HP93, Kra95]). The theory Vo corresponds to the complexity class uniform-ACY,
and VNC? corresponds to uniform-INC2. The complexity classes AC°, NC?, and their corre-
sponding function classes FAC? and FNC? are defined using a two-sorted universe (specifically,
the first-ordered sort [numbers] are given to the machines in unary representation and the second-
sort as binary strings). See Section 2.3 below for the definitions of NC? and FINC?, and Definition
2.11 for AC? and FAC®.

Definition 2.1 (Language of two-sorted arithmetic £%). The language of two-sorted arithmetic, de-
noted L, consists of the following relation, function and constant symbols:
{+7 Y S? 07 17 | |7 =1, =2 e}

21t is possible also to balance algebraic circuits to squared logarithmic depth in DET using some variants of the
algorithm in [AJMV98], as we were informed by Eric Allender [All18].

10

We describe the intended meaning of the symbols by considering the standard model N5 of two-
sorted Peano Arithmetic. It consists of a first-sort universe U; = N and a second-sort universe Us
of all finite subsets of N, which are thought of as strings. The constants 0 and 1 are interpreted in Ny
as the appropriate natural numbers zero and one, respectively. The functions + and - are the usual
addition and multiplication on the universe of natural numbers, respectively. The relation < is the
appropriate “less or equal than” relation on the first-sort universe. The function | - | maps a finite
set of numbers to its largest element plus one. The relation =; is interpreted as equality between
numbers, =, is interpreted as equality between finite sets of numbers. The relationn € N holds for
anumber n and a finite set of numbers /N if and only if n is an element of /N (and this is abbreviated
as N(n)).

We denote the first-sort (number) variables by lower-case letters x, y, 2, . . ., and the second-
sort (string) variables by capital letters X, Y, Z,

We build terms and formulas in the usual way. For formulas, we use two sorts of quantifiers:
number quantifiers and string quantifiers. A number quantifier is said to be bounded if it is of the
form3x(z <t A...)orVa(z <t — ...)for some number term t that does not contain x. We
abbreviate Jz(x <t A...)andVa(z <t — ...)by Jz < tand Vz < ¢, respectively. A string
quantifier is said to be bounded if it is of the form IX (|X| <t A...)or VX (| X| <t — ...) for
some number term t that does not contain X. We abbreviate 3X (| X| < ¢t A ...)and VX (| X| <
t —...)bydX < tand VX < {, respectively.

A formula is in the class of formulas X5 or IT7 if it uses no string quantifiers and all number
quantifiers are bounded. A formula is in Zil or Hil ifitisof the form 4X, <t¢;...3X,, <t,¢¥
or VX, <t...VX,, < t,1), whereyp € 112 and o) € X5, respectively, and ¢; does not contain
X, foralli = 1,...,m. We write T'(t) to abbreviate ¢ € T, for a number term ¢ and a string term
T. For a formula 1) we write 1)(a/z) to denote the substitution instance of 1) in which every free
occurrence of the variable x is replaces by the term a.

As mentioned above, a finite set of natural numbers N represents a finite string Sy =
S Sjl\],\”_l such that S§, = 1 if and only if i € N. We will abuse notation and identify N
with Sy.

2.1 The Theory V"

The base theory V°, which corresponds to the computational class AC", consists of the following
axioms:

Basicl.z +1#0 Basic2.x+1=y+1—>x=y
Basic3.x+0 ==z Basic4. z+ (y+1)=(z+y)+1
Basic5.2-0=0 Basic6.z-(y+1)=(z-y)+=x
Basic7. (z <yAy<z)—z=y Basic8. .z <z +y
Basic9.0 < z Basic10.z <yVy <=z

Basicll.z <y arx<y+1
Basic12. 2 #0 — Jy < z(y + 1 = 1)
L1. X(y) =y < |X] L2.y+1=|X|— X(y)

11

SE. (| X|=|Y|AVi < |X|(X() < Y() > X=Y
BP-COMP.3X < Wz <y (2 € X ¢ ¢(2)), forallp € BF

where X does not occur free in ¢ .

Here, the axioms Basic 1 through Basic 12 are the usual axioms used to define Peano Arithmetic
without induction (PA™), which settle the basic properties of addition, multiplication, ordering,
and of the constants 0 and 1. The Axiom L1 says that the length of a string coding a finite set is an
upper bound to the size of its elements. L2 says that | X| gives the largest element of X plus 1. SE
is the axiom for strings which states that two strings are equal if they code the same sets. Finally,
3 P-COMP is the comprehension axiom scheme for 7 -formulas (i.e., it is an axiom for each such
formula) and implies the existence of all sets which contain exactly the elements that fulfill any
given X7 property.

Proposition 2.2 (Corollary V.1.8. [CN10]). The theory V° proves the number induction axiom scheme

for 28 -formulas ®:
(®(0) AVx (D(z) = P(z+1))) = V2 D(2).

In the above induction axiom, x is a number variable and ® can have additional free variables
of both sorts.

2.2 Definability in Bounded Arithmetic

We write 3!y to denote Jz(¢(z) A Vy(p(y/x) = x = y)), where y is a variable not appearing
in .
Definition 2.3 (Two-sorted definability). Let T be a theory over the language £ O L% and let ® be

a set of formulas in the language L. A number function [is -definable in a theory T iff there is a
formula (%, y, X) in O such that T proves

‘V’W)_('Ellygp(f, v,)Z)
and it holds that’ ~ .
y=f(Z,X) < o@,y,X). Q)

A string function F is O-definable in a theory T iff there is a formula (%, X, Y) in ® such that T
proves

VAVX3Y o(7, X,Y)
and it holds that . .

Finally, a relation R(Z, X) is ®-definable in a theory T iff there is a formula (%, X, Y) in ® such
that it holds that . .

R(Z, X) + o(Z, X). (5)
The formulas (3), (4), and (5) are the defining axioms for f, F', and R, respectively.

Definition 2.4 (Conservative extension of a theory). Let T be a theory in the language L. We say that
a theory T' O T in the language L' O L is conservative over T if every L formula provable in T is
also provable in T

$Meaning, it holds semantically in the standard two-sorted model Ny.

12

We can expand the language £ and a theory 7 over the language £ by adding symbols for
arbitrary functions f (or relations R) to L and their defining axioms Ay (or Ag) to the theory 7. If
the appropriate functions are definable in 7 (according to Definition 2.3) then the theory 7 + Ay
(+AR) is conservative over 7. This enables us to add new function and relation symbols to the
language while proving statement inside a theory; as long as these function and relation symbols
are definable in the theory, every statement in the original language proved in the extended theory
(with the additional defining-axioms for the functions and relations) is provable in the original
theory over the original language.

However, extending the language and the theory in such a way does not guarantee that one
can use the new function symbols in the comprehension (and induction) axiom schemes. In other
words, using the comprehension (and induction) axioms over the expanded language may lead to
a theory that is not a conservative extension. Therefore, definability will not be enough for our
purposes. We will show below precisely how to make sure that a function is both definable in the
theories we work with and also can be used in the corresponding comprehension and induction
axiom schemes (while preserving conservativity).

When extending the language with new function symbols we can assume that in bounded for-
mulas the bounding terms possibly use function symbols from the expanded language (because any
definable function in a bounded theory can be bounded by a term in the original language £%
(cf. [CN10])).

We shall seek to define the determinant function in a theory via a X Z-formula. Following
Theorem 2.7 below the 3£ -definable functions of V? (equivalently, the 3Z -definable functions of
V) are precisely the FAC" functions, and that the X -definable functions of VINC? are precisely
the FNC? functions.

2.3 The Complexity Class NC?2

The uniform complexity class NC? is defined using an alternating time-space (nondeterministic)
Turing machine.

Alternating Turing machines. An alternating Turing machine is a nondeterministic Turing ma-
chine in which every state, except the halting states, is either an existential state or a universal state.
A computation in such a machine can be viewed as an (unbounded fan-in) tree of configurations as
follows. A configuration is said to be existential (resp. universal) if its state is existential (resp. univer-
sal). In a computation tree of an alternating Turing machine every existential configuration has one or
more children, such that each child is a configuration reachable in one step from the configuration
in the parent node; and every universal configuration has as its set of children all configurations
reachable in one step from the configuration on the parent in node. We say that a computation of
an alternating Turing machine is accepting when all the leaves of the computation tree are accept-
ing configurations. We say that an alternating Turing machine accepts an input x if there exists an
accepting computation tree whose root is the initial configuration with the input x.

A computation tree is said to have k alternations if the number of alternations between existen-
tial and universal states in every branch of the tree is at most k. An alternating Turing machine is
said to work in f(n) alternations if for every input x of length n the number of alternations in every
computation tree of x is at most f(n). A computation tree is said to have space s if the working
space used in every configuration of the tree is at most s. An alternating Turing machine is said
to work in space g(n) if for every input x of length n the space of every computation tree of x is at

13

most g(n). A computation tree is said to have time t if every path from the root to a leaf in the tree
is at most ¢. An alternating Turing machine is said to work in time g(n) if for every input x of length
n the time of every computation tree of z is at most g(n).

Definition 2.5 (Uniform NC?). The uniform complexity class NC? is the class of languages that can
be decided by alternating Turing machines with O(log n) space and O(log® n) time.

We define the function class FINC? as the function class containing all number functions
f(Z, X) and string functions F(Z, X), where Z and X are (unary) number and string variables,
respectively, such that the relation of the function is defined (resp. bit-defined; see Definition 2.10)
in NC? (arelation R is defined in NC? if the language containing the set of tuples in R is decidable
in NC?).

NC? Boolean circuit families. Let {C),}°°; be a family of Boolean circuits with fan-in two
V, A gates and fan-in one — gates. We say that this family is an NC? circuit family if every circuit
C,, in the family has depth O(log® n) and size n®™. A circuit taken from a given Boolean NC?
circuit family is said to be an NC?-circuit. It is known that the NC? circuit value problem is
complete under AC°-reductions for the class NC? (Definition 2.5). We say that {C,,}°%, is a
uniform NC2-circuit family if its extended connection language is in FO (we refer the reader to
[CN10, page 455] for the definitions). This definition coincides with Definition 2.5.
For the definition of uniform NC! (and AC*) we also refer the reader to [CN10)].

2.4 The Theory VNC?

Here we define the theory VINC? as developed in [CN10]. It is an extension of V° over the lan-
guage L% where we add the axiom stating the existence of a sequence of values that represent
the evaluation of monotone Boolean circuits of O(log2 (n)) depth. It is known (cf. [CN10]) that
the Monotone Boolean Circuit Value problem for circuits of O(log?(n))-depth is complete under
AC’-reductions for NC2.

The NC? circuit value problem is the problem that determines the value computed by a
Boolean NC2-circuit, given a 0-1 assignment to its input variables. An input circuit to the prob-
lem is encoded as a layered circuit with d + 1 layers 0, . . ., d, namely, a circuit in which every node
in layer j is connected only to zero or more nodes in layer j + 1. The actual evaluation of such
an (NC?) circuit within the class NC? is done in stages, where we start from layer 0 and “com-
pute” (using alternations and nondeterminism) the values of every node in every layer. Formally,
we define this evaluation process as follows (see also [CN 10, Chap. IX.5.6]).

For a natural number d we write as usual [d] to denote {1,...,d}. The layered monotone
Boolean circuit C' with d + 1 layers is encoded as follows: [(for “inputs”) is a string variable, where
|I| < n, that defines the (Boolean) input gates to the circuit. Further, G (for “gates”) is a string
variable such that G(z, y) holds for = € [d] iff the yth gate in layer x is A, and is V otherwise. Also
the wires of C are encoded by a three-dimensional array, namely a string variable £ (for “edges”)
such that E'(z, x, y) holds iff the output of gate = on layer z is connected to the input of gate y on
layer z+ 1. To compute the value of each of the gates in the circuit C' on input /, simply compute the
values of the gates in each layer, starting from the input layer, in d 4 1 stages, using the values of the
previous layer. The formula ;v (n, d, E, G, 1,Y") below formalizes this evaluation procedure
(where LMCV stands for “layered monotone circuit value”). The two-dimensional array Y stores

14

the result of computation, namely the evaluation string: for 0 < z < d, row Yl contains the gates
on layer z that output 1.

Searov(n,d, B,G,1,Y) = Yz < n¥z < d ((Y(o, v) o I@) A (Y(z+1,2) o

((G(z+1,2)A\Vu < n, E(z,u,z) = Y (2,u))V(=G(z + 1,2) A Ju < n, E(z,u,z) AN Y (z,u)))))
(6)

The following formula states that the circuit with underlying graph (n, d, F') has fan-in two:

Fanin2(n,d,E) =Vz < dVz < nJu; < nJuy < nVv < n(E(z,v,2) = (v =uVv = up)).
(7)

Finally, we arrive at the definition of VNC?:

Definition 2.6 (VNC?). The theory VNC? has vocabulary £ and is axiomatized by the axioms of
VO and the axiom:

Fanin2(n, |n|*, E) — 3Y < {|n|* + 1,n)0rmecv(n, |n)*, E,G,1,Y).

In this definition (-) is the pairing function, and {|n|? + 1, n) is an upper bound on the length
needed for the two-dimensional array Y. Also, note that given a natural number n the binary
representation length of n, denoted |n/, that is, [log,(n + 1)], is an AC? function of n (see [CN 10,
Exercise I11.3.30]).

The following is the main theorem for V? and VNC?:

Theorem 2.7. ((CN10, Corollaries V.5.2 and IX.5.31]) A function is E'IB -definable in VY iff it is
3.5-definable in V? iff it is in FAC. A function is X -definable in VINC? iff it is in FNC?.

Note that the fact that a function is defined in the theory does not mean that we can prove all
of its properties, or even anything interesting about it. To actually prove statements about a >-
definable function in VINC?, for example, we need to carefully consider the 2’13 -formula defining
it, formulate the property that we want to prove in the theory as a formula in the language £%, and
verify that indeed the formula is provable in the theory.

2.5 Introducing New Definable Functions in V' and VINC?

Here we give more details on the theories V? and VINC?. Specifically, we explain how to conclude
that a function is definable in the theory, and how to extend the language V° and VNC? with
new function symbols (in a conservative way; see below). We will describe a process (see [CN 10,
Section V.4]) by which we can extend the language £% of V° with new function symbols, obtaining
a conservative extension of V that can also prove the comprehension and induction axiom schemes in
the extended language, and similarly for VINC?,

First note that every relation or function symbol has an intended or standard interpretation
over the standard model N (for instance, the standard interpretation of the binary function “+”
is that of the addition of two natural numbers). If not explicitly defined otherwise, we will always
assume that a defining axiom of a symbol in the language defines a symbol in a way that its inter-
pretation in Ny is the standard one. Note also that we shall use the same symbol F'(Z, X) to denote
both the function and the function symbol in the (extended) language in the theory.

15

Definition 2.8 (Relation representable in a language). Let ® be a set of formulas in a language L that
extends L%. We say a relation R(ZT, X) (over the standard model) is representable by a formula from ®
iff there is a formula o(Z, X) in ® such that in the standard two-sorted model Ny (and when all relation
and function symbols in L get their intended interpretation), it holds that:

R(Z, X) < ¢(7, X). (8)

We say that a number function f(Z, X) is polynomially-bounded if f (Z,)Z') < poly(Z, |)?). We
say that a string function F\(, X) is polynomially-bounded if | F (%, X)| < poly(Z, | X|).

Definition 2.9 (Bit-graph). Let F'(Z, X) be a polynomially-bounded string function. We define the
bit-graph of I to be the relation R(i,x, X), where i is a number variable, such that

F(Z,X)(i) & ViR(i, Z, X) 9)
holds in the standard two-sorted model.

Definition 2.10 (2(])3 -definability from a language; Definition V.4.12. in [CN10]). We say that a
number function f(Z, X) is 3P -definable from a language £ O L2, if f is polynomially-bounded
and its graph” is represented by a X5 (L)-formula ¢ (where 3F (L) is the class of X5 -formulas in the
language L). We call the formula the defining axiom of f. We say that a string function F is X5 -
definable from a language £ D L, if F is polynomially-bounded and its bit-graph (that is, the relation
R(i, 7, X) as in (9)) is representable by a XE (L)-formula ¢, in which case we say that o is the bit-
defining formula of F'. We call the formula ¢ the defining axiom of F’ or, equivalently, the bit-defining
axiom of F.

Note: We used the term defining axiom of a function f in both the case where f is defined from a
language (Definition 2.10) and in case f is definable in the theory (Definition 2.3). In general it is
important not to confuse these two notions. Nevertheless, we will show in the sequel that for our
purposes these two notions coincide: when we define a function from a language the function will
be definable also in the relevant theory, and so the defining axiom of f from the language will be the
defining axiom of f in the theory (when the theory is possibly conservatively extended to include
new function symbols).

The following is a definition of AC" functions. This definition coincides with the definition
of FAC" as FO-uniform multi-output Boolean circuit families of polynomial-size and constant
depth [CN10].

Definition 2.11 (FAC"). A string (number) function is in FAC" if it is polynomially-bounded and its
bit-graph (graph, respectively) is definable by a X5 -formula in the language L.

Definition 2.12 (AC"-reduction). A string function F (resp. a number function f)is AC°-reducible
to £ D L iff there is a possibly empty sequence of (either string or number) functions Fy, . .., F}, such
that F; is XF-definable from L U {Fy,...,F, 1}, foranyi = 1,....k, and F (resp. f) is 35-
definable from L U {Fy, ..., Fi}.

4Le, the relation R(Z, X,), such that f(Z, X) = yiff R(Z, X,) holds in the standard model.

16

We are now ready to describe the standard process enabling one to extend a theory 7 2 V?
over the language £i (and specifically, the theories V° and VNC?) with new function symbols,
obtaining a conservative extension of 7 such that the new function symbols can be used in com-
prehension and induction axiom schemes (see Section V.4. in [CN 10] for the proofs). Recall once
more that this will enable us to go from a semantic definition in a language to the proof-theoretic
notion of definability in the theory:

Fact 2.13.

(i) If the number function f is S5 -definable from L%, then T over the language L% U { [}, aug-
mented with the defining axiom of f, is a conservative extension of T and we can also prove the
comprehension and induction axioms for X5 (f)-formulas.

(ii) If the string function I is 3P -definable from L%, then T over the language L% U{ F'}, augmented
with the bit-defining axiom of F, is a conservative extension of T and we can also prove the
comprehension and induction axioms for X5 (F')-formulas.

(iii) We can now iterate the above process of extending the language L (f) (or equivalently, L% (F))
to conservatively add more functions fo, f3, ... to the language, which can also be used in compre-
hension and induction axioms.

By the aforementioned and by Definition 2.12, we can extend the language of a theory with
a new function symbol f, whenever f is AC -reducible to £%. This results in an extended theory
(in an extended language) which is conservative, and can prove the comprehension and induction
axioms for formulas in the extended language. When defining a new function in V? or VNC? we
may simply say that it is 3 -definable or bit-definable in the theory and give its ¥ -defining or bit-
defining axiom (this axiom can use also previously 37 -defined (or bit defined) function symbols).

Extending the language of V° and VNC? with new relation symbols is simple: every relation
R(7, X) which is representable by a A} (L) formula ((CN10, Section V.4.1]), where L is an exten-
sion of the language with new function symbols obtained as shown above, can be added itself to
the language. This results in a conservative extension of V? (VINC?, resp.) that also proves the
3 P-induction and comprehension axioms in the extended language.

2.6 Some Basic Formalizations in V°

In this section we fix some basic notation for primitive objects coded in V. Most formalizations
here are routine and can be found in [CN 10] (cf. [MT14]). Recall that when speaking about numbers
in the theory we mean natural numbers (that is, first-sort objects), and speaking about integers or
strings we refer to the second-sort objects.

Natural number sequences of constant length. For two numbers x, y let (z,y) := (z+y)(z +y +
1)+ 2y be the pairing function. We also X5 -define inductively (v1, . .., vy) := ((v1, ..., vh_1), V),
for any constant k& > 2. Then V? proves the injectivity of the pairing function and enables us to
handle such pairs in a standard way.

Sequences of numbers of variable length. If we wish to talk about sequences of natural numbers
where the length of a sequence is non-constant we have to use string variables instead of number vari-
ables. Using the number-tupling function we can encode sequences as sets of numbers: a sequence
is encoded as a string Z such that, the xth number in the sequence is y if the number (z,y) is

17

in Z. Formally, we have the following 3.Z-defining formula for the number function seq(z, Z)
returning the xth element in the sequence Z:

y=sea(s, 2) ¢ (y < |Z| A Z({o.y) A V2 < y=2Z(a.2) o
V (V2 < |Z]~Z2({z,2)) Ay = | Z]).

Formula (10) states that the xth element in the sequence coded by Z is y iff (x, y) is in Z and no

other number smaller than y also “occupies the xth position in the sequence”, and that if no number

occupies position x then the function returns the length of the string variable Z.

Array of strings. We wish to encode a sequence of strings as an array, namely, a two-dimensional
array. We use the function Row(z, Z) to denote the zth string in Z as follows (we follow the
treatment in [CN10, Definition V.4.26, page 114]). The string function Row(x, Z), abbreviated
717 is 338 _definable in V° (and hence can be used in induction axiom) using the following bit-
definition:

Row(z, Z)(i) < (i < |Z| A Z({z,5))).

Matrices. Ann X n integer matrix is coded as an array of n strings, where each of the n strings
is itself an array that represents a row in the matrix, that is an array of n integer numbers, where
each integer is coded with m bit-vectors, for some chosen natural number m.

2.6.1 Example: Binary Tree Construction in V°

Here we provide a simple example of a 37 -definable string function in V° that encodes a simple
syntactic object. Specifically, we show that the string function F'(n) that receives a number n,
which we assume is a power of 2 for simplicity, and outputs a string that describes the edges of
a binary tree with n leaves, is X7 -definable in V. This can be used to construct a formula that
computes for example the inner product of two vectors as in Section 3.1.3.

The tree is encoded in the scheme described in Section 3.1.1, with V' as a string (finite set of
numbers) consisting of the nodes, with each node u € V is a number and a string & encoding
edges, with each number in E interpreted as a pair of numbers (u, v) such that u,v € V. Every
node u € Visapairu = (d,w)withd € {1,...,log(n) + 1} being the layer of the tree and
w is the index of the node in the layer d that runs from 1 to n/d. For two nodes u,v € E with
u = (dy,w1),v = (da,ws), u has a directed edge to v iff dy = d; + 1 and if w; is even then
wy = w1 /2 and otherwise wy = “”TH This is shown in the figure below.

d=4
N

AN

AN

Forrlnalzly, 10 :hovff tlfat t7he 8string function F'(n) is XP-definable in V° (equivalently, X5 -

definable in VY), according to Section 2.5 we need to demonstrate a X7 -formula that bit-defines
the tree encoding, as follows. Let

O(d, wy,ws) :=d-w; <n A Jx < n(w; =2z — 2wy = wy)A
Jr <n(w; =2r+1—= 2wy, =w; +1). (11)

18

The following is the 35 -formula that bit-defines the string function that returns the string F en-
coding the edges of the tree, given the number of leaves n:

e(n,i) = 3d < nJw; <nJwy < n (i = ((d,wy), (d+ 1,wy)) A P(d, wy,ws)) .

Bit-defining the nodes V' function is similar.

2.7 Polynomials and Algebraic Circuits

For a very good treatise on algebraic circuits and their complexity see Shpilka and Yehudayoff
[SY10]. Let G be a ring. Denote by G[X]| the ring of (commutative) polynomials with coefficients
from G and variables X := {z1, x9, ... }. Apolynomial is a formal linear combination of monomi-
als, where a monomial is a product of variables. Two polynomials are identical if all their monomials
have the same coefficients. The degree of a polynomial is the maximal total degree of a monomial
in it.

Algebraic circuits and formulas over the ring G compute polynomials in G[X] via addition and
multiplication gates, starting from the input variables and constants from the ring. More precisely,
an algebraic circuit C'is a finite directed acyclic graph (DAG) with input nodes (i.e., nodes of in-degree
zero) and a single output node (i.e., a node of out-degree zero). Input nodes are labeled with either a
variable or aring element in G. All the other nodes have fan-in (that is, in-degree) two and are labeled
by either an addition gate + or a product gate X. Every node in an algebraic circuit C' computes a
polynomial as follows: an input node computes the variable or scalar that labels it. A + (or x) gate
is said to compute the addition (product, resp.) of the (commutative) polynomials computed by
its incoming nodes. The polynomial computed by a node v in an algebraic circuit C' is denoted u.
Given a circuit C, we denote by C' the polynomial computed by C), that is, the polynomial computed
by the output node of C. An algebraic circuit is called a formula, if its underlying directed acyclic
graph is a tree (that is, every node has at most one outgoing edge). The size of a circuit C' is the
number of nodes in it, denoted |C|, and the depth of a circuit is the length of the longest directed
path in it. For an algebraic circuit C' we write C'(a/x) to denote the substitution instance of C' in
which every occurrence of the node z is replaced by the sub-circuit a; in case C'(x) is written with
its displayed variable(s) = we can write C'(x)(a/z) for this substitution instance. We say that a
polynomial is homogeneous whenever every monomial in it has the same (total) degree.

Definition 2.14 (Syntactic-degree d(+)). Let C' be a circuit (without division) and v a node in C. The
syntactic-degree d(v) of v is defined as follows:

1. If v is a field element or a variable, then d(v) := 0 and d(v) := 1, respectively;
2 Ifv=u+wthend(v) := max{d(u),d(w)};
3. Ifv=u-wthend(v) := d(u) + d(w).

(For syntactic-degree of circuits with division see Definition 6.2.)

An algebraic circuit is said to be syntactic-homogeneous if for every plus gate u + v, d(u) = d(v).
Given a circuit F'and anode u in F', F, denotes the subcircuit of F' with output node u. If F', G

are two circuits then
FOGE and FRG

19

denote any circuit I whose output node is 4 v or u X v, respectively, where H,, is identical to the
circuit F' and H, is identical to the circuit G. In other words, F'G denotes a circuit with output
node + with the two incoming subcircuits F'and GG, where I’ and G may not be disjoint anymore (so
F'&(G is aset of possible different circuits, from which we assume one is picked; the two subcircuits
F, G in F&G are identical to F, G, respectively).

To clarify, F®G and FRG are different from, e.g., the similarity relation in [Jer04, Definition
2.1] between two circuits () ~ Q' in which)’ can be the “minimal DAG” representation of ().
The circuit F'in F' @ G is identical to F' while in a circuit that is similar to F' + G we can have
the subcircuit F' replaced by a minimal DAG representation of F' (and the same with G, and with
®). Hence, in F' & G disjoint copies of nodes computing the same circuit that occur in both F' and
G can be contracted into a single node in /' & G. While disjoint copies of nodes computing the
same circuit in F' alone cannot be contracted into a single node (and the same with GG, and with ®).
Therefore, F' cannot be contracted to a minimal DAG and neither can G.

Furthermore,

F+Gand F x G

denote the unique circuit of the form F'G and FFQG, respectively, where F', (7 are disjoint copies
of F'and G. In particular, if /" and G are formulas then so are ' + G and F' X (. For example,
(1 + x5)®x5 can be any of the following two circuits:

1/+<>x5 /<Z)

2.8 Equational Proofs of Polynomial Identities

In this section we give the necessary background on the proof system [P.. This proof-system was
first introduced in [HT09] (under the name “arithmetic proofs” and for algebraic formulas instead
of algebraic circuits), and was subsequently studied in [HT'15].

Polynomial identities proofs as originally introduced in [HT09], denoted PP, (and P.(G) when
we wish to be explicit about the underlying ring), are sound and complete proof systems for the
set of polynomial identities of G, written as equations between algebraic circuits. A P.(G)-proof
starts from axioms like associativity, commutativity of addition and product, distributivity of prod-
uct over addition, unit element axioms, etc., and derives new equations between algebraic circuits
F' = G using rules for adding and multiplying two previous identities. The axioms of P, express
reflexivity of equality, commutativity and associativity of addition and product, distributivity, zero
element, unit element, and true identities in the field.

Algebraic circuits in P.(Z)-proofs are treated as purely syntactic objects (similar to the way a
propositional formulas in propositional proofs are syntactic objects). Thus, simple computations
such as multiplying out brackets, are done explicitly, step by step.

Definition 2.15 (P.(G), [HT09, HT15]). The system P.(G) proves equations of the form F' = G over
the ring G, where F', G are algebraic circuits over G. The inference rules of P are (with F', G, H ranging
over algebraic circuits, and where an equation below a line can be derived from the one above the line):

F=@G F=G G=H
R1 C_F R2 T
F1:G1 F2:G2 FlzGl F2:G2
R3 R4 .
F1+F2:G1+G2 Fl'FQZGl'GQ

20

The axioms are equations of the following form, with I, G, H circuits:

Al F=F

A2 F+G=G+F

A3 F+(G+H)=(F+G)+H
A4 F-G=G-F

A5 F-(G-H)=(F-G)-H
A6 F-(G+H)=F-G+F-H

A7 F+0=F
A8 F-0=0
A9 F-1=F

A0 a=b+c, o=V - (fa,b,c,d b, € G aresuch that the equations hold in G)
Cl FoG=F+G
C2 FRG=F- -G

A P.(G)-proof is a sequence of equations, each called a proof-line, Fy = G, I, = G5, ..., F, =
G, with F;, G circuits, such that every equation is either an axiom or was obtained from previous equa-
tions by one of the inference rules. The size of a proof is the total size of all circuits appearing in the proof.
The number of steps in a proof is the number of proof-lines in it.

A P.(Z)-proof can be easily verified for correctness in deterministic polynomial-time by syn-
tactically checking that each proof line is derived from previous lines by one of the inference rules
or is an axiom (assuming A10 can be checked in polynomial-time, which is true for natural encod-
ing of standard rings like rationals, integers, etc.). The predicate for correctness of IP.(Z)-proofs is
expressible with a EOB -formula in VY (see Section 3.2).

2.9 Circuits and Proofs with Division

We denote by G(X) the field of formal rational functions in the variables X', where a formal ratio-
nal fraction is a fraction of two formal polynomials with coefficients from G. In this work we will
consider G to be the ring of integers Z.

It is possible to extend the notion of a circuit so that it computes rational functions in G(X)
([HT15]). This is done in the following way: a circuit with division F' is an algebraic circuit which
may contain an additional type of gate with fan-in 1, called an inverse or a division gate, denoted
()7L A division gate v (i.e., a division gate whose incoming circuit is v) computes the rational
function 1/v € G(X), assuming v does not compute the zero polynomial. If the circuit with
division F contains some division gate v ! such that v computes the zero polynomial, then we say
that the circuit [is not well-defined, and is otherwise well-defined. Note for instance that the circuit
(z2+x) ! over GF'(2) is well-defined, since 2 +x is not the zero polynomial (although it vanishes
as a function over GF'(2)).

We define the system P !(G), operating with equations F' = G where F and G are circuits
with division [HT15] as follows: first, we extend the axioms of P.(G) to apply to well-defined
circuits with division. Second, we add the following new axiom denoted Div:

Div F-F~'=1, provided that F~! is well-defined.
Note that if F'~! is well-defined then both I is well-defined (assuming for example F itself contains
division gates) and F' # 0.

21

We say that a P, !-proof is syntactically correct if it is a correct P, 1 -proof except that in the
proof there may occur division gates u ' for which 7 = 0, that is, in the axioms Al to A10 and
C1, C2, the circuits may contain division gates that compute the zero polynomial and in the axiom
Div the circuit F'~! is not necessarily well-defined. We do not know how to check in (uniform)
INC? that a circuit is well-defined: there is no known NC? algorithm to determine that an input
circuit computes the zero polynomial. Hence, there is no VINC? predicate for the correctness of
P 1-proofs, only for the syntactic correctness of P, '-proofs. Since we will need to express the
correctness of P *-proof in VNC? in some way our solution will be as follows: for every division
gate ! in a given P, !-proof we are going to make sure VINC? proves the existence of a P! -
proof of u [p = 1 for some integer assignment p to the variables in u. In other words, every
P! -proof will be equipped with witnesses showing that its division gates are nonzero (see Section
4.2 about provably good nodes). In this case we will say that the VINC? proves that the P; *-proof
is correct (and not merely syntactically correct).

Note that if aIP.(Z)-proof is syntactically correct then it is (fully) correct because P.(Z)-proofs
do not contain the Div rule application.

3 Encoding Circuits and Proofs in the Theory

Here we explain how to encode algebraic circuits and P, !(Z)- and P.(Z)-proofs in the theory.
Specifically, in Section 3.1.2 we describe the circuit Det,;,..—1, namely a circuit with division for the
determinant. In Section 3.1.3 we explain how to construct Det,;,.—1 in V.

3.1 Encoding Circuits

In order to talk about algebraic circuits, Boolean circuits and P.(Z)- and P, *(Z)-proofs in the
theory we need to fix an encoding scheme for these objects. Basically, VINC? (in fact, already V°)
is rich enough to let us encode syntactic objects in a rather natural way. Since every uniform AC°
function is definable in V? we can assume basic encoding functions to be defined in the theory.

We show below how to construct Det.;,..-1 in the theory. Encoding and constructing P, ! (Z)-
and P.(Z)-proofs in the theory follows similar lines, and we will not always define all the encoding
details explicitly. We remark that all our circuits will have gates of fan-in at most two.

3.1.1 Encoding of Algebraic Circuits in the Theory

Algebraic circuits are encoded using strings in the theory as follows: (i) a string of nodes V' (in
which nodes are identified by natural numbers; this is convenient for our encoding scheme); (ii)
a string of gates (5, where each gate is a natural number interpreted as a pair of natural numbers
(v,t) (using the 3P -definable in V° pairing function) where v is a node in V and # is a natural
number that expresses that the gate v is either +, X or (-)~! (plus gate, times gate or a division
gate, respectively; the first two connectives are binary and the third is unary) or is the ith input; (iii)
a two-dimensional string of input gates I, where, if the least significant bit of the ith string is 0, then
the ith string of I excluding the least significant bit encodes a variable x;, where for convenience
the index j of an input variable x; is represented using the binary representation of j; if the least
significant bit is 1 the ith string of I excluding the least significant bit represents an integer scalar
encoded in binary; and finally (iv) a string £’ encoding a set of numbers, each number is a pair that

22

represents a directed edge between two nodes, where (u, v) € E means that there is an incoming
edge to v € V emanating fromu € V.

3.1.2 Circuit with Division for the Determinant

First we need to define the determinant circuit with division denoted Det,;,.-1. This is done using
the recursive Schur complement (similar to [HT15]), and can be viewed as performing Gaussian
elimination: by considering the symbolic matrix X = {x;;}; je[n], consisting of n? distinct vari-
ables, defining the matrix inverse X ~! of X and then, by partitioning X into blocks, we formulate
a recursive definition of the determinant, using matrix inverse.

Formally, we define an n x n matrix X ~! whose entries are circuits with division computing
the inverse of X as follows:

L Ifn =11t X' := (277]).

2. If n > 1, write X as follows:

¢
X:<X1 “1>7 (12)
U2 Tnn
where X1 = {Zi;}ijem-1p 1 = (T1ns -+ Zne1)n) and vy = (Tp1, .. ., Ty(n—1)). Assum-
ing we have constructed X, ', let the Schur complement be defined as
§(X) i= Tpp — v X 0L (13)

Since §(X) computes a single non-zero rational function, 6 (X) ! is well-defined. Finally, let

1. <Xf1 (Ln-1 +0(X) " ofeaX7) —0(X) 7 X 0) ' 14

—6(X) X! §(X)!

The circuit Det,;,..—1(X) is defined as follows:
1. If n = 1, let Detyjpe—1(X) := xq3.
2. If n > 1, partition X as in (12) and let §(X) be as in (13). Let

Det ;o1 (X) := Detyipe1(X1) - 5(X) = Detipe1(X1) - (Tpn — v2 X7 08) . (15)

The definition in (14) should be understood as a circuit with n? output gates that takes
X', v1, 9, Tpy as inputs and moreover, such that the inputs from X' occur exactly once. Al-
together, we obtain a polynomial-size circuit for X ~! and the determinant function of X. The
circuits obtained are unbalanced, have division gates and are of exponential syntactic-degree (see
Definitions 2.14 and 6.2). The fact that Det,;,.—1 (X) indeed computes the determinant (as a ratio-
nal function) stems, e.g., from the fact that P !(Z) can prove the two identities that characterize
the determinant (Proposition 4.5).

Let M be a matrix in which each entry is a circuit (possibly with division) written either as a
single circuit with n? output gates (such as X ! above) or as n? separate circuits. Then we denote
by M~ the matrix X ! of the symbolic matrix X in which each input variable x;; is substituted
by the (4, j)th entry of M.

23

3.1.3 Constructing the Circuit Det,;,, 1 in V°

Let (M,,)5°; be a family of n X n matrices in which each entry is a circuit (again, written either as
a single circuit with n? output gates or n? separate circuits). We say that M,, (or M, when the sub-
script is not important to state explicitly) is a 37 -definable matrix in VU if there is a 35 -definable
string function in V? that given a natural number n (in unary) outputs the circuit(s) encoding of
M,,. In this section we show that the n x n inverse matrix X ! from (14) above is 2119 -definable in
V. We denote by writey -1(n) the string function that outputs the multi-output circuit X ~! given
as input a unary integer n.

Note that the definition in (14) is implicitly a construction that uses 2119 -induction (that is, the
number induction axiom as in Proposition 2.2 in which we use 3% instead of ¥): given that there
exists a circuit for X; ' of dimension (n — 1) x (n — 1), we construct X ~! of dimension n x n.
However, since neither V? nor VINC? has the number induction axiom for Zf -formulas we will
construct the circuit by utilizing a natural encoding scheme, and formally by showing that the bit-
graph of the string function writex—1(n) is definable with a 3 -formula (see Definition 2.9 for
bit-definability). This idea and similar encoding is then used in the sequel to construct all of the
P-1(Z)-proofs in the theory. (On the other hand, to proceed to the final division free IP.(Z)-proofs
using balancing we need to consider different arguments, including the axioms of VINC?, e.g,, to
be able to compute matrix powering (see Section 10).)

The circuit for X ! is encoded as follows. It is a multi-output circuit. The string V' encodes
the nodes in the circuit, as natural numbers, where a node number is interpreted as a tuple of
natural numbers as shown below (using the X5 -definable in V tupling number function). For
each inductive level d = 1, ... n in the inductive definition of X ! in (14), corresponding to the
construction of a d X d inverse matrix, we have a set of nodes (d, (i, 7),¢) € V, eachinterpreted asa
three-tuple of numbers where the second number is a pair of numbers in itself. In (d, (¢, 7),¢) € V,
the pair (7, j), fori, j € [d], is an entry in a d X d matrix, meaning that the node (d, (i, j), ¢) is part
of a sub-circuit of X ~! that computes the (4, j)th entry in the dth inductive-step; ¢ is the running
index of the nodes in that part, where ¢ = 0 iff the node is what we consider an “output node” of
the given level d and the given entry (i, 7). Nodes of the form (0, (4, j), 0) stand for the input nodes of
the circuit corresponding to the variable x;; (or scalar) in the input string /.

For example, (1, (1, 1), 0) is the node computing x7;', because the first coordinate d = 1 refers
to the “inductive” level 1 in the definition of X ' (whenn = 1, X! = mfll), the second coor-
dinate is (1, 1), meaning the (1, 1)-entry of the circuit computing the inverse of 17, and the last
coordinate is 0, meaning this is the output node of the circuit that computes ;. Note that we
use the numbers on the nodes in V' to denote information on the structure of the circuit, namely
information about the edges in £/ and whether a gate is an input node (the latter information is ex-
pressed also in 7). This allows us to bit-define in V a function that constructs the corresponding
E and G as shown below.

Additionally, we have a string GG of natural numbers, each interpreted as a four-tuple encoding
the gate-type of each node in V, excluding the input nodes (0, (7, j), 0). Thatis, (d, (,),¢,g9) € G
means that node (d, (4, j),) € V is of type + if g = 0, X if g = 1 and division (-) "' if g = 2, and
an input variable z;; if ¢ = (i, j), where, again, (-, -) is the pairing function (note that the pairing
function (cf. [CN10]) is monotone increasing and that (1,1) > 2, so we can distinguish between
the case of an arithmetic gate and an input gate). Finally, the string E encodes the edges between
nodes in the circuit. That s, ((d, (¢,), ¢), (d', (', j'),¢')) means that there is a directed edge from
node (d, (4, j), () tonode (d', (i, 5'), ¢').

24

Using the above encoding scheme it is possible now to bit-define with a ¥ -formula the string
function writex—1 which by Fact 2.13 is enough to conclude that the function is XZ-definable
in V. We only need to construct, given some level d and the pair (4, j), the sub-circuits whose
nodes will be (d, (4, 7), {), for some ¥, according to the definition in (14). We will use the following
notation and functions in the theory for this purpose.

Notations and basic functions for constructing sub-circuits. Let F'be one of the four minors
in (14) used to define the matrix inverse X ~!, for example § (X) ~1 (we use the term minor to refer to
a sub-matrix). We will denote by writex(n, d, £, I, O) the following string function: the inputs are
1, O serving as the input and output nodes, respectively, to the circuit F, d is the index “level” (used
to record the induction-level of the inductive circuit constructions as in (14)) and ¢ is the “running
index” of a node in a given level d, and n stands for the “dimension” of the operation defined by F’
(e.g., inner product of vectors of size n, or matrix product of two n. X n matrices has dimension n).
The output is a string, but we abuse notation and assume it is three separate strings encoding the
(output) circuit, for simplicity, as follows: £, V| G as described above.

More formally, we define writep(n,d,£,1,0) = (E,V,G) as follows (similar to the above
notation): V' is a string describing the vertices in an algebraic circuit. F is a string describing the
edges between vertices in V. (G is a string describing the gate-types of vertices in V. Every vertex
is of the form (d, (4, j), £) with d the recursive level in the definition of X ~! in (14), (i, j) means
that the node is in the (i, j)’s part of the definition of X ~!, and / is the running index of nodes in
the same level d and same part (4, j), where ¢ = 0 iff the node is an output node of that level d (it is
not necessarily the output node of the whole circuit). Assume that F'(T) is some algebraic function
with m integer inputs I and m, integer outputs O. Then, we supply writer(n, d, ¢, I, O) with
the node indices (as encoded in V') to be used as input nodes and output nodes for the (sub-)circuit
computing . Here is an example of the input and output nodes of Fj.

Example: Consider the multi-output circuit Fy := X; '(I,,_1 + 6(X) " vlvo X, 1) from (14). We
want to construct a 3 -formula that bit-defines a function that given n outputs /. Note that
F is implicitly a recursive function in the sense that it uses as inputs the outputs X; ' which are
computed in the previous recursive level d — 1, together with the “new” nodes in row d and column
din X. Therefore, the inputs of F] are the following nodes: (d — 1)? input nodes for X;*,2(d — 1)
input nodes for v¢ and v,, and finally one input node 44 (needed for computing §(X)~'), which
sums up to d? input nodes in total. The number of output nodes for F} is (d — 1)?, as it defines
a(d—1) x (d — 1) minor of X!, Therefore, in our encoding scheme, the input nodes for F
(viewed as a d X d matrix) are:

(d—1,(1,1,0) ... (d—1,(1,d—1),0) (0,(1,d),0)
(@ 1(d—11.0) ... ([d—1.(d—Ld—1.0) (0.(d—1.d).0)
0.(d1),0) ... (0.(dd-1),0) (0, (d,), 0)

and the output nodes (viewed asa (d — 1) x (d — 1) matrix) are:

(d,(1,1),0) (d,(1,d —1),0)

umd;L1%m ﬁi uxd—ﬁd—1%m

25

Let Fy, Fi3, Fy be the other three functions used in the definition of X ~! in (14) (for the other
simpler three minors). We define similar writep, functions for these F;’s.

To show that writex—1(n) is a X2-definable function in V° we need to demonstrate how to
bit-define this function using a E(Jf -formula, and for this we need to show how to bit-define its sub-
circuits. In our case we need to show how to bit-define for example write,., using a 3 -formula,
given two n-element vectors of integers v, u representing nodes in the circuit. This is quite easy
to do: simply output a binary tree with the appropriate plus and products nodes, and plug the
input nodes v, u to the leaves accordingly as demonstrated in Section 2.6.1. Here we denote the
nodes in the circuit computing the inner-product v - u in level d using the running index: every
node excluding the output nodes of this level d (which are unique for every fixed d and (7, j)) has
a different running index ¢ > 0, namely has the tuple (d, (7, j), {) associated with level d and the
(1, 7) entry in the matrix computed at level d.

Similarly, we have ZOB -formulas for constructing other formulas like write, 4 and write 4.,
given the input nodes for an n X n matrix A, and the input nodes for an n-elements vector v. Also,
given a node 7 it is immediate to output a circuit computing 2! or —2, and given two matrices
A, B (i.e,, 2n? nodes) it is easy to give a 263 bit-definition of write 4, g in V°.

Now that we have set up the notation and the functions for constructing sub-circuits, we can
bit-define with a 3’ -formula write -1 in V? as follows. First, fori = 1,...,4, define Inpy, (d)
and Outg, (d) to be the string functions that output the sequence of input and output nodes of the
dth recursive level of X ! for each of the F}’s, respectively, as shown for F in the example above.
They all have 37 -formulas that bit-define them.

Let writejever(x-1y(n, d, £, 1, O) be the string function that outputs (E, V,) encoding the sub-
circuit for the dth inductive level of X !, and let write, i (n,1,0,((0,(1,1),0)),((1,(1,1),0)))

be the string function that outputs the encoding of the circuit “z;;'” (given the overall dimension n,

inductive-level 1, running index 0, input entry (1, 1) in X represented by (0, (1, 1), 0) and output
represented by (1, (1,1),0)). Assuming that writejee(x -1y and Writexl-ll have both 37 -formulas
that bit-define them, then the bit-definition of writex-1 is given by the following X5 -formula
©(n, 1), for n, i number sorts, and using Writejeyel(x -1y and Writew;f as function symbols:

2<d<n (Writelevel(x—l) (n, d,1,Inpy, (d), OutFl(d)) (1) V.oV
Write|evel(x-1) (n, d,1,Inpp, (d), OutF4(d)) (i))\/writexl-f (n,1,0,((0,(1,1),0)), ((1,(1,1),0))) (z)) ,

In the sequel we will be less formal about encoding in V? circuits in the P! (Z)-proofs in the
theory.

3.2 Encoding and Witnessing Polynomial Identity Proofs

Recall the proof-systems P.(Z) and P, !(Z) which are proof systems that establish equalities be-
tween algebraic circuits without and with division, respectively, over the integers, and recall also
the concept of correct and syntactically correct proofs (Section 2.9).

P_'(Z)- and P.(Z)-proofs are encoded as two dimensional arrays .S (that is, a string encoding
an array of strings) in which the ith string S [, also called the ith row of S, is the ith equation in the
proof written as a pair of circuits with division (and where circuit encoding is done as described
in Section 3.1.3). Furthermore, the encoding of P, *(Z)- and P.(Z)-proofs will always consist of
additional witnesses for syntactic correctness, as follows:

26

1. Each row S specifies whether it is an axiom, and if it is not an axiom we specify the proof-
lines from which it was derived as well as the rule by which it was derived.

2. For the four rules R1-R4, we have the following convention to witness the correctness of
applying the rule: the encoding of the circuits F, G, H and F}, I3, G1, G2 in the antecedent
and consequence of the rules are identical, that is, with the same node numbers in their respec-
tive sets of nodes V. In other words, the respective strings encoding F, G, H, I}, F5, G1, G
in the antecedent and consequence are identical.

3. For the axioms A1-A9, and the axiom Div in Pgl, the circuits F, G, H in both sides of the
equations are encoded identically, as in part 2 above.

4. The scalar axioms A10 is encoded as a circuit with scalar inputs as usual. Only that we will
not verify their correctness, as this will not be needed.

5. The axioms C1, C2 need a special treatment. Consider Fy @ Fy = Fj + F5, and let V' be the
set of nodes (numbers) belonging to F; & F5. Every node u € V, excluding the plus at the
root, occurs as at most two different nodes w1, us in Fy + F5. To witness this rule we add a
string that stores (as an array of number pairs) the mapping from the nodes of F} in F} + F}
to the nodes of F} in F} & F5, and similarly for F5. Given such a witness it is immediate to
verify (with a 37 -formula) that the C1 axiom is applied correctly”. C2 is treated similarly.

When we talk about P! (Z)- or P.(Z)-proofs in the theory, unless otherwise stated, we assume
that the proof encoding includes its witness for syntactic correctness as above. When we talk about
P_1(Z)-proofs specifically, we shall say that “the theory proves the existence of a syntactic correct

IP_1(Z)-proof” to mean that the proof is encoded with the witness as above, only that we emphasize
that the proof and witness only ensure syntactic correctness (since division by zero may occur in

such proofs).

Definition 3.1 (XP-definable P !(Z), P.(Z)-proofs). Let (7,)nen be a sequence of P71 (Z) or
P.(Z)-proofs. We say that T, is a X.7-definable P !(or P.(Z), resp.) proof in a theory T if
the string function f(n) that on the number input n outputs , is X2 -definable in T. In case T, is a
P_1(Z)-proof (resp. P.(Z)-proof), we also assume that T proves the syntactic correctness (resp. correct-

ness) of m,. (When the parameter n is clear from the context we suppress it and may say that a P.(Z)- or
P_Y(Z)-proof of F' = G is P -definable in T, meaning that F' = G is parameterized by n).

By Section 2.5, to show that f(n) is 3 -definable in V (and can be used in the induction and
comprehension schema of V) it is enough to show the existence of a 3F-formula ((n, i) with
two natural numbers parameters n, i, that bit-defines the function f(n).

We shall use the following simple statement that allows to use substitutions in P, ! (Z)-proofs:

Proposition 3.2 (Substitution in P;I(Z)—proofs). Assume that in a theory T DO VO the function that
receives n. = |Z| and outputs a syntactically correct P_1(Z)-proof of F(T) = G(T) is XP-definable.
Let H be a sequence of circuits X3P -definable as a string function from natural numbers n = || to H.
Then, the string function from n, to a (provably in V°) syntactically correct P;*(Z)-proof of F(Z/H) =
G(Z/H), where the variables in T are replaced by the circuits in H, is S 2 -definable in T.

5One can also use an NL algorithm, formalizable in VNC? (since NL C NC?2), to verify that both sides of the
axiom C1 are different representation of the same circuit. However, it will not be easy to prove for our P, *(Z)-proofs
that they are correct with such a predicate of correctness.

27

Proof. Since the function that outputs a syntactically correct P, !(Z)-proof of F(Z¥) = G(T) is
3B _definable in T, and since by assumption 7 proves the syntactic correctness of this proof, 7 can
3B _define the function that outputs each circuit in the proof (and prove it is syntactically correct).
In each such circuit we substitute the input variables Z by H: since circuits are encoded as graphs
substitution is formalized by substituting input nodes by graphs which is easily shown to be a X5-
definable function in V (note that the function that given a circuit outputs its input nodes is by
itself a E? -definable number function in V°).]

4 Existence of Proofs with Division for the Determinant
Identities

4.1 Overview

We denote by X, Y the symbolic n X n matrices where the (7, j)th entries of X and Y are the
variables z;; and y;;, respectively. Accordingly, in our P, *(Z)-proofs the X, Y matrices are en-
coded by their entries x;;, y;; to which we refer as the X, Y variables (namely, X, Y are not formal
variables by themselves).

In this section we show (Proposition 4.5) a 3P -definable string function in V? that given a
natural number n outputs a correct P (Z)-proof of the following equations:

Detci,,cq (X) . Detci,,‘cfl (Y) = Detcircfl (XY) (16)
Detcirc*1 (U) = U11 " Unn (17)

where U is a lower (equivalently, upper) triangular matrix in the variables x;; (where each entry in
U is a circuit possibly with division).

Recall that P, ! -proofs consist of sequences of equations between algebraic circuits over Z. In
the proofs we construct in this section circuits have exponential syntactic-degrees (though the the-
ory cannot express this fact), they are not necessarily homogeneous, and they have division gates.
Recall also from Section 3.1.3 that Det,;,..-1 (X)) computes the determinant as a rational function
and not as a polynomial (namely, it contains division gates).

To express the fact that a P, !(Z)-proof is correct in the theory we use the notion of syntactic
correctness together with witnesses that witness that the division gates used throughout the proof
are nonzero (as required by the axiom Div of P;!(Z)); hence all rules and axioms in the proof
are applied correctly. More precisely, we introduce the notion of provably good nodes which are
division nodes for which there are (specific kind of) P, !(Z)-proofs witnessing they evaluate to
1 when the matrices X, Y are the identity matrices. In fact, we will specify precisely for which
matrices that substitute X, Y and U, respectively, such witnesses for division nodes in the proof
can be constructed.

We are going to construct a 3 -formula that bit-defines a string function that given the number
n outputs the P 1(Z)-proofs. Recall that this would mean that the P }(Z)-proof is XZ-definable
in V? according to Definition 3.1.

28

4.2 Provably Good Nodes

We begin by providing background definitions and statements that will help us eliminate division
gates from circuits in the theory in future sections. Since division elimination in general [Str73]
is not a uniform process as it builds on the mere existence of an assignment of field elements that
allow for division elimination, we are going to show that a specific assignment, namely the identity
matrix assignment, is sufficient for our purposes. The idea is to show that the theory can prove that
every division gate in a circuit in the proof does not lead to division by zero when the matrices are
substituted for the identity matrices. For this we introduce the following definitions.

A P_Y(Z)-proof is said to be division axiom free if it does not use the axiom Div of division
F.F~! = 1. Given a circuit ' and a substitution p of variables in F by other circuits, F' | p stands
for a substitution instance of /" in which substitution are performed as in Section 3.2.

Definition 4.1 (Identity matrices assignment). Given a natural number n, the identity matrices
assignment p is defined to be the assignment of 0 and 1 elements to the variables x;;, y;; such that
p(zij) = plyi;) = Lifi = j € [n] and p(x;;) = p(yi;) = 0,if i # j € [n]|. In other words,
X 1 p=Y | p=1, for I, then X n identity matrix and X,Y two n X n symbolic matrices.

Definition 4.2 (Provably good node, circuit and proof). Let n be a natural number and p be the
identity matrices assignment and let u™" be a division gate in a circuit that uses the variables x;;, y;; (for
i,j € [n]). Wesay that the division gate u~" is provably good whenever v, | p = 1 has a division axiom
free P (Z)-proof 7 in which all division gates in 7 already appear in u | p (that is, we do not introduce
new division gates in the proof). In this case we also say that p is provably good for u =L, Accordingly, if all
the division gates in a circuit C' (a P71 (Z)-proof, resp.) are provably good we say that p is provably good
for C (for the P, 1(Z)-proof, resp.) and that C' (the P (Z)-proof, resp.) is provably good. We say
that VO proves that u~! is provably good whenever V° proves that u | p = 1 has a syntactically
correct division axiom free P, (Z)-proof T in which all division gates in 7 already appear in u | p.
Accordingly, if V° proves that all the division gates in a circuit C (a P (Z)-proof, resp.) are provably
good we say that VO proves that C (the P }(Z)-proof, resp.) is provably good.

Using the concept of provably correct proofs we can now express in the theory the correctness
of P! (Z)-proofs (and not merely syntactic correctness): let 7 be a P, !(Z)-proof. We say that
VO proves that 7 is correct whenever V° proves that 7 is both syntactically correct and provably
good. In Sections 8 and 9 that we will show that indeed such a correctness property suffices for our
purposes in the sense that the theory will be able to prove the correctness of a (division-free) P.(Z)-
proof of the determinant identities based on this formulation of correctness for P *(Z)-proof.

We will use the following definition:

Definition 4.3 (Provably invertible matrix). Let M be a matrix in which each entry is a circuit in the
variables ;;, y;j. Then, M is said to be a provably invertible matrix if every division gate in M, " is
provably good.

Note that if M, is a 3P -definable family of matrices in V° (parameterised by n) then (using
Proposition 3.2) Mt is also a X.5-definable matrix-family VY, since the latter is a substitution
instance of X ~! of n x m in which we substitute entries of M,,. What we will need to show in some
cases is not only that M ! is X5-definable in V°, but that V° can also prove that M is provably
invertible, namely that every division gate in M ! is provably good. Formally this would mean
showing that there is a string function that on the natural number input n outputs the syntactically

29

correct division axiom free P, !(Z)-proofs that witness the fact that all the division gates in M ~*
are good.

In particular, we will strengthen the results of [HT 15] that demonstrated the cases in which the
P_1(Z)-proofs of the determinant identities are definable, into provable definability: we show that
not only the P, (Z)-proofs do not contain zero division, but that V? can prove the existence of
syntactically correct division axiom free P (Z)-proofs that witness this fact. More formally, the
statement that expresses the fact that a matrix A is provably invertible is a formula that states that
if A is a matrix and u is a division gate in A~!, then " is provably good.

For an n X mn matrix A and a natural number k£ < n we denote by A[k| the k X k matrix
restricted to rows 1 to k and columns 1 to k, namely the matrix A(%, j); je[-

We have the following lemma:

Proposition 4.4 (Some facts about provably invertible matrices). Let n be a natural number and
assume that A is a matrix in which each entry is a circuit in the variables Tij, Yij for i, € [n], which is

S B-definable in V°. Then the following hold:
1. VO proves that the symbolic matrix X is provably invertible.

2. If VO proves that A is provably invertible then V° proves that Det ;.1 (A) is provably good.

3. If VO proves that A is a triangular matrix with ay,..., 0y, on the diagonal such that
ayl,. .., a;} are provably good then VO proves that A is provably invertible.

4. VY proves that A[1], ..., Aln — 1] are provably invertible and §(A) ™" is provably good iff V°
proves that the matrix A is provably invertible.

Proof. (1) We know that X ~* is 35 -definable in V" by Section 3.1.2. We need to show that V°
proves that every division gate ! in X ! is provably good, namely has a division axiom free
P-1(Z)-proof of u | p = 1 with all division gates in this proof already appearinginu | p. Observe
using (14) that every division gate u™" in X ! is either 2", oris § (X [k]) ™' forsome k = 1,...,n,
where 0(X[k]) = x, — vor(X[k])~'0l,, such that vy, is the kth row of X [k] excluding the kth
column entry, and v!, is the kth column of X [k] excluding the kth row entry (similar to the notation
in (12)). The division gate x};" is immediately proved in V" to be provably good. The gates (), —
vor (X [k])~tot,)~ are also proved easily in VU to be provably good, because under the identity
matrices assignment vy, = 0 and vy, = O are zero vectors, and xg, = 1.

(2) By assumption V? proves that every division gate in A~ is provably good. By the definition
of Det ;-1 (A) in (15) every division gate in Det,;,.-1(A) already appears in A~1, and so V° can
prove it is provably good.

(3) Assume that A is lower triangular (the case for upper triangular matrices is similar). We
know that V? proves that division by each diagonal entry a;; in A is provably good. Since A is
3B _definable in VY the inverse matrix A~ is also XZ-definable and we only need to make sure
that VY proves that all the division gates in A~! are provably good. This follows by inspection of
the inverse matrix as in Definition 14. Specifically, we consider all the division gates in A™!, as
follows.

In each inductive level n in (14), for n the dimension of the matrix, the new division gates that are
introduced are those from §(A) ™! = (@, — va(A[n — 1])710) ", where 0 s the (n — 1)-length
(transposed) zero vector (corresponding to the vector (A(1,n),..., A(n — 1,n)), which is zero
since A is upper triangular) and v, is the bottom vector of A excluding the entry A(n, n), namely

30

(A(n,1),...,A(n,n—1)). All the other division gates in A~ come from previous inductive levels
smaller than n and are placed inside (A[n — 1])~!. VO proves that the equation a,,,, — vo(A[n —
1]))7'0 = ay, has a syntactically correct division axiom free P, (Z)-proof, and without adding
new division gates that do not already occur in the equation, simply by using zero product axioms
A8: F - 0 = 0 of P_!(Z). Hence, by substitution in P_ ! (Z)-proofs, V° proves that §(A)~! =
(G — v2(A[n — 1])720) " = a7} has a division axiom free P, (Z)-proof. Since we assumed
that VO proves that a_,! is provably good we conclude that V° proves that 5(A)~! is provably
good as well.

Since all division gates in A~! come from some inductive level, each division gate in A~ is of
the form §(A[k]) ! for some k = 1, ..., n, and thus V° can prove it is provably good.

(4) This is similar to part (3) above: in each inductive level n in (14), for n the dimen-
sion of the matrix, the new division gates that are introduced are those from §(A)™' =
(ann — vo(An — 1])"20!) ™", where v; is the vector (A(1,n), ..., A(n — 1,n)) and v is the bot-
tom vector (A(n,1),..., A(n,n — 1)). All the other division gates in A~! come from previous
inductive levels smaller than n and are placed inside (A[n — 1])~1. O

4.3 Constructing the P, (Z)-Proofs in the Theory
Proposition 4.5.

1. Let U be an n x n (upper or lower) X5 -definable triangular matrix in VO with uyy, . . ., Up, on
the diagonal, in the variables x;;, y;; for i, j € [n]. Then the P '(Z)-proof of

Detcirc—l(U) = U11 " Upn (18)

is XB-definable in V°, and further VO proves that if uy)', ..., u, ! are all provably good then the
proof is provably good.

2. Let X and Y be n x n symbolic matrices. Then the P 1 (Z)-proof of
Detcircﬂ(X . Y) = Detcircq(X) . Detmcﬂ (Y) (19)

is 38 -definable in V°. Further, the proof is provably good for X = A,Y = B provided that
VO proves that Alk|, B[k] and A[k]B|[k| are provably invertible for every k € [n], and A, B are
3B -definable matrices in V°.

The rest of this subsection is devoted to proving Proposition 4.5.

We shall follow the construction in [HT15, Section 7]: we show that the construction can be
carried outin VY, but in addition we also show that V explicitly proves that the P * (Z)-proofs are
provably good (that is, no zero division occurs in the proofs) whenever the matrices in the equation
proved are provably invertible.

We prove parts 1 and 2 together, and we break the P, !(Z)-proofs into several parts. We need
to bit-define the function that constructs the required proofs. More precisely, we show that there
exists a X5 -formula ¢(n, i) such that for all natural numbers n, 4, ©(n,) holds iff i < poly(n)
and the ith bit in the string that encodes the P, ! (Z)-proof of the n X n determinant identity (18)
is 1 (and similarly for (19)). The fact that these P, !(Z)-proofs are syntactically correct provably in
V will be straightforward, while for showing they are provably good we need to do some work.

We use in our construction, as well as in the sequel, the following simple statement that allows
to encode in V' proofs that consist of n parts, in which each part uses the conclusion of the previous

31

part as an assumption, provided that each part is constructed independently and uniformly from
the other parts:

Proposition 4.6 (V° construction of P, ! (Z)-proofs in parts). Let (1,)nen be a sequence of equations
between algebraic circuits with division over Z, and let F'(n) be the string function that on input n outputs
a PY(Z)-proof of 1, from assumption 1, _1. Suppose that p(n, 1) is a 3E-formula that bit-defines
F(n), where n, i are two number variables. Then, the P, 1 (Z)-proof of (1,)nen is 28 -definable in V°,

Proof. Theideais that F'(n) depends only on the number 7 and not the previous proof-lines, hence
there is no need to use X2 -induction here. More precisely, we need to demonstrate a X5 -formula
that bit-defines the function that on input n outputs the P, (Z)-proof of 1/,,. We encode the
PP 1(Z)-proof so that it is a two-dimensional array S: the jth string in S, denoted SV, is the (par-

tial) P 1(Z)-proof F(n). Since ¢(n, i) bit-defines F'(n), the following 3F-formula bit-defines
the two-dimensional array S:

O(n, k) =35 <n(k=(5,9) Ne(:7) .

The only thing left to make sure is that F'(n) correctly points to the proof-line that holds the as-
sumption ¢,,_1. For this we can simply assume that the first proof-line (i.e., equation) in F'(n) is
1,1, and that it points to the last proof-line in F'(n — 1) (which is also v,,_1; hence, repeating the
same equation, and assuming that repetition of proof-lines is legitimate in P, ! (Z)-proofs). O]

We begin our V-construction with the proof of X - X ! = I,,. Given n x n matrices X, Y, A,
the expressions XY = A in the context of a P, }(Z)-proof is an abbreviation of a sequence of n?
equalities between the appropriate entries. Note however that whereas before we treated X ! asa
single multi-output circuit, the expression X ~1 = A stands for a set of n? separate circuits for each
of the entries in X ! (this is achieved by taking the same single multi-output circuit for X ~! as
before, and duplicating each of the n? output gates together with their sub-circuits, so the increase
in size is by a factor of n?).

Lemma 4.7. Let X be an n x n symbolic matrix. Then, the P71 (Z)-proofs of X - X~ = I, and
X7t X = I, are XB-definable in V°. Moreover, if X = A is a $P-definable matrix that V° proves
is provably invertible then V' proves that these ' (Z)-proofs are provably good.

Proof. 'This can potentially be constructed by induction on n. However, similar to the construction
of Det,j,.1 in the theory (Section 3.1.3), we cannot use (number) induction on X5-formulas in
VINC?, and thus we need to work out an encoding of the proof that is bit-defined by a 5 -formula
in VO (equivalently, a ¥.Z-definable function in V°). Since we already have the basic encoding
scheme for circuits in the proof this is quite easy to achieve. We proceed as follows.

If n = 1, we have zy; - 27! = 27! - #11 = 1 which is a P! axiom, and in which all division
gates are provably good because p(z11) = 1. Otherwise, let n > 1 and X be as in (12). We want to
construct a P! (Z)-proof of X - X~! = I,, from the assumption X; - X; ' = I,,_.

Abbreviate @ := §(X)and D := I, ; + a "Wl X! — a Wi X, and B = v, X' +
a " (v X7t — 2,,)v2 X L. Using some rearrangements, and the definition of a, we have (see

32

[HT'15, Proposition 7.2]):
X Xl= (X1 o) . (X Lo+ a e XY) —a X >

U2 Tnn
B < D I)

E a N (—va X7t 4) (0)

L, 4 0
T\ wX —a e XY ata

(I, 0
“\o 1)

To encode this proof we do the following: we use a X7 -formula denoted ((n, i) to bit-define the
string function that given a natural number n outputs the above P, !(Z)-proof in (20), from the
assumption X - X; ' = I, where X, has dimension (n — 1) x (n — 1). This is done by specifying
X,-X[! = Iasaprevious proof-line (formally, a collection of (n—1)? proof-lines) from which we
derive our new proof-lines. Such a sequence is bit-defined by a 325 -formula similar to the encoding
in Section 3.1.3: we compose basic constructions of matrix multiplications (which are written as
separate equations for each entry), dot products, plus and minus, construction of the identity matrix
of dimension k, and X; * (which we encoded explicitly in Section 3.1.3). Proposition 4.6 suffices
thus to conclude the first part of Lemma 4.7.

For the second part of the lemma: if X = A, for an n x n X7 -definable and provably invertible
matrix A in V9, then by definition every division gate in A~! is provably good. Hence, every
division gate in the top equation in (20) is provably good. By inspection of the proof-lines that come
after this top line we see that every division gate is one of the inverse gates that already appeared
in A~1. For example, let us inspect the (n, n)th entry in the second line from the top in (20), which
when substituting A for X is vy - (—a" ' A7 0}) +a,,at (where A; = A[n— 1]), which we turned
by simple rearrangement to a~!(—vy A7 't + @y,). The term a ™! appears already in A~%, as well
as all the division gates in A;'. This then is equal to ! - a by definition of a, which then leads
by the division axiom to 1, concluding that all division gates appearing in this derivation already
appear in A~L. O

Lemma 4.8. The P (Z)-proof of the identity (XY)™ = Y=L X 7L, for two n x n symbolic matrices
XY, is XP-definable in V°. Furthermore, if X = A,Y = B where A, B, AB are X -definable and
provably invertible in V°, then V' proves that this P 1 (Z)-proof is provably good.

Proof. To keep distinctness of variables, we encode the variables x;; differently from the variables
Yij (e.g., the input variables x;; are encoded as before, while the y;; variables are encoded as the
pair 0 with the encoding of x;;, which is always different from the encoding of x;; since the pairing
function is injective). By Proposition 3.2, since we have a P, !(Z)-proof of X X ! = I,,, we can
substitute in this proof to get a proof of (XY)™}(XY') = I,,. We also have P, }(Z)-proofs of basic
properties of matrix products like associativity of matrix products and addition, and of [, X =
X. Hence, we can construct P 1(Z)-proofs of ((XY) 1 (XY))Y1X~! = Y=1X~! On the
other hand, by associativity of matrix product and Proposition 4.7 ((XY) 1 (XY))Y 1 X! =
(XY) H XYY HX Y =(XY)landso (XY) 1 =Y 1X1

For the second part of the lemma, we observe that since AB is provably invertible, by Proposi-
tion 4.7 every division gate in the P} (Z)-proof of (AB) ™' (BA) = I, is provably good. And since
A and B are provably invertible then by Proposition 4.7 the proof of (AB)~}(A(BB™1)A™!) =
(AB)~! is provably good. O

33

Y, b
U2 Ynn
Y ~!) the entry in the bottom right corner of (XY)~!is §(XY) ™!, and the entry in the bottom right
corner of YL X1 is §(V)716(X) 1 ((ueY; 1) (X, '0t) + 1). By Lemma 4.8 we have a proof of
(XY) '=Y'X1andso

Let X beasin(12)and similarly Y = > . By definition of X ~! in (14) (and similarly

S(XY) T =0(Y) 7 0(X) 7 ((uYy) (X M0f) + 1)
Multiplying both sides by §(XY)d(Y)d(X) we obtain a P, *(Z)-proof of
S(Y)O(X) = §(XY) (1 +up Y ' XT10h), 21)

where the proof is provably good if X = Aand Y = B for A, B, AB provably invertible and
3B -definable matrices in V°.

We proceed to construct the IP’C_I(Z)—proofs of the identities (18), (19). We first provide the
following two lemmas.

Lemma 4.9.

1. Let A, L, U be nxn XB-definable matrices in V° with L lower triangular and U upper triangular
and assume that VO proves that A, L, U are provably invertible. Then the string function that given
n in unary outputs the syntactically correct P 1 (Z)-proof of

Detmc& (LAU) = Detm',,‘cfl (L) Detmcq (A) Detm-rcfl (U) (22)

is 28 -definable in V°. Moreover, VO proves that L AU is provably invertible and that the P 1 (Z)-
proof of (22) is provably good.

2. Let Abeann x n XB-definable matrix in V. Then V° proves that if A is provably invertible
then there exists a provably invertible lower triangular matrix L(A) and a provably invertible upper
triangular matrix U (A) such that A = L(A)-U(A) has a syntactically correct and provably good

P (Z)-proof.

Proof. Part 1. Using LAU = L(AU)I, it is easy to see that it is enough to separately consider the
cases in which U = [, and L = I,,. We prove the former, the latter is similar. We thus construct
the proof of Det ;.1 (LA) = Detyjpe—1(L)Detejpe—1(A).

As before, by Proposition 4.6 it suffices to demonstrate a X.5-formula that bit-defines a
string function that given a natural number n outputs a P, !(Z)-proof of Det,.—1(LA) =
Detjre—1 (L)Det ;-1 (A) from the assumption Det,;,..—1(L1 A1) = Detgjpe—1(L1)Deteire—1(A1),
where L, A have dimension n X n and L, A; have both dimension (n — 1) X (n — 1). Such a
sequence is bit-defined by a X -formula similar to the encoding shown in Section 3.1.3, as follows.
If n =1, the Eg -formula is clear. If n > 1, write

t t
L:(il £0>,A:<A1 Ul),andsoLA:(LlAl Lavy

nn V2 Ann UAl + gnnUQ gnn&nn + u'UilE
(23)
Assume that VO proves that L; A; is provably invertible and that there exists a syntactically
correct and provably good P *(Z)-proof of Det ;.1 (L1 A1) = Deteipe—1(L1)Detese—1(Ar). We

34

want to show that V° proves that LA is provably invertible and that there exists a syntactically
correct and provably good P! (Z)-proof of Det,jo—1(LA) = Deteje—1(L)Detejpe—1(A).

By 6(A) = an, — v2A]'vt, and using rearrangement and Lemma 4.8 we can construct in V°
the P (Z)-proof:

I(LA) = (bpnapn, + uvi) — (udy + Ennvg)(LlAl)_llef =
= (bpnGpp +uvt) — (WAL + Lopva) AT LT L0 =
= LGy + utt — uvt — v AT = Lo (A, — ngl_lvi) =

= 5(L)3(A).

Since VY proves that L and A are provably invertible, Proposition 4.4 part 4 implies that V° also
proves that §(L)~" and §(A)~! are provably good. Hence, by the above P, *(Z)-proof V? also
proves that 6(LA) ™! is provably good: we first derive 6(LA)™' = (6(L)6(A))~" = §(L)~* -
§(A)~! using the above proof—this does not add new division gates that do not already appear in
§(LA)™%; and then we use the fact that VO proves that §(L)~! and §(A)~! are provably good.

By assumption V° proves that L; A; is provably invertible, which by (23) means that (L A)[n —
1] is provably invertible. From this and the fact that V° proves that §(LA)~! is provably good,
using Proposition 4.4 part 4, we conclude that VY proves that LA is provably invertible.

Finally, by definition we have Det,;..-1(A) = Det;.-1(A1) - d(A) and Detgjpe-1 (L) =
Detejre-1(L1)0(L) and Detyj—1(LA) = Detyype-1(L1A1)0(LA). We can conclude
Detejre-1(LA) = Detype—1(L)Detjpe—1(A) from the assumption Detg;o—1(L1A41) =
Detejre—1(L1)Detgipe—1 (A1) and the equation §(LA) = 0(L)d(A).

For part 2 we proceed once more to use Proposition 4.6. We construct a X5 -formula to bit-
define a string function that given a natural number n outputs L(A),U(A) and a syntactically
correct P (Z)-proof of L(A)U(A) = A from the assumption L(A;)U(A;) = Aj;, where
L(A;),U(A;) are lower and upper triangular, respectively, and have dimension (n — 1) x (n —1).

Ifn =1,let L(ay;) = aj;and U(aq1) = 1. If n > 1, write A as in (23). By Lemma 4.7 we have
a X5 -formula that bit-defines the P, ! (Z)-proofs of L(A;)L(A;)™* = 1and U (A;)'U(A;) = 1.
Therefore, we have a X -formula defining the following elementary P !(Z)-proof (in which we
also define L(A), U(A)) using as assumption the proof-line A; = L(A;)U(A;):

Al Uzi . L(Al) 0) U(Al) L(Al)il’l)i
V2 Qnp B UQU(AI)—l Anp — UQAl_lvi 0 1 .
The fact that VO proves that L(A), U(A) are provably invertible, provided that V° proves that

A is provably invertible, follows from similar reasoning as before. [

Lemma 4.10. Let A be an n x n X8 -definable matrix in V° that V° proves to be provably invertible
and let vy, vy be n x 1 3P-definable vectors in VO (with coordinates being algebraic circuits) such that
VO proves that A + vivs is provably invertible. Then, the P *(Z)-proof of

Deteie1 (A + vivg) = Detejpe1 (A)(1 4+ v A7 01)
is X2B-definable in V°, and further V° proves that the proof is provably good.
Proof. We start with the special case:

Detejre—1 (I, + v’i v9) = 1+ wovl, where VO proves that I,, + viv, is provably invertible. (24)

35

Let v; = (u1,¢;) and v9 = (ug, ¢z). We show a P (Z)-proof of (24) from the following two
assumptions: (i) the P (Z)-proof of Detojpe-1(I_1 + ulug) = (1 + ugut) is XB-definable
in VY and (ii) V° proves both that this P, !(Z)-proof is provably good and that I, _; + u}us is
provably invertible. By Proposition 4.6 the first condition implies that the P, ! (Z)-proof of (24) is
3 B-definable in V°. By the second condition V? also proves this P, (Z)-proof is provably good,
because V? proves that each part of the proof is.

If n = 1, the statement is clear. If n > 1, write I,, + viv, as follows

I, 1+ ulusy coul
In—i—vin:(" ! L)

C1U9 1+ cie

We first note the following:

Claim. The P_1(Z)-proof of (I,,_1 +ulug)™t = I,y — (1 + ugul) "t uy is XP-definable in VO
and V° proves it is provably good.

Proof of claim: Abbreviate D = u/us and 8 = (1 + usu!). Then we need to show (1,,_; + D) ™! =
I,,_1 — B71D. Recall that we assume that [,,_; + D is provably invertible (assumption (ii) above).
Multiplying both sides by (I, _; + D)wegetl, 1 = I, 1+ D — I,y +D)D =1, ; +
D — 371D — 371 D2 Multiplying both sides by 3 we get

5171,—1 = B(In—l + D) - (In—l + D)D (25)

Hence it is enough to show a P, (Z)-proof of (25), that is X7 -definable and provably good in V°.
By elementary rearrangements D? = u}{ (3 — 1)us = (8 — 1)D. And so we can use this identity
to prove (25) as follows: 3(I,,_y + D) — (I,_1 + D)D = B3I, 1 + 8D — D — D*> = B3I, | +
BD—D—(8—1)D =1, 1+ 8D — D — 3D+ D = 31,_1. Our P, ' (Z)-proof is provably

good by construction (stemming from /,,_; + D being provably invertible). mcjim

Let o := ugul. By the claim, the definition of Det,;,.—1 and the assumption Det ;-1 (1,1 +
u}ug) = 1+ «, we obtain

Deteiye1 (1, 4 viv2) =Deteye—1 (L1 + ufus) ((1+ c1c2) — cgug(n1 + ulus) epul) =
=(14a) (1 + c102) — coua(Lp—1 — (1 4 @) 'ujus)cuy) =
=(1+ a)(1 + cica) — (1 + a)eicaugul + crcougulugul =
=(1+ a)(1+ c1c0) — (1 + @)ercaa + crepa® =
=l+a+cier=1+v0k.

This gives a P, }(Z)-proof of (24) which is also provably good, provably in V°.

Finally, we need to conclude Det ;-1 (A + vivy) = Detujpe-1(A)(1 + vy A710t) from (24),
and show that V? proves that the proof is provably good. Let L := L(A) and U := U(A) be
the matrices from the statement of Lemma 4.9 part 2. This lemma (and the definition of Det.;,..-1)
gives a P 1(Z)-proof of:

Det,jre—1 (A + vivy) =Detpo 1 (LU + vivy) = Detyipo1(L)Detyipe1 (I, + L™ 0t v,U M Detyipe1 (U) =
=Det jre—1 (LU)(1 4+ vU *L710%) = Detejpe—1(A) (1 + v A7 100) .

The above P! (Z)-proof is provably good because by assumption A and A+wvtwv, are both provably
good. [

36

We can now conclude the main proof of this section:

Proof of Proposition 4.5. Part 1 follows from the definition of Det,;,..-1. Specifically, assume that U
is lower triangular (the other case is similar), then Det;,.1(U) = Detgipe1(U1) - (thpy, — 02U 0),
where v, is the nth row of U excluding u,,,, and U; = U[n — 1]. Similar to previous arguments
in this section, the]P’c_l (Z)-proof of u, — vaUy o =u,, is 2113 -definable in V°, and V proves
that the proof is provably good: the division gates in this proof come from U; ', but we assumed
that V° proves that u;}', . . ., u ! are all provably good and so by Proposition 4.4 part 3 V proves

that U (and specifically U[n — 1)) are provably invertible. Hence, using as before Proposition 4.6
we can conclude part 1.

Part 2 is proved once more by using Proposition 4.6. If n = 1, it is immediate. Assume that n > 1.

Let
¥ - X, o v — i oud
(% Tnn ’ U2 Ynn .
We want to show that the P, ! (Z)-proof of Det,;,.—1(XY") = Det,j..—1 (X)Detjp.—1(Y) from the
assumption that Det,;..-1(X1Y]) = Detyjpe—1(X1)Detyipe—1 (Y1) is 2P -definable in V© and that

VO proves that it is provably good.
Note that (XY)[n — 1] = XY} + viuy. Thus, by the definition of Det,;,.—1, we have

DetciTC*l(X> = DetciTC*l(Xlw(X)) Detcz‘rc*l(y> = Detcz’rc*l(yl)fs(y) and
Detejre—1 (XY) = Detgje-1 (XlYl + U§u2)5<XY))

and we are supposed to prove:
Det o1 (X1Y1 4 vjug)d(XY) = Detejpe—1 (X1)8(X) - Detyjre1 (Y1)5(Y) . (26)
By Lemma 4.10 we have
Det jpe1 (X1Y1 + vfus) = Detejre-1(X1Y1)(1 + ug(X1Y1) " '0l), 27)

where VO proves that the P, ! (Z)-proof of this equation is provably good whenever V proves that
(XY)[n— 1] = X1Y] + vluy is provably invertible. We know that V° proves that X;Y] + vius is
provably invertible because by assumption V proves that X [n]Y [n] = XY is provably invertible,
and (XY} + viuy) ™! = ((XY)[n — 1]) ! is used in the definition of (XY") ™.

We now use the P! (Z)-proof of (X1Y1)™! = Y, 'X; " from Lemma 4.8. Note that if we
assume that V? proves that X = A, Y = B and A[k], B[k], A[k] B|[k| are provably invertible for
all k € [n], then in particular VO proves that X; = A[n—1],Y; = B[n—1]and A[n—1]B[n—1]
are provably invertible, and thus under this assumption Lemma 4.8 states that V° proves that the
P 1(Z)-proof of (X,Y;)™! = Y, ' X, is provably good. From this, (27), and the assumption
Detejpe-1(X1Y1) = Detejpe1 (X1)Detgjre—1 (Y1), we get

Det, i1 (X1Y1 + viug) = Detyiye1(X1)Detgipet (Y1) (1 + ugY; P X 10h) .
Hence, in order to prove (26), it suffices to prove
(14 uY, ' X)) S(XY) = §(X)a(Y),

which follows from (21) (where V' proves that the P, ! (Z)-proof of (21) is provably good if V°
proves that X = A, Y = Band A, B and AB are provably invertible). [

37

5 Homogenization in V'

In the previous section we constructed in V° a P! (Z)-proof with division of the determinant
identities. The theory V' proves that this P, (Z)-proof is correct in the sense that it proves that
each proof-line follows from previous lines correctly, or is an axiom, and that all division gates are
provably good (meaning specifically that there is no division by zero, and that the Div inference
rule is applied correctly). On the other hand, the syntactic-degrees of circuits in the P, ! (Z)-proof
(as defined for circuits with division in Definition 6.2) are not polynomially bounded. In order to
be able to balance the circuits and then use the reflection principle for division-free P.(Z)-proofs
in Theorem 11.3 we need to eliminate division and high syntactic-degrees. In this section we start
developing an approach to eliminate high syntactic-degrees from P, (Z)-proofs in V°.

Recall the concepts of a homogeneous polynomial and a syntactic homogeneous circuit from
Section 2.7. Here we demonstrate a X7 -definable FAC® algorithm in V?, for homogenizing al-
gebraic circuits without division. This means that the algorithm receives algebraic circuits with no
division gates and outputs the corresponding sum of homogenous components of the polynomial
computed by the input circuit. We will use this algorithm in the theory in Section 9 in order to elim-
inate high syntactic-degrees from proofs, but we also use it in Section 6 to write the determinant
as a circuit with no division gates.

In order to balance circuits in Section 10 we will need to work with the syntactic-degrees of
nodes in homogeneous circuits. Nevertheless, we show that for most part we can get away with
syntactic-degree upper bounds and not (the precise) syntactic-degrees, and so our homogenization
algorithm below outputs a circuit in which every node carries a label specifying its syntactic-degree
upper bound. On the other hand, for technical reasons, in the proof of the Cayley-Hamilton theo-
rem in Section 12 we need to know precisely the syntactic-degree of nodes in some circuit (in order
to use Lemma 7.3 part (3)). In this case we shall simply witness the syntactic-degrees of every node
in the specific circuit we need, in which case the algorithm below outputs a homogeneous circuit
with syntactic-degrees specified on every node.

Remark 5.1. We note that we do not know of an FAC? algorithm that computes the syntactic-degree
of a node in a given circuit. On the other hand, computing the syntactic-degree of a node in a circuit is
doable in NC2. This was noted for example by Allender et al. [AJMV 98] (replace every scalar gate by 0,
every variable gate by 1, every product gate by + and every plus gate by max, and then evaluate the circuit
within NC?; e.g., using the algorithm implicit in [A[MV 98], or the algorithm in [MRK88]). However, to
actually use this algorithm in the theory we would also need to prove its correctness; this is likely doable (as
we essentially show for the [VSBR83] circuit balancing algorithm in Section 10), but we have opted for a
shorter solution that uses syntactic-degree upper bounds or witness syntactic-degrees.

Definition 5.2. A witness for the syntactic-degree of all nodes in a circuit is a string that stores pairs
of numbers (v, d), with v the node label and d its syntactic-degree, for every node v in the circuit.

We can store each syntactic-degree as a natural number since we need to witness only circuits
with polynomial syntactic-degrees. It is easy to formulate a 3 -formula ¢(C, W) with C a circuit
and W the string that contains all the syntactic-degrees d(v) of the nodes v in C, such that ¢(C, W)
holds iff W is correct: for every addition gate t = vy + vy it checks that d(t) = max{d(vy), d(v2)},
and for every product gate t = vy - vy it checks that d(t) = d(v;) + d(v2), and for leaves it checks
d(x;) = land d(c) = O for ¢ € Z, and x; a variable.

38

Homogenization Algorithm in Uniform FAC"

Input: an algebraic circuit C' with no division of size s and a natural number d.

Optional input 1: A syntactic-degree witness (Definition 5.2) for all the nodes in C' (including the
root that has syntactic-degree d).

Optional input 2: A natural number 7 (the intended degree of the syntactic homogeneous com-
ponent to compute).

Output:

1. An algebraic circuit C” of size O(d? - s) such that C” is a sum of syntactic homogeneous
circuits C' = CO + ... + C@),

2. If optional input 1 was supplied, then for every gate v in C” the duplicate gate [v, j] for j >

d(v) is the circuit 0 (see below for the notation “[u, j]”).

3. If the input C' is (declared to be)® a (sum of) syntactic homogeneous circuits Zie ,C) for
I € H{0,...,d} then output C, augmented with the nodes [u, j| = 0, for all nodes u € C
andallj € {0,...,d} \ I.

4. If optional input 2 was supplied, then " = C'¥), namely the ith homogeneous component.
If moreover the input circuit C' is already a syntactic homogeneous circuits C'/) then the
output is the circuit 0 if j # 4 and is C¥ if j = i.

Algorithm: We follow the standard Strassen [Str73] algorithm, only that instead of building the
circuits by induction from leaves towards the root we construct all nodes simultaneously as follows.

(1) Assume we do not have the witness for syntactic-degrees of all the nodes (namely, the witness
was not supplied as an input). Every node v is duplicated d+ 1 times into the nodes [v, 0], . . . , [v, d].
For a node [v, i] we call i the syntactic-degree upper bound of [v, i], denoted as

dup([v,]) = 1.

The node [v, 7] is (the root of) a syntactic-homogeneous circuit of syntactic-degree at most i
computing either 0 or the degree 7 homogeneous part of the polynomial 6’: The algorithm is
computable in FAC" because every new node [v,] depends only on the copies of the two nodes
u, w that goes into v, and these nodes are already known from the input circuit, namely, they are

[u,], [w,i], fori = 0,...,d+ 1, where v = u + w or v = u - w in C. Hence, the wiring of the
new circuit is done in parallel for each of the new nodes as follows:
Case 0: visaleafin C. If visa constant o, then define [v, 0] = o, and [v,i] = Oforalli = 1,...,d.

Otherwise, v is a variable x ;, and we define v, 1] = x;,and [v,¢] = Oforall 1 # ¢ € {0,...,d}.
Case 1: v = u + w in C. Define [v, 1] := [u,i| + [w,] for everyi =0,...,d.

Case2: v = u X win C. Define [v,7] := > j+e=i [u,j] X [w, k]
§,k=0,...,d

Finally, C® .= r@ for r the root of C, foralli = 0,...,d.

The algorithm does not check for correctness of C being a (sum of) syntactic homogeneous circuits.

39

(2) Otherwise, assume that a witness for the syntactic-degree d(v) for every node v in C' was
supplied as an input. In this case the algorithm is the same as above, except that the ith duplicate
[v, 1] of a node v is defined to be the circuit O whenever i > d(v). More precisely:
Case 0: visaleafin C. If v is a constant «, then define [v,0] = a. Otherwise, v is a variable z;,
and we define [v, 1] =z, and [v, j] = 0,forall0 < j < dand j # 1.
Case 1: v = u + w in C. Define [v,i] := [u,i| + [w, i] foreveryi = 0,...,d(v), and [v,i] := 0
fori =d(v)+1,....d
[v,i] :==0fori=d(v)+1,...,d’ -

Finally, C¥) := 7@ for r the root of C, foralli = 0, ..., d.

Note on syntactic-degree upper bounds. Notice that if we do not have a witness for syntactic-
degrees the above algorithm produces a syntactic homogeneous circuit (or a sum of such circuits)

in which each node [u, 7] is of syntactic-degree i, except that for [u, 7] = 0, the syntactic degree of
the circuit rooted at [u, i] can be smaller than ¢ (but not bigger). This means that the circuit contains
in itself a witness for the upper bound of the syntactic-degree of each node (but not a witness for the
syntactic-degree; this witness can be checked by following the upper bounds of syntactic-degrees
of each of the nodes leading to the node). Assuming we get as input a correct syntactic-degree upper
bound, that is, d > d(C'), then in output (1) we get C" = C'.

If we receive a syntactic-degree witness for every node in C' as an input then assuming [, i
is not the circuit 0, the original node w has syntactic-degree at least 7. Also, if the input to the
algorithm is already a sum of syntactic homogeneous circuits Zf:o C then [u,i] = (ifi > k
for every node u in C.

We are going to construct]P’C(Z)-proofs that contain witnesses for the syntactic-degree upper
bounds of every node.

Definition 5.3 (syntactic-degree upper bounds in proofs; dyp,). Given a P.(Z)-proof m we say that
every node in every circuit in the proof appears with its syntactic-degree upper bound if every such
node w is a pair of numbers [u, i| for dy,(u) = 14, according to the construction in the homogenization
algorithm above.

We have the following main theorem about homogenization of proofs:

Theorem 5.4 (Homogenizing P, (Z)-proofs homogeneous component-wise). Let I, G be two 325~
definable algebraic circuits over 7, with syntactic-degree d, and assume that there is a P.(Z)-proof of
F = G which is XB-definable in V°. Then, for every k = 0, . . ., d, the following proof is X5 -definable
in VO: the P.(Z)-proof of F'¥) = G*) in which every circuit is a sum of syntactic homogeneous circuits
inside which every node u appears with its syntactic-degree upper bound, and d.1,(u) < k.

Remark 5.5. Under the conditions stated in Theorem 5.4 we can also conclude easily that the following
proof is P -definable in V°: the P.(7Z)-proof of Zi‘c:o FO = Zf:o G in which every node u in
the proof appears with its syntactic-degree upper bound, and d,(u) < k. However, from this we cannot

’Note that this means that provably in VY there exists a P, (Z)-proof of [v,] :=
foreveryi =0,...,d, since [u, j] = O for j > d(u) and [w, k] = 0 for k > d(u).

hSs SO [w, 7] x [w, k],

40

always conclude in VO that F' = G is P.(Z)-provable. This is because without syntactic-degree witnesses
for F we cannot necessarily conclude in V° that there is a P,(Z)-proof of F' = Zf:o F®, In Section 9
we are going to show that for the purpose of the determinant identities we do not need the syntactic-degree
witnesses.

We need the following lemmas before concluding this theorem.

Lemma 5.6. Let '} @ F5 and F1 ® F5 be two E{B—definable circuits® in VY and let k be a natural
number. Then, the following equation have 37 -definable P.(Z)-proofs in V°, in which every circuit is
a sum of syntactic homogeneous circuits inside which every node u appears with its syntactic-degree upper
bound:

1. (Fl@FQ)(k) — Fl(k) +F(k);
2 (FeR)® =y 7Y .

Proof. Using the homogenization FAC'-algorithm above we construct (@ F;)*). By definition,
(FLOF)® = Fl(k)@FQ(k), and by axiom Cl1, Fl(k)@FQ(k) = Fl(k) + FQ(k). We thus construct
this one-line proof, adding to the proof a witness for the application of axiom C1. Note that
given a circuit A @ B we can construct in V° a witness for the correctness of applying C1 to get
A @ B = A+ B. The witness will say that A in A & B is identical to A in A + B, by an explicit
mapping of nodes from the former to the latter copy; and similarly for B. Furthermore, note that
in this one-line P.(Z)-proof every node u in every circuit appears with its syntactic-degree upper
bound: in (F;®F)® this is true by construction of (-)* and in Fl(k) + FQ(k)
every node v in F' fk) + F Z(k) to have the same syntactic-degree upper bound as its origin node in
(FL®F,)™ (note that this is indeed a true upper bound on the syntactic-degree of u).

This concludes 1. Part 2 is similar using the homogenization algorithm above. O]

we simply specify

We now conclude the proof of the theorem:

Proof of Theorem 5.4, For every k = 0, ..., d, we devise a X7 -definable function in V° that pro-
duces aP,(Z)-proof of F'¥) = G¥) with every node u in every circuit in the proof appears with its
syntactic-degree upper bound d,;,(u) (that is, it appears as [u, i| where i = d,},(u)) and such that
dun(u) < k. This is done in a manner resembling the algorithm above for homogenizing circuits
and using Proposition 4.6. Specifically, for every k = 0,...,d and every line S = T in 7, we
construct in parallel a part of the proof of S*) = T'®) (that taken collectively would amount to a
proof of S*) = T®),

Though some proof-lines S = 7" possess syntactic-degree witnesses while some are already
syntactic homogeneous, and some proof-lines do not fall into the two former categories, the proof
we show works for all these three cases; this stems from the way we defined the homogenization
algorithm: the algorithm constructs the nodes [u, 7] for every original node w in its input and every
1 = 0,...,d (even in the case where 7 exceeds the specified syntactic-degree of u in the syntactic-
degree witnesses input; and similar for the output of the homogenization algorithm part 3).

Case 1: S = T is an axiom of P,(Z). We construct a P,(Z)-proof of S®*) = T*) with syntactic
degree < k.

Lemma 5.6 gives X7-definable in V° P,(Z)-proofs of (Fi®F,)*® = (F} + F3)® and
(FL@F,) ") = (Fy -)%, as required for the axioms C1 and C2.

8Recall that we mean here that we pick one such circuit out of all possible circuits of these form.

41

Axioms Al and A10 are immediate. For the other axioms, consider for example the axiom
Fy - (Fy- F3) = (Fy - F,) - F5. We have to construct a proof of

(Fy- (Fy- F3))M = ((Fy - Fy) - F5)W. (28)
By part (ii) of Lemma 5.6 the equations

k—1
(F1'(F2'F3))(k) _ Z(ZF(J)Fk i— J) (29)
7=0

1=0

(Fy-F)-F)® = Z(ZF@FS‘”) EY, (30)
i=0 \j=0

can be proved in P.(Z). In P.(Z), the right hand sides of both (29) and (30) can be written as
Dititiek F(l)FZ(J)Fél). This gives the proof of (28).
Case 2: If theline S = T'is S1 - S5 = T} - T5, and it was derived using the rule R4 as follows:

S =T S =
1 =11 2 = (31)
S1-9 = T2
From previous lines S| = T1 and Sy = T, we construct the derivation of S = 7(*) by using the
lines Sl 2 Tl(and 52 () foralli = 0,...,k, as follows: by Lemma 5.6 (in fact, direct

construction suffices here, because here S1, S5 are dls]omt circuits and the same with 77, T5), we
can construct the proofs of (S; - Sp)®) =3 SY) : S(" and (Ty - Ty)®) = ZZ 0 . Tl(z) :

20y

TQ(k_i). Hence, (S) - S9)®) = (T} - Ty)™ can be proved from the assumptions S 1 : S(Z
i =0,...k

Note that, similar to Proposition 4.6, this is done independently and simultaneously for every
proof-line. That is, given the rule application (31), we construct the (partial) proof of (S} - SQ)(k) =
(Ty - T2>(k) using only the lines Sy =T, and S, = 75 foralli = 0, ..., k; and in addition,
since we also want to record the information about Wh1ch line was derived from which previous
lines we add pointers to previous lines. The latter can be defined via a X2 -definable V? number
function given as input the line-numbers of S; = T} and Sy = T5. Hence the whole construction
is in V©,
Case 3: If the line S = T is one of the rules R1 to R3, then this is similar to the case for rule R4.

The fact that in the P.(Z)-proof we constructed every node u in every circuit appears with its
syntactic-degree upper bound is clear from the construction, since we used the homogenization
algorithm to produce the syntactic homogeneous circuits and Lemma 5.6. That every proof-line is
written as a sum of syntactic homogeneous circuits follows by inspection of the construction. L[]

We will need the following claim (we sometimes use the notation “(in V°)” when the statement
that follows (suitably encoded) is proved in the theory V (and similar for VNC?)):
Claim 5.7 (in V). Given a syntactic homogeneous circuit F'? there exists a P.(Z)-proof of
F) = Zj:o (F (d))(z) in which every node w in every circuit appears with its syntactic-degree upper
bound.
Proof of claim: This is by the definition of the homogenization algorithm if the input to the algo-

rithm is the (already) syntactic homogeneous circuit F'¥ then (£) = (), for all 7 # d, and
(F@)D = F@ fori = d. mejaim

42

6 Preliminaries for Division Elimination

6.1 Overview

In this section we begin to provide the preliminaries for division elimination that we use in latter
sections. Standard division elimination by Strassen [Str73] requires finding a total assignment to
the variables such that no division gate in the circuit equals zero under this assignment. [HT15]
used Strassen’s method to eliminate division gates from proofs, by asserting the existence of an
assignment that does not nullify any division gate in the proof. Such a non-constructive result was
sufficient in [HT 15], but not for our purpose: we do not know how to uniformly find such assign-
ments in (uniform) NC?, and so we do not know how to eliminate division gates from general
algebraic circuits in VINC?, Our solution is to use the concept of provably good P! (Z)-proofs
that we introduced for this reason in Section 4.2: we show that as long as the theory proves every di-
vision gate in the proof is provably good then we can eliminate division gates from P, ! (Z)-proofs.

In Section 6.2 we show how to use a power series (which can be written as a circuit without
division) to simulate in some sense division gates. For example, we can reason in V° as follows
about division elimination. Start with the following P, !(Z)-proof: = - ! = 1. Then, apply the
linear transformation z — 1 — y which yields (1 — y) - (1 — y)~'. Substitute (1 — y)~! by the
term Invy (1 — y) defined as:

Invi(l—y)=1+y+y>+- -+~
which serves to “approximate” the inverse of 1 —y up to degree k, in the sense that (1 —y) - Inv(1—
y) = 1 — y**+1. For a circuit I’ denote by F(*) the syntactic-homogeneous component of degree i
of I, which computes the sum of all (syntactic-)degree i monomials in £. Then, V° can prove the
following statement:

“Let k > 1 be a natural number. Given x - x—' = 1, substitute 1 — Yy for x, and then
substitute the circuit Invi(1 —) for (1 — y)~% If (1 —) = 1 has a P,(Z)-proof.
then there exist P.(7)-proofs of syntactic-degree at most k for the following equations:

(L—y) - Ivg(1—y))¥ =1, (32)

(1—y) - Tnvg(1 =) =0, forl <i<k” (33)
We show in Section 8 (cf. Lemma 8.3) that assuming roughly that the inverse gate x*

is provably
good (for instance, in case p assigns 1 to x) then (1 — y)(o) = 1 has a P.(Z)-proof.

In Section 6.3 we show how to normalize circuits with division gates in V. In particular, we
say that a circuit C' has a division at the top whenever C' is of the form F - (G) ' or (G)~! - F, for
two circuits F, G. If F, G do not have themselves division gates we say that C' has a single division
gate at the top. We need our circuits to have, roughly, a single division gate at the top, because later

we replace division gates by their corresponding power series, but we do not know how to do it
with nested divisions.

6.2 Approximating Inverses by Power Series

Let F be a division-free circuit and let F'(°) be the syntactic homogeneous division free circuit that
computes the constant term of F' (namely, the polynomial F' under the all-zero assignment to its

43

variables); we showed that such a syntactic homogeneous circuit can be constructed in V in Sec-
tion 5. We now define the circuit Invy(F") that will serve as an inverse of /' modulo high degree
monomials, in the sense that

F - Invy(F) = 1 + [monomials of degree greater than k] . (34)

Note that because we work over Z the only way for (34) to hold (for £ > 1) is when the polynomial

—_

computed by F ©) that is F'(0), equals 1, since if the constant term in F' is not 1, no product of F’
can compute 1. (In general, the division elimination (as in Strassen [Str73]) needs to work over a

field and have an inverse element for £'(0))

—

Assume that F'(©) = 1 has a P,(Z)-proof and define the circuit Invy(F') as
Invi(F):=(1+4(1-F)+(1—-F)*+---+ (1 - F)"),

where powers like (1 — F')* are abbreviations of (1 — F')--- (1 — F'), k times (written as a loga-
rithmic in k depth circuit; since k will always be polynomial in our applications this will be enough
for our purposes). Note that Inv, (1 — z) for a variable z is the truncated Taylor expansion of 112
at the point 2z = 0.

The following lemma demonstrates that Invy(F") can provably serve as the inverse of F' up to
degree k (note that neither /" nor Invy(F") contain division), under some conditions:

Lemma 6.1. Assume that F' is a XB-definable circuit without division in 'V and let 1) be a 3P-
definable P.(Z)-proof of F®) = 1 and k > 1 be a natural number. Then, the P.(Z)-proofs of the
following equations are 337 -definable in ' V°, and every node in every circuit in the proofs appears with its
syntactic-degree upper bound (see Definition 5.3):

(F-Tnvy(F)© = 1 (35)
(F-Invi,F)D = 0, for 1 <i<k. (36)

Proof. Denote a = F©). We construct the following simple IP.(Z)-proof sequences. We have
a(l — (1 — F)) = aF, and by assumption that a = 1 has a P.(Z)-proof 1), we get a P.(Z)-proof
of F=(1-(1-F)).

By definition Invy(F) = (1 + (1 — F) + (1 — F)?> + -+ + (1 — F)*). By elementary
rearrangement, we prove in P.(Z):

Flnv(F)=1-(1-F)-1+1-F)+1-F>+--+(1-F)"
=14+(1-F)+ +1-F)'-1-F) - Q1+Q1-F)+1-F)>*+--+1-F)"
=14+1-F)++Q-Ff-Q-F)-1—-F?—... — (1 - F)*!
=1—(1-F)**. (37)

From (37) and Theorem 5.4 and Lemma 5.6 we construct a P.(Z)-proof of
(F - Tavg(F)®) = (1 — (1 = F)*)0 = 10— (1 = F}O = 1= (1 = PO,

wherein every node in every circuit in the proof appears with its syntactic-degree upper bound.
From Theorem 5.4 we have a P.(Z)-proof of ((1 — F)’”l)(o) = ((1- F)(O))kJrl = (1 -
FO)k+1"and using 1 we have that the rightmost term is (1 — 1)**! = 0, hence we conclude
(35).

44

To conclude (36) we proceed as follows. From (37) and Theorem 5.4 we construct P.(Z)-proofs
(F-Invig(F))® = (1—(1—=F)**1)® forall 1 < i < k, with all nodes appear with their syntactic-
degree upper bounds. From Lemma 5.6 we prove (1 — (1 — F)*1)() = 1) — ((1 — F)kﬂ)(i) =
0—((1- F>k+1)(2)'

To construct in the theory the P,(Z)-proof of (1 — F)¥*1)() = 0, for 1 < i < k, we use again
Lemma 5.6. We omit the details. (Note that since F(©) = 1 by assumption, we have (1 — F') 0) =,
meaning that all monomials in (1 — F') are of positive total degree. Therefore (1 — F)**! can

only have monomials of degree greater than k, and so ((1 — F)k“)(i) = () is a true identity for all
1 < k.) []

6.3 Division Normalization

We now show a 37 -definable function in VU that receives an algebraic circuit / with division and
normalizes it by converting it into a circuit with a single division gate “at the top”, namely a circuit of
the form Num(F') - Den(F)~! (formally, the output gate is a product gate with one of its children
being a division gate). Accordingly we are going to normalize P, !(Z)-proofs, so that circuits in
the proofs have no division gates that occur in the scope of other division gates (roughly speaking,
normalizing every circuit in the proof so that the division gate appears only at the top). We need
to normalize circuits in such a way in order to be able to eliminate division gates: as we shall see
in Section 8, we replace a division gate G~! with Invy(G); but for Inv(G) to be defined we need
G to be a division free circuit, and this can be guaranteed only if no division occurs in the scope of
other division gates.

To extract the denominator and numerator of circuits with divisions we do the following: for
every node v in a circuit F' with division we introduce two nodes Den(v) and Num(v) that will
compute as polynomials (that is, they will be circuits with no division) the numerator and denomi-
nator of the rational function computed by v, respectively, as follows:

1. If v is an input node of F', let Num(v) := v and Den(v) := 1.
2. If v = u~ !, let Num(v) := Den(u) and Den(v) := Num(u).
3. If v = uy - ug, let Num(v) := Num(wu;) - Num(uy) and Den(v) := Den(uy) - Den(us).

4. If v = uy + ug, let Num(v) := Num(uy) - Den(us) + Num(us) - Den(u,) and Den(v) :=
Den(uy) - Den(us).

Let Num(F') and Den(F’) be the circuits with the output node Num(w) and Den(w), respec-
tively, where w is the output node of F'.

Definition 6.2 (Syntactic-degree for circuit with division). The syntactic-degree of a circuit C' with
division is

d(C) = d(Num(C)) + d(Den(C)).

Division normalization is formalized by a 337 -definable string function in V° as follows: every
internal node w in the input circuit /' is duplicated into two copies denoted Num () and Den(u).
We then construct (in parallel) the division normalized circuit by wiring the nodes Num(u) and
Den(u) for each win F as in the original definition: (i) If v is an input node of F, let Num(v) := v
and Den(v) := 1; (ii) if u = v+w we construct Num(u) := Num(v)-Den(w)+Num(w)-Den(v)

45

and Den(u) := Den(v) - Den(w); (iii) if v = u™!, let Num(v) := Den(u) and Den(v) :=
Num(u); and finally (iv) if v = u; - ug, let Num(v) := Num(u;) - Num(uy) and Den(u) =
Den(uy) - Den(us).

We have the following:

Proposition 6.3 (in VO). Let F, G be circuits with division. Assume that F' = G has a P! (IF)-proof.
Then Num(F) - Den(F)~! = Num(G) - Den(G) ™! has a syntactically correct’ P (F)-proof such
that no division gate in the proof occurs in the scope of another division gate.

Proof. The proof of Proposition 6.3 is similar to the proof of Theorem 5.4 (and Proposition 4.6). We
demonstrate only the following case (others are similar): assume that in the original P *(Z)-proof
of F' = (G we have the following rule application: from S = T'and H = K derive S- H =T - K.
We are going to construct a P, ! (Z)-proof of:

Num(S - H) - Den(S - H)™' = Num(T - K) - Den(T - K)™*
using (pointers to) P !(Z)-proofs of
Num(S) - Den(S)™! = Num(7T') - Den(7)~" and

Num(H) - Den(H) ™' = Num(K) - Den(K) .
By definition Num(S-H) = Num(S)-Num(H), Den(S-H) = Den(S)-Den(H), Num(7T-K) =
Num(7')-Num(K) and Den(T- K) = Den(T')-Den(K). Hence, the following is a X -definable

P 1(Z)-proof in V (we do not show some trivial rule applications such as associativity, etc.):

Num(S - H) - Den(S - H)™' = Num(S) - Num(H) - (Den(S) - Den(H))™*
= Num(S) - Num(H) - Den(S)™" - Den(H)™*
= Num(S) - Den(S) ™ - Num(H) - Den(H)™*
= Num(7T) - Den(T)™! - Num(K) - Den(K)™*
= Num(T) : Num(K) . Den(T) ' Den(K)™!

(

Note that in the above P_ ! (Z)-proof no division gate appears in the scope of another division gate
(because Num(-), Den(-) are circuits with no division). O

We now show that provably good nodes are preserved under division normalization, in the
sense that for every node in a provably good circuit, VO proves there exists a IP,(Z)-proof of
Den(v | p) = 1. Recall that a division gate u =" is provably good (Definition 4.2) whenever there
is a division axiom free P, 1 (Z)-proof of u | p = 1 where 1) does not contain new division gates
not already in u | p. Hence, if u has no division gates then 7 is a P.(Z)-proof (namely, it does
not include division gates by itself). This then implies in particular that if we normalize divisions
in a circuit with division F’, then in Num(F') - Den(F)~!, there is only a single division gate and
VO proves there exists a IP,(Z)-proof of Den(F | p) = 1. This will be used in Section 8 when we
completely eliminate division from P *(Z)-proofs.

Lemma 6.4 (in V). Let I be a circuit with division and assume that all division gates in I are provably
good. Then, for every (not necessarily division) node v in F there exists a P.(Z)-proof of Den(v | p) = 1.

°Preservation of provably good nodes will be shown in what follows.

46

Proof. Simultaneously, for every node v in F' we construct a P.(Z)-proof of Den(v [p) = 1, from
which we conclude that Den(F' [p) = 1is provable in P.(7Z).

This is done by cases as follows.
Case 1: v is an input node. Hence Den(v) = 1 by definition of Den.
Case 2: v = wj o we, for o € {+,-}, then Den(v [p) := Den(w; | p) - Den(wy | p).
Thus we construct the proof of Den(w; [p) - Den(wy [p) = 1 by pointing to the proofs of
Den(w; | p) = 1and Den(ws | p) = 1 and using basic rules of P,(Z) suchas 1 -1 = 1.
Case 3: v = u~!. This is the relatively more difficult case. We need to use the following claim:

Claim (in V). If there exists a P *(Z)-proof of u | p = 1 in which we do not use the axiom Div and
in which we do not add new'’ division gates apart from the division gates already in v | p then
there exists a P.(Z)-proof of Num(u [p) = Den(u [p).

Proof of claim: By Proposition 6.3 and by assumption that there is a P, ! (Z)-proof of u | p = 1
in which we do not use the axiom Div, we can show that there is a P, }(Z)-proof of Num(u |
p) - Den(u | p)~! = 117! that does not use the Div axioms, excluding trivial applications of
the Div axioms (these applications stem from the construction of the P, !(Z)-proof in the proof
of Proposition 6.3). By multiplying each proof-line by Den(u | p) we get a a P, (Z)-proof of
Num(u | p) - Den(u | p)~' - Den(u | p) = Num(u | p) = Den(u | p) - 1 - 17! that does not
use the Div axioms, excluding trivial applications of the Div axioms and the last application of Div
Den(u | p)~' - Den(u | p) = 1. From this it is possible to show that there is a P.(Z)-proof of
Num(u [p) = Den(u | p) (we omit the details). mcjim

To finish case 3 we need to construct a P.(Z)-proof of Den(v | p) = 1. By definition
Den(v) = Num(u), and so by substitution (Proposition 3.2) we have a P.(Z)-proof of Den(v |
p) = Num(u | p). By assumption we have a division axiom free P, ! (Z)-proof of u | p = 1, from
which by the claim above we have a P.(Z)-proof of Num(u | p) = Den(u | p). Since we assume
that we already have a P.(Z)-proof of Den(u [p) = 1 (using pointers to this proof) we finally get
aP.(Z)-proof of Den(v [p) = 1. O

Using Lemma 6.4 we can now strengthen the division normalization of P }(Z)-proofs as stated
in Proposition 6.3 by showing that normalizing proofs preserves provably good nodes:

Corollary 6.5. Let I, G be circuits with division in the X, Y variables. Assume that ' = G has a Z7-
definable in VO P 1(IF)-proof. Suppose that V' proves that for every division gate v = t =1 in this proof
there exists a P.(Z)-proof of Den(v | p) = 1."" Then, Num(F')-Den(F)~! = Num(G)-Den(G) ™!
has a P (FF)-proof such that no division gate in the proof occurs in the scope of another division gate.
Furthermore, this P 1(Z)-proof is =8 -definable in V°, and V° proves that for every division gate v =
u~ Y in this proof there exists a P,(Z)-proof of u | p = 1.

Proof. The statement is identical to Proposition 6.3, except that we require additionally that in the
resulting normalized proof for every division gate v = u ™! there exists a P.(Z)-proofof u | p = 1.
Inspecting the proof of Proposition 6.3, we observe that every division gate in the resulting division
normalized P71 (7Z)-proof is of the form Den(H)™ for some H that appears in the original P (Z)-
proof of F' = G. Therefore, by assumption V proves that Den(H | p) = 1 hasaP.(Z)-proof and

we are finished.]

1%We do not care for repeated occurrences of the same division gates in the proof.
""Note that Den(v) may be different from ¢ because ¢ can have division gates by itself.

47

7 From a Rational Function to the Determinant as a Polyno-
mial

7.1 Overview

In order to be able to eliminate both division gates and high syntactic-degrees from the P, !(Z)-
proofs in Section 4, we will need to construct in the theory a P, !(Z)-proof of the determinant
identities in which the determinant circuits appearing in the final identities that are proved are,
firstly, written as polynomials and not as rational functions, that is, as circuits without division; and
secondly, have small syntactic-degrees. This is similar to division gates elimination from circuits
following Strassen’s work [Str73]: to eliminate division from circuits the circuit should compute a
polynomial and not a rational function. (Nevertheless, note that some intermediate P_ ! (Z) proof-
lines will contain the determinant written with division gates and having high syntactic-degrees;
but as long as this only happens in intermediate proof-lines these can be eliminated from the proof
in the sequel.)

Let F' = F(T, z) be a circuit with division of syntactic-degree d. Similar to [HT15], we define
coeff .« (F) as a circuit in the variables 7, computing the (polynomial) coefficient of z* in ', where
F' is written as a power series at 2 = (. In other words, Z?:o coeff i (F) - 2" are the first d + 1
terms in the Taylor expansion of F'at z = 0.

Let

Detrayior (X) := coeff n (Detgipe—1 (L, + 2X))

be the circuit computing the nth term of the Taylor expansion of Det,;,..—1 ([, + 2X) at z = 0.
Then, Detygy0r (X) computes the determinant function: since every variable x;; is multiplied by
z, the coefficient of 2" is precisely the determinant.

By construction, Detrgy,- (X)) will compute the determinant as a polynomial, except that it will
contain some division gates in a sub-circuit that computes a constant (here we differ from [HT15];
due to the fact that we cannot simply substitute division gates u ™! that compute 1 by the node 1,
because the theory needs to prove the correctness of this substitution in some way).

In Section 7.4 we show that there is a P *(Z)-proof of

DetTaylor (X) = Detcirc—l (X)>

for ann x n symbolic matrix X, which is 2 -definable in V® and that V? proves that it is provably
good (Definitions 3.1 and 4.2). Combined with the P, (Z)-proof from Section 4, we will get that
VO proves the existence of a P, ! (Z)-proof of the determinant identities in which the determinant
circuit in the final identities is replaced by Detryi0,-

In Section 7.5 we reduce the syntactic-degree of the circuit Dety,,,, (X) which has exponential
syntactic-degree (here we once more differ from [HT'15], since we do not know how to formulate
and prove the correctness of an NCZ-algorithm that eliminates 0 nodes in general algebraic cir-
cuits, or nodes of high syntactic-degree that compute the zero polynomial). We show in V? that
there exists a P, !(Z)-proof of

DetTayZOT (X) = Det#aylor(X)’
where Det#aylor(X) has no division gates, computes the determinant as a polynomial and has
syntactic-degree n.

We start with Section 7.2 in which we show some P, (Z)-proofs that express how Det ;.1
behaves under elementary row and column operations.

48

7.2 Elementary Row and Column Operations

We formalize some elementary Gaussian operations that will be useful in the sequel.

Lemma 7.1. Let A be an n X n matrix in the x;;,y;; variables (for i,j € [n]) that is 37 -definable
in VO and assume that V° proves that A is provably invertible. Then the following identities all have
3B -definable P71 (Z)-proofs in V° and VO proves the proofs are provably good under the assignment of
identity matrices to the variables (i.e., v;; = vy;; = 0 and x;; = y;; = 1 fori # j € [n]):

1. Detgjpe-1(A) = —Detgjpe—1(A’), where A’ is a matrix obtained from A by interchanging two
rows or columns.

2. Detjre—1(A”) = uDet ;-1 (A), where A” is obtained by multiplying a row in A by w, such that
w1 is provably good (and similarly for a column).

3. Detejre—1(A) = Detyjpe—1(A™), where A" is obtained by adding a row to a different row in A
(and similarly for columns).

4 Detyjre—1(A) = apnDeteipe1 (A — a lvtvy), where A1, vy and vy comes from the decomposi-
tion (12) (with A instead of X).

Proof. Part 2 follows from Proposition 4.5: A” = T'A (or A” = AT for the case of multiplying a
column by u) for T" a diagonal matrix with either 1 or u on the diagonal. Hence, V° proves that
T k], Alk] are provably invertible by Proposition 4.4. Moreover, since for every k € [n], T'[k] is a
diagonal matrix with either 1 or v on the diagonal and V? proves that A[k] is provably invertible,
V0 clearly also proves that T'[k] A[k] is provably invertible. Thus, by Proposition 4.5 (part 2) we
have that Det ;.1 (A”) = uDet .1 (A) has a £P-definable P, ! (Z)-proof in VO that VO proves
is provably good.

Part 3 is similar to Part 2: in this case A” = T" A, where T” is a suitable triangular matrix that
V? can prove is provably invertible.

In part 1 we cannot directly apply Proposition 4.5: we have A’ = T'A where T is a transpo-
sition matrix, but 7" is not necessarily provably invertible (because not all division gates in 7'
are provably good). However, we can write 1" = B; B, where both By, B; are provably invert-

ible 0-1 triangular matrices and Det,;,.—1 (B)Det,;.-1(Bs) = —1. For example, < 0 1) _

10

11 10
(o) ()

More formally, there exists a 32 -definable string function in V? that given the natural num-
ber n and two natural numbers 7, j, outputs two 0-1 matrices B;, By such that BB, is the
n X n transposition matrix of rows 4 and j (similar with columns) and such that V? proves that
By [k], Bo[k], Balk])A[k], By [k](ByA)[k] are provably invertible for all £ € [n], and furthermore
VO proves that Det,;,..-1(B;)Det,j.1(Bz) = —1. By Proposition 4.5 we get that the following
equations have X7 -definable P! (Z)-proofs in VY that V? proves are provably good:

Detmc-1 (BlBQA) = Detcirc—1 (Bl>Detcirc—l (BQA) = Detcirc—1 (Bl>Detcirc—l (Bg)Detmc—l (A) .

49

Part 4 is proved as follows:

Det,yro 1 (A) = Detye 1 (A1) - 5(A)
= Detcm: (A1) - (ann — U2A_1UD
= Detjre-1(A) - (a,m (1 —a;t v A7 U1))
= (DetmC (A1) - (1= a,, - v AT'0Y))
= - (Detoipe1 (A1 — U1U2))

where the last equality follows from Lemma 4.10, the first equality from the definition of Det,;,..-1
and the rest are elementary rearrangements. O

7.3 Extracting Polynomial Coefficients: Taylor Expansion

In order to compute the determinant as a polynomial, and not as a rational function (with division,
that is), we need to write the determinant as the coefficient of 2™ in the Taylor expansion (at z = 0)
of a circuit with division that computes the determinant of /,, + 2.X, for X a symbolic n X n matrix.

The idea behind this Taylor expansion is the following: if a polynomial F' = F'(Z, z) has no
occurrence of the variable 2 in a division sub-circuit u ™! then we simply use the same homogeniza-
tion approach as in Section 5 to extract the polynomial coefficients of each power z* computed by
F. Otherwise, the variable z occurs in a division sub-circuit v ~'. In this case we use the method
in Section 6.3 to define the numerator and denominator of /' simulating the denominator of F' as
a polynomial “up to the k-th degree”, hence eliminating the division gates in F' (for technical rea-
sons there will still be some division gates left that we shall deal with later). Then, the polynomial
coefficient of 2 is extracted as before (again, as in Section 5). Formally the coefficients of a Taylor
expansion are defined as follows:

Definition 7.2 (Taylor expansion). Let F' = F'(T, z) be a circuit with division. Define coeff r(F') as
a circuit in the variables T, computing the (rational function in T) coefficient of 2* in I, when I is written
as a Taylor power series at z = 0, in the following way:

Case 1: Assume that no division gate in F’ contains the variable z. Then we define coeff . (F"), for k > 0,
by induction on the structure of I as follows:

1. coeff,(2) := 1 and coeft .k (2) :=0,if k # L.

2. If F does not contain z, then coeff ,o(F') := F and coeff x (F) := 0, for k > 0.
3. coeffix(F + G) := coeft .« (F') + coeff .« (G).

4. coeft «(F - G) := Zf:o coeff i (F') - coeff u—i (G).

Case 2: Assume that z occurs in the scope of some division gate in F'. We let I, be the denominator of the
rational function computed by F' when z = 0:

Fy := (Den(F))(0/z).

Note that Fy is not necessarily a constant, as it may contain variables different from z. If Fy = 0 then
coeff is undefined. Assume that Fiy # 0 and let

G = (1—F;' Den(F)).

50

We define
coeff x(F) := Fy " - coeff . (Num(F) - (14 G+ G*+--- + G")). (38)

Note that z does not occur in any division gate inside Num(F’) - (1 +G+G*+ -+ Gk),
and so coeff x (F') is well-defined. Also, note that in Case 1 above coeff .« (F') may contain division
gates whenever a division gate that does not contain 2z occurs in F'. Further, in Case 2 the only
division gate that can occur in coeff .« (F) is the division gate that occurs in the root of Fj; *. In
our application, when using coeff .« (') we will need to make sure that V can prove that [}, ' is
provably good.

The construction of coeff () in VY is similar to the constructions in Section 5, and is shown
formally below in Section 7.3.2. The following are the main properties of coeff x(-) (similar to
[HT15]) that we can use already in V°:

Lemma 7.3. 1 IfFy,. .., F}, are circuits with division not containing the variable z, X3P -definable
in VY, and such that VO proves that all division gates in the Fy’s are provably good, then

coeff ; (Zf:o Fzzﬂ) = F)j has a X8 -definable P (Z)-proofin V°, that V° proves is provably
good, for every j < k.

2. Assume that I, G are circuits with division, X5-definable in V°. Suppose that F = G has a
3 B-definable P71 (Z)-proof and V° proves that the proof is provably good. Then, coeff .x(F) =
coeff .« (G) has a X8 -definable P (Z)-proof in V° and V° proves it is provably good, for every
natural number k.

3. Let I be a XP-definable in V° circuit without division, together with a witness for the syntactic-
degree (Definition 5.2) of all nodes in F', where d(F') = d. Then, F' = Z?:o coeff i(F) - 2* has
a X8 -definable P.(Z)-proof in VO, 1?

Proof. Since the construction of coeff () is very similar to the homogenization algorithm in Sec-
tion 5, the proofs of parts 1 and 2 are almost identical to the proof of Theorem 5.4 for homogenizing
P.(Z)-proofs, only that here we need in addition to make sure that the P, 1 (Z)-proofs are provably
good. The fact that the P, ! (Z)-proofs are provably good can be demonstrated as in the Section 4.3,
only that for part 2 we use Proposition 6.3, and the fact that if a circuit with division F'is provably
good then Den(F') ! is provably good, which follows from Lemmas 6.4. We omit the details. The
proof of part 3 is given in section 7.3.1 below (Lemma 7.5).]

7.3.1 Witnessing Syntactic-Degrees

Lemma 7.4 (in V). There exists a witness for the syntactic-degrees of all nodes in Det#ayl o (X).

Proof. We provide details on how to witness in the theory V° the syntactic-degrees of the nodes in
Det# aylor (X). Recall the definition of Det# aylor (X)) in (44) (see also (40)), which is a circuit without
division of syntactic-degree n that computes as a polynomial the determinant of the symbolic n X n
matrix X.

We explain how to 322 -define a number function in V° that computes the syntactic-degree of a
node v, given the number 7 and the node v as inputs, where v is a node in Det#aylm, (X). Consider

2The only place where we need this part is the proofs of the Cayley-Hamilton theorem in Section 12.

51

a node v in Num(Det ;.1 (I, + 2X)) or in Den(Det .1 (I, + 2X)). If we can compute in
VU the syntactic-degree of such a node v then by inspection of the circuit Detﬁaylor(X) and and
the definition of coeff;, we can conclude that there is a X7 -definable number function in V° that
computes the syntactic-degree of any given node v in Det# aylor (X) (given n as an input).

Consider a node v in Num(Det,;..-1(I, + 2X)) for example. Recall the encoding scheme
for circuits Det ;.1 ([, + 2X) described in 3.1.3, and let d denote the “inductive level” in the
definition of Det,;..-1 in (15). To compute the syntactic-degrees of nodes that are at most n in
Num(Det ;.1 (I, + 2X)) we wish to compute the pair of syntactic-degrees of the numerator and
denominator (d(Num(v)), d(Den(v))) that we call the syntactic-degree pair of v, for every node v
in Det,;,..—1 ([n + ZX)

Observe that every inductive level d in the circuit Det,;,..-1 (X) has a “base” syntactic-degree (as
a function of d), on top of which we add a number that depends on the gate we consider to compute
its syntactic-degree. For example, consider the circuit Fy := X; *(I,_; + 0(X) " "wtv, X; 1) from
(14). If we know the syntactic-degree of the output nodes in level n — 1, namely the output nodes
of X[, then we can easily compute the syntactic-degrees of other nodes in F;. Note however
that this cannot be computed inductively in such a way within V?, rather we need to have explicit
(2{3 -definable in V") number functions. Also, notice the syntactic-degree of some nodes in £} is
exponential because the repeated multiplication of X; * by itself, hence we need to consider only
those nodes whose syntactic-degree is polynomial in n.

For example, some gates in F}, for every level d, are leaves—for instance, the entries of [,,_;
correspond to scalar leaves that have a syntactic-degree pair (0, 0), and some others are variable
leaves—for instance, v} vy corresponds to an inner product with leaves variables from vy, v, having
a syntactic-degree pair (1, 0), for every level d.

We demonstrate this idea on §(X) ! for n = 2, which is the (n, n) entry of X ! of dimension
n x n. Similar reasoning works for the rest of the entries of X ! as well as Det ;.1 (I,, + 2X). We
have that 6 (X) ™' = (299 — 22 - 27} - 712) % Thus, Num(§(X)™!) = Den(xy) - Den(wg; - 27 -
T19) = Den(z9s) - Den(zq;) - Den(x7!) - Den(x19) = 1-1- 2y - 1. Hence, d(Num(§(X)™1)) =
1. []

Using witnesses for syntactic-degrees we can now prove Lemma 7.3 part 3 (which will be used
in the proof of Theorem 12.1).

Lemma 7.5 (in V). Given a division free circuit F' of syntactic-degree d and a witness for the
syntactic-degrees of all nodes in F, there exists a P.(Z)-proof of F' = ZZ:O F®). Moreover, I =
Z?:o coeff i(F) - z* has a P.(Z)-proof.

Proof. We shall prove the first statement (the second is similar). Note that a big sum is an abbre-
viation of a sum written as a logarithmic depth tree of plus gates with the summands at the leaves
(we also need to use obvious steps such as applying the associativity and commutativity of addition
axioms in IP.(Z)-proofs of big sums).

For every node v in F' we construct simultaneously a (partial) P.(Z)-proof sequence terminating
with

d(v)
F,=) F® (39)
k=0
as follows:

52

Case 1: v is avariable x;. Then we construct a proof of F}, := x; = Z(:U()) Fv(k), which is immedi-
ate by construction. Similarly for a constant node.

Case 2: v = u @ w and let d = d(v). Then we use Lemma 5.6 to construct the following (partial)
P.(Z) proof-sequence. In the witnesses for this proof-sequence we add pointers to proof-lines that
are constructed in parallel (for nodes that appear closer to the leaf in the tree). We can compute the
line numbers to be pointed to just by looking at the current node (hence we can carry out the
construction in V). The pointers are constructed as number-functions by using the nodes (e.g.,
we can label line numbers with the nodes in [’ they correspond to, adding a secondary index to the
index of the line).

d : d ,
(6 — (4) .
0 F)Y = Zz‘:o (Fu® Fy) by assumption
d , ,
= Z._O(Fu(l) + F,%) by Lemma 5.6
d , d 4
_ (%) (4)
= Zi:o F,'Y+ Zz‘:o Fy rearrangement
=F,+ F, by “previous” lines

(add explicit pointers to the appropriate proof-lines)

= F,6F, =F, by axiom CI.

Case3: v =u®wandletd, = d(u),dy = d(w) and d = d(v) = dy + ds. This is similar to the
Case 2 only that it is crucial here to use the specified syntactic-degrees of nodes along paths from
leaves to the root.

d . d .
o F{ = Z‘—o (Fu® F,)" by assumption
d .
= Z;O Z Fl(l) : Fg(]) . by Lemma 5.6 part (3)
0<i<d) 0<j<dz
dq . do .
= Z'—o Fu(l) ’ 0 Fw(l) rearrangement
=F,-F, by “previous” lines
(add explicit pointers to the appropriate proof-lines)
= F,QF, = F, byax1omC1

[

7.3.2 Algorithm for coeff

The following is similar to the homogenization algorithm from Section 5. It assumes that the input
circuit is an algebraic circuit possibly with division, in which z does not occur in the scope of any
division gate. In case 2z does occur in the scope of a division gate in the circuit we apply Case 2 (using
Equation (38)) of Definition 7.2 and then use the algorithm that follows.

Algorithm for Constructing coeff ,« (+) in Uniform FAC"

Input: an algebraic circuit C' with z not occurring in the scope of any division gate and a natural
number £ (given in unary).
Output: an algebraic circuit computing coeff x (C').

53

Algorithm: Every node v in C'is duplicated & + 1 times into the nodes [v, 0], .. ., [v, k], such that
[v,1] is (the root of) a circuit computing the (polynomial) coefficient of z* in 6’; The algorithm
is doable in FAC" because every new node [v,] depends only on the copies of the two nodes
u, w that goes into v, and these nodes are already known from the input circuit, namely, they are
[u,], [w,i], fori = 0,...,k+ 1, where v = u + w or v = u - w in C. Hence, the wiring of the
new circuit is done in parallel for each of the new nodes as follows:

Case 0: v isaleaf in C. If v # 2 then define [v,0] = v, and [v,7] = Oforalli = 1,..., k.
Otherwise, v = z and we define [v,1] = 1,and [v,7| = Oforall1 # i € {0,...,k}.

Case 1: v = u + win C. Define [v, 1] := [u, i] + [w, i] for every i = 0, ..., k.

,,,,,

7.4 From Determinant as Rational Function to a Polynomial in P, 1(Z)

As mentioned in the overview for this section, given a symbolic 7 X n matrix X the polynomial-size
(in n) circuit computing the determinant as a polynomial is defined as follows:

Detrayior (X) := coeff ,n (Det ipe—1 (1, + 2X)). (40)

By the definition of coeff ., the circuit coeff ,» (Det,;..-1 (] + 2X)) contains occurrences of
the following inverse gate: (Den(Det ;.1 (I, + 2X)))™" at the point z = 0 (this is F}, ' in the
notation of (38)). Den(Det;..—1 (1, + 2X))(0/z) has an exponential syntactic-degree which will
be dealt with below in Section 7.5.

We can now use Lemma 7.3 to construct the desired P, (Z)-proof:

Lemma 7.6. Let U be a X7 -definable triangular matrix in V° in the variables x;; for i, j € [n] and
with U1y, . . . , Upy, on the diagonal. Assume that Ais either X, XY, or U, where XY aren xn symbolic
matrices.

1. The P71 (Z)-proof of
DetTaylor(U) = U11 """ Unn

is X3P -definable in VO, and further V° proves that if u;;" are provably good for all i € [n] then
the proof is provably good.

2. The P} (Z)-proof of
DetTaylor(A> - Detcirc*1 (A)
is 3B -definable in V°. Further, for A = X, XY the theory V° proves that the proofs are provably

good, and for A = U, V° proves that if u;" are provably good for all i € [n] then the proof is
provably good.

To prove Lemma 7.6 we use Lemma 7.3 parts 1 and 2 (since we do not use part 3 of Lemma 7.3
we do not need to construct a witness for the syntactic-degrees of any circuit in this case). The proof
follows [HT15, Proposition 7.9] except that we need to make sure that VY proves the P, !(Z)-proof
to be provably good. We start with the following technical lemma:

Lemma 7.7. Let A be an n x n matrix in the variables x;;, yi;, 2i; for i, j € [n] that is X7 -definable
in V%and that V° proves is provably invertible. Then, there exist circuits with divisions Py, ..., P,_;
not containing the variable z, such that

Detyipet (2L, + A) = 2"+ Poy2" " oo 4 Py

54

has a 325 -definable P (IF)-proof in V°, and for z = 0 the theory V° proves that the proof is provably
good.

Proof. Let I be a circuit in which z does not occur in the scope of any inverse gate. Then, we
define the z-degree of F’ as the syntactic-degree of F' considered as a circuit computing a univariate
polynomial in z (so that all other variables are treated as constants).

We construct a $5-definable P 1 (Z)-proof in VO of Det,jp.-1(A;) = - - - = Detyjpe-1(4,) =
2" + f, where Ay, ..., A, are matrices to be constructed below with A; = 2[,, + Aand fisa
circuit with z-degree smaller than n in which 2 is not in the scope of any division gate, and such
that VY proves the proof to be provably good when z = 0. Writing f as Z?:_ol P;2" will conclude
the lemma. For this purpose, by Proposition 4.6 it suffices to demonstrate the following for every

k € [n):

1. Assume that Ay, is a XP-definable in V° (n — k + 1) x (n — k + 1) matrix of the form

K+ f w
vt Z]n—k + Q

where all the entries are circuits with division in which z does not occur in the scope of any
division gate, v and w are 1 X (n — k) vectors, and further: f as well as every entry of w
have z-degree less than & and both v and () do not contain the variable z. (Hence, specifically
when k = n we get that A;, = z* + f, with f a circuit with 2-degree smaller than n in which
z is not in the scope of any division gate, as required.)

2. Assume also that VY proves that all division gates in A are provably good and that Ay, is
provably invertible, for z = 0.

3. There is a 3¥-definable in V° (n — k + 1) X (n — k + 1) matrix Ay of the form

Zk+1 +f w
v* Zjn—k—l + Q

with the same notation as in (1) above (when k£ + 1 is replaced for k; note that the values
of w, v, @, f may be different from the values in (1)). Further, there is a 3 -formula that
bit-defines the string function that given a natural number & outputs a P, !(Z)-proof of
Detjre—1(Ag) = Detgire—1(Ags1), and VY proves the proof is provably good when z = 0.
In particular by 4.4 part 4, VY proves that Ay is provably invertible when z = 0.

4. VO proves that all division gates in A, are provably good when z = 0.

We construct the following P! (Z)-proof (as required by part (3)) and encode it by a 37-
formula similar to the encoding shown in Section 3.1.3. Assume that Ay, is written as

F+fiow Jo
Ay =1 u} 2l +Q U
a v Z + ag

where m = (n — k — 1) and we allow the possibility that m = 0. Suppose that f;,w and fo
have z-degree smaller than £, and 2z does not occur in uy, us, (), a1, as and v. By Lemma 7.1 part

55

1, since Ay, is a matrix in the variables x;;, ¥, 2;; (for i, j € [n — k + 1]) that is 37 -definable in
V0 and that V proves that A, is provably invertible when 2z = 0, we can switch the first and last
column to obtain a P, ! (Z)-proof of

fa w 2K+ fi
Det i1 (Ar) = —Detepe—1 | ub 2, +Q ul 41)
Z4+as v a

that is X2-definable in V°, and that V proves is provably good when 2z = 0. Furthermore, V°
clearly proves that the matrix on the right hand side of (41) is provably invertible because it proves
that Det ;.1 (-) of this matrix is provably good for z = 0 (and also using 4.4 part 4).

By Lemma 7.1 part 4, we have the following 3¥-definable in VO P_!(Z)-proof which V°
proves is provably good when z = 0O:

Detoiret (Ay) = —a1Det et (fo—ar'(ZF+ fi)(z 4+ a2) w—a'(ZF+ fi)v) _

ul, — a7 ul (2 + ap) 2l +Q — a;'ulv
k k
z" + z+az) —a 2"+ J1)v — aqw
Det,jpe-1 (t @ﬂ 2) “afe (&4 v L) @2
ub —ay ut(z + as) 2lp +Q —ay ulv

We can write (2% + f1)(2 + az) = 2" + (fiz + a22* + fias), where the z-degree of (f12 +
as2® + fiay), as well as of every entry of (2¥ + f1)v — ajw, is at most k. Multiplying the matrix in

1 U
Lemma 4.9 we get that (3) is equal to Det ;.1 (Ay 1) with aIP; 1 (Z)-proof that is 37 -definable in

V0 and which V? proves is provably good for z = 0, and further V° proves that Ay, is provably
invertible (as before, by using using 4.4 part 4 and the fact that V° proves that Det,;,..-1(+) of this
matrix is provably good for z = 0). [

(42) by (1—a_1ut IO) from the right we obtain Ay of the form required above in (3). Using

Proof of Lemma 7.6, Part 1: By Proposition 4.5 we have a P, *(Z)-proof of Detj..-1 (I, + 2U) =
(14 2uy1) - - (1 4+ 2Upy), that VO proves is provably good for z = 0. By Lemma 7.3 part 2 we thus
conclude the proof.

Part 2 follows from Lemma 7.7 as follows. Since X ~! (for X a symbolic matrix in x;; variables)
is 3P-definable in V? which V° proves is provably invertible, there is a 32 -definable P, (Z)-
proof in V? of the following equation:

Detcircfl(Z]n + X_l) = 2" + Qn—lzn_l + -+ QOa (43)

where the ();’s are circuits with division that do not contain the variable 2z and the proof is provably
good for z = 0.

By Proposition 4.5 part 2 the following equation has a 3-definable proof in V?, that V°
proves to be provably good for z = 0:

Detcirc—l (In + ZX) = Detcirc—l (an + Xﬁl) . Detcm_l(X) .
From equation (43) we get a 35 -definable proof in V° of

Detje 1 (I, + 2X) = 2"Detyipe1(X) + 2" Q) | + - + Q)

56

where Q' _,...,Qp do not contain 2. V? proves the proof is provably good for z = 0 and so

Lemma 7.3 gives a 337 -definable P, !(Z)-proof in V° of the following equation that V° proves is
provably good for z = 0

coeff .n (Detyipe—1 (I, + 2X)) = coeff .n (2" Detype1 (X) + 2"71Q | + -+ Q).

Since Detrgyior(X) = coeff,n(Detyype-1(I, + 2X)) and by the definition of coeff,n(-),
coeff ,n (2" Detgipe—1(X) + 2"71Q), 1 + -+ + Qf) = Detjpe—1(X), we are done.
This concludes the proof of Lemma 7.6. [

7.5 Reducing the Syntactic-Degree of the Determinant Polynomial

The (division-free) circuit Detrgyor(X) = coeff,n(Detgipe—1(I,, + 2X)) has an exponential
syntactic-degree as we explain below. However, in order to eliminate division gates in P, (Z)-
proofs (see Corollary 8.2) we need to write the determinant as a division-free circuit with a poly-
nomially bounded syntactic-degree (specifically syntactic-degree n) in the equations we prove (in-
terim equations in the P_ ! (Z)-proof can use higher syntactic-degrees).

Potentially, this problem can be remedied by eliminating O nodes from circuits, and this is how
it was dealt with in [HT15]. However, since we do not know how to formulate and prove the cor-
rectness of an NC2-algorithm that eliminates 0 nodes in general algebraic circuits, or nodes of
high syntactic-degree that compute the zero polynomial, our solution is different: we are going to
explicitly construct in V? a P (Z)-proof that witnesses the fact that Detyy0 (X) is equivalent
to a circuit with a polynomially-bounded syntactic-degree.

Let F(X) = F(xy,,...,o,) be a circuit with division in the displayed input vari-
ables. Assume that every input variable is now multiplied by a new variable z, to get
F(zxy,...,zx,), which we denote by F’. By Definition 7.2, coeff «(F') = F(;_l .

coeff x (Num(F") - (1+ G+ G*+---+ G*)) for G := (1 — F;~' - Den(F")), and Fj :=
Den(F’)(0/z). The variable z does not occur in the scope of any division gate in Num(F”) -
(1 +G+G?*+ -+ Gk) and z multiplies each of the x; variables, and the only division gates
in coeff .« (F"') are of the form F}; * = (Den(F”)(0/z))~*. Thus, by construction of Den we have
that Den(coeff .« (F")) is a power of F| (namely, computes F\ép, for some p).

Recall that the syntactic-degree of a circuit with division is the sum of the syntactic-degrees
of its denominator and its numerator. By inspection of the construction of coeff « (-) (Definition
7.2) we observe that every subcircuit in coeff .« (F") contributes to the overall syntactic-degree'” at
most k, except for the occurrences of the subcircuit Fjj~! which contribute to the overall syntactic-
degree d(Den(F")) that may be greater than k; in other words, if we substitute 1 for the occurrences
of ;" in coeff x (F") we obtain a circuit of syntactic-degree at most k.

According to the discussion above, Detrgyi0r(X) = coeff,n(Detyy—1(f, + 2X)) con-
tains occurrences of (Den (Det; .1 (I, + 2X)) (0/2))~! that are of syntactic-degree greater
than n, while all other nodes contribute at most n to the overall syntactic-degree. To
remedy this we define Det#aylw(X) as the circuit Detygy,(X) in which we replace the

subcircuit (Den (Detg;e1 (I, +2X)) (0/2))”" by the constant 1. Denote by b the circuit
(Den (Detgye1 (I, + 2X))) ", Note that indeed b(0/z) computes the polynomial 1. Then we
define the determinant circuit with syntactic-degree n as follows:

Det?,, 10, (X) := (Detrayior (X)) (1/(6(0/2))) (44)

13The syntactic-degree here is with respect to all variables, not only z.

57

Lemma 7.8. Let A be an n X n symbolic matrix X or the product of two n. X n symbolic matrices XY,
or a X8 -definable in V° triangular n x n matrix U in the variables x;; for i, j € [n], with diagonal
entries Uyy, . . ., Upy, such that VO proves that ug;" is provably good, for all i € [n]. Then, there exists a
S B_definable in VO P1(Z)-proof of

Det#aylor(A) = DetTaylor(A>-

Further, V proves that for every division gate v = w™" in the P, (Z)-proof there exists a P.(Z)-proof
of Den(v [p) = L

Remark 7.9. Note that by Lemma 6.4, if V° proves that a division gate v is provably good then V° proves
that there exists a P.(Z)-proof of Den(v | p) = 1. Hence, the former is a stronger property than the
latter. We show in Section 8 that the latter property suffices for our purposes.

Proof. We assume that A = X. The other cases are similar. Note that by previous constructions
the circuits Detﬁaylar(X) and Detyyi0r (X) are 37 -definable in V. We first construct in V? a
P 1(Z)-proof of Den (Det -1 (I, + 2X)) (0/z) = 1. For this, we initially construct a P, ! (Z)-
proof of

(Det et (I, + 2X))(0/2) = Detoyet (L) (45)

Since (I, + 2X)(0/2) = I, has a 3P-definable P, *(Z)-proof in VY (replacing in each step of
the P (Z)-proof 0 - u by 0 and 0 + u by u, for u any subcircuit'’), (Dete;..—1 (I,, + 2X))(0/2) =
(Detejre—1 (I, +2X) (0/2))) = Detepe— (I,) hasalso such a proof in V. Also, V? easily proves
that the P, ! (Z)-proof is provably good since (Det,;..—1 (I, + 2X))(0/z) and Det ;.1 (I,,) are
provably good circuits.

By Proposition 4.5 the P 1 (Z)-proof of

Detyiret (I,,) = 1 (46)

is 3P -definable in VY and V? proves the proof is provably good. Using (45), (46) and Corollary
6.5, VO proves the P! (Z)-proof of

Den (Det -1 (I, + 2X)) (0/2) =1 (47)

is 3B -definable in V° and further, for every division gate v = ¢! in this proof VY proves there
exists a P.(Z)-proof of Den(v [p) = 1.

The P.'(Z)-proof of Det#aylor (X) = Detrayior(X) is then constructed as follows.
First we derive (47), and then using (47) we substitute each occurrence of the subcircuit
Den (Detjp—1 (I, + 2X)) (0/2) in Detrgyior(X) by the constant 1, to get the desired equality
(using also the Div axiom 1 - 17! = 1). Thus, in the first part of the proof, for every division gate
u~! VO proves there exists a P.(Z)-proof of Den(v | p) = 1. In the second part, when we substi-
tute by 1 subcircuits, the proof uses still the same division gates that occur in the first part (because

the only division gates in Detryy,- (X) are Den (Det -1 (£, + 2X)) (0/2)). O

From Proposition 4.5, Lemma 7.6, Lemma 7.8 and Remark 7.9 we get a P, !(Z)-proof of the
determinant identities where the identities proved have no division gates and are of low syntactic-
degree as follows:

14Note that this is not done for an arbitrary circuit, namely, we do not know of an NC? algorithm that receives a
circuit C, such that C' # 0, and discards in such a way every 0 constant in the circuit. We only build a P, (Z)-proof
that witnesses such a gradual procedure for discarding 0’s from the specific circuit (Det ;-1 (I, + 2X))(0/z).

58

Corollary 7.10. Let X, Y be n x n symbolic matrices and U be a X5 -definable in VO triangular n x n
matrix in the variables x;; for i, € [n], such that V° proves that u;" are provably good for all i € [n].
Then, the P 1(Z)-proofs of the determinant identities

Det#aylor (X)) Det#aylor(y) = Det#aylor(XY) and (48)
Det#aylor(U) = U1 Unn (49)

are X8 -definable in V°, and VO proves that for every division gate v = t = in the P_ 1 (Z)-proof there
exists a P.(Z)-proof of Den(v | p) = 1.

8 Eliminating Division Gates

8.1 Overview

In this section we apply our previous results to eliminate division gates from the P, !(Z)-proofs of
the determinant identities we constructed in V in Corollary 7.10. Recall the concept of provably
good nodes, the identity matrices assignment p, the power series Invy, from Section 6, and division
normalization in Section 6.3.

To eliminate division gates we take the P, !(Z)-proof in Corollary 7.10, normalize division so
that every division gate does not appear in the scope of another division gate. We then apply a
linear shift on the variables by adding to each variable the value it gets under the identity matrices
assignment p, so that the all zero assignment would not nullify any division gate (provably in V),
and then substitute every division gate F'~! by a truncated power series Invs,, (F). Note that F'(*)
is the value of F' under the zero assignment to its variables, and since we shifted the variables by
p, F'(©) evaluates to 1 by our assumption that all division nodes of the original P, !(Z)-proofs are
provably good. This way we get a division free proof-sequence that is correct, except that the Div
axiom F' - F~! = lisreplaced by F' - Invs, (F') = 1 which is neither an axiom nor a true identity.
We shall deal with this in the next section (Section 9) when eliminating high syntactic-degrees.

8.2 Eliminating Division

In the first phase eliminating division in the proofs will result in proofs that are correct, but only
up to some prescribed degree, as defined in what follows.

Definition 8.1 (Correct up to degree k P.(Z)-proof). Let k be a natural number. We say that a P.(7Z)-
proof sequence T is correct up to degree k if (i) every proof-line in 7 is an equation between algebraic
circuits with no division that was derived by one of the derivation rules of P.(7) from previous lines; or (ii)
is a variant of the division axiom Div, where instead of F’ - F~! = 1 we have the line F - Invk(F) =1;
or (iii) is an axiom of P.(Z) different from Div.

The witness for syntactic correctness of a correct up to degree k P.(Z)-proof is similar to
that in Section 3.2. Note that we do not need to witness the syntactic-degree of nodes in circuits
in a correct up to degree k P.(Z)-proof. In other words, there exists a 35 -formula ¢)(Z, k) that
holds iff Z is a correct up to degree k IP.(Z)-proof (where Z contains also the syntactic correctness
witness as in Section 3.2). The formula ¢)(Z, k) only needs to verify that in the division axiom Div
we have F' - Invy(F) = 1, and checking whether a circuit is Inv, (F') is done without the need to
witness the syntactic-degree of F' or Invy (F').

The following will be used in Corollary 9.2:

59

Corollary 8.2 (Homogenizing correct up to degree d IP.(Z)-proofs). Let I, G be two X.P-definable
algebraic circuits over 7, with syntactic-degree d, and assume that there is a correct up to degree d P.(Z)-
proof of F' = G that is XP-definable in V°. Suppose that for every occurrence of Invgq(H) in this
P.(Z)-proof of F = G, for some circuit H, V° proves there exists a P (Z)-proof of H®) = 1. Then,
for every k = 0,. .., d, the following proof is XP-definable in V°: the P.(Z)-proof of F*) = G®*)
in which every circuit is a sum of syntactic homogeneous circuits inside which every node u in the proof
appears with its syntactic-degree upper bound, and dp,(u) < k.

Proof. This stems from direct inspection of Theorem 5.4 and its proof. The simulation of all rules
and axioms is the same as in Theorem 5.4 except for the simulation of the Div axiom. In the case of
Div inspecting of the proof of Theorem 5.4 shows that we do not use the homogeneous components
of degree greater than d. Thus, we only need to make sure that V proves there exist IP.(Z)-proofs
of (H - Invg(H))™ = 0, for every 1 < i < d,and of (H - Invy(H))*) = 1, for every proof-line
H -Invy(H) = 1 appearing in the P.(Z)-proof of F' = (, and that these proofs also contain the
syntactic-degree upper bound for every node in every circuit. But this stems from Lemma 6.1 and
the assumption that V° proves there exists a IP.(Z)-proof of H(®) = 1. O]

Let 7 be one of the variables in X, Y/, thatis 7 € {z;;,y;; : ¢,j € [n]} and let w, be a new
variable not in X, Y. The mapping

o:r— (p(r) —w,)

linearly shifts the variables X, Y by the identity matrices assignment p (and also replaces the orig-
inal variables X, Y by the w, variables for the sake of clarity).

Recall that substitutions in I’ !(Z)-proofs are 3-definable in V° by Proposition 3.2. Hence,
ifalP;}(Z)-proof 7 of F' = Gis XP-definable in VO then also the P, ! (Z)-proofof F | 0 = G | ¢
is. Recall also that [’ | o stands for the circuit /' represented as a graph with the input variables
replaced based on the assignment o. Further, notice that Den(F' | a/)(i computes precisely the

value of Den(F) under the identity matrices assignment, that is Den(F | o)© = De@ p) =
Den(F' | p)(o). We have the following:

Lemma 8.3. Let I be a X2P-definable circuit in VO in the X, Y variables and assume that VO proves
that there exists a P,(Z)-proof of F' | p = 1, then there exists a P.(Z)-proof of (F | o) = 1.

Proof. By the definitions of o, p and basic rearrangements in P.(Z) we have a P.(Z)-proof of F' |
p = (F | o) | 0(where C | 0 means substituting 0 for all variables in a given circuit C). By
the construction of syntactic-homogeneous circuits (Section 5) the underlying graph of a (division
free) circuit C' | 0 and the structure of O are identical: constant gates stay the same; variables
turn into 0 nodes; plus gates w = vy + vy add the zero-copies [v1, 0], [v2, 0] of vy, Vs, respectively;
and product gates w = vy - vo multiply the zero-copies [v1, 0], [v2, 0] of vy, vy, Tespectively (in
particular, no new plus or product gates are added to the circuit). Hence, (F [¢) [0 = (F |)
is P.(Z)-provable. O

We are now ready to construct the (division free) IP.(Z)-proof of the determinant identities,
with some restrictions (namely, it is correct only up to a prescribed degree and its variables are
linearly shifted).

60

Lemma 8.4. Let X, Y be n x n symbolic matrices and U be a 5 -definable in V° triangular n x n
matrix in the variables x;; for i, j € [n] with no division gates. Then, the correct up to degree 2n P.(Z)-
proofs of the shifted determinant identities

(Det#aylor (X)) Det#aylor(y)) r g = Det#aylor(XY) r o and (50)
Det#ayZm"(U) r o= (ull T unn) r o (51)

are 3B -definable in V°. Moreover, for every occurrence of Inve, (H) in the proofs, for some circuit H,
VO proves there exists a P.(Z)-proof of H) = 1.

Proof. By Corollary 7.10 V© proves there exists a ;! (Z)-proof 7 of the determinant identities
where the determinant is written as Detﬁaylor (intermediate proof-lines may represent the deter-
minant differently, e.g., by Detrqy0, or Det;,.—1), and further VO proves that for every division
gate v = ¢! in the P, ! (Z)-proof there exists a P.(Z)-proof of Den(v | p) = 1.

Applying Corollary 6.5 on 7 we get that VO proves there exists a P, ! (Z)-proof 7’ of the deter-
minant identities written as Det?ayzm« in which each division gate H !, for some circuit H, does
not occur in the scope of another division gate, and furthermore V proves that there exists a
P.(Z)-proof of H | p = 1. Therefore, by Lemma 8.3 V proves that for every division gate H !
in the proof there exists a P.(Z)-proof of (H [0)(© = 1.

Now apply the linear shift o : 7 — (p(r) — w;,) to the variables in 7’ as described above to get
the P (Z)-proof 7’ | . Since no division gate occurs in the scope of another division gate we can
substitute every division /! | oinin7’ | o by the truncated power series Invs, (H | o) (we use
2n because this is the degree of the determinant identities). Let 7y be the corresponding division-
free proof-sequence obtained from 7’ | o by replacing every division gate in such a way. Note that
by the above for every occurrence of Invy,(H | o) in my, V proves there exists a P, (Z)-proof of
(H o) =1.

(To clarify, we note that by definition we have PT[\U-IHV%/(P? | 0) = 1+[terms of degree > 2n)].
Hence, by itself 7 is not a legal P.(Z)-proof, rather a correct up to degree 2n IP.(Z)-proof, since
the axiom of division F' - F~! = 1in P_(Z) does not translate into an axiom in P,(Z), rather it
translates into H [o - Invy,(H | o) = 1, which is neither a legal axiom, nor a true identity.) [

9 Eliminating High Degrees From the Proofs

Here we show how to eliminate within V° all nodes of syntactic degrees that exceed 2n from
the correct up to degree 2n proofs constructed in Lemma 8.4. This process will also result in all
proof-lines appearing as sums of homogeneous components in which every node appears with its
syntactic-degree upper bound (which is useful for applying the balancing algorithm in Section 10).

Let C be an algebraic circuit. Recall that d(C) is the syntactic-degree of C' defined to be the
maximal syntactic-degree of a node in C (Definition 2.14) and that C'*) is a syntactic-homogeneous
circuit computing the degree i homogeneous part of C' (Section 2.7). For a node v in C, C, denotes
the circuit rooted at v.

Claim 9.1. Let F(xq, ..., xy,) be a XB-definable in VO circuit without division, in the displayed input
variables. Assume that every input variable is now multiplied by a new variable z to get F'(zx1, . .., 2Z),
which we denote by F. Then, there exists a X -definable in VO P.(Z)-proof of coeff .:(F.) = F in
which every node v in every circuit appears with its syntactic-degree upper bound.

61

Proof of claim: This is by construction of coeff i () and (-)”. Consider the construction of coeff, ()
in V? as shown in Section 7.3.2. Then, having each variable z; multiplied directly by z in the circuit
F’ means that coeff :(F") = F@ are syntactically identical except for the bottom level of the
circuits, namely coeff 1 (2 - ;) = 1 - x; (ignoring zero terms, and applying basic rearrangements),
and coeff - (z - ;) = Oforalll # r < kandall j € [n]. And accordingly, 7;(Y) = z; and
a:j(r) =0,foralll #r < kandallj € [n]. mcpim

Recall the definitions of Detygy,, (40) and Det#ayl . (44) and observe that Det#ayl o(X)isa
division free circuit such that every X variable in it is a product of z. Therefore, by Claim 9.1 we
can assume from now on that Det#aylor (X)) is written as a syntactic homogeneous circuit of degree n, and

similar for Det#aylor (Y). Accordingly, by the homogenization algorithm in Section 5:

(Det?,,1, (X)) =0, foralli < n, (52)
(Det#aylor(X)>(n) = Det#aylor(X> ' (53)

(because when given as input to the homogenization algorithm it will output the input circuit, or a
single homogeneous component as in part 3 of the output). And the same holds for Det#aylmn(Y).

Corollary 9.2. Let X,Y be n x n symbolic matrices and U = {w;;}; jefn) be a X7 -definable in V°
triangular n X n matrix in the variables x;; for 1, j € [n] with no division gates. Then, the P.(Z)-proofs
of the following determinant identities

Detﬁaylor (X)) Detﬁayl(n“(Y) = Det#aylor(‘XY) and (54)
Det#aylor(U) = U1r - Unn (55)

are X8 -definable in VO, Moreover, in these proofs every circuit is a sum of syntactic homogeneous circuits
in which every node v appears with its syntactic-degree upper bound d,p,(v) < 2n.

Proof. By Lemma 8.4 there exists a correct up to degree 2n IP.(Z) proof-sequence 7 of the shifted
determinant identities (50) and (51), such that for every occurrence of Invy, (H) in the proofs, for
some circuit H, V° proves there exists a IP.(Z)-proof of H®) = 1. Hence, by Corollary 8.2 we
have a IP.(Z)-proof of

(k)
<Det#aylor (X)) Det#aylor(y)> f 0= (Det#aylor(XY))(k) [g, (56)

for every k = 0, ..., 2n, and similarly for (51), wherein every circuit is a sum of syntactic homo-
geneous circuits inside which every node appears with its specified syntactic-degree upper bound
of at most 2n.

We now shift back the variables and substitute p(r) — w;, for every 7 in X, Y, by the original
variable r. We get 7 -definable in V° P.(Z)-proofs of

(k)
(Det#aylor (X> ’ Detﬁaylor<y)> = (Det#aylor (XY)>(k)7 and

DetﬁayZm“(U)(k) = (ull T unn>(k)

forevery k = 0, ..., 2n, and where in every proof the syntactic-degree upper bound of at most &
is specified on all nodes.

62

Finally, we can conclude the corollary reasoning as follows.
By Lemma 5.6 we have a IP.(Z)-proof of

2n (2) 2n)
Zi:O <Det#aylor(X) ' Det#aylor(y)> = Zi:o Z Det#aylor (X)(l)'Det#aylor(Y)(J) :
oglgl;;{(zjgm
(57)
This equals

2n .
Zz‘:o Z Det#aylor (X) © ’ Det#aylor (Y) G) +
l+j=1

0<I<n,0<5<n

SiEN,US)S

2n '
Zi:o Z Detﬁaylm“(X)(l) ’ Det?&ylor(y)(])) (58)

I4j=1
n<I<2n,n<j<2n

where the rightmost big term is a sum of only zeros, by construction of the homogeneous circuits
(since Det#aleT(X) and Det#aylor(Y) are written as syntactic homogeneous circuits when input

to the homogenization algorithm Det#aylor(X)(l) = Det#aleT(Y)(l) = 0, forall [> n). We are
thus left with the leftmost big sum in (58). We proceed with

2n .
Zz‘:o Z Det#aylor(‘)()(l) ' Det#aylor(y)(j)

l+j=i
0<I<n,0<j<n

" DN (i
=D, Dethuor () 37 Deth o, ()7 (59
- Det#aylor(X)) Det#aylor(y)a (60)

where the first equality is by rearrangement and the second equality is by (52) and (53). By summing
(56)forall k = 0,...,2n and using similar reasoning for Det# ayl o (XY'), we conclude that there
exists a P.(Z)-proof of

Det#aylor (X) ’ Det#aylor(y) = Det#aylor(XY>'

Note that by our construction, in the above IP.(Z)-proof every proof-line is a sum of syntactic
homogeneous circuits. Observe that this also holds for (59), (60), because > " Det#aylor(X)& =
Det#aylor(X Y = Det#aylor(X) is a syntactic homogeneous circuit by (52) and (53) (ignoring
zero summands), and similarly for > Det#aylm, (Y')®, and a product of syntactic homogeneous
circuits is a syntactic homogeneous circuit in itself. Furthermore, note that every node in the proof
appears with its syntactic-degree upper bound d,;, by the use of Corollary 8.2. The proof of (55) is
similar. [

10 Balancing Algebraic Circuits and Proofs in the Theory

10.1 Overview

In this section we take the P.(Z)-proofs we constructed in the previous section, and turn them into
balanced proofs, namely proofs in which each circuit is of O(log? n)-depth. This is the first step in

63

which we will use the full power of VINC? (contrasted with the constructions in V° in previous
sections).

We first 337 -define in VINC? a circuit balancing algorithm: this is a string function that re-
ceives a sum of syntactic homogeneous algebraic circuits C' (without division) with size s and a
number d which stands for an upper bound on the syntactic-degree of C', and outputs a circuit
denoted [C] computing C with depth O(log s - log d) and size poly(s, d). Our FNC?-algorithm
provides an FAC'-implementation of most parts of the classic Valiant et al. [VSBR83] algorithm,
combining it with some ideas from the Miller et al. [MRKS88] algorithm, while also using matrix
powering, which then entails working in FNC?.

More generally, we show a 32-definable function in VINC? that receives a IP.(Z)-proof of
F' = G with syntactic-degree d (and in which every proof-line is a sum of syntactic homogeneous
circuits), and outputs a IP.(Z)-proof of [F'] = [G] in which every circuit is of depth O(log s - log)
and the size of the proof is poly(s, d).

Applying this function to the IP.(Z)-proof constructed in the previous section, demonstrates
that the depth O(log®n) P.(FF)-proof of the determinant identities where the determinant in
the identities proved is written as a balanced division free circuit of syntactic-degree n denoted
Detyaianced, 1S Zf -definable function in VNC?.

10.2 Background Concepts for the Balancing Algorithm

We start by providing some required concepts.

Definition 10.1 (Balanced circuit). Let D be an algebraic circuit of size s and syntactic-degree d. Then,
we say that D is balanced if the depth of D is O(log slog d)."” Specifically, if d is polynomial in s, then
the depth of D is O(log® 5).

Our balancing algorithm follows the general scheme of Valiant et al. [VSBR83] that proceeds
by induction on the logarithm of the degree of the polynomial computed by the circuit, however
there are differences that help us fit the algorithm in FNC? (for a very clear exposition of the
original [VSBR83] algorithm we refer the reader to [RY08] (cf. [HT15]), though our treatment is self
contained).

Notation: Recall that we now only work with division free circuits. We use the following notation
throughout this section: F, C' are circuits and F, C' are the corresponding polynomials they com-
pute. For convenience we denote by f the polynomial F'. For a node v in F’ we write F), to denote
the subcircuit rooted at v and f, denotes the polynomial E We write u € F'to mean that u is a
node in the circuit F'.

We will need to construct with an FNC? algorithm some linear polynomials computed by F,,
whenever v € F and d,(v) < 1, as well as the linear polynomials Ow f,, (defined below) whenever
0 < duyp(v) — dup(w) < 1. However, we cannot directly compute the integer coefficients in these
linear polynomials because their (sub-)circuits are not balanced (and the evaluation of circuits of
depth w(log® n) is apparently beyond VINC?).

15 O(log slogd + log2 d) is the standard depth of “balanced” circuits [VSBR83], when the original circuit C of size
s and degree d is not necessarily syntactic homogeneous. The term log? d in the depth is incurred due the conversion
of C' to a syntactic homogeneous circuit beforehand. Since we will input to our balancing algorithm circuits that are
already (sums of) syntactic homogeneous circuits, the depth we get is O(log slog d).

64

We show how to compute the linear polynomials we need in Lemmas 10.4 and 10.6. For the
purpose of these lemmas we need to treat scalar nodes ¢ € Z occurring in the circuit as if they
are variables (and hence even circuits with only scalars get balanced throughout the balancing al-
gorithm). Formally, this means defining their syntactic-degree as 1 instead of 0, as follows (hence
both variables and scalars are now treated as syntactic-degree 1 circuits).

Denote by d.f, (+) the syntactic-degree upper bound defined similar to d,y,(-), except that scalar
nodes are associated with syntactic-degree upper bound 1 (instead of 0) in the algorithm for ho-
mogenizing circuits shown in Section 5. Note that any circuit F;, rooted by the node v such that
d! (v) < 1 cannot contain product nodes (as this would make d, (v) > 1 by definition). In
Lemma 10.4 we show how to evaluate in FINC? a circuit with no product nodes.

Also note that it may happen that a node v in a circuit has polynomially bounded d,,;,(u) but
exponential large d, (u), for example in case we have an iterated squaring such as (((2)?)?...%) =
22" We deal with this problem in Section 10.3.1.

Definition 10.2 (Partial derivative polynomial Ow f,). Let w,v be two nodes in F. We define the
partial derivative of F}, with respect to w, denoted Ow f,, as the following polynomial:

0, ifw & F,
1, if w = v, and otherwise:
owf, =< Owfy, +0wf,, v=uv+uvy (61)

(W fo,) * foo if either v = vy - V9 and djb(vl) > djb(vg)
orv = vy - vy and d, (v1) > df} (v2).

The idea behind this definition is the following: let w, v be two nodes in /' and assume that

df (w) > @ (we will use Ow f,, only under this assumption). Then for any product node vy -vy €
F,, w can be a node in at most one of [, , I;,,, namely the one with the higher syntactic-degree.
If we replace the node w in F;, by a new variable z that does not occur in F), then F), computes a
polynomial g(z, x1, ..., x,) which is linear in z, that is g(z, z1,...,2,) = ho - 2 + hy for some
polynomials hg, hy in the x1, ..., x,, variables, and Ow f, = hg. Namely, Ow f, in our case is the
standard partial derivative 0zg.

Proposition 10.3. Let w, v be two nodes in a syntactically homogeneous circuit F' such that d_, (w) >

4 Then the polynomial Ow f,, has degree at most d, (v) — df, (w).

2 v ub ub
Proof. By induction on the size of F,.
Base case: F), isasingle node. If F, = wthen dw f, = 1,andso d} (Qwf,) = 0 = d} (v) —d, (w)
and the claim holds. If F, # w then Ow f, = 0 and the claim holds similarly.
Induction step:
Case 1: v = vy + vg. Then Owf, = Jwf,, + Owf,,, and by induction hypothesis the degrees
of dw f,, and dw f,, are at most df, (v1) — d, (w) and d, (v9) — df}, (w), respectively. Since F'
is syntactically homogeneous d.f, (v) = d, (v1) = d} (v9) and so the degree of Jw f, is at most
dyy(v) = d (w).
Case 2: v = vy - V2. Assume that d (v1) > d} (v2). Then dw f,, = (Owf,,)- fu, and by induction
hypothesis the degree of dw f,,, is at most d} (v1) — d}, (w). Thus, the degree of dw f,, is at most
dl (v1)+df (vg) —di (w) = dfy (v) —df (w). The case where d, (v1) < dfy (v) is similar. [

Comment: We have defined Ow f, as a polynomial. Below we shall construct (polynomial-size
and balanced) circuits [Ow f,| that compute the polynomial Jw f,. We will make sure that the con-

65

struction of [Ow f,] is correct in the sense that it computes Ow f,, and also that it has a syntactic-
degree at most d, (v) — d}, (w). The correctness of the construction follows from [VSBR83] (see
also [RY08, HT'15]) where in our construction the notion of a syntactic-degree upper bound (plus),
namely, d:b is used, instead of the notion of degree.

Overview of the balancing algorithm: Let F' be a syntactic-homogeneous arithmetic circuit
of syntactic-degree d. For every node v € F' we introduce the corresponding node [F,| in [F]

(intended to compute the polynomial ﬁ,); and for every pair of nodes v, w € F such thatd/, (w) >
@, we introduce the node [Ow f,] in [F'] (intended to compute the polynomial Ow f,). Note that
given a syntactic-homogeneous circuit F', we can assume that every node comes with a number
that denotes its syntactic-degree—this stems from our FAC? algorithm for homogenization in
Section 5; but notice that according to this algorithm circuits that compute zero may be assigned
higher syntactic-degrees than they actually possess. Since we are given an upper bound on the
syntactic-degree of the circuit in advance this will not interfere with the algorithm.

The algorithm starts with a preprocessing step that determines some properties of the circuit
graph. Specifically, we use this preprocessing step to record in advance for every pair of nodes w
and v if w is in the scope of the circuit rooted by v. Then it proceeds in steps i = 0, ..., [log d].

In each step 7 we construct:

1. Circuits computing f,, for all nodes v in F' with 27! < df, (v) < 25

2. Circuits computing dw f,, for all pairs of nodes w, vin F' with 2! < d¥, (v) —d/, (w) < 2°

+
and d} (w) > d“bT(v).

Each step adds depth O(log s) to the new circuit, which at the end amounts to a depth O(log d -
log) circuit. Furthermore, each node v in F' adds O(s) nodes in the new circuit and each pair of
nodes v, w in F' adds O(s) nodes in the new circuit. This amounts finally to a circuit of size O(s?).

The preprocessing step as well as step i = 0 are done in FNC? as they both use matrix pow-
ering (in fact the class DET, which is the AC -closure of matrix powering, suffices here; matrix
powering is known to be Zf -definable in VINC? and hence is computable in FNC?[CF12]). Each
of the other stages constructs a group of nodes (namely, a part of the circuit having depth O(log s)).
Stepsi = 1toi = [log d] are done in FAC" by constructing the nodes and wiring simultaneously.
Thus, overall the balancing algorithm is in FNC?.

Our algorithm is different from that of Valiant et al. [VSBR83], since we use a preprocessing
step and in the first stage of the algorithm where ¢ = 0 (which corresponds to the base case of
the Valiant et al. algorithm) we need to compute the coefficients of certain linear forms computed
by possibly non-balanced circuits. Another difference is that while Valiant et al. [VSBR83] use the
notion of degrees of a node, and Hrube$ and Tzameret [HT15] use syntactic-degrees of nodes, our
constructions use the FAC°-computable relaxed notion of syntactic-degree upper bound d,(v) of a
node v introduced in Section 5 and its variant d.f, (v).

10.3 Preliminaries for the Balancing Algorithm

Lemma 10.4. There is a 37 -definable string function in VINC? that given a (division free) algebraic
circuit F of size s with no product gates outputs a depth O(logn) algebraic circuit computing F' of size
poly(s), for n the number of variables.'®

1®Notice that if the input algebraic circuit I was a formula instead of a circuit, it would have been trivial to output
the balanced formula computing F': simply build a balanced binary tree whose leaves are all the variables occurring in

66

Proof. By assumption, the circuit /' computes a big sum of variables, where a variable can occur
with an integer coefficient. We will now represent circuits with unbounded fan-in as adjacency
matrices. We first construct an upper triangular matrix A = {4;;}; jc[q that represents F': for
every j > i € [s|, Ajj is labeled with the number of edges from node i to node j in the circuit. In the
initial stage, A is a 0-1 matrix because every node ¢ can have at most one directed edge to node j.
This construction is done already in V°.

Given such a matrix A representing I, the algorithm simply computes A®. The matrix A® has
c on its (i, r)th entry iff the number of different paths from node i to the output gate 7 is ¢. Thus,
we can consider the matrix A® as corresponding to a depth 1 circuit: each leaf ¢ in this circuit
represents the input variable x; or a scalar k£ € Z, and is connected to the root r of the original
circuit with a single edge labelled with some integer ¢; this integer c is the total number of different
paths in the original circuit leading from the input node z; or a scalar k € Z to the root. Thus cz;
or ck is the contribution of the input node z; or the scalar node k to the linear polynomial F'. It
is thus immediate to construct a circuit (of depth O(logn)) that computes the linear polynomial

F: simply construct a big sum of the cx;’s and ck’s. The fact that matrix powering is definable in
VINC? is shown in Cook and Fontes [CF12].]

We will also need the following two lemmas:

Lemma 10.5. There is a X7 -definable function in VINC? for deciding, given a circuit C and two nodes
w,vin C,if wisin F,.

Proof. This is similar to Lemma 10.4 above. We first construct the adjacency matrix A¢ of the
circuit C' as a directed graph: the dimension of A¢ is s X s with s being the number of nodes in
C, each entry in A¢ is of number sort, and Ac(w, u) is 1 iff w has a directed edge towards u or
w = u, and 0 otherwise.

Then, w has a directed path to v iff A% (w,v) # 0, where matrix powering is definable in
VNC? as mentioned above. [

Lemma 10.6. There is a X7 -definable string function in VINC? whose input is a (division free) circuit
F with n variables and a pair of nodes w, v in F where w is in F,, and 0 < df (v) — d}, (w) < 1, and
whose output is an O(log(n))-depth circuit computing Ow f,,.

Proof. In case v = w we output the circuit 1. Otherwise, first note that since 0 < df (v) —
df (w) < 1, either df, (v) < lord/, (v) > 2and df, (w) > df, (v)/2. Hence, by Proposition
10.3, the polynomial Qw f,, is a linear polynomial a;xy + - - - + a,x, + b. Therefore, it remains to
show how to construct the circuit that computes this linear polynomial in VINC?.

Fact 1: by definition of d,, for every node r in F' we have d, (r) > 1. Hence, for every product
gateu =t - s we have d, (u) = df, (t) + df,(s) > 2.
Fact 2: there cannot be a product gate w in F), such that w has two different paths directed from w
to u (recall that edges are directed from leaves to root).

This is because otherwise 7} (v) > df, (u) > 2d7, (w) > 2 (the last inequality is by the fact
above), and hence d; (v) — df, (w) > d} (w) > 2 in contrast to the assumption.
Fact 3: Let p be a path from v to w (including v and excluding w) in F;,. Then there exist at most
one product gate in p.

F’ (variables that occur more than once should also occur more than once in the resulting formula). Also, notice that
although there are no scalars in C', a monomial can occur with a coefficient in C different from 1.

67

The reason is as follows: assume there are more than one product gates in p (occurring “above”
w). By Fact 1 every such product gate in p increases the syntactic-degree upper bound d.f; along p
by at least 1. Hence, d; (v) > df, (w) + 2 in contrast to the assumption that d;}, (v) —d, (w) < 1.

We thus conclude that every product gate v # w in F,, either does not have w in its scope, or
is the only product gate on the path from w to v along u. Let u = ? - s be a product gate in F,,
that has w in its scope, and assume without loss of generality that F} has w in its scope and F}; does
not (by Fact 2 it cannot be that both have w in their scope). We argue that F has no product gates.
Otherwise, by Fact 1 d} (s) > 2and so d, (v) > df}, (u) > df, (w) + d, (s) > df, (w) + 2in
contrast to the assumption d.f, (v) — d} (w) < 1.

Let U be the set of all product gates u = t,,- s, in F;, such that F} has (WithoutAloss of generality)
in its scope w. The above arguments imply that the polynomial Jw f, = >, ., Fs, and that there
are no product gates in the F} ’s. But the set U is easily 37 -defined in V. And by Lemma 10.4
we can thus construct a O(log n) depth circuit, for n the number of variables, computing the sum

> wer Fou []

10.3.1 Taking Care of Nodes with High d, Values

To be able to carry out the balancing construction of circuits and proofs in the theory we need to
make sure that in all the circuits we consider nodes have polynomially bounded d.f; values (and
not only polynomially bounded d,;, values). We first claim that all results about d, that have
been proved up to this point hold also for d,. After which we show that the determinant iden-
tities proved can be assumed to be of polynomial (in fact, 2n) syntactic-degree with respect to d, ,
and then by the same reasoning as before we can assume that intermediate proof-lines have low
df, values as well, using high syntactic-degree elimination in proofs, leading to same statement of
Corollary 9.2 in which d, replaces dyp,.

Fact 10.7. All the statements about proof-construction and transformations that we presented up to this
point for dyy, also hold true for d}, .

Fact 10.7 holds because of the following: let C be a circuit and let C” be the sum of its syntactic
homogeneous components with all nodes in C” appearing with their syntactic-degree upper bound.
Let Cy be C in which we substitution every scalar leaf ¢ € Z to a new variable y.. Then the
output of the homogenization algorithm on the input C'y results in a sum of syntactic homogeneous
components of Cy such that every node appear with its syntactic-degree upper bound d, . If we
now substitution back the scalars ¢ € Z for the variables . we get the circuit C” in which every
node appears with its syntactic-degree upper bound d;, (instead of d,p).

Lemma 10.8 (Existence of division free circuit for the determinant with low djb values). There
exists a circuit denoted Dety, .. (X)) computing the determinant of X with all nodes having syntactic-

degree d, at most n, such that the P.(Z)-proof of Det#aylor (X) = Det7yy10,(X) is 327 -definable in
Vo,

Proof. We will witness our desired circuit Det7.,,;,,(X). We start by observing the way scalars

can contribute to syntactic-degrees d.f, in Det#aylor (X). Recall the circuit Det ;.1 (X). The only
scalars in Det,;,..—1 (X) are the 0-1 constants that occur in the identity matrix I,,_; in (14), and these
scalars occur as 1 - i or 0 - h for some h that contains variables. Now consider Det ;.1 (1, + 2X),

68

which results by replacing the variables x;; in Det,;,..—1(X) by the term 0 + zx;; or by 1 + zx;; in
case i = j. Hence, the only scalars in Det,;,..-1(I,, + 2X) are still 0-1, either from the replacement
0+zx;; orby 14 zx;; or from I,,_1 in (14) as before. Recall Detyqy 0 (X) = coeff . (Detjpe—1 (1, +
2X)) and Det#aylm,(X) = (Detrayior (X))(1/(b(0/2))), where b = Den (Det,;pe-1 (I, + 2X))
(see definition (44)). Here, the Denand Numeconstructions can add 1’s to the circuit, and coeff .~

adds 1's and 0’s to the leaves of the circuit. We thus have that still the only scalars in Det#aylor(X)

are 0-1. Recall that by Section 7.5 every node u in Det#aylm, (X) has dy,(u) < n. By inspection of
the circuit all I's and 0’s that cause d;f, to become more than n are of the form 1« (- -+ (1-+-)--+)
(and similarly for 0). We need to make sure that all nodes u in Det#aylor(X) have df, (u) < n.

For this purpose we construct a P_'(Z)-proof that eliminates 1 from products with 1 in
Det#ayl o (X)) using repeatedly the axiom 1 - 1 = 1 (and similarly 0 - ' = 0). We can do this
because the construction of the circuit DetﬁaleT(X) is a 3P -definable function in V as we have
demonstrated, which means that there is a EOB -formula (in the language L 4) that defines the con-
struction of Det#aylor(X) (given the parameter n for X ann X n matrix). We thus can assume that
there are pointers to the occurrences of 1’s that we want to discard using 1 - 1 = 1 (and similarly

for 0’s). [l

Using Lemma 10.8, homogenization of P, (Z)-proofs (Lemma 5.4) and previous constructions
in VY of the determinant identities leading up to the P,(Z)-proofs in Corollary 9.2, and Fact 10.7
showing that we can assume that nodes in P.(Z)-proofs appear with their syntactic-degree upper
bound d,, we arrive at:

Corollary 10.9. Let X, Y be n x n symbolic matrices and U be a X3P -definable in VO triangular n x n
matrix in the variables x;; for i, j € [n| with no division gates. Then, there exists a division free circuit
computing the determinant of X denoted Det7., ;. (X) with all nodes u having d} (u) < n, such that
the P.(Z)-proofs of the following determinant identities

Det;aylor (X) ’ Det;’aylor(y) = Det}aylor(‘)(y) and (62)
Det;aylor(U) = U11 """ Unn (63)

are X B-definable in V°. Moreover, in these proofs every circuit is a sum of syntactic homogeneous circuits
in which every node u appears with its syntactic-degree upper bound d_,, and d., (u) < 2n.

10.4 Formal Description of the Balancing Algorithm

For a syntactically homogeneous circuit G and a natural number m let
B (G):={teG : t =ty 1ty, where d} (t) > mand d} (t1),d} (t2) <m}. (64)

Notice that B,,(G) is a £ -definable relation in V° assuming d, (v) is provided for every node v
in G.

Note: In the construction of the balanced circuit of F', givennodes v, w € F, [F,] and [Qw f,,] stand
for nodes (and not circuits). When we write [F,| := C for a circuit C' we mean that the node [F}]
is defined to be the root of the circuit C', where C' possibly contains other (previously constructed)
nodes like [F,], for some u € F'. In other words, the algorithm simply connects the node [F},] to a
circuit for which some of its leaves are already constructed nodes.

69

FNC?-Algorithm for Balancing a Circuit F' (Construction of [F))

Input: An algebraic circuit /' of size s written as a sum of one or more syntactic-homogeneous cir-
cuits over the variables x1, . . ., z,, in which every node u appears with its syntactic-degree
upper bound d, (u).

Output: An algebraic circuit denoted [F'] of fan-in two computing the polynomial F, such that
depth([F]) = O(log s - log d) and the size of [F] is poly(s, d), where d = d (F).

Algorithm: Assume that /' =) ; Fj, where each Fj is a syntactic-homogeneous circuit of
syntactic-degree upper bound d; (F;) = j. Then the algorithm below is applied to each syntactic-
homogeneous circuit F} separately, and the output of the algorithm will be defined as the sum
>_;[F}] (this adds only a logarithm in d to the depth). For simplicity of writing we assume be-
low in the algorithm that F' is a single syntactic-homogeneous circuit (that is, a single /', for some
-

Preprocessing step: For every pair of nodes w, v we prepare a list that determines whether w is in F,.

This is done by running in parallel for all pairs w, v in F' the NC2-algorithm described in Lemma
10.5 for checking if w is in F,.

Stepi = 0:

Part (a):'"" We construct the node [F,], for all nodes v € F such that d; (v) < 1 = 2"
Letv € F be such that d, (v) < 1.

Claim 10.10. E =a1r1+-- -+anxn—|—ZC€J bee, foray, ..., an,b. € Zand J C Z. Furthermore,
there exists an FINC?-construction that given I constructs the depth O(logn) circuit ajxy + - - - +

UnTn + Y oey beC.

Proof of claim: Since d; (v) < 1, there are no product gates in F,. Thus, F,, is a circuit with only

plus gates, which means ﬁv is as stated in the claim. By Lemma 10.4 (and Theorem 2.7) we can
construct in FNC? the circuit @121 + - -+ + @ty + > ccy bec (we do not evaluate the circuit).

M Claim

Define
[Fv] =a1r1+ o+ apx, + ZCGJ bcc'

Part (b): Let w, v be a pair of nodes in F' with 2d, (w) > d, (v):

Case 1: Assume w is not a node in F}, (this can be checked using the list from the preprocessing

step). Define
[Owf,] :=0.

Case 2: Assume that w is in F}, and 0 < df, (v) — d, (w) < 1. Again, this is checked by the list
from the preprocessing step, and since the input circuit F’ is assumed to contain the value of d,
for each node.

17This base case uses an FNC? algorithm, but since it is done only in the base case, and not in the induction step,
the whole algorithm still is in FNC?.

70

Thus, by Proposition 10.3, the polynomial Ow f,, is a linear polynomial ayx1 + - - - + a,x, + b.
Using Lemma 10.6 and similar notation and reasoning as Claim 10.10 define

[Owf,] == a1x1 4+ -+ apx, + Z 6chc.

Step i + 1:
The construction in this step is done in V?, assuming we have the list from the preprocessing
step above.

Part (a): Assume that for some 0 < i < [log(d)]:
20 < dif (v) < 27,
Put m = 2', and define (recall that here [Jw f,], [F}, | and [F},] are nodes)
[Fl=) [0th][F]-[Fa].

tEBm (Fuv)
t=tq-tg

Part (b): Let w, v be a pair of nodes in F' with 2d, (w) > d, (v):
Assume that w is in F), and that for some 0 < ¢ < [log(d)]:

20 < df (v) —df (w) < 27t

Put m = 2 + d, (w). Define:
Qwf] = Y [0tf]- [Pwfu] - [Fu],

teBm(Fv)
where here for every givent € B,,(F,), 1,2 are nodes such that t = 1 -ty and df, (t1) > df, (t2),
ort =ty -ty and dy (t2) < dfy (t1).

Finally, let [F'| be the circuit with output node [F,], where u is the output node of F. (Recall
also that if F"is a sum of two or more syntactic-homogeneous circuits F; then [F'] is defined as the

sum Z?:o [F};], where this sum is written as a depth O(log d) circuit.)

By construction, the algorithm computes the correct output: the fact that [F'] has the correct
depth stems from the construction as explained in the overview of the balancing algorithm above
(see also [VSBR83, RY08, HT'15]). The fact that [F'] has the correct size stems from the fact that the
algorithm is 332 -definable in VINC?. The fact that ['] computes [is shown below by constructing
in VNC? a P.(Z)-proof of I = [F] for a syntactic homogeneous circuit F (this stems from
Lemma 10.13; see again [VSBR83, RY08, HT'15)).

As mentioned in Section 1.1, given an algebraic circuit F’ with d; (1) polynomially bounded,
for all nodes w in F, by first balancing and then evaluating the circuit (assuming, e.g., it is over the
integers, as in the next section) we obtain an NC? evaluation procedure for algebraic circuits of any
depth (given as input an upper bound on their syntactic-degree in unary and assuming the syntactic
degree d; of the circuit is polynomial). The obtained algorithm is different from the previously
known algorithm by Miller et al. [MRK88] (their algorithm does not require the syntactic-degree as
input) and from that of Allender et al. [A]JMV98] (which is implicit in that work but can be extracted
from their text [All18]).

71

10.5 Balancing Proofs in VNC?

For balancing P.(Z)-proofs we need to show the proof-theoretic counterpart of the balancing algo-
rithm described above for circuits. This is similar to the proof-theoretic counterpart of the homog-
enization theorem shown in Section 5. We start by showing some properties of the constructions
of the base cases of the balancing algorithm described in Lemmas 10.4 and 10.6 that VNC? can
prove.

Lemma 10.11 (in VNC?). (i) Let F be a circuit with no product gates and no scalars (and no divi-
sion gates). Assume that v = vy + vy is a node in F' such that d, (v) < 1. Then, there exists a

Po(Z)-proof of [F)] = [Fyy] + [F,].

(ii) Let F be a circuit with no scalars and syntactic-degree d, and a pair of nodes w, v in F, such that
wisin F,and 0 < d, (v) — d, (w) < 1. Then, there is a P.(Z)-proof of

[QwF,] = [OwF,,] + [OwF,,], incasev = vy +vy; (65)
[QwF,| = [OwF,,] - [F,], in case v = vy - vy and d, (v1) > d, (v9)
orv = vy - vy and d}, (v1) > df} (v2). (66)

Proof. Part (i). Consider Lemma 10.4. The circuit [F,] is constructed according to this lemma by
first computing the integer coefficients of each of the input variables in the linear form computed
by F,. It thus suffices to prove (in VINC?) that for every input variable z; in F),, the coefficient of
x; in F), equals the sum of the coefficients of x; in F,, , F},. Assuming we can prove this, we can
directly construct the P.(Z)-proof of [F,] = [F,,,] + [Fl,)-

We use a result from Cook and Fontes [CF12], stating that the theory V' # L which is contained
in VNC?, X5_defines the string function PowSeqy(n, s, A). This string function receives an
n X n integer matrix A and outputs a string coding the sequence of powers of A: (A, A2, ..., A®%).

Let I = F, U{(vi,7)} and F}, := F,, U {(v2,7)}. Thatis, F)| is the (non-legit) circuit
F, to wh1ch we add the directed edge from v; to the output node 7 in Fv, and similarly F 41 SO
that F, = F) U F, . Assume that A,, A, , A,, are the 0-1 adjacency matrices of the cireuits
F,, F,, F{,Q, respectively, where the dimensions of all the matrices all equal s, the number of nodes
in F, and the (u,w)th entry in all three matrices corresponds to a directed edge from node u
to node w. Using the number X5 -induction on the power i = 1,...,s, and using the strings
(Ap, A2, A8), (Ayy, A2 AS), (Au,, A2, ..., AS)), we argue that for every input node u
in F),

Afv[“? T] = szl [u7 r] + A:}Q [ua T])
where Alu,] denotes the (u, 7)th entry of the matrix A, and as before is the output node of F,.

Part (ii). Here we use the construction in Lemma 10.6. R

Case 1: v = v; + vo. According to Lemma 10.6, [wF,] is defined as the sum) _ ., F , where

U is the set of all product gates u = t,, - s, in F}, such that F} has (without loss of generality) in its
scope w, and where we construct each F} in the sum using Lemma 10.4, similar to part (i). Similar

to part (i) we proceed by the number X7 -induction oni = 1,..., s, where s is the size of F,, to
prove
Al Tu, 7] ZAZ u,r]
uclU

72

Case 2: v = v; - v2. This is similar to case 1. According to Lemma 10.6 and using the terminology
of case 1 above, [JwF,] is defined asthe sum) _ ., Fi,. Only that by assumption, the only product
gate that has w is in its scope must be v itself (because there can be no two nested product gates
with w in their scope by assumption d/, (v) — d (w) < 1). Assume without loss of generality that
vy has w in its scope. Then, vy does not have w in its scope (by assumption on degree, as explained

~

in the proof of Lemma 10.6). Thus, [QwF,] = > ., Fs, = F,, = 1-[F,,] = [OwF,] - [F,,].
]

Recall that the length number function [log,(n)] is a XZ-definable function in V° [CN10].
The following is the main theorem of this section:

Theorem 10.12 (Balancing P(Z)-proofs in VINC?). Let F, G be two X -definable algebraic circuits
over 7 and assume that there is a P.(Z)-proof of F = G of size s which is X5 -definable in VNC?,
in which every circuit is a sum of syntactic homogeneous circuits with every node w appearing with its
syntactic-degree upper bound dt, (u) < d. Then, the P.(Z)-proof of [F| = [G] is XP-definable in
VINC? and the depth of every circuit in the proof is O(log s - log d).

Theorem 10.12 will be proved analogously to Theorem 5.4: the proof is similar to the proof
of Theorem 5.4, only that instead of using Lemma 5.6 we use the analogous Lemma 10.13 below
demonstrating some essential properties of [F'] that have short P.(Z)-proofs.

Lemma 10.13. Let I, F5 be 2]13 -definable circuits in VINC? each with size at most s, written as a sum

of syntactic homogeneous circuits and with every node u appearing with its syntactic-degree upper bound
dl (u) < d. Then, the following equations have X3P -definable in VINC? proofs:

[F1 & Fy] = [F1] + [Fy], (67)
[F1 @ Fy] = [F] - [FY], (68)

and VINC? proves that the size of proofs is poly(s, d) and the depth of every circuit in the proof is O (log d-
log s). Furthermore, [2] = z has a constant-size proof whenever z is a variable or an integer.

We first prove Lemma 10.13 and then Theorem 10.12.

Proof of Lemma 10.13. The proof is similar to Lemma 4.4 in [HT15], except that we use djb(-) in-
stead of syntactic-degrees d(-) and that we construct the P.(Z)-proof in FNC? instead of by in-
duction on the structure of £’ (which would have necessitate using ZIB -induction).

The statement concerning [z| = z is clear: if 2 is an integer, [2] and z are the same circuit. If 2
is a variable, [2] is the circuit 1 - 2.

We need to construct proofs of equations (67) and (68).

Let m(s, d) and (s, d) be functions such that for any circuit F' with d; (F') = d and size s,
[F] has depth at most (s, d) and size at most m(s, d). By construction of the balancing algorithm
and the remarks that follow it, we can choose

m(s,d) = poly(s,d) and r(s,d) = O(logd - logs).

Notation: In the following, [F},| and [0w F, | will denote circuits: [F, | and [0w F},] are the subcircuits
of [F'] with output nodes [F,] and [QwF,], respectively; the defining relations between the nodes
of [F] (see the definition of [F'| above) translate to equalities between the corresponding circuits.

73

For example, if v and m are as in part (a) Case 2, of the definition of [F'], then, using just the axioms
C1 and C2, we can prove
[F)= Y [0tF)-[F,] [F,). (69)

tEBm (Fy)

Here, the left hand side is understood as the circuit [F,| in which [0t F,], [F},], [F},] appear as sub-
circuits, and so can share common nodes, while on the right hand side the circuits have disjoint nodes.
Also, note that if F' has size s and degree d, the proof of (69) has size O(s?m(s, d)) and has depth
O(r(s,d)). We shall use these kind of identities in the current proof.

Let A(s, 7) be a function such that
A(s,0) = O(s*) and A(s,i) < O(s*-m(s,d)) + A(s,i —1). (70)

Recurrence (70) implies A(s, d) = poly(s, d).

The following proposition (which is a constructive version of Proposition 4.10 in [HT'15])
shows how to construct the desired P.(Z)-proofs of (67) and (68) when F' is either F}; & F; or
Fy ® F (and v is the root of F)), and where F} & F5 and F} ® F5 are each a single syntactic ho-
mogeneous circuit, and not a sum of syntactic homogeneous circuits. To see that this suffices for
the general case of (67) and (68), note first that in fact /| ® F5 cannot be a sum of more than one
syntactic homogeneous circuits because the gate at its root is a product gate. Second, if I} & F5
is a sum of two or more syntactic homogeneous circuits F; written as | ; Iy, then we can assume
without loss of generality that F} is a syntactic homogeneous circuit and Fp = > ; Fj is a sum of
one or more syntactic homogeneous circuits. Hence, F1®F, = F; + > ; I'; and by the definition

of the balancing algorithm [F} & Fy| = [F]| + Zj [F;] = [F1] 4 [F5] and we are done.

Proposition 10.14. Let I be a syntactically homogenous circuit with all nodes v having their syntactic
degree upper bound d; (v) < d given, and assume that F is of size s and is 327 -definable in VNC2
Then, for every i = 0,. .., [log d] there exists a X3P -definable in VINC? P.(Z) proof-sequence U; of
size at most \(s, 1) and depth at most O(r (s, d)), such that:

Part (a): For every node v € F with

dyy(v) < 2, (71)

W, contains the following equations:
[Fy] = [Fy,] + [Fy,), incasev =v;+ vy and (72)
[Fy] = [Fy,] - [Fy,), incasev = vy - vs. (73)

Part (b): For every pair of nodes w # v € F, where w € F,, and with

df(v) —df (w) < 2" and (74)
24 (w) > dfy (v), (75)
W, contains the following equations:
[OwF,| = [QwF,,] + [OwF,,], incasev = vy +vy; (76)
[OwE,] = [OwF,,] - [F.,], in case v = vy - vg and df, (v1) > df (v2)

or v = Uy - U1 and djb(vl) > dib('Ug). (77)

74

Proof. Similar to previous constructions the idea is to construct all parts of the P.(Z)-proof simul-
taneously in VINC?. This is done in an analogous manner to the balancing algorithm above.

Step 1 = 0. We need to devise the proof sequence Wy,
Part (a): proof of (72). Let d, (v) < 2°. By definition, [F},] = Y oi g a;x; + b, where a;’s are

integers and b is a sum of constant integers. Further, by construction [F},| does not contain product
gates and thus v = v; 4 vy, and we need to prove only (72). This stems from Lemma 10.11 part (i).

Part (b): proof of (76) and (77). Similarly to part (a) above, this follows from Lemma 10.11 part
(ii).

Overall, U, will be the union of all the above proofs, so that U, contains all equations (72) (for
all nodes v satisfying (71)), and all equations (76) and (77) (for all nodes v, w satisfying (74) and (75)).
The proof sequence W has size A(s,0) = O(s?) and has depth O(log s).
Step © + 1: We wish to construct the proof-sequence ;.

Part (a): proof of (72) and (73). Let v be any node in F such that
20 < dif (v) <27,

Case 1: Assume that v = vy + v5. We show how to construct the proof of [F,| = [F,,| + [Fl,].
Let m = 2°. From the construction of [-] we have:

[F”U] = [FU1+U2] = Z [Ftl] ’ [Ft2] [at< v1+v2)]' (78)

tEBm (Fy)

Since d, (v1) = d}, (v2) = d7f, (v), we also have

= > [F,]-[F,]-[0UF,)], foree {1,2}. (79)

teBm (Fve)

Ift € B,,(F,) then d, (t) > m = 2. Therefore, for any t € B,,(F,), since d}, (v) < 27
we have d} (v) — df, (t) < 2" and 2d, (t) > df, (v) and t # v (since ¢ is a product gate). Thus, by
construction, the proof-sequence W, contains, for any t € B,,(F),), the equations

[at< v1+v2)] = [8th1] + [atF’UQ]?

and we can compute the positions of these proof-lines in the string encoding of ¥, (using some
natural encoding). Therefore, pointing to these proof-lines in W; as premises, we constructa P.(Z)-
proof that (78) equals:

Z [Ft1]) [Fh]) ([atFm] + [athz])

teBm (Fy)

= Z [Ftl] ' [th] : [atFm] + [Ftl] : [th] ' [atFw]'
teBm (Fy) teBm (Fv)

Ift € B,(F,) andt ¢ F,, then [0tF,,] = 0. Similarly, if ¢t € B,,(F,) andt ¢ F,, then

[0tF,,] = 0. Hence we can prove

> [otF,]= > [0tF,], fore=12. (81)

teBnL(Fv) tEBnL(Fve)

(80)

75

Thus, using (79) we have that (80) equals:
Z [El] ’ [Ft2] ’ [8th1] + Z [Ftl]) [EQ] ’ [atFm]

t€Bm (Fuy) t€Bm (Fuy) (82)
- [FUI] + [F’UQ]‘

The above proof of (82) from W, has size O(s? - m(s, d)) and depth O(r (s, d)).

The proof of Case 2 where v = vy - V5, and the proofs of Part (b) for equations (76) and (77) are
similar to Case 1 above, and are identical to those cases in [HT 15, proof of Proposition 4.10]; like
Case 1, the difference from [HT15] is that we construct with an FINC? procedure all the P,(Z)-

proofs U; together, for everyi = 0, . . ., [log d|, where in ¥, | we point to proof-lines that appear
in U; (whose position can be computed using a natural encoding scheme for proof-lines).
This concludes the proof of Proposition 10.14.]
Hence we also concluded Lemma 10.13.]

Proof of Theorem 10.12. We assumed that 7 is a X7 -definable in VNC? P,(Z)-proof of F = G of
syntactic-degree at most d and size s, in which every circuit is a sum of syntactic homogeneous cir-
cuits with every node appearing with its d_; value. Simultaneously for each proof-line F; = F5 in
7 we are going to construct a (part of a) P.(Z)-proof of [F}] = [F»] using pointers to previous lines
(the pointers are 37 -definable number functions in VINC?). This resembles the proof structure of
Theorem 5.4. We can use the balancing algorithm on F7, F5 because by assumption these circuits
are given as a sum of syntactic homogeneous circuits with all nodes appearing together with their
associated syntactic-degree upper bound d, .

Case1: F = H isanaxiom of P,(Z). Then, [F] = [H] hasa XP-definable P (Z)-proof in VNC?
as follows. The axiom A1 is immediate and the axiom A10 follows from the fact that [F'] = F, for
F' = ¢, ¢ € Z. The rest of the axioms are an application of Lemma 10.13, as follows. Axioms C1
and C2 are already the statement of Lemma 10.13. For the other axioms, consider for example

Fl (G1+G2) :Fl'G1+F1 'GQ.
We need to show that the following has a 37-definable P,(Z)-proof:
[Fi-(Gi+ Go)] = [F -G+ Fy - Gy

Since we assume that all proof-lines are written as sums of syntactic homogeneous circuits with all
nodes having their syntactic-degree upper bounds specified, F} - (G1 + G2) and Fy - G + Fy - G
are written as such circuits and hence F, G;, Gy and G; + (G5 must also be sums of one or more
syntactic homogeneous circuits. Therefore, by Lemma 10.13 we have a ¥ -definable P.(Z)-proof

of:
[F1 - (G1+ Go)] = [F1] - [G1 + Go] = [F1] - ([G1] + [Ga]) = [F1] - [Gh] + [F4] - [Go] -
Lemma 10.13 gives again:
[F1] - [G1] + [F1] - [Ge] = [F1 - Gi] + [Fy - Ga] = [F1 - G1 + Fy - Gs).

Case 2: An application of rules R1, R2 translates to an application of R1, R2. For the rules R3 and
R4, it is sufficient to show the following: if 7 uses the rule
Fy =1 G =Gy
F1 9} Gl = F2 o G2

, 0 € {'7+}7

76

then by Lemma 10.13 and the assumption that F, Fy, G1, G5 and F} o F5, G o G5 are all written
as sums of syntactic homogeneous circuits, from the equations [F;| = [G;] and [F3] = [G3] there
is a proof of [F} o G1] = [Fy 0 Gy).

Altogether, we obtain a X7 -definable proof of [F] = [G]. O

We can now finally obtain the balanced P..(Z)-proofs of the determinant identities in VINC?.
Denote by Detyyiancea the circuit obtained by applying the balancing algorithm on Det}aleT(X).
That is,

Detbalanced(X) = [Det}aylor (X)] . (83)

Corollary 10.15. Let X, Y be n x n symbolic matrices and U = {uw;; }; jejn) be a X7 -definable in V°
triangular n X n matrix in the variables x;; for i, j € [n]| with no division gates. Then, the P.(Z)-proofs
of the following determinant identities

Detbalanced<X) : Detbalanced(y) - Detbalanced(XY) and (84)
Detbalanced(U> = U1l ** * Unn (85)

are X5 -definable in VINC?. Moreover, in these proofs every circuit has depth O (log® n).

Proof. By Corollary 10.9 the proofs of Dety, ;. (X) - Dety, . (Y) = Detf,,,, (XY) and
Dethgyior(U) = 11+ ++ Uy, are X7 -definable in V°, and every circuit in these proofs is a
sum of syntactic homogeneous circuits in which every node u appears with its syntactic-degree
upper bound d (u) < 2n. Applying Theorem 10.12 on these P.(Z)-proofs we obtain a
325 _definable in VNC? P,(Z)-proofs of [DetTayion(X) - Detryi,(Y)] = [Detry, i, (XY)]
and [Detr, 1, (U)] = [u11 - Upyp]. Using Lemma 10.13 and the definition of Detparanced(X)
we obtain 4 proof of [Deth s () - Dethy (V)] = [Deyyi(X)] - [Deti (V)] —
Detbalanced<X) ' Detbalanced(y) = Detbalanced<XY>~ [

11 Reflection Principle and Wrapping Up

Here we conclude the proofs of the determinant identities in the theory by proving and applying
the reflection principle for P,(Z)-proofs in VNC?,

11.1 Algebraic NC2-Circuit Value Problem

We show that there is a X2-definable in VINC? algorithm that receives an algebraic circuit over Z
with n input variables that is balanced according to the balancing algorithm in Section 10 together
with an assignment of integers to the variables written as an array of binary strings, and outputs
the value of the circuit under the assignment. We use the fact that the balancing algorithm we
provided in Section 10 results in fact in O(log n) depth algebraic circuits in which plus gates can
be considered to be unbounded fan-in and product gates have fan-in two (see Fact 11.1).

The algorithm proceeds as follows: i) convert the input balanced algebraic circuit into a bal-
anced Boolean circuit computing the same polynomial, where integers are written as binary strings
and the Boolean circuit is multi-output, that is, has more than one output gate, one for each bit of
the computed integer; ii) layer the circuit; iii) evaluate the balanced layered Boolean circuit using
the evaluation function for such circuits.

77

Step (i): From balanced algebraic circuits to balanced Boolean circuits. We show how to
transform a balanced polynomial-size algebraic circuit as was constructed in Section 10.4 into a
polynomial-size O(log® n)-depth Boolean circuit with a X7 -definable VNC? algorithm. We use
the following two facts:

Fact 11.1 (Observed by Vinay [Vin91]). Given an algebraic circuit of poly(n)-size and poly(n)-
degree, our algorithm in Section 10.4 (and the original [VSBR83] algorithm) that balances the circuit into
O(log® n)-depth, in fact balances the circuit into O (log n)-depth circuit except that the plus gates have
unbounded fan-in (and product remains of fan-in two).

We stress that all our circuits whether algebraic or Boolean, formally have fan-in two gates. How-
ever, the outputs of the balancing algorithm in Section 10.4 can be considered as having O(logn)
depth with unbounded fan-in plus gates and fan-in two product gates. In other words, our balanced
algebraic circuits are fan-in two circuits that result from O(log n)-depth circuits with fan-in two
product gates and unbounded fan-in plus gates by turning each iterated plus gates u; + - - - + Uy,
into a tree of logarithmic in m depth with fan-in two plus gate and w4, . . . , u,, on the leaves. We
say that such fan-in two balanced algebraic circuits are implicitly an O(log n)-depth circuit with
unbounded fan-in plus gates and fan-in two product gates. We can assume further that the balanc-
ing algorithm in Section 10.4 outputs circuits with all the the iterated plus gates also specified as
such, hence we will be able to convert the circuit into a balanced Boolean circuit in the algorithm
that follows.

Fact 11.2. The Boolean (multi-valued) function denoted 1tAddy,,. computing the iterated addition of (two
or more) integers written in binary is in FO-uniform FTC (see [CN10, IX.3.6.1]). The Boolean (multi-
valued) function StringMult computing the product of two integers written in binary is in FO-uniform
FTC" (see [CN10, IX.3.6]). Both of these are X7 -definable in VT C° (and hence also in VINC?), the
theory that corresponds to TC®, as shown in [CN 10, IX.3.6].

By Fact 11.2 both plus gates of unbounded fan-in (equivalently, iterated addition) and product
gates of fan-in two are computable in FTC® (C FNC'), and hence both have O(log n)-depth
fan-in two Boolean circuits of polynomial-size with A, V, — gates only (where 7 is the input size,
namely total size of all numbers written in binary). Denote by [tAdd.;,. the corresponding Boolean
circuit of iterated addition ltAddg,,. (see Section 11.2).

By Fact 11.1 an implicit O(log n)-depth algebraic circuit of poly(n) size with unbounded fan-
in plus gates and fan-in two product gates can be simulated by fan-in two O(log?(nm))-depth
Boolean circuits of poly(n, m) size, assuming the inputs to the circuit are written in binary, each
with m number of bits. Accordingly, we have the following:

> 5_definable function in VINC? for transforming balanced algebraic circuits into Boolean circuits

Input: A fan-in two algebraic circuit C' of size s, syntactic-degree d and depth O(log slogd)
which is implicitly an O(log d)-depth circuit with unbounded fan-in plus gates and fan-in
two product gates, together with a number m (given in unary) for the bit-length of integers.

Output: A multi-output fan-in two Boolean circuit of depth O(logd - log(sm)) and size
poly(s, d, m) that computes the same polynomial as the input circuit.

Algorithm

78

1. If S = Dy + -+ + D, (for some r < s)is an iterated sum in C' written as a fan-in two
circuit then replace it with a polynomial-size fan-in two and depth O(log(rm)) Boolean
circuit computing the corresponding iterated sum of integers.

Note that we can assume that each iterated sum in C' is already marked as such (namely,
as part of the specified iterated sum), during the algorithm for balancing in Section 10.4.
Moreover, notice that in the balancing algorithm an iterated sum like S is written as a tree
with leaves D;’s, namely no + gate in .S is re-used in the circuit.

2. Every fan-in two product gate is replaced by a polynomial-size, fan-in two and depth
O(log m) Boolean circuit computing the corresponding product of two integers.

The algorithm is a straightforward node-by-node transformation of the algebraic circuit and
is doable in FNC? and hence X7 -definable in VNC?.

This resulting Boolean circuit is encoded in the same way that algebraic circuits are encoded;
namely, via the encoding scheme in Section 3.1.1 (with the obvious modifications: instead of des-
ignating +, - we designate A, V,).

Step (ii): Layering Boolean circuits. For the evaluation of Boolean circuits in the theory we need
to have circuits that are layered, namely in which every node belongs to a single layer ¢, and nodes
in layer ¢ may only go to nodes in layer ¢ 4+ 1. While in Section 2.4 the circuits were monotone, here
they are not necessarily monotone. The encoding of layered Boolean circuits is done similar to
Section 2.4: alayered Boolean circuit with d + 1 layers 0, . . ., d is encoded with a string variable /,
with || < n, which defines the (Boolean) input gates to the circuit. We have a three-dimensional
string variable G such that for 0 < = < d, G(x,y,0) holds if the yth gate in layer x is A, and
G(z,y,1) holds if the gate is V and G(z,y, 2) holds if the gate is —; this is the only difference
between the encoding of non-monotone circuits and monotone circuits (where the latter had G as
a two-dimensional array). Accordingly, the wires of C' are encoded by a three-dimensional array
E such that E(z, x,y) holds iff the output of gate = on layer z is connected to the input of gate y
on layer z + 1.

We can convert with a X2 5-definable in VINC? algorithm any O (log® n)-depth Boolean circuit
(with multi-output gates) from Step (i) above into a layered Boolean circuit, as follows.

FNC?-algorithm for layering balanced Boolean circuits

Input: A multi-output Boolean circuit F' of depth d = ¢log® n, for some constant ¢ (encoded as
in Section 3.1.1).

Output: A layered multi-output Boolean circuit F” computing the same function as F’ with d lay-
ers.

Algorithm

1. Let Abethe s X s0-1 adjacency matrix of F' where s is the number of nodes in F', and the
(u, w)th entry in A, denoted A[u, w], is 1 iff there is a directed edge from node u to node
w in F. Note that A is a X5-definable in V function of F. Using the X¥-definable in
VNC? string function PowSeqy(n, s, A) (as in Section 10) that receives as inputann X n
integer matrix A and outputs a string coding the sequence (A, A2, ..., A%) of powers of 4,

79

we find the maximal length of a directed path from each of the internal gates in /' to each
of the output gates in F: note that A*[u, v] is the number of distinct directed paths of length
precisely ¢ from u to v. Hence, the longest path from any given output gate r to u is the
maximal 7 with A’[u, r] # 0. (Observe that A’[u, 7| only includes paths of length precisely i
and not paths of length smaller than ¢.)

2. Let F” be the circuit F' in which for every node u € V, for V the set of nodes of F, we
change u into the pair (u, d — ¢), where ¢ is the maximal length of a directed path from u to
an output node in F’' (the maximum over all output nodes). The number d — ¢ will serve as

the layer of (u,d — £) in F".

3. We now add dummy edges and nodes “1 - u” to F”, to force every node in F’ to have edges
directed only to subsequent layers. Specifically, we scan the nodes of F” from layer O to the
top d = clog® n layer, and for each node (u, k) that is connected with a directed edge e to
node (v, j), for j > k + 1, we discard e and add two new nodes and three new edges as
follows. Assuming that (v,j) = (u, k) o w, foro € {+,-}, let (v,j) = ((u, k) - 1) o w,
where the new node 1 is on layer £, the new node - is on layer k£ + 1 and two new edges are
added from (u, k) to - and from 1 to -, and a third edge is added from - to (v, 7). After this
the node (u, k) has a directed edge only to nodes in layer k& + 1. Doing this sequentially for
all clog? n layers we end up with a layered circuit F”.

Step (iii): Evaluating Layered Boolean circuits. As described in Section 2.4, by definition the
theory VINC? proves the existence of the evaluation string of O(log? n)depth monotone Boolean
circuits under an assignment to its inputs (as in (6)). In order to prove the reflection principle in
Section 11.2 below it is more convenient to work with evaluation functions for circuits that are not-
necessarily monotone. It is possible to show that VINC? proves the existence of evaluation strings
not only for balanced monotone circuits but also for balanced non-monotone circuits. However,
for our purpose it suffices to simply use the fact that the evaluation of (non-monotone) Boolean
circuits of depth O(log” n) is in FNC? and hence by Theorem 2.7 the following function is 32-
definable in VINC?: denote by Evaly,(F, A) the string function that receives a layered Boolean
circuit /' possibly with more than one output gate, and an assignment A to its variables, and returns
the string consisting of the output bits of f under A.

We can now define the function Eval,,(F, A) that receives the string variable F' encoding an
algebraic circuit over the integers of depth O(logn), fan-in two product gates and unbounded
fan-in plus gates, together with an assignment of integers to the variables of /' written as a two-
dimensional array A, and outputs the binary string representing the value of the algebraic circuit
F under the assignment A.

We define Evaly,(F, A) in the theory so that it first constructs the corresponding lay-
ered Boolean circuit of depth O(log®n) denoted B(F) and then evaluates it under A using
Evalye(F, A) (remember that A is a two-dimensional array of bit-strings representing a sequence
of integers hence the input to the former and latter function is the same). By Steps (i), (ii) and the
above discussion Eval,g is a Ef -definable string function in VINC2,

11.2 Proving the Reflection Principle for P.(Z)

Now that we know how to X7-define in VINC? the evaluation of balanced algebraic circuits, we
show the following reflection principle for IP.(Z) in which circuits have logarithmic depth, fan-in

80

two product gates and essentially unbounded fan-in plus gates:

Theorem 11.3 (Balanced P, (Z) reflection principle in VINC?). Assume that the P,(Z)-proof of the
circuit equation F = G is X.P-definable in VINC?, and that F, G has n variables. Further, suppose
that every circuit in the P.(Z)-proof is a fan-in two balanced algebraic circuit C' which is implicitly a
O(log n)-depth circuit with unbounded fan-in plus gates and fan-in two product gates. Then VINC?
proves that Yn¥mV A (Evaly,(F, A) = Evaly,(G, A)), where the assignment A is a two-dimensional
array of n integers with m bit-length each.

Before proving this theorem we provide a more general setting under which reflection prin-
ciples for unbounded depth P.(Z)-proofs hold. This general setting may find other applications in
bounded arithmetic. Note that while in Theorem 11.3 we start with a balanced IP.(Z)-proof and
thus can evaluate every proof-line directly with the evaluation function Eval,,(F', A), in the corol-
lary below we start with an unbalanced IP.(Z)-proof.

Corollary 11.4 (Generalized P.(Z) reflection principle in VNC?. (i) Assume
that the P.(Z)-proof of {F, = G}, is XB-definable in VNC? and suppose
that df,(F,) = poly(n) and d},(G,) = poly(n). Then, VNC? proves that

vnvmvdv A (Evaly, (Y, a9, A) = Bvalyg (S Gu ™, A)). Gi) Suppose further that

every node in the P.(Z)-proofs of {F, = G,}°, appears with a syntactic-degree d_, wit-
ness', where the syntactic-degree d. of F,, G, is at most poly(n). Then, VINC? proves that
VnVmVA (Evalyg(F,, A) = Eval, (G, A)).

Proof. Part (i): first homogenize the P.(Z)-proof using Theorem 5.4, from which we get 35-
definable in VNC? P.(Z)-proofs of F,% = @G,9 for all natural n > 1. This leads immediately
to P.(Z)-proofs of 2?:0 F,0 = 2?:0 G,, 9, for all natural n > 1 and all natural d > 0, where
every circuit in the IP.(Z)-proofs appear as a sum of homogeneous components, and every node
appears with its syntactic-degree upper bound d, at most poly(n). Using Theorem 10.12 we bal-
ance these proofs so that every proof-line is of depth O(log n) with unbounded fan-in plus gates
and fan-in two product gates. Using Theorem 11.3 above we are done.

Part (ii): This follows the same proof as part (i), only that due to the precise syntactic-degrees
d, for each node we can conclude also that F,, = Z?:o F® and G, = Z?:o G, for some
d = poly(n) (see Remark 5.5 on the need to use syntactic-degrees for this purpose.) [

Proof of Theorem 11.3. The proof proceeds by number induction (Proposition 2.2) on the number of
proof-lines in 7, using Lemma 11.5 below.

Since the evaluation function Eval,,
in the number induction axiom (see Section 2.5). Specifically, let m be the P.(Z)-proof of
F = @ and consider the E(]ja -formula (using the function symbol Eval,) Q(n) = Vi <
n (Evalalg (Ieft (W[i]) ,A) = Evaly, (right (W[i]) ,A)), where left(7!l) and right(7!) are the left
(resp. right) hand side circuits in the ith proof-line in 7. Then, the induction states that assuming
the first line 710 is true under an assignment A, namely, Q(0), and if Q(n) — Q(n + 1) is true,
namely if all proof-lines < n are true under an assignment A, then also the (n + 1)th line is true
under A (because it is either an axiom or was derived from previous lines). This concludes the

is XB-definable in VINC? we can use this function

argument since we end up with the last proof-line /' = G being true under A.

8 Here we mean syntactic-degrees of nodes when considering also scalars as contributing to the syntactic-degree
of products, as was defined for djb (only that in di’b we seek an upper bound and here we need a syntactic-degree).

81

It remains to prove each of the following cases: (1) Axioms of IP.(Z). We show that the eval-
uation of P.(7Z) axioms under integer assignments is universally true: Vn¥m < t(n)VA <
c (Evalyg(F, A) = Evaly,(G, A)) when F' = G is an axiom of P.(Z). For example, F' 4+ 0 = F
holds for every integer assignment to the variables of F". (2) The rules of IP.(Z) are sound under
integer assignments. This is proved in Lemma 11.5 below. [

To prove Lemma 11.5 we will use the following notation and facts. For two binary strings A, B
denote by A+ B the binary addition of A and B (which is a X2 -definable function in V using the
usual carry-save addition). For an algebraic circuit /' recall that B(F') denotes the layered Boolean
circuit that is constructed by the evaluation function Eval,,(F, A) as described above in steps (i)
and (ii) (B(F’) is independent of the assignment A). By definition Evaly,(F, A) first constructs
B(F') and then uses Evaly,,(B(F'), A) to evaluate B(F') under A.

Given n binary strings D1, . .., D,, of length m each, encoded as a two-dimensional array D,
[tAddune (D, 1, m) is the X5 -definable string function in VINC? that computes the iterated addi-
tion of the D;’s, and [tAdd. (D, n, m) is the corresponding layered O(log n)-depth multi-output
Boolean circuit that computes this function.

We shall assume that [tAdd;,,. is defined in VNC? using the evaluation of the Boolean circuit
for iterated addition ItAdd.;. as follows. Let Z be a string variable, then [tAddg,,. (E, n,m) is
defined by:

[tAddgunc (D, n, m) := Evalyo(ItAdderc (Z, n, m), D). (86)

By the same argument as in [CN 10, Section 1X.3.6.2 (cf. equation (251))], VTC° (and hence
also VINC?) proves that

ItAddgnc(D,0,m) = and 87)
[tAddsunc (D, n,m) = ItAddsnc (D, n — 1,m) +4 D, , (88)

with D,, denoting the nth number in D (that is, DI"]), and) the empty string.

Lemma 11.5 (Soundness of P.(Z) rules and axioms). Let F, Fs, Gy, Gy, F, G be O(log n)-depth
circuits with unbounded fan-in plus gates and fan-in two product gates, and let A be an assignment
of integers to their input variables. (i) If Eval,,(F1, A) = Evaly(Gq, A) and Evaly(Fr, A) =
Evalyg(Ga, A) then Evaly,(Fy o Fy, A) = Evaly(Gi 0 Ga, A), foro € {+,x}. () IfF = G
is an axiom of P(Z), then Evaly,(F, A) = Evaly,(G, A).

Proof. Part (i). Consider the rule in which F} + F, = G + Gy is derived from F; = (G and
F, = G5. We need to prove that Evaly(Fy + F», A) = Evaly(G1 + G2, A), assuming that
Evaly,(F1, A) = Evaly,(G1, A) and Eval,(F>, A) = Evaly,(Ga, A). (The rule for x is easier and
we omit the details.)

It is enough to show the following (and similarly for G, G):

Claim 11.6. Evalalg(Fl, A) +b Evalalg(Fg, A) = Eval (Fl + FQ, A)

alg

Having this lemma we are done, because from assumption Eval,(F1, A) 4+, Evaly,(Fh, A) =
Eval,g(G1, A) 44 Evalyy (G2, A) (directly by equality axioms).

Proof of Claim 11.6. Consider the algebraic circuits F, F5, G, Go. Because algebraic circuits pos-
sess plus gates of fan-in two while in our translation to Boolean circuits we combine iterated ad-
ditions into a Boolean sub-circuit that computes this iterated addition of possibly more than two
numbers, we need to consider different cases based on the output gate of F, F5, G1, Go.

82

Case 1: The output gates of both F}, F5 are not +. Thus, the layered Boolean circuit constructed
by Evaly,(Fy + F», A) is B(Fy + F3) = ItAdd. (B(F1), B(F2), 2, m), assuming the number of
bits is m and where B(F}), B(F») denotes the two-dimensional array with first string B(F}) and
second string B(F3). Note that because F, F have no plus gates at their output, the [tAdd,. at
the output (sub-circuit) in B(F + F3) has only the two binary strings B(F}), B(F3) added together
(this is simpler than Case 2 below). By definition Evalalg(F | + F, A) first constructs the layered
Boolean circuit B(F] 4 Fy) and then evaluates it under A using Evaly,, (B(F; + F3), A). Hence,
VNC? proves that

Evaly,(F) + Fy, A) = Evalyy (ItAddcirc (B(Fl), B(F), 2, m) ,A)

= ItAddfunC(Evthool(B(Fl), A), Evalbool(B(Fg), A), 2, m) by (86)

= Evalbo,,,(B(Fl), A) +p Evalbool(B(Fg), A) by (88)

= Evaly,(F1, A) 4+ Evaly,(F5, A) by definition of Evaly,.
Case 2: Both Fi, F; have + output gates. Thatis, Fy = Hy +---+ H,.and Fr, = K1+ --- + K|,
where 7, > 2. Let the number of bits be again m, then B(F}) = ItAddg.(Hq,. .., H.,r,m),
B(FQ) = |tAddcirc(K17 ey Kl, l, m), and B(Fl + FQ) = |tAddcirc(H1, P 7H7‘7 Kl, e ,Kl7 r—+
[, m), where as before, for k strings D, ..., Dy we denote by D1, ..., Dy the two-dimensional

array in which the sth string is D;. This is similar to Case 1 above, only that we need to show in

VINC? that

|tAddfunc(H1, Ce 7Hr7 r, m) —|—b |tAddfunc(K1, Ce ,Kl, l, m)
= |tAddfunc(H1, ce ,HT7 Kl, ey Kl,T’ + l, m)

Let Z be a string variable standing for a two-dimensional array of strings 21, Zo, ..., let
i,J,m, m be number variables, and define ItAdd?, .(Z,i,j,m) to be the 35-definable function
in VINC? that sums the binary numbers Z; + - - - + Z;, each of bit-length m (that is, [tAdd?, . is
similar to [tAddg,. only that we start summing from Z; and not Z;).

Note that VINC? proves ItAdd, .(Z,1,n,m) = ltAddsync(Z, n,m) and
|tAddf.unc(H1,...,Hr,Kl,...,Kl,l,’f‘,m) = |tAddfunc(H1,...,HT,T,m) and
ItAdd? (Hy, ..., H Kq,...,K;,r + 1,1 + r,m) = ItAddan (K7, ..., K;,1,m). Hence,

it remains to prove:

ItAdd;

func

(Hy,.. H,, Ki,... K, 1r,m)+yltAdds, (H, ... Ho, K1, K, r+1, 47, m)
= |tAddfunc(H1,...,HT7K1,...,K1,T+l,m). (89)

Define the following 3F-formula (in the language £ 4 U {ItAddnc, +5}):
o(i, Z,n,m) = ItAdd} (Z,1,i,m) + ItAdd?, (Z,i + 1,n,m) = ItAddan(Z, n, m) .
To prove (89) it suffices to prove in VINC? Viip(i). We proceed by a number induction over

i using the formula ¢(i, Z, n, m). The base case p(0, Z,n,m) is 0 +;, ItAdd},.(Z,1,n,m) =
[tAdd? . (Z,1,n,m) = ltAddg,.(Z, n, m), and we are done. The induction step is proved using

func

(88) (which holds also for ItAdd?)

ItAddS. (Z,1,i,m) + ItAdd?, (Z,i + 1,1,m)
= ItAdd} (Z,1,i,m) 4+ (Zi11 45 ItAdd], (2,0 + 2,n,m))

= ItAdd? (Z,1,i+ 1,m) +, ItAdd} (Z,i 4+ 2,n,m).

83

Case 3: F} has a plus output gate, while 5 does not, or vice versa. This is similar to the previous
cases. [

Part (ii) is similar to part (i) and we omit the details. This concludes Lemma 11.5. O

11.3 Wrapping Up

The Determinant Function DET in VNC?. Givenann X n integer matrix A, the determinant
function DET(A) in VINC? is defined to first construct an O(log® n)-depth algebraic circuit for
the determinant polynomial of a symbolic n X n matrix, and then evaluate the circuit under A4, as
was shown above. Recall that Detyganceq(X) is the circuit for the determinant defined in (83).

Definition 11.7 (Determinant function DET in VNC?). Given an integer matrix A, the determinant
in VINC? is defined as DET(A) := Evalug(Detparanced(X), A).

The fact that DET(A) computes the determinant function follows, for instance, from Theorem
11.8 below. Since both the string functions Detpaiancea(X) and Evaly,(F, A) are 37 -definable in
VNC?, DET is Ef—definable in VNC?2,

Using the definition of DET, Theorem 11.3 and Corollary 10.15 we are finally in a position
to conclude the main theorem. Let Maty (A, n, m) denote the predicate stating that A is an n X
n integer matrix with integer entries encoded in binary with m bits, and triangMat, (A, n, m)
means that A is a lower or upper n X n triangular matrix with integers encoded in binary with m
bits, and A[, j| is the (7, j)th integer entry of A.

Theorem 11.8 (Main theorem). The following determinant identities are provable in VINC?:

VnVmVAVB (Matz(A, n,m) A Matz(B,n, m) — DET(A) - DET(B) = DET(AB)) ,
VnVmV A (triangMat, (A, n,m) — DET(A) = A[1,1]--- A[n,n]) .

Using the translation between bounded arithmetic theories and propositional proofs as shown
in [CN10] we can extend the result in [HT15] to work over the integers, and not only over G F'(2):

Theorem 11.9. There are polynomial-size propositional N C?-Frege proofs of the determinant identities
over the integers.

In Theorem 11.9, NCz—Frege proofs are defined as in [HT15], namely, as families of stan-
dard propositional (Frege) proofs with size poly(n), in which every proof-line is a circuit of depth
O(log® n), and where we augment the system with rules for manipulating circuits similar to rules
C1,C2inP, (it is also possible to characterize these proofs as restricted Extended Frege proofs). In-
tegers in these proofs are encoded by fixed length binary strings, that is sequences of propositional
variables (thus, for each different bit-length we have a different propositional proof).

12 Corollaries

Here we show some further theorems of linear algebra that can be proved in VINC?, using similar
arguments as above. Specifically, we show that the Cayley-Hamilton theorem and the co-factor

84

expansion of the determinant are provable in VINC?, as well as the hard matrix identities identified
by Soltys and Cook in [SC04].

The Cayley-Hamilton theorem states that for the (univariate) characteristic polynomial of a ma-
trix A in the variable 2, defined as

pa(z) :=det(zI — A),

it holds that p4(A) = 0, where ps(A) is a univariate polynomial in the matrix A, product is
interpreted as matrix product, and scalar multiplication of a matrix is interpreted as usual, and
where the right hand side 0 stands for the all zero matrix.

The characteristic polynomial p4(2) of a matrix is defined in the theory as follows: we intro-
duce a 3P -definable string function p(A, n) that receives an n x n integer matrix A and outputs a
division free O(log® n)-depth algebraic circuit with n? input variables and n? output variables for
each entry of the output n X n matrix, where the coefficient of 2%, fori = 0, ..., n, is computed
(as a sub-circuit) by

[Coeffzi (Det}aylor(z[n — A))} ,

namely, the balanced circuit that extracts the (constant) coefficient of 2’ in the determinant polyno-
mial of zI,, — A. Thus, overall the string function p(A, n) outputs the following O (log® n)-depth
algebraic circuit for the characteristic polynomial of A:

p(A,n) = Z [coeff.i (Dethyy o, (21, — A))] - [X7], (90)
i=0
4 times

where [X] stands for the O(log” n)-depth multi-output circuit of matrix powering [X - - - X],
and the product - is the usual scalar product of a matrix, that is, for each ¢, the circuit
[coeff,: (Deth 0, (21, — A))] multiplies each of the n? output gates of [X]. Denote by
p(A,n,i,7) the sub-circuit of p(A, n) that computes the (i, j) entry of the matrix computed by
p(A,n).

The Cayley-Hamilton theorem is expressed in the theory as follows:
VnVmVA(Matz(A, n,m) — Vi <nVj < nEvaly(p(A,n,i,j),A) =0). 91)
Corollary 12.1. The Cayley-Hamilton theorem, expressed as in (91), is provable in VNC?,

Proof of Corollary 12.1. This follows the same line of arguments demonstrated for the VINC?-
proofs of the determinant identities. We first construct the simple P.(Z)-proof of the Cayley-
Hamilton theorem shown in Proposition 9.4 in [HT15] which is based on the P.(Z)-proof of the
multiplication of the determinant and then use the reflection principle as in Section 11. The only
difference is that we need to use part (3) in Lemma 7.3 (we did not use this part before), and for
this we need to supply the witnesses for the syntactic-degrees of the nodes in (90). This is shown
in Lemma 7.4. [

Other basic results in linear algebra that are provable in VINC? are the co-factor expansion of
the determinant and the inversion principle, as follows.
The inversion principle is the following formula in VNC?:

Vn, VmVYAYB(Matz(A, n,m) A Matz(B,n,m) — (AB =1, - BA=1,)), (92)

85

where [, stands for the n X n identity matrix. Soltys and Cook [SC04] introduced the quantifier
free theory LA that allows the basic ring properties, for example associativity of matrix additions, to
be formulated and proved. LA can be interpreted in VINC? by Cook and Fontes [CF12]'°. The in-
version principle was showed [SC04] to be equivalent in LA to the following principles collectively
called (including the inversion principle itself) the hard matrix identities:

AB=INAC=1I—-B=C
AB=1—AC#0VC =0
AB=1— A'B' =1,

where these identities are quantified as in (92).

The above identities are said to be “hard” in the sense that they seem to require computing in-
verses in their derivations, meaning that they necessitate using concepts from NC? (and therefore
appear not to be provable in the relatively weak theory LA). The theory LAP adds the matrix pow-
ering operator to LA. Moreover, the theory LAP (over any field) proves that the Cayley-Hamilton
theorem implies the hard matrix identities [SC04]. By the results of [SC04] we know that the hard
matrix identities, like the Cayley-Hamilton theorem, are provable in VP a theory for polynomial-
time reasoning.

Our work shows the following:

Corollary 12.2. The hard matrix identities are provable in VNC?,

For ann x n matrix X let X[i|j] be the (n — 1) x (n — 1) minor obtained by removing the ith
row and jth column from X (recall that a sum of integer numbers represented in binary is definable

in VINC? (cf. [CN10))).

Corollary 12.3. The following co-factor expansion of the determinant is provable in VNC?:

VnVmVv A (MatZ(A,n,m) — (DET(A) = zn:(—n”m(z',j)DET(A[z'U]))) :

i=1

The proofs of Corollaries 12.2 and 12.3 are similar to the proof of Corollary 12.1. It uses
the adjoin of a matrix Adj(X) which is defined to be the n X n matrix whose (i, j)th entry is
(—1)""DET(X[i|]), where DET is the determinant function (X7-defined in VINC?). Then we
proceed as in Corollary 12.1 following [HT15, Proposition 9.1 and 9.2] that builds on the proof of
the multiplication of the determinant. We omit the details.

13 Conclusions and Open Problems

We established a proof of the multiplicativity of the determinant and other basic statements of
linear algebra such as the Cayley-Hamilton theorem and the co-factor expansion of the determinant
in the weakest logical theory known to date (and essentially conjectured to be the weakest possible
in the theories corresponding to the NC hierarchy). This answers an open question of Cook and
Nguyen [CN10, IX.7.1. Proving Cayley-Hamilton in VINC?] and Soltys and Cook [SC04, p. 322,

YThough here we have to be careful, because the encoding of matrices and polynomials and the determinant we
introduce is different from the encoding of [SC04, CF12].

86

Conclusion and open problems, top paragraph] and Cook and Fontes [CF12]. We achieved this
by formalizing in the theory VINC? the construction demonstrated in Hrubes-Tzameret [HT15],
and using a reflection principle in the theory. Due to the central role of linear algebra and the
determinant function, these results are expected to be relevant to further basic work in bounded
arithmetic.

We showed how to carry out many constructions coming from algebraic circuit complexity
in bounded arithmetic. For instance we demonstrated under which conditions one can prove in
NC?2-reasoning the soundness of line-by-line proofs of polynomial identities over the integers
(P.(Z)-proofs), even when the proofs are not balanced (Corollary 11.4). This should be helpful to
establish further algebraic-based identities in bounded arithmetic. More generally, since bounded
arithmetic is a useful framework for the development of the meta-mathematics of computational
complexity in which one seeks to understand the complexity of concepts needed to prove results in
complexity theory, we may hope that our results and techniques provide new insight into the meta-
mathematics of the well developed theory of algebraic complexity (in contrast to the traditional
emphasis on Boolean complexity).

As mentioned in Section 1.1.1 the complexity classes #SAC' C TC" that are above DET but
below NC?2, can compute the required depth reduction and the evaluation of algebraic circuits, and
we believe that our construction can be carried out more or less the same in theories corresponding
to these classes (though theories for these classes have not been investigated yet).

It will be very interesting to establish the same identities in a theory that corresponds to the
complexity class DET whose complete (under AC°-reductions) problems are the integer deter-
minant itself and matrix powering; such a theory denoted V # L was introduced in [CF12]. This
would necessitate a completely new argument different from ours (possibly following Berkowitz’
[Ber84] algorithm for the determinant) and may also contribute to the simplification of the proofs.
The reason is that our argument utilizes crucially the evaluation of Boolean NC?-circuits in the
theory, while it is not expected that such evaluation is doable in the class DET.

Acknowledgements

We thank Pavel Hrubes for useful discussions while working on [HT'15], Eric Allender for very
helpful correspondence regarding [A]MV98] and Emil Jefabek for clearing up things about AC*
and TC'. We also wish to thank the anonymous reviewers of this work for greatly contributing to
the improvement of the exposition. An extended abstract of this work appeared initially at LICS
2017.

References

[AJMV98] Eric Allender, Jia Jiao, Meena Mabhajan, and V. Vinay.
Non-commutative arithmetic circuits: Depth reduction and size lower bounds. Theor. Comput.
Sci., 209(1-2):47-86,1998. 1.1, 2,5.1,10.4, 13

[All18] Eric Allender. Personal communication, 2018. 1.1, 2, 10.4

[BBP95] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard examples for Frege
systems? In Feasible mathematics, II (Ithaca, NY, 1992), volume 13 of Progr. Comput. Sci. Appl. Logic,
pages 30-56. Birkhiuser Boston, Boston, MA, 1995. 1

87

http://dx.doi.org/10.1016/S0304-3975(97)00227-2

[Ber84]

[BKKK20]

[BKZ15]

[BP98]

[Bus86]

[CF12]

[CN10]

[Coo075]

[Co085]

[HP93]

[HT09]

[HT15]

[Jet04]

[Jer05]

[Jef11]

[Kra95]

Stuart J. Berkowitz. On computing the determinant in small parallel time using a small number
of processors. Inf. Process. Lett., 18:147-150, 1984. 1, 13

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucky. Expander construc-
tion in vnc'. Annals of Pure and Applied Logic (to appear), 2020. Extended abstract in Proceedings,
8th Conference on Innovations in Computer Science (ITCS), 2017. 1

Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Konrad Zdanowski. Collapsing modular
counting in bounded arithmetic and constant depth propositional proofs. Transactions of the
AMS, (367):7517-7563, 2015. 1

Paul Beame and Toniann Pitassi. Propositional proof complexity: past, present, and future. Bull.
Eur. Assoc. Theor. Comput. Sci. EATCS, (65):66-89, 1998. 1

Samuel R. Buss. Bounded Arithmetic, volume 3 of Studies in Proof Theory. Bibliopolis, 1986. 1, 2

Stephen A Cook and Lila A Fontes. Formal Theories for Linear Algebra. Logical Methods in Com-
puter Science, Volume 8, Issue 1, March 2012. 1, 1.1, 1.1, 1.1.1, 10.2, 10.3, 10.5, 12, 19, 13

Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. ASL Perspectives
in Logic. Cambridge University Press, 2010. 1, 1.1, 1.1, 1.1, 1.1, 1.1.2, 2, 2.2, 2.2, 2.3, 2.4, 2.4, 2.7,
2.5,2.10,2.5,25,25,2.6,2.6,3.1.3,10.5,11.2,11.2,11.3, 12, 13

Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (preliminary ver-
sion). In STOC, pages 83-97, 1975. 1

Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,
64(1-3):2-21, 1985. 1

P. Hajek and P. Pudlak. Metamathematics of First-order Arithmetic. Perspectives in Mathematical
Logic. Springer-Verlag, Berlin, 1993. 2

Pavel Hrubes$ and Iddo Tzameret. The proof complexity of polynomial identities. In Proceedings
of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18
July 2009, pages 41-51, 2009. 1.1, 1.1.2, 2, 2.8, 2.15

Pavel Hrubes and Iddo Tzameret. Short proofs for the determinant identities. SIAM J. Comput.,
44(2):340-383, 2015. (A preliminary version appeared in Proceedings of the 44th Annual ACM
Symposium on the Theory of Computing (STOC’12)). (document), 1, 1.1, 1.1, 1.1.2, 2, 2.8, 2.15,
29,3.1.2,4.2,43,43,6.1,7.1,7.3,7.4,7.5,10.2, 10.2, 10.2, 10.4, 10.5, 10.5, 10.5, 11.3, 11.3, 12,
12,13,13

Emil Jetabek. Dual weak pigeonhole principle, Boolean complexity, and derandomization. Ann.
Pure Appl. Logic, 129(1-3):1-37, 2004. 2.7

Emil Jerabek. Weak pigeonhole principle, and randomized computation. PhD thesis, PhD thesis,
Faculty of Mathematics and Physics, Charles University, Prague, 2005. 1

Emil Jetrabek. A sorting network in bounded arithmetic. Annals of Pure and Applied Logic,
162(4):341-355,2011. 1

Jan Krajicek. Bounded arithmetic, propositional logic, and complexity theory, volume 60 of Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. 2

88

http://dx.doi.org/10.2168/LMCS-8(1:25)2012
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1109/CCC.2009.9
http://dx.doi.org/10.1137/130917788
http://dx.doi.org/10.1017/CBO9780511529948

[MRKS88] Gary L. Miller, Vijaya Ramachandran, and Erich Kaltofen. Efficient parallel evaluation of
straight-line code and arithmetic circuits. SIAM J. Comput., 17(4):687-695, 1988. 1.1, 5.1, 10.1,
10.4

[MT14] Sebastian Miiller and Iddo Tzameret. Short propositional refutations for dense random 3CNF
formulas. Annals of Pure and Applied Logic, 165:1864-1918, 2014. Extended abstract in Proceed-
ings of the 27th Annual ACM-IEEE Symposium on Logic In Computer Science (LICS), 2012.
2.6

[NC07] Phuong Nguyen and Stephen Cook. The complexity of proving discrete jordan curve theorem.
In Proceedings of the 22nd IEEE Symposium on Logic in Computer, pages 245-254, 2007. 1

[Ngu08] Phuong Nguyen. Bounded Reverse Mathematics. PhD thesis, University of Toronto, 2008. 1

[Par71] Rohit Parikh. Existence and feasibility in arithmetic. The Journal of Symbolic Logic, 36:494-508,
1971. 1

[Pic15] Jan Pich. Logical strength of complexity theory and a formalization of the PCP theorem in
bounded arithmetic. Logical Methods in Computer Science, 11(2), 2015. 1

[PT16] Tonnian Pitassi and Iddo Tzameret. Algebraic proof complexity: Progress, frontiers and chal-
lenges. ACM SIGLOG News, 3(3), 2016. 2

[PW85] J.Parisand A. Wilkie. Counting problems in bounded arithmetic. In Methods in mathematical logic
(Caracas, 1983), volume 1130 of Lecture Notes in Math., pages 317-340. Springer, Berlin, 1985. 1

[RY08] Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Compu-
tational Complexity, 17(4):515-535,2008. 10.2, 10.2, 10.4

[SCO4] Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Ann. Pure Appl. Logic,
130(1-3):277-323,2004. 1, 1.1,12,12, 19, 13

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701-717, October 1980. Preliminary version in the International Symposium on Symbolic
and Algebraic Computation (EUROSAM 1979). 1, 1.1

[Sim99] Stephen Simpson. Subsystems of Second Order Arithmetic. Springer, 1999. 1

[Sol01] Michael Soltys. The complexity of derivations of matrix identities. PhD thesis, University of Toronto,
Toronto, Canada, 2001. 1, 1.1

[Str73] Volker Strassen. Vermeidung von divisionen. J. Reine Angew. Math., 264:182-202, 1973. (in
German). 1,1.1,1.1,4.2,5,6.1,6.2,7.1

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.
Foundations and Trends in Theoretical Computer Science, 5(3-4):207-388, 2010. 2.7

[TS05] Neil Thapen and Michael Soltys. Weak theories of linear algebra. Arch. Math. Log., 44(2):195-
208, 2005. 1

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In
Proc. 6th IEEE Structure in Complexity Theory Conference, pages 270-284, 1991. 1.1, 1.1, 11.1

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel computation of
polynomials using few processors. SIAM J. Comput., 12(4):641-644, 1983. 1, 1.1, 1.1, 5.1, 10.1,
10.2, 15,10.2,10.2,104, 11.1

89

http://dx.doi.org/10.1007/s00037-008-0254-0
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1007/s00153-004-0249-8

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, pages 216-226. Springer-Verlag, 1979. 1, 1.1

90

— Page left blank for ECCC stamp —

91

	Introduction
	Overview
	Note on the Choice of Theory
	Organization

	Preliminaries
	The Theory V0
	Definability in Bounded Arithmetic
	The Complexity Class NC2
	The Theory VNC2
	Introducing New Definable Functions in V0 and VNC2
	Some Basic Formalizations in V0
	Example: Binary Tree Construction in V0

	Polynomials and Algebraic Circuits
	Equational Proofs of Polynomial Identities
	Circuits and Proofs with Division

	Encoding Circuits and Proofs in the Theory
	Encoding Circuits
	Encoding of Algebraic Circuits in the Theory
	Circuit with Division for the Determinant
	Constructing the Circuit Detcirc-1 in V0

	Encoding and Witnessing Polynomial Identity Proofs

	Existence of Proofs with Division for the Determinant Identities
	Overview
	Provably Good Nodes
	Constructing the Pc-1(Z)-Proofs in the Theory

	Homogenization in V0
	Preliminaries for Division Elimination
	Overview
	Approximating Inverses by Power Series
	Division Normalization

	From a Rational Function to the Determinant as a Polynomial
	Overview
	Elementary Row and Column Operations
	Extracting Polynomial Coefficients: Taylor Expansion
	Witnessing Syntactic-Degrees
	Algorithm for coeff

	From Determinant as Rational Function to a Polynomial in Pc-1(Z)
	Reducing the Syntactic-Degree of the Determinant Polynomial

	Eliminating Division Gates
	Overview
	Eliminating Division

	Eliminating High Degrees From the Proofs
	Balancing Algebraic Circuits and Proofs in the Theory
	Overview
	Background Concepts for the Balancing Algorithm
	Preliminaries for the Balancing Algorithm
	Taking Care of Nodes with High d+ub Values

	Formal Description of the Balancing Algorithm
	Balancing Proofs in VNC2

	Reflection Principle and Wrapping Up
	Algebraic NC2-Circuit Value Problem
	Proving the Reflection Principle for Pc(Z)
	Wrapping Up

	Corollaries
	Conclusions and Open Problems

