
Uniform, Integral and Feasible Proofs for the

Determinant Identities*

Iddo Tzameret† Stephen A. Cook‡

November 13, 2020

Abstract

Aiming to provide weak as possible axiomatic assumptions in which one can develop basic

linear algebra, we give a uniform and integral version of the short propositional proofs for the

determinant identities demonstrated over GF (2) in Hrubeš-Tzameret [HT15]. Specifically,

we show that the multiplicativity of the determinant function and the Cayley-Hamilton the-

orem over the integers are provable in the bounded arithmetic theoryVNC
2; the latter is a

first-order theory corresponding to the complexity classNC
2 consisting of problems solvable

by uniform families of polynomial-size circuits and O(log2 n)-depth. This also establishes

the existence of uniform polynomial-size propositional proofs operating withNC
2-circuits

of the basic determinant identities over the integers (previous propositional proofs hold only

over the two element field).

*A version of this paper is to appear in the Journal of the ACM (JACM).
†Department of Computer Science, Royal Holloway, University of London. Iddo.Tzameret@gmail.com
‡Department of Computer Science, University of Toronto. sacook@cs.toronto.edu

1

Contents

1 Introduction 3

1.1 Overview . 6

1.1.1 Note on the Choice of Theory . 9

1.1.2 Organization . 10

2 Preliminaries 10

2.1 The TheoryV0 . 11

2.2 Definability in Bounded Arithmetic . 12

2.3 The Complexity ClassNC
2 . 13

2.4 The TheoryVNC
2 . 14

2.5 Introducing New Definable Functions inV0 andVNC
2 15

2.6 Some Basic Formalizations inV0 . 17

2.6.1 Example: Binary Tree Construction inV0 . 18

2.7 Polynomials and Algebraic Circuits . 19

2.8 Equational Proofs of Polynomial Identities . 20

2.9 Circuits and Proofs with Division . 21

3 Encoding Circuits and Proofs in the Theory 22

3.1 Encoding Circuits . 22

3.1.1 Encoding of Algebraic Circuits in the Theory . 22

3.1.2 Circuit with Division for the Determinant . 23

3.1.3 Constructing the CircuitDetcirc−1 inV0 . 24

3.2 Encoding and Witnessing Polynomial Identity Proofs . 26

4 Existence of Proofs with Division for the Determinant Identities 28

4.1 Overview . 28

4.2 Provably Good Nodes . 29

4.3 Constructing the P−1
c (Z)-Proofs in the Theory . 31

5 Homogenization inV
0 38

6 Preliminaries for Division Elimination 43

6.1 Overview . 43

6.2 Approximating Inverses by Power Series . 43

6.3 Division Normalization . 45

7 From a Rational Function to the Determinant as a Polynomial 48

7.1 Overview . 48

7.2 Elementary Row and Column Operations . 49

7.3 Extracting Polynomial Coefficients: Taylor Expansion . 50

7.3.1 Witnessing Syntactic-Degrees . 51

7.3.2 Algorithm for coeff . 53

7.4 From Determinant as Rational Function to a Polynomial in P−1
c (Z) 54

7.5 Reducing the Syntactic-Degree of the Determinant Polynomial 57

8 Eliminating Division Gates 59

8.1 Overview . 59

8.2 Eliminating Division . 59

2

9 Eliminating High Degrees From the Proofs 61

10 Balancing Algebraic Circuits and Proofs in the Theory 63

10.1 Overview . 63

10.2 Background Concepts for the Balancing Algorithm . 64

10.3 Preliminaries for the Balancing Algorithm . 66

10.3.1 Taking Care of Nodes with High d+ub Values . 68

10.4 Formal Description of the Balancing Algorithm . 69

10.5 Balancing Proofs inVNC
2 . 72

11 Reflection Principle andWrapping Up 77

11.1 AlgebraicNC
2-Circuit Value Problem . 77

11.2 Proving the Reflection Principle for Pc(Z) . 80

11.3 Wrapping Up . 84

12 Corollaries 84

13 Conclusions and Open Problems 86

1 Introduction

The complexity of linear algebraic operations such as matrix inverse and the determinant is well

studied (cf. Cook [Coo85]). It is well known that many linear algebraic operations like the deter-

minant can be computed quickly in parallel, and specifically are inNC
2, which is the class of all

languages that can be decided by uniform families of O(log2 n)-depth and polynomial-size cir-

cuits. This class captures fast parallel computation in the sense that a language in it can be decided

in time O(log2 n) while using polynomially many processors working in parallel. In fact, within

the NC := ∪∞
i=0NC

i hierarchy, which consists of all polynomial-size circuit families of poly-

logarithmic depth, NC
2 is the weakest class known to compute the determinant (formally, the

weakest circuit class computing integer determinants is the classDET that lies betweenNC
1 and

NC
2; see below).

In this work we are interested not in the complexity of computing the determinant per se, but

in the complexity of the concepts we need to use in order to prove the basic properties of the deter-

minant, and more generally to prove and develop basic linear algebra.

The field that studies the computational complexity of concepts needed to prove different state-

ments is called bounded arithmetic, and constitutes the proof-theoretic approach to computational

complexity. Bounded arithmetic is in fact a general name for a family of weak formal theories

of arithmetic (that is, natural numbers). These theories are characterized by their axioms, usually

starting from a basic set of axioms providing the most basic properties of numbers each bounded

arithmetic theory possesses different additional axioms postulating the existence of different sets

of numbers, or different kinds of induction principles. Based on its specific axioms each the-

ory of bounded arithmetic proves the totality of functions from different complexity classes (e.g.,

polynomial-time functions,NC
2 functions, etc.). We can typically consider such theories as work-

ing over a logical language that contains the function symbols of that prescribed complexity class.

In this sense proofs in the theory use concepts from a specific complexity class, and we can say that

the theory captures ‘reasoning in this class’ (e.g., ‘polynomial-time reasoning’).

3

While the first theory for polynomial-time reasoningwas the equational theoryPV considered

by Cook [Coo75], bounded arithmetic goes back to the work of Parikh [Par71] and Paris-Wilkie

[PW85]. In a seminal work Buss [Bus86] introduced other theories of bounded arithmetic and laid

much of the foundation for future work in the field.

Theories of bounded arithmetic correspond not only to complexity classes but also to propo-

sitional proofs by way of propositional translations (going back to [Coo75], and the later indepen-

dent work of [PW85]): if a statement of a given form is provable in a given bounded arithmetic

theory then the same statement is suitably translated to a family of propositional formulas with

short (polynomial-size) proofs in a corresponding propositional proof system (cf. [CN10, Chapter

VII] for a systematic treatment of this).

One goal of bounded arithmetic is to serve as a framework inwhich the ‘bounded reversemath-

ematics’ program is developed (in an analogy to Friedman and Simpson reverse mathematics pro-

gram [Sim99]). In this program one seeks to find the weakest theory capable of proving a given the-

orem. Special theorems of interest are those of computer science and computational complexity

theory. The motivation here is to shed light on the role of complexity classes in proofs, in the hope

to delineate for example those concepts that are needed to progress onmajor problems in computa-

tional complexity from those that are not. For instance, it has been identified that apparently most

results in contemporary computational complexity can be proved using polynomial-time concepts

(e.g., inPV) (cf. [Pic15]), and it is important to understand whether stronger theories and concepts

are needed to prove certain results.

Some examples of results in bounded reverse mathematics and meta-mathematics of complex-

ity are Jordan Curve theorem in AC
0-reasoning [NC07] (where AC

0 is the class of languages

computable with families of constant depth Boolean circuits), Barrington’s Theorem in NC
1-

reasoning [Ngu08] (cf. [CN10, Sec. IX.5.5]), prime factorization theorem in polynomial-time rea-

soning [CN10, Exercise VI.4.4], sorting network in an extension of NC
1-reasoning [Jeř11], ex-

pander graph construction inNC
1-reasoning [BKKK20], Toda’s Theorem in bounded arithmetic

[BKZ15] and many parts of complexity theory (including the PCP theorem) in polynomial-time

reasoning [Pic15].

Due to its basic nature, linear algebra, which naturally underlies many theorems in com-

puter science and computational complexity, has been identified by many works as important

in bounded arithmetic and proof complexity. In particular, it has been conjectured that since

the integer determinant is computable in NC
2 the multiplicativity of the determinant function

DET(A) ·DET(B) = DET(AB), for two matricesA,B, or the related Cayley-Hamilton theorem

can be proved in NC
2-reasoning. Cook and Nguyen presented this specific conjecture in their

monograph [CN10, Table 2, page 8, and Open Problems section IX 7.1]. This conjecture was first

considered essentially in [SC04] (see also [CF12, Sol01]), and before that in the propositional setting

by Cook and Rackoff and specifically Bonet et al. [BBP95] (see also [BP98]). That the determinant

properties can be provedwithin a theory that capturesNC
2-reasoning is alignedwith the intuition

that basic properties of many constructions and functions of a given complexity class are provable

without the need to use concepts beyond that class.

The weakest theory known to date to prove the multiplicativity of the determinant is the the-

ory PV for polynomial-time reasoning; this was shown essentially by Soltys and Cook [SC04]

(cf. [CF12, Jeř05]). Their work introduced three formal theories of increasing strength for reason-

ing about linear algebra. The weaker of them is the quantifier free theory LA that allows the basic

ring properties of matrices to be formulated and proved. The intermediate theory LAP adds the

matrix powering operator to LA. Berkowitz’s algorithm [Ber84] reduces the determinant function

4

to matrix powering (over any field), and the determinant function in LAP is thus defined using this

algorithm. Accordingly, LAP can be considered as a formal theory for reasoning with concepts

in the complexity class DET for which the determinant is complete [Coo85]. LAP can prove that

the co-factor expansion of the determinant, the multiplicativity of the determinant and the Cayley-

Hamilton theorem are all provable from each other. However, it cannot apparently prove any of

these statements by themselves. For this purpose [SC04] extended the theory LAP to ∀LAP which

includes induction over formulas with bounded universal matrix quantifiers. ∀LAP can be con-

sidered a feasible theory tailored for reasoning about matrices that incorporate polynomial-time

computable concepts (close to Buss’sS1
2 [Bus86] orPV): [SC04] showed an interpretation of ∀LAP

(when the underlying field is finite or the rationals) into Buss’s S1
2 theory. In this relatively strong

theory they were able to prove the multiplicativity of the determinant and hence also the Cayley-

Hamilton theorem and the co-factor expansion of the determinant. Subsequent work of Thapen

and Soltys [TS05] showed that some linear algebra, namely Gaussian elimination, can be developed

in a weaker theory than ∀LAP: using the theory LA plus existential induction onmatrices, denoted

∃LA, they were able to prove the commutativity of matrix inverse in the theory. However, ∃LA is

also quite strong, as it was shown [TS05] to interpret the second-order version of polynomial-time

reasoningV1.

The induction used in∀LAP to prove the determinant identities is beyond the strength ofNC
2-

reasoning and it remained open until now whether the determinant identities, and the basic state-

ments of linear algebra like Cayley-Hamilton theorem and the co-factor expansion of the determi-

nant can be proved using concepts not going beyond the computational complexity class of linear

algebra itself, namelyNC
2-reasoning.

The main goal of this work is to provide a positive answer to this question, over the integers,

namely providing proofs of the multiplicativity of the determinant, the Cayley-Hamilton theorem

and the co-factor expansion of the determinant usingNC
2-reasoning. Our proof in the theory for

NC
2-reasoning is completely different from [SC04] and depends instead on the work of Hrubeš

and Tzameret [HT15] who constructedNC
2-Frege propositional proofs of the determinant identi-

ties over the two-element field.

We define the determinant in the theory based on an evaluation of an algebraic circuit with divi-

sion simulating in essenceGaussian elimination (using Schur complement). We then build awitness

for the determinant identities in the form of a line-by-line algebraic equational proof of the identi-

ties as constructed in [HT15]. This algebraic equational proof was originally constructed in [HT15]

by induction on the dimensionn of thematrices, and used concepts computable by polynomial-size

algebraic circuits with division. We show that this equational proof can be constructed already in

NC
2-reasoning. Though the witness is constructible in the theory, before it can be used it needs

to be converted in the theory into something thatNC
2-reasoning can prove its correctness, namely

(a sequence of) O(log2 n) depth Boolean circuits, the evaluation of which is a complete problem

for NC
2 and constitutes the basis of the theory for NC

2-reasoning denoted VNC
2 in [CN10].

These constructions and conversions are highly non-trivial and depend on many results in struc-

tural algebraic circuit complexity.

Note that although [HT15] showed that in the propositional case the multiplicativity of the de-

terminant over GF (2) can be proved with polynomial-size propositional proofs operating with

NC
2 Boolean circuits, this does not lend itself immediately to the uniform framework of bounded

arithmetic. That is, the fact that a statement admits polynomial-size propositional proofs in a cer-

tain proof-system does not imply that the same statement (suitably translated to first-order logic)

is provable in the bounded arithmetic theory corresponding to the proof-system. For example, a

5

short propositional proof may be shown to exist but without knowing whether it could be con-

structed uniformly, and let alone in a restricted computational model such as uniform-NC
2. For

instance, [HT15] crucially used elimination of division gates from algebraic circuits which we do

not know how to do using uniform weak computational models like uniform-NC
2 (for division

elimination one needs to use a non-constructive existential statement by Strassen [Str73] about

field assignments that do not nullify a given polynomial; this statement is based on the Schwartz-

Zippel lemma [Sch80, Zip79]). Further a priori existential constructions in [HT15] are the Valiant

el al. [VSBR83] balancing of algebraic circuits, homogenization and division normalization of al-

gebraic circuits [Str73]. We explain our construction in the theory and some of the differences

between our construction to [HT15] in the overview section below.

1.1 Overview

Our goal is to prove the multiplicativity of the determinant over the integers withNC
2-reasoning.

ForNC
2-reasoning we take the theoryVNC

2 defined in [CN10] as a two-sorted formal theory

of natural numbers, in which the first sort is for natural numbers and the second sort is for finite

sets of natural numbers intended to encode bit-strings (see Section 2). It is usual to consider the

first sort of natural numbers as “first-order objects” and the second sort of sets of natural numbers

as “second-order objects”. Integers in the theory are represented as binary strings (hence, second-

order objects), and matrices are encoded as a two-dimensional array of integers (cf. [CF12]). We

will use the term numbers in the theory to refer to the first-sort of natural numbers and integers to

refer to their bit-strings representation as a second-sort.

We wish to define the determinant function DET(·) over the integers such thatVNC
2 proves

that for every n andm and a pair of n× nmatricesA,B with integer entries of bit-lengthm

DET(A) · DET(B) = DET(AB) , (1)

and for every (lower or upper) triangular n × n matrix with integer entries of bit-lengthm with

c11, . . . , cnn on the diagonal
DET(C) = c11 · · · cnn. (2)

Note that these two identities can be considered as the defining identities of the determinant

polynomial, in the sense that every polynomial for which these two identities hold is the deter-

minant polynomial. One way of seeing this is to observe that every square matrix is equal to a

product of triangular matrices (this in turn follows from the fact that every square matrix is equal

to the product PLU with P a permutation matrix and L,U lower and upper triangular matrices,

respectively; as well as the fact that every permutation matrix can be shown to be a product of

triangular matrices corresponding to elementary matrix transformations).

It is known that we can prove elementary facts about matrices, such as the definability of ma-

trix products AB, the statement expressing associativity and commutativity of matrix products

A(BC) = (AB)C and A + B = B + A, resp., and so forth, in the theory VNC
1, the theory

forNC
1-reasoning [Sol01, SC04, CF12]. However, these identities are computationally seemingly

simpler than the multiplicativity of the determinant for example, since additions and multiplica-

tion of matrices have lower known computational complexity (polynomial-size threshold circuits

of constant depth would suffice for these operations over the integers), while the determinant is

only known to be computable inNC
2.

6

We note that in this work the circuit classNC
2 is assumed to be a uniform circuit class. For-

mally, we require uniformity in the sense that the extended connection language of the circuit fam-

ily is inFO (see [CN10, Chapter A.5] for the definition).

Let us now sketch briefly how we define the determinant function in the theory and then how

we prove its identities in the theory.

Defining the determinant function in the theory. Given an n × n integer matrix, the prov-

ably total (formally in our caseΣB
1 -definable; see Section 2.2) string function (recall that we encode

integers as strings) inVNC
2 for the determinant is defined by evaluating an algebraic circuit sim-

ulating Gaussian elimination.

In particular, the determinant function first constructs an algebraic circuit (equivalently, a

straight-line program) computing the symbolic n × n determinant with division gates (“symbolic”

here means that the algebraic circuit computes the determinant as a formal polynomial over n2

distinct variables). This algebraic circuit captures the recursive formula as in Schur complement.

Then, eliminate the division gates in the algebraic circuit using, among other conversions, substitu-

tions of power series in the circuit (cf. Strassen [Str73]). Then, homogenize the circuit getting rid

of high degrees [Str73], balance the circuit to achieve the squared logarithmic depthO(log2 n) (fol-
lowing [VSBR83]), and more precisely O(log n)-depth circuit with unbounded fan-in plus gates

and fan-in two product gates (following [Vin91]). We now evaluate the algebraic circuit over the

input integer matrix. This consists of several steps: convert the algebraic circuit into anO(log2 n)-
depth Boolean circuit computing the same polynomial over the integers (coded as bit-strings). This

is done by simulating additions and products by carry-save adders and binary integer products.

Then layer the Boolean circuit so that each node connects only to the subsequent layer. And finally

evaluate the Boolean circuit using the fact that theNC
2 circuit evaluation problem is inNC

2.

Note that since we show that the determinant function as defined above is ΣB
1 -definable in

VNC
2, by [CN10] it means that this function, including all the constructions in it, are in (uniform)

NC
2.

Proving the determinant equalities in the theory. Informally, the basic argument formalized

in the theory is that there exists a line-by-line algebraic proof over the integers (as in [HT15]; see

Section 2.8) of these identities. Thus, by soundness of these proofs which we show is provable in

VNC
2, these identities must be true.

More precisely, an algebraic proof of a polynomial identity, in symbols a Pc(Z)-proof (intro-
duced in [HT09]), is a sequence of equations between algebraic circuits over Z, each of which is

either an instance of the polynomial-ring axioms (such as commutativity, distributivity, etc.) or

was derived by addition or multiplication of previous equations.

We demonstrate a ΣB
1 -definable function in VNC

2 that given an input n in unary, outputs

Pc(Z)-proofs of the determinant identities as in (1) and (2) (forn×nmatrices). In thisPc(Z)-proof
every proof-line is an equation between depthO(log2 n) algebraic circuits (without division gates)
of a polynomial syntactic-degree. To finish the argument, we transform this algebraic proof into a

corresponding line-by-line Boolean proof and then use evaluation ofO(log2 n)-depth Boolean cir-
cuits to conclude the soundness of the proofs: using (number) induction on proof-length we argue

that for every assignment of integers, the determinant identities must hold. Since the determinant

function in the theory is defined by itself as the evaluation of the circuit computing the determinant,

the argument is concluded.

7

Overall, in our argument the main “non-syntactic” property we need the theory to express is

the evaluation of O(log2 n)-depth Boolean circuits. The axioms of VNC
2 are tailored for this

purpose, as they include the existence of a string evaluating any givenmonotone Boolean circuit of

O(log2 n)-depth and polynomial-size (see Definition 2.6), which we show is sufficient to evaluate

general polynomial-size algebraic circuits of polynomial degree over the integers (see definition of

Evalalg in Sec. 11.1 Step (iii)). An additional ability ofVNC
2 is to express and reason about matrix

powering and we use this when balancing circuits.

Technical Challenges

Showing that the long and nontrivial constructions from [HT15] can be carried out in VNC
2

requires quite a lot of work. The main new technical obstacles that we face are uniformity and

parallelism as we explain in what follows.

Uniformity here means that we need the whole proof to be constructible in uniform-NC
2.

In order to simulate Gaussian elimination we start with algebraic proofs and circuits with di-

vision gates, denoted P−1
c (Z)-proofs. To get the division-free Pc(Z)-proofs which then can turn

into Boolean proofs, as mentioned above, we need to eliminate division gates from certain alge-

braic circuits and proofs. To eliminate division gates like u/v (for two circuits u, v), one needs to
find an assignment to the variables in which the polynomial computed by v is nonzero. In general
we do not know how to do this in the theory, since this requires an existential statement based

on Schwartz-Zippel lemma [Zip79, Sch80]. We solve this problem by showing that if we assign

the variables for matrix entries with 0-1 values based on the identity matrix we do not nullify the

division gates in our circuit and proofs.

Moreover, the initial P−1
c (Z)-proofs are of high syntactic-degree and unbounded depth. But

in order to show that the resulting Pc(Z)-proofs are correct (sound) we need to start from correct

P−1
c (Z)-proofs. For P−1

c (Z)-proofs however the correctness is semantic: the division rule is a se-

mantic rule since it requires that the circuit in division does not compute the zero polynomial, a

property which we do not know how to compute inNC
2.

To solve this problem we introduce the technical concept of a provably good division gate: a

division gate u−1 is provably good whenever there exists a witness that u is nonzero. For us, this

witness will be a certain kind of P−1
c (Z)-proof of u ↾ ρ = 1, where ρ is an assignment to the

variables of matrix entries in u that corresponds to the identity matrix.

Accordingly, to express that a P−1
c (Z)-proof is correct we express its syntactic-correctness to-

gether with explicit witnesses demonstrating that each division gate u−1 is provably good. (In

particular, we strengthen the results of [HT15] that demonstrated the cases in which the P−1
c (Z)-

proofs of the determinant identities are definable, into provable definability: we show that not

only the P−1
c (Z)-proofs do not contain zero division, but that the theory can prove the existence

of witnesses for this.)

Parallelism heremeans that the construction of the algebraicPc(Z)-proofs from [HT15]must be

done by itself inNC
2. Tomake the construction parallel we need to devise severalAC

0- andNC
2-

algorithms. We show that most parts of the construction can be carried out already inAC
0 (or its

functional version FAC
0), namely we carry out the construction in a theory forAC

0-reasoning

denotedV0 [CN10]. Among the algorithms we devise are the following:

(i) Division normalization: converting algebraic circuits with division gates into circuits with

a single division gate at the output gate (in FAC
0); This follows Strassen’s algorithm [Str73]. (ii)

Converting algebraic circuits C into a sum of their syntactic-homogeneous components, given

8

as input an upper bound on the syntactic-degree of C ; i.e., each summand C(i) is a syntactic-

homogeneous circuit computing the degree i homogeneous component ofC (inFAC
0); This also

follows Strassen’s algorithm [Str73], only that we show that for most purposes there is no need to

compute syntactic-degrees of nodes, rather upper bounds on syntactic-degrees suffice. Such upper

bounds are easy to compute inAC
0. (iii) AnFNC

2 algorithm for balancing an algebraic circuit of

size s and syntactic-degreed into a poly(s, d)-size algebraic circuit of depthO(log s·log d+log2 d),
given as input an upper bound on the syntactic-degree of C . This part combines the original bal-

ancing algorithm by Valiant et al. [VSBR83] with ideas fromMiller et al. [MRK88], and further new

ideas entailed by the need to work in FNC
2. Specifically, we use matrix powering to power adja-

cency matrices of graphs to find out, for example, whether a node has a directed path to another

node, as well as to compute coefficients of linear polynomials computed by circuits with syntactic-

degree 1.

By first balancing an input circuit and then evaluating it (both inFNC
2) our results give rise to:

(iv) an FNC
2 evaluation procedure for algebraic circuits of any depth, given as input an upper bound

on their syntactic-degree and assuming the syntactic degree of the circuit is polynomial1. This

algorithm is different from the previously known algorithm by Miller et al. [MRK88] (their algo-

rithm does not require the syntactic-degree as input) and that of Allender et al. [AJMV98] (which

is implicit in that work, and can be extracted from the text [All18]; see also Vinay [Vin91]).

Proving parallel algorithms for structural results on algebraic circuits is not enough. We further

need to show that the correctness of these algorithms can be formalized efficientlywithPc(Z)- and
P−1
c (Z)-proofs and that these proofs are constructible inV0 andVNC

2, in order to conclude that

VNC
2 proves the existence of a (uniform-NC

2) function that constructs the low depth Pc(Z)-
proofs of the determinant identities.

Apart fromuniformity and parallelism, working in bounded arithmetic allows us toworkmore

easily over the integers, where previously short NC
2-Frege proofs of the determinant identities

were known only overGF (2). Note also that unlike [HT15] we do not need to simulate small fields

in big ones since we work over Z.

1.1.1 Note on the Choice of Theory

It is interesting to consider whether the theory inwhich the determinant identities is proved can be

pushed even further down to a theory that corresponds to a complexity class that lies somewhere

betweenNC
1 andNC

2.

Cook and Fontes [CF12] developed a bounded arithmetic theoryV#L, corresponding toDET,
where DET is the class of functions that can be computed by uniform families of polynomial-size

constant-depthBoolean circuitswith oracle access to the determinant overZ (where integer entries

of matrices are presented in binary). In other words, DET is theAC
0-closure of integer determi-

nants. Complete problems for the class DET include computing matrix powers and the determi-

nant itself. We have the following class inclusions (we ignore here the distinction between function

and decision classes): NC
1 ⊆ DET ⊆ NC

2, to which the theoriesVNC
1 ⊆ V#L ⊆ VNC

2

correspond.

Our argument cannot be carried out in V#L since the evaluation of algebraic circuits, even

those with squared logarithmic depth (or those in algebraic-AC
1) over the integers, which is cru-

cial to our argument, is apparently not definable in V#L. Note that excluding the evaluation of

1Formally, we need to assume that the syntactic-degree of every node in the circuit when constant nodes are re-

placed by corresponding variables is polynomially bounded.

9

low-depth algebraic circuits all our arguments seem to carry over to V#L. This also includes for
example our algorithm for balancing algebraic circuits.2

Note also that the two classes#SAC
1 ⊆ TC

1 that are above DET but belowNC
2 (namely,

DET ⊆ #SAC
1 ⊆ TC

1 ⊆ NC
2), can compute the required depth reduction and the evaluation

of algebraic circuits.We believe that our construction can be carried out more or less the same in theories

corresponding to these classes. However, for these two classeswe are not aware of established bounded

arithmetic theories, hence we shall work inVNC
2.

1.1.2 Organization

The preliminaries for this work are somewhat long and are given in Section 2. They consist of

basic definitions from bounded arithmetic, the uniform complexity classNC
2, the corresponding

theoryVNC
2 [CN10], basic definitions of algebraic circuits, as well as equational proof systems

operating with algebraic circuits [HT09, HT15]. Section 3 explains in some detail the encoding

scheme for algebraic circuits and proofs in the theory. Sections 4 to 10 are dedicated to the con-

struction of the Pc(Z)- and P−1
c (Z)-proofs in the theory. Section 11 establishes the reflection

principle for Pc(Z)-proofs, and Section 12 demonstratesVNC
2 proofs of further basic statement

in linear algebra. We finish with conclusions and open problems in Section 13.

2 Preliminaries

In this section we present some of the necessary background from bounded arithmetic as well as

algebraic circuit complexity. Specifically, we describe the two-sorted bounded arithmetic theory

VNC
2 as developed by Cook and Nguyen [CN10] and show how to define the evaluation of alge-

braic circuits over the integers in the theory, and then define algebraic circuits computing formal

polynomials and proof systems for polynomial identities [HT09, HT15] (cf. [PT16] for a survey).

We start with an exposition of bounded arithmetic.

Bounded arithmetic is a general name for weak formal systems of arithmetic, namely, fragments

of Peano Arithmetic (though formally the language of bounded arithmetic theories is sometimes

different from that of Peano Arithmetic, the theories can be interpreted in Peano Arithmetic nev-

ertheless). The bounded arithmetic theories we use are first-order two-sorted theories, having a

first-sort for natural numbers and a second-sort for finite sets of numbers, representing bit-strings

via their characteristic functions (for the original single-sort treatment of theories of bounded arith-

metic see [Bus86,HP93,Kra95]). The theoryV0 corresponds to the complexity class uniform-AC
0,

and VNC
2 corresponds to uniform-NC

2. The complexity classes AC
0, NC

2, and their corre-

sponding function classesFAC
0 andFNC

2 are defined using a two-sorted universe (specifically,

the first-ordered sort [numbers] are given to the machines in unary representation and the second-

sort as binary strings). See Section 2.3 below for the definitions ofNC
2 andFNC

2, andDefinition

2.11 forAC
0 andFAC

0.

Definition 2.1 (Language of two-sorted arithmetic L2
A). The language of two-sorted arithmetic, de-

noted L2
A, consists of the following relation, function and constant symbols:

{+, ·,≤, 0, 1, | |,=1,=2,∈}.

2It is possible also to balance algebraic circuits to squared logarithmic depth in DET using some variants of the

algorithm in [AJMV98], as we were informed by Eric Allender [All18].

10

Wedescribe the intendedmeaning of the symbols by considering the standardmodelN2 of two-

sorted Peano Arithmetic. It consists of a first-sort universe U1 = N and a second-sort universe U2

of all finite subsets ofN, which are thought of as strings. The constants 0 and 1 are interpreted inN2

as the appropriate natural numbers zero and one, respectively. The functions+ and · are the usual
addition and multiplication on the universe of natural numbers, respectively. The relation≤ is the

appropriate “less or equal than” relation on the first-sort universe. The function | · |maps a finite

set of numbers to its largest element plus one. The relation =1 is interpreted as equality between

numbers,=2 is interpreted as equality between finite sets of numbers. The relationn ∈ N holds for

a numbern and a finite set of numbersN if and only ifn is an element ofN (and this is abbreviated

asN(n)).
We denote the first-sort (number) variables by lower-case letters x, y, z, . . . , and the second-

sort (string) variables by capital lettersX, Y, Z,
We build terms and formulas in the usual way. For formulas, we use two sorts of quantifiers:

number quantifiers and string quantifiers. A number quantifier is said to be bounded if it is of the

form ∃x(x ≤ t ∧ . . .) or ∀x(x ≤ t → . . .) for some number term t that does not contain x. We

abbreviate ∃x(x ≤ t ∧ . . .) and ∀x(x ≤ t → . . .) by ∃x ≤ t and ∀x ≤ t, respectively. A string

quantifier is said to be bounded if it is of the form ∃X(|X| ≤ t ∧ . . .) or ∀X(|X| ≤ t → . . .) for
some number term t that does not containX . We abbreviate ∃X(|X| ≤ t ∧ . . .) and ∀X(|X| ≤
t→ . . .) by ∃X ≤ t and ∀X ≤ t, respectively.

A formula is in the class of formulas ΣB
0 or ΠB

0 if it uses no string quantifiers and all number

quantifiers are bounded. A formula is inΣB
i+1 orΠ

B
i+1 if it is of the form ∃X1 ≤ t1 . . . ∃Xm ≤ tmψ

or ∀X1 ≤ t1 . . . ∀Xm ≤ tmψ, where ψ ∈ ΠB
i and ψ ∈ ΣB

i , respectively, and ti does not contain
Xi, for all i = 1, . . . ,m. We write T (t) to abbreviate t ∈ T , for a number term t and a string term
T . For a formula ψ we write ψ(a/x) to denote the substitution instance of ψ in which every free

occurrence of the variable x is replaces by the term a.
As mentioned above, a finite set of natural numbers N represents a finite string SN =

S0
N . . . S

|N |−1
N such that Si

N = 1 if and only if i ∈ N . We will abuse notation and identify N
with SN .

2.1 The TheoryV0

The base theoryV0, which corresponds to the computational classAC
0, consists of the following

axioms:

Basic 1. x+ 1 6= 0 Basic 2. x+ 1 = y + 1 → x = y

Basic 3. x+ 0 = x Basic 4. x+ (y + 1) = (x+ y) + 1

Basic 5. x · 0 = 0 Basic 6. x · (y + 1) = (x · y) + x

Basic 7. (x ≤ y ∧ y ≤ x) → x = y Basic 8. x ≤ x+ y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1

Basic 12. x 6= 0 → ∃y ≤ x(y + 1 = x)

L1. X(y) → y < |X| L2. y + 1 = |X| → X(y)

11

SE. (|X| = |Y | ∧ ∀i ≤ |X| (X(i) ↔ Y (i))) → X = Y

Σ
B
0 -COMP. ∃X ≤ y∀z < y (z ∈ X ↔ ϕ(z)) , for all ϕ ∈ Σ

B
0

whereX does not occur free in ϕ .

Here, the axiomsBasic 1 throughBasic 12 are the usual axiomsused to define PeanoArithmetic

without induction (PA−), which settle the basic properties of addition, multiplication, ordering,

and of the constants 0 and 1. The Axiom L1 says that the length of a string coding a finite set is an

upper bound to the size of its elements. L2 says that |X| gives the largest element ofX plus 1. SE
is the axiom for strings which states that two strings are equal if they code the same sets. Finally,

Σ
B
0 -COMP is the comprehension axiom scheme forΣB

0 -formulas (i.e., it is an axiom for each such

formula) and implies the existence of all sets which contain exactly the elements that fulfill any

givenΣB
0 property.

Proposition 2.2 (Corollary V.1.8. [CN10]). The theoryV0 proves the number induction axiom scheme

forΣB
0 -formulas Φ:

(Φ(0) ∧ ∀x (Φ(x) → Φ(x+ 1))) → ∀z Φ(z).

In the above induction axiom, x is a number variable and Φ can have additional free variables

of both sorts.

2.2 Definability in Bounded Arithmetic

We write ∃!yϕ to denote ∃x(ϕ(x) ∧ ∀y(ϕ(y/x) → x = y)), where y is a variable not appearing
in ϕ.

Definition 2.3 (Two-sorted definability). Let T be a theory over the language L ⊇ L2
A and let Φ be

a set of formulas in the language L. A number function f is Φ-definable in a theory T iff there is a

formula ϕ(~x, y, ~X) in Φ such that T proves

∀~x∀ ~X∃!yϕ(~x, y, ~X)

and it holds that3

y = f(~x, ~X) ↔ ϕ(~x, y, ~X). (3)

A string function F is Φ-definable in a theory T iff there is a formula ϕ(~x, ~X, Y) in Φ such that T
proves

∀~x∀ ~X∃!Y ϕ(~x, ~X, Y)

and it holds that

Y = F (~x, ~X) ↔ ϕ(~x, ~X, Y). (4)

Finally, a relationR(~x, ~X) is Φ-definable in a theory T iff there is a formula ϕ(~x, ~X, Y) in Φ such

that it holds that

R(~x, ~X) ↔ ϕ(~x, ~X). (5)

The formulas (3), (4), and (5) are the defining axioms for f , F , andR, respectively.

Definition 2.4 (Conservative extension of a theory). Let T be a theory in the languageL. We say that

a theory T ′ ⊇ T in the language L′ ⊇ L is conservative over T if every L formula provable in T ′ is

also provable in T .

3Meaning, it holds semantically in the standard two-sorted modelN2.

12

We can expand the language L and a theory T over the language L by adding symbols for

arbitrary functions f (or relationsR) to L and their defining axioms Af (or AR) to the theory T . If

the appropriate functions are definable in T (according to Definition 2.3) then the theory T +Af

(+AR) is conservative over T . This enables us to add new function and relation symbols to the

language while proving statement inside a theory; as long as these function and relation symbols

are definable in the theory, every statement in the original language proved in the extended theory

(with the additional defining-axioms for the functions and relations) is provable in the original

theory over the original language.

However, extending the language and the theory in such a way does not guarantee that one

can use the new function symbols in the comprehension (and induction) axiom schemes. In other

words, using the comprehension (and induction) axioms over the expanded language may lead to

a theory that is not a conservative extension. Therefore, definability will not be enough for our

purposes. We will show below precisely how to make sure that a function is both definable in the

theories we work with and also can be used in the corresponding comprehension and induction

axiom schemes (while preserving conservativity).

When extending the language with new function symbols we can assume that in bounded for-

mulas the bounding terms possibly use function symbols from the expanded language (because any

definable function in a bounded theory can be bounded by a term in the original language L2
A

(cf. [CN10])).

We shall seek to define the determinant function in a theory via a ΣB
1 -formula. Following

Theorem 2.7 below theΣB
1 -definable functions ofV

0 (equivalently, theΣB
0 -definable functions of

V
0) are precisely theFAC

0 functions, and that theΣB
1 -definable functions ofVNC

2 are precisely

theFNC
2 functions.

2.3 The Complexity ClassNC
2

The uniform complexity classNC
2 is defined using an alternating time-space (nondeterministic)

Turing machine.

Alternating Turing machines. An alternating Turing machine is a nondeterministic Turing ma-

chine in which every state, except the halting states, is either an existential state or a universal state.

A computation in such a machine can be viewed as an (unbounded fan-in) tree of configurations as

follows. A configuration is said to be existential (resp. universal) if its state is existential (resp. univer-

sal). In a computation tree of an alternating Turingmachine every existential configuration has one or

more children, such that each child is a configuration reachable in one step from the configuration

in the parent node; and every universal configuration has as its set of children all configurations

reachable in one step from the configuration on the parent in node. We say that a computation of

an alternating Turing machine is accepting when all the leaves of the computation tree are accept-

ing configurations. We say that an alternating Turing machine accepts an input x if there exists an

accepting computation tree whose root is the initial configuration with the input x.
A computation tree is said to have k alternations if the number of alternations between existen-

tial and universal states in every branch of the tree is at most k. An alternating Turing machine is

said to work in f(n) alternations if for every input x of length n the number of alternations in every

computation tree of x is at most f(n). A computation tree is said to have space s if the working
space used in every configuration of the tree is at most s. An alternating Turing machine is said

to work in space g(n) if for every input x of length n the space of every computation tree of x is at

13

most g(n). A computation tree is said to have time t if every path from the root to a leaf in the tree

is at most t. An alternating Turingmachine is said towork in time g(n) if for every input x of length
n the time of every computation tree of x is at most g(n).

Definition 2.5 (UniformNC
2). The uniform complexity classNC

2 is the class of languages that can

be decided by alternating Turing machines with O(log n) space and O(log2 n) time.

We define the function class FNC
2 as the function class containing all number functions

f(~x, ~X) and string functions F (~x, ~X), where ~x and ~X are (unary) number and string variables,

respectively, such that the relation of the function is defined (resp. bit-defined; see Definition 2.10)

inNC
2 (a relationR is defined inNC

2 if the language containing the set of tuples inR is decidable

inNC
2).

NC
2 Boolean circuit families. Let {Cn}

∞
n=1 be a family of Boolean circuits with fan-in two

∨,∧ gates and fan-in one ¬ gates. We say that this family is anNC
2 circuit family if every circuit

Cn in the family has depth O(log2 n) and size nO(n). A circuit taken from a given BooleanNC
2

circuit family is said to be an NC
2-circuit. It is known that the NC

2 circuit value problem is

complete under AC
0-reductions for the class NC

2 (Definition 2.5). We say that {Cn}
∞
n=1 is a

uniformNC
2-circuit family if its extended connection language is in FO (we refer the reader to

[CN10, page 455] for the definitions). This definition coincides with Definition 2.5.

For the definition of uniformNC
1 (andAC

1) we also refer the reader to [CN10].

2.4 The TheoryVNC
2

Here we define the theoryVNC
2 as developed in [CN10]. It is an extension ofV0 over the lan-

guage L2
A where we add the axiom stating the existence of a sequence of values that represent

the evaluation of monotone Boolean circuits of O(log2(n)) depth. It is known (cf. [CN10]) that

the Monotone Boolean Circuit Value problem for circuits ofO(log2(n))-depth is complete under

AC
0-reductions forNC

2.

The NC
2 circuit value problem is the problem that determines the value computed by a

BooleanNC
2-circuit, given a 0-1 assignment to its input variables. An input circuit to the prob-

lem is encoded as a layered circuitwith d+ 1 layers 0, . . . , d, namely, a circuit in which every node

in layer j is connected only to zero or more nodes in layer j + 1. The actual evaluation of such

an (NC
2) circuit within the class NC

2 is done in stages, where we start from layer 0 and “com-

pute” (using alternations and nondeterminism) the values of every node in every layer. Formally,

we define this evaluation process as follows (see also [CN10, Chap. IX.5.6]).

For a natural number d we write as usual [d] to denote {1, . . . , d}. The layered monotone

Boolean circuitC with d+1 layers is encoded as follows: I (for “inputs”) is a string variable, where
|I| ≤ n, that defines the (Boolean) input gates to the circuit. Further, G (for “gates”) is a string

variable such thatG(x, y) holds for x ∈ [d] iff the yth gate in layer x is∧, and is∨ otherwise. Also

the wires of C are encoded by a three-dimensional array, namely a string variable E (for “edges”)

such that E(z, x, y) holds iff the output of gate x on layer z is connected to the input of gate y on
layer z+1. To compute the value of each of the gates in the circuitC on input I , simply compute the

values of the gates in each layer, starting from the input layer, in d+1 stages, using the values of the
previous layer. The formula δLMCV (n, d, E,G, I, Y) below formalizes this evaluation procedure

(where LMCV stands for “layered monotone circuit value”). The two-dimensional array Y stores

14

the result of computation, namely the evaluation string: for 0 ≤ z ≤ d, row Y [z] contains the gates

on layer z that output 1.

δLMCV (n, d, E,G, I, Y) ≡ ∀x < n∀z < d
(
(Y (0, x) ↔ I(x)) ∧

(
Y (z + 1, x) ↔

((
G(z+1, x)∧∀u < n,E(z, u, x) → Y (z, u)

)
∨(¬G(z + 1, x) ∧ ∃u < n,E(z, u, x) ∧ Y (z, u))

)))
.

(6)

The following formula states that the circuit with underlying graph (n, d, E) has fan-in two:

Fanin2(n, d, E) ≡ ∀z < d ∀x < n∃u1 < n∃u2 < n∀v < n(E(z, v, x) → (v = u1∨v = u2)
)
.
(7)

Finally, we arrive at the definition ofVNC
2:

Definition 2.6 (VNC
2). The theoryVNC

2 has vocabulary L2
A and is axiomatized by the axioms of

V
0 and the axiom:

Fanin2(n, |n|2, E) → ∃Y ≤ 〈|n|2 + 1, n〉δLMCV (n, |n|
2, E,G, I, Y).

In this definition 〈·〉 is the pairing function, and 〈|n|2 + 1, n〉 is an upper bound on the length
needed for the two-dimensional array Y . Also, note that given a natural number n the binary

representation length of n, denoted |n|, that is, ⌈log2(n+1)⌉, is anAC
0 function of n (see [CN10,

Exercise III.3.30]).

The following is the main theorem forV0 andVNC
2:

Theorem 2.7. ([CN10, Corollaries V.5.2 and IX.5.31]) A function is ΣB
1 -definable in V

0 iff it is

Σ
B
0 -definable inV

0 iff it is inFAC
0. A function isΣB

1 -definable inVNC
2 iff it is inFNC

2.

Note that the fact that a function is defined in the theory does not mean that we can prove all

of its properties, or even anything interesting about it. To actually prove statements about a ΣB
1 -

definable function inVNC
2, for example, we need to carefully consider theΣB

1 -formula defining

it, formulate the property that we want to prove in the theory as a formula in the languageL2
A, and

verify that indeed the formula is provable in the theory.

2.5 Introducing NewDefinable Functions inV
0 andVNC

2

Herewe givemore details on the theoriesV0 andVNC
2. Specifically, we explain how to conclude

that a function is definable in the theory, and how to extend the language V0 and VNC
2 with

new function symbols (in a conservative way; see below). We will describe a process (see [CN10,

Section V.4]) by which we can extend the languageL2
A ofV0 with new function symbols, obtaining

a conservative extension ofV0 that can also prove the comprehension and induction axiom schemes in

the extended language, and similarly forVNC
2.

First note that every relation or function symbol has an intended or standard interpretation

over the standard model N2 (for instance, the standard interpretation of the binary function “+”

is that of the addition of two natural numbers). If not explicitly defined otherwise, we will always

assume that a defining axiom of a symbol in the language defines a symbol in a way that its inter-

pretation inN2 is the standard one. Note also that we shall use the same symbolF (~x, ~X) to denote
both the function and the function symbol in the (extended) language in the theory.

15

Definition 2.8 (Relation representable in a language). LetΦ be a set of formulas in a language L that

extends L2
A. We say a relation R(~x, ~X) (over the standard model) is representable by a formula from Φ

iff there is a formula ϕ(~x, ~X) in Φ such that in the standard two-sorted model N2 (and when all relation

and function symbols in L get their intended interpretation), it holds that:

R(~x, ~X) ↔ ϕ(~x, ~X). (8)

We say that a number function f(~x, ~X) is polynomially-bounded if f(~x, ~X) ≤ poly(~x, ~|X|). We

say that a string function F (~x, ~X) is polynomially-bounded if |F (~x, ~X)| ≤ poly(~x, ~|X|).

Definition 2.9 (Bit-graph). Let F (~x, ~X) be a polynomially-bounded string function. We define the

bit-graph of F to be the relation R(i, ~x, ~X), where i is a number variable, such that

F (~x, ~X)(i) ↔ ∀iR(i, ~x, ~X) (9)

holds in the standard two-sorted model.

Definition 2.10 (ΣB
0 -definability from a language; Definition V.4.12. in [CN10]). We say that a

number function f(~x, ~X) isΣB
0 -definable from a language L ⊇ L2

A, if f is polynomially-bounded

and its graph4 is represented by a ΣB
0 (L)-formula ϕ (where ΣB

0 (L) is the class of Σ
B
0 -formulas in the

language L). We call the formula ϕ the defining axiom of f . We say that a string function F is ΣB
0 -

definable from a languageL ⊇ L2
A, ifF is polynomially-bounded and its bit-graph (that is, the relation

R(i, ~x, ~X) as in (9)) is representable by a ΣB
0 (L)-formula ϕ, in which case we say that ϕ is the bit-

defining formula ofF . We call the formulaϕ the defining axiom ofF or, equivalently, the bit-defining

axiom of F .

Note: We used the term defining axiom of a function f in both the case where f is defined from a

language (Definition 2.10) and in case f is definable in the theory (Definition 2.3). In general it is

important not to confuse these two notions. Nevertheless, we will show in the sequel that for our

purposes these two notions coincide: when we define a function from a language the function will

be definable also in the relevant theory, and so the defining axiomof f from the languagewill be the

defining axiom of f in the theory (when the theory is possibly conservatively extended to include

new function symbols).

The following is a definition ofAC
0 functions. This definition coincides with the definition

of FAC
0 as FO-uniform multi-output Boolean circuit families of polynomial-size and constant

depth [CN10].

Definition 2.11 (FAC
0). A string (number) function is in FAC

0 if it is polynomially-bounded and its

bit-graph (graph, respectively) is definable by aΣB
0 -formula in the language L

2
A.

Definition 2.12 (AC
0-reduction). A string function F (resp. a number function f) isAC

0-reducible

to L ⊇ L2
A iff there is a possibly empty sequence of (either string or number) functions F1, . . . , Fk such

that Fi is Σ
B
0 -definable from L ∪ {F1, . . . , Fi−1}, for any i = 1, . . . , k, and F (resp. f) is ΣB

0 -

definable from L ∪ {F1, . . . , Fk}.

4I.e., the relationR(~x, ~X, y), such that f(~x, ~X) = y iffR(~x, ~X, y) holds in the standard model.

16

We are now ready to describe the standard process enabling one to extend a theory T ⊇ V
0

over the language L2
A (and specifically, the theories V0 and VNC

2) with new function symbols,

obtaining a conservative extension of T such that the new function symbols can be used in com-

prehension and induction axiom schemes (see Section V.4. in [CN10] for the proofs). Recall once

more that this will enable us to go from a semantic definition in a language to the proof-theoretic

notion of definability in the theory:

Fact 2.13.

(i) If the number function f is ΣB
0 -definable from L2

A, then T over the language L2
A ∪ {f}, aug-

mented with the defining axiom of f , is a conservative extension of T and we can also prove the

comprehension and induction axioms forΣB
0 (f)-formulas.

(ii) If the string functionF isΣB
0 -definable fromL2

A, then T over the languageL2
A∪{F}, augmented

with the bit-defining axiom of F , is a conservative extension of T and we can also prove the

comprehension and induction axioms forΣB
0 (F)-formulas.

(iii) We can now iterate the above process of extending the language L2
A(f) (or equivalently, L

2
A(F))

to conservatively add more functions f2, f3, . . . to the language, which can also be used in compre-
hension and induction axioms.

By the aforementioned and by Definition 2.12, we can extend the language of a theory with

a new function symbol f , whenever f is AC
0-reducible to L2

A. This results in an extended theory

(in an extended language) which is conservative, and can prove the comprehension and induction

axioms for formulas in the extended language. When defining a new function inV0 orVNC
2 we

may simply say that it isΣB
0 -definable or bit-definable in the theory and give itsΣ

B
0 -defining or bit-

defining axiom (this axiom can use also previouslyΣB
0 -defined (or bit defined) function symbols).

Extending the language ofV0 andVNC
2 with new relation symbols is simple: every relation

R(~x, ~X) which is representable by a∆1
1(L) formula ([CN10, Section V.4.1]), where L is an exten-

sion of the language with new function symbols obtained as shown above, can be added itself to

the language. This results in a conservative extension of V0 (VNC
2, resp.) that also proves the

Σ
B
0 -induction and comprehension axioms in the extended language.

2.6 Some Basic Formalizations inV
0

In this section we fix some basic notation for primitive objects coded inV0. Most formalizations

here are routine and can be found in [CN10] (cf. [MT14]). Recall that when speaking about numbers

in the theory we mean natural numbers (that is, first-sort objects), and speaking about integers or

strings we refer to the second-sort objects.

Natural number sequences of constant length. For two numbers x, y let 〈x, y〉 := (x+ y)(x+ y+
1)+2y be the pairing function. We alsoΣB

0 -define inductively 〈v1, . . . , vk〉 := 〈〈v1, . . . , vk−1〉, vk〉,
for any constant k > 2. ThenV

0 proves the injectivity of the pairing function and enables us to

handle such pairs in a standard way.

Sequences of numbers of variable length. If we wish to talk about sequences of natural numbers

where the length of a sequence is non-constantwe have to use string variables instead of number vari-

ables. Using the number-tupling function we can encode sequences as sets of numbers: a sequence

is encoded as a string Z such that, the xth number in the sequence is y if the number 〈x, y〉 is

17

in Z . Formally, we have the following ΣB
0 -defining formula for the number function seq(x, Z)

returning the xth element in the sequence Z :

y = seq(x, Z) ↔ (y < |Z| ∧ Z(〈x, y〉) ∧ ∀z < y ¬Z(〈x, z〉))

∨ (∀z < |Z|¬Z(〈x, z〉) ∧ y = |Z|).
(10)

Formula (10) states that the xth element in the sequence coded by Z is y iff 〈x, y〉 is in Z and no

other number smaller than y also “occupies the xth position in the sequence”, and that if no number

occupies position x then the function returns the length of the string variable Z .
Array of strings.Wewish to encode a sequence of strings as an array, namely, a two-dimensional

array. We use the function Row(x, Z) to denote the xth string in Z as follows (we follow the

treatment in [CN10, Definition V.4.26, page 114]). The string function Row(x, Z), abbreviated
Z [x], is ΣB

1 -definable in V
0 (and hence can be used in induction axiom) using the following bit-

definition:

Row(x, Z)(i) ↔ (i < |Z| ∧ Z(〈x, i〉)).

Matrices. An n× n integer matrix is coded as an array of n strings, where each of the n strings

is itself an array that represents a row in the matrix, that is an array of n integer numbers, where

each integer is coded withm bit-vectors, for some chosen natural numberm.

2.6.1 Example: Binary Tree Construction inV
0

Here we provide a simple example of aΣB
1 -definable string function inV

0 that encodes a simple

syntactic object. Specifically, we show that the string function F (n) that receives a number n,
which we assume is a power of 2 for simplicity, and outputs a string that describes the edges of

a binary tree with n leaves, is ΣB
1 -definable in V

0. This can be used to construct a formula that

computes for example the inner product of two vectors as in Section 3.1.3.

The tree is encoded in the scheme described in Section 3.1.1, with V as a string (finite set of

numbers) consisting of the nodes, with each node u ∈ V is a number and a string E encoding

edges, with each number in E interpreted as a pair of numbers (u, v) such that u, v ∈ V . Every

node u ∈ V is a pair u = (d, w) with d ∈ {1, . . . , log(n) + 1} being the layer of the tree and

w is the index of the node in the layer d that runs from 1 to n/d. For two nodes u, v ∈ E with

u = (d1, w1), v = (d2, w2), u has a directed edge to v iff d2 = d1 + 1 and if w1 is even then

w2 = w1/2 and otherwise w2 =
w1+1

2
. This is shown in the figure below.

Formally, to show that the string function F (n) is ΣB
1 -definable in V

0 (equivalently, ΣB
0 -

definable in V
0), according to Section 2.5 we need to demonstrate a ΣB

0 -formula that bit-defines

the tree encoding, as follows. Let

Φ(d, w1, w2) := d · w1 ≤ n ∧ ∃x ≤ n(w1 = 2x→ 2w2 = w1)∧

∃x ≤ n(w1 = 2x+ 1 → 2w2 = w1 + 1). (11)

18

The following is theΣB
0 -formula that bit-defines the string function that returns the string E en-

coding the edges of the tree, given the number of leaves n:

ϕ(n, i) := ∃d ≤ n∃w1 ≤ n∃w2 ≤ n (i = ((d, w1), (d+ 1, w2)) ∧ Φ(d, w1, w2)) .

Bit-defining the nodes V function is similar.

2.7 Polynomials and Algebraic Circuits

For a very good treatise on algebraic circuits and their complexity see Shpilka and Yehudayoff

[SY10]. LetG be a ring. Denote byG[X] the ring of (commutative) polynomials with coefficients

fromG and variablesX := {x1, x2, . . . }. A polynomial is a formal linear combination of monomi-

als, where amonomial is a product of variables. Two polynomials are identical if all their monomials

have the same coefficients. The degree of a polynomial is the maximal total degree of a monomial

in it.

Algebraic circuits and formulas over the ringG compute polynomials inG[X] via addition and
multiplication gates, starting from the input variables and constants from the ring. More precisely,

an algebraic circuitC is a finite directed acyclic graph (DAG)with input nodes (i.e., nodes of in-degree

zero) and a single output node (i.e., a node of out-degree zero). Input nodes are labeled with either a

variable or a ring element inG. All the other nodes have fan-in (that is, in-degree) two and are labeled

by either an addition gate + or a product gate ×. Every node in an algebraic circuit C computes a

polynomial as follows: an input node computes the variable or scalar that labels it. A+ (or×) gate

is said to compute the addition (product, resp.) of the (commutative) polynomials computed by

its incoming nodes. The polynomial computed by a node u in an algebraic circuit C is denoted û.
Given a circuitC , we denote by Ĉ the polynomial computed byC , that is, the polynomial computed

by the output node of C . An algebraic circuit is called a formula, if its underlying directed acyclic

graph is a tree (that is, every node has at most one outgoing edge). The size of a circuit C is the

number of nodes in it, denoted |C|, and the depth of a circuit is the length of the longest directed
path in it. For an algebraic circuit C we write C(a/x) to denote the substitution instance of C in

which every occurrence of the node x is replaced by the sub-circuit a; in caseC(x) is written with
its displayed variable(s) x we can write C(x)(a/x) for this substitution instance. We say that a

polynomial is homogeneous whenever every monomial in it has the same (total) degree.

Definition 2.14 (Syntactic-degree d(·)). Let C be a circuit (without division) and v a node in C . The
syntactic-degree d(v) of v is defined as follows:

1. If v is a field element or a variable, then d(v) := 0 and d(v) := 1, respectively;

2. If v = u+ w then d(v) := max{d(u), d(w)};

3. If v = u · w then d(v) := d(u) + d(w).

(For syntactic-degree of circuits with division see Definition 6.2.)

An algebraic circuit is said to be syntactic-homogeneous if for every plus gate u+v, d(u) = d(v).
Given a circuitF and a node u inF ,Fu denotes the subcircuit ofF with output node u. IfF,G

are two circuits then

F⊕G and F⊗G

19

denote any circuitH whose output node is u+v or u×v, respectively, whereHu is identical to the

circuit F andHv is identical to the circuitG. In other words, F⊕G denotes a circuit with output

node+with the two incoming subcircuitsF andG, whereF andGmay not be disjoint anymore (so

F⊕G is a set of possible different circuits, fromwhichwe assume one is picked; the two subcircuits

F,G in F⊕G are identical to F,G, respectively).
To clarify, F⊕G and F⊗G are different from, e.g., the similarity relation in [Jeř04, Definition

2.1] between two circuits Q ∼ Q′ in which Q′ can be the “minimal DAG” representation of Q.
The circuit F in F ⊕ G is identical to F while in a circuit that is similar to F + G we can have

the subcircuit F replaced by a minimal DAG representation of F (and the same withG, and with
⊗). Hence, in F ⊕G disjoint copies of nodes computing the same circuit that occur in both F and

G can be contracted into a single node in F ⊕ G. While disjoint copies of nodes computing the

same circuit in F alone cannot be contracted into a single node (and the same withG, and with⊗).

Therefore, F cannot be contracted to a minimal DAG and neither canG.
Furthermore,

F +G and F ×G

denote the unique circuit of the form F⊕G and F⊗G, respectively, where F ,G are disjoint copies

of F and G. In particular, if F and G are formulas then so are F + G and F × G. For example,

(1 + x5)⊗x5 can be any of the following two circuits:

1��
+
❅❅x5

✟✟×
❆
❆❆x5 1��

+
❅❅x5

✏✏×

✆
✆

2.8 Equational Proofs of Polynomial Identities

In this section we give the necessary background on the proof system Pc. This proof-system was

first introduced in [HT09] (under the name “arithmetic proofs” and for algebraic formulas instead

of algebraic circuits), and was subsequently studied in [HT15].

Polynomial identities proofs as originally introduced in [HT09], denoted Pc (and Pc(G) when

we wish to be explicit about the underlying ringG), are sound and complete proof systems for the

set of polynomial identities of G, written as equations between algebraic circuits. A Pc(G)-proof

starts from axioms like associativity, commutativity of addition and product, distributivity of prod-

uct over addition, unit element axioms, etc., and derives new equations between algebraic circuits

F = G using rules for adding and multiplying two previous identities. The axioms of Pc express

reflexivity of equality, commutativity and associativity of addition and product, distributivity, zero

element, unit element, and true identities in the field.

Algebraic circuits in Pc(Z)-proofs are treated as purely syntactic objects (similar to the way a

propositional formulas in propositional proofs are syntactic objects). Thus, simple computations

such as multiplying out brackets, are done explicitly, step by step.

Definition 2.15 (Pc(G), [HT09, HT15]). The system Pc(G) proves equations of the form F = G over

the ringG, where F,G are algebraic circuits overG. The inference rules of Pc are (with F,G,H ranging

over algebraic circuits, and where an equation below a line can be derived from the one above the line):

R1
F = G

G = F
R2

F = G G = H

F = H

R3
F1 = G1 F2 = G2

F1 + F2 = G1 +G2

R4
F1 = G1 F2 = G2

F1 · F2 = G1 ·G2

.

20

The axioms are equations of the following form, with F,G,H circuits:

A1 F = F
A2 F +G = G+ F
A3 F + (G+H) = (F +G) +H
A4 F ·G = G · F
A5 F · (G ·H) = (F ·G) ·H
A6 F · (G+H) = F ·G+ F ·H
A7 F + 0 = F
A8 F · 0 = 0
A9 F · 1 = F
A10 a = b+ c , a′ = b′ · c′ (if a, b, c, a′, b′, c′ ∈ G are such that the equations hold inG)

C1 F⊕G = F +G
C2 F⊗G = F ·G

A Pc(G)-proof is a sequence of equations, each called a proof-line, F1 = G1, F2 = G2, . . . , Fk =
Gk , with Fi, Gi circuits, such that every equation is either an axiom or was obtained from previous equa-

tions by one of the inference rules. The size of a proof is the total size of all circuits appearing in the proof.

The number of steps in a proof is the number of proof-lines in it.

A Pc(Z)-proof can be easily verified for correctness in deterministic polynomial-time by syn-

tactically checking that each proof line is derived from previous lines by one of the inference rules

or is an axiom (assuming A10 can be checked in polynomial-time, which is true for natural encod-

ing of standard rings like rationals, integers, etc.). The predicate for correctness of Pc(Z)-proofs is
expressible with aΣB

0 -formula inV0 (see Section 3.2).

2.9 Circuits and Proofs with Division

We denote byG(X) the field of formal rational functions in the variablesX,where a formal ratio-

nal fraction is a fraction of two formal polynomials with coefficients fromG. In this work we will

considerG to be the ring of integers Z.

It is possible to extend the notion of a circuit so that it computes rational functions in G(X)
([HT15]). This is done in the following way: a circuit with division F is an algebraic circuit which

may contain an additional type of gate with fan-in 1, called an inverse or a division gate, denoted

(·)−1. A division gate v−1 (i.e., a division gate whose incoming circuit is v) computes the rational

function 1/v̂ ∈ G(X), assuming v does not compute the zero polynomial. If the circuit with

division F contains some division gate v−1 such that v computes the zero polynomial, then we say

that the circuitF is not well-defined, and is otherwise well-defined. Note for instance that the circuit

(x2+x)−1 overGF (2) is well-defined, sincex2+x is not the zero polynomial (although it vanishes

as a function overGF (2)).
We define the system P−1

c (G), operating with equations F = G where F and G are circuits

with division [HT15] as follows: first, we extend the axioms of Pc(G) to apply to well-defined

circuits with division. Second, we add the following new axiom denotedDiv:

Div F · F−1 = 1 , provided that F−1 is well-defined.

Note that ifF−1 iswell-defined then bothF iswell-defined (assuming for exampleF itself contains

division gates) and F 6= 0.

21

We say that a P−1
c -proof is syntactically correct if it is a correct P−1

c -proof except that in the

proof there may occur division gates u−1 for which û = 0, that is, in the axioms A1 to A10 and

C1, C2, the circuits may contain division gates that compute the zero polynomial and in the axiom

Div the circuit F−1 is not necessarily well-defined. We do not know how to check in (uniform)

NC
2 that a circuit is well-defined: there is no knownNC

2 algorithm to determine that an input

circuit computes the zero polynomial. Hence, there is noVNC
2 predicate for the correctness of

P−1
c -proofs, only for the syntactic correctness of P−1

c -proofs. Since we will need to express the

correctness of P−1
c -proof inVNC

2 in some way our solution will be as follows: for every division

gate u−1 in a given P−1
c -proof we are going to make sure VNC

2 proves the existence of a P−1
c -

proof of u ↾ ρ = 1 for some integer assignment ρ to the variables in u. In other words, every

P−1
c -proof will be equipped with witnesses showing that its division gates are nonzero (see Section

4.2 about provably good nodes). In this case we will say that theVNC
2 proves that the P−1

c -proof

is correct (and not merely syntactically correct).

Note that if aPc(Z)-proof is syntactically correct then it is (fully) correct becausePc(Z)-proofs
do not contain the Div rule application.

3 Encoding Circuits and Proofs in the Theory

Here we explain how to encode algebraic circuits and P−1
c (Z)- and Pc(Z)-proofs in the theory.

Specifically, in Section 3.1.2 we describe the circuitDetcirc−1 , namely a circuit with division for the

determinant. In Section 3.1.3 we explain how to constructDetcirc−1 inV0.

3.1 Encoding Circuits

In order to talk about algebraic circuits, Boolean circuits and Pc(Z)- and P−1
c (Z)-proofs in the

theory we need to fix an encoding scheme for these objects. Basically,VNC
2 (in fact, alreadyV0)

is rich enough to let us encode syntactic objects in a rather natural way. Since every uniformAC
0

function is definable inV0 we can assume basic encoding functions to be defined in the theory.

We show below how to construct Detcirc−1 in the theory. Encoding and constructing P−1
c (Z)-

andPc(Z)-proofs in the theory follows similar lines, andwewill not always define all the encoding

details explicitly. We remark that all our circuits will have gates of fan-in at most two.

3.1.1 Encoding of Algebraic Circuits in the Theory

Algebraic circuits are encoded using strings in the theory as follows: (i) a string of nodes V (in

which nodes are identified by natural numbers; this is convenient for our encoding scheme); (ii)

a string of gates G, where each gate is a natural number interpreted as a pair of natural numbers

(v, t) (using the ΣB
1 -definable in V

0 pairing function) where v is a node in V and t is a natural
number that expresses that the gate v is either +,× or (·)−1 (plus gate, times gate or a division

gate, respectively; the first two connectives are binary and the third is unary) or is the ith input; (iii)

a two-dimensional string of input gates I , where, if the least significant bit of the ith string is 0, then
the ith string of I excluding the least significant bit encodes a variable xj , where for convenience
the index j of an input variable xj is represented using the binary representation of j; if the least
significant bit is 1 the ith string of I excluding the least significant bit represents an integer scalar
encoded in binary; and finally (iv) a stringE encoding a set of numbers, each number is a pair that

22

represents a directed edge between two nodes, where (u, v) ∈ E means that there is an incoming

edge to v ∈ V emanating from u ∈ V .

3.1.2 Circuit with Division for the Determinant

First we need to define the determinant circuit with division denoted Detcirc−1 . This is done using

the recursive Schur complement (similar to [HT15]), and can be viewed as performing Gaussian

elimination: by considering the symbolic matrix X = {xij}i,j∈[n], consisting of n
2 distinct vari-

ables, defining the matrix inverseX−1 ofX and then, by partitioningX into blocks, we formulate

a recursive definition of the determinant, using matrix inverse.

Formally, we define an n × nmatrixX−1 whose entries are circuits with division computing

the inverse ofX as follows:

1. If n = 1, letX−1 := (x−1
11).

2. If n > 1, writeX as follows:

X =

(
X1 vt1
v2 xnn

)
, (12)

whereX1 = {xij}i,j∈[n−1], v1 = (x1n, . . . , x(n−1)n) and v2 = (xn1, . . . , xn(n−1)). Assum-

ing we have constructedX−1
1 , let the Schur complement be defined as

δ(X) := xnn − v2X
−1
1 vt1 . (13)

Since δ(X) computes a single non-zero rational function, δ(X)−1 is well-defined. Finally, let

X−1 :=

(
X−1

1

(
In−1 + δ(X)−1vt1v2X

−1
1

)
−δ(X)−1X−1

1 vt1
−δ(X)−1v2X

−1
1 δ(X)−1

)
. (14)

The circuitDetcirc−1(X) is defined as follows:

1. If n = 1, letDetcirc−1(X) := x11.

2. If n > 1, partitionX as in (12) and let δ(X) be as in (13). Let

Detcirc−1(X) := Detcirc−1(X1) · δ(X) = Detcirc−1(X1) · (xnn − v2X
−1
1 vt1) . (15)

The definition in (14) should be understood as a circuit with n2 output gates that takes

X−1
1 , v1, v2, xnn as inputs and moreover, such that the inputs from X−1

1 occur exactly once. Al-

together, we obtain a polynomial-size circuit for X−1 and the determinant function of X . The

circuits obtained are unbalanced, have division gates and are of exponential syntactic-degree (see

Definitions 2.14 and 6.2). The fact thatDetcirc−1(X) indeed computes the determinant (as a ratio-

nal function) stems, e.g., from the fact that P−1
c (Z) can prove the two identities that characterize

the determinant (Proposition 4.5).

LetM be a matrix in which each entry is a circuit (possibly with division) written either as a

single circuit with n2 output gates (such asX−1 above) or as n2 separate circuits. Then we denote

byM−1 the matrixX−1 of the symbolic matrixX in which each input variable xij is substituted
by the (i, j)th entry ofM .

23

3.1.3 Constructing the CircuitDetcirc−1 inV
0

Let (Mn)
∞
n=1 be a family of n× nmatrices in which each entry is a circuit (again, written either as

a single circuit with n2 output gates or n2 separate circuits). We say thatMn (orM , when the sub-

script is not important to state explicitly) is aΣB
1 -definable matrix inV

0 if there is aΣB
1 -definable

string function in V
0 that given a natural number n (in unary) outputs the circuit(s) encoding of

Mn. In this section we show that the n×n inverse matrixX−1 from (14) above isΣB
1 -definable in

V
0. We denote bywriteX−1(n) the string function that outputs themulti-output circuitX−1 given

as input a unary integer n.
Note that the definition in (14) is implicitly a construction that usesΣB

1 -induction (that is, the

number induction axiom as in Proposition 2.2 in which we useΣB
1 instead ofΣB

0): given that there

exists a circuit forX−1
1 of dimension (n − 1) × (n − 1), we constructX−1 of dimension n × n.

However, since neitherV0 norVNC
2 has the number induction axiom forΣB

1 -formulas we will

construct the circuit by utilizing a natural encoding scheme, and formally by showing that the bit-

graph of the string function writeX−1(n) is definable with a ΣB
0 -formula (see Definition 2.9 for

bit-definability). This idea and similar encoding is then used in the sequel to construct all of the

P−1
c (Z)-proofs in the theory. (On the other hand, to proceed to the final division freePc(Z)-proofs

using balancing we need to consider different arguments, including the axioms ofVNC
2, e.g., to

be able to compute matrix powering (see Section 10).)

The circuit for X−1 is encoded as follows. It is a multi-output circuit. The string V encodes

the nodes in the circuit, as natural numbers, where a node number is interpreted as a tuple of

natural numbers as shown below (using the ΣB
0 -definable in V

0 tupling number function). For

each inductive level d = 1, . . . , n in the inductive definition ofX−1 in (14), corresponding to the

construction of ad×d inversematrix, we have a set of nodes (d, (i, j), ℓ) ∈ V , each interpreted as a

three-tuple of numberswhere the second number is a pair of numbers in itself. In (d, (i, j), ℓ) ∈ V ,

the pair (i, j), for i, j ∈ [d], is an entry in a d×dmatrix, meaning that the node (d, (i, j), ℓ) is part
of a sub-circuit ofX−1 that computes the (i, j)th entry in the dth inductive-step; ℓ is the running
index of the nodes in that part, where ℓ = 0 iff the node is what we consider an “output node” of

the given level d and the given entry (i, j). Nodes of the form (0, (i, j), 0) stand for the input nodes of
the circuit corresponding to the variable xij (or scalar) in the input string I .

For example, (1, (1, 1), 0) is the node computing x−1
11 , because the first coordinate d = 1 refers

to the “inductive” level 1 in the definition of X−1 (when n = 1, X−1 = x−1
11), the second coor-

dinate is (1, 1), meaning the (1, 1)-entry of the circuit computing the inverse of x11, and the last
coordinate is 0, meaning this is the output node of the circuit that computes x−1

11 . Note that we

use the numbers on the nodes in V to denote information on the structure of the circuit, namely

information about the edges inE and whether a gate is an input node (the latter information is ex-

pressed also inG). This allows us to bit-define inV0 a function that constructs the corresponding

E andG as shown below.

Additionally, we have a stringG of natural numbers, each interpreted as a four-tuple encoding

the gate-type of each node inV , excluding the input nodes (0, (i, j), 0). That is, (d, (i, j), ℓ, g) ∈ G
means that node (d, (i, j), ℓ) ∈ V is of type+ if g = 0,× if g = 1 and division (·)−1 if g = 2, and
an input variable xij if g = (i, j), where, again, (·, ·) is the pairing function (note that the pairing
function (cf. [CN10]) is monotone increasing and that (1, 1) > 2, so we can distinguish between

the case of an arithmetic gate and an input gate). Finally, the string E encodes the edges between

nodes in the circuit. That is, ((d, (i, j), ℓ), (d′, (i′, j′), ℓ′))means that there is a directed edge from

node (d, (i, j), ℓ) to node (d′, (i′, j′), ℓ′).

24

Using the above encoding scheme it is possible now to bit-define with aΣB
0 -formula the string

function writeX−1 which by Fact 2.13 is enough to conclude that the function is ΣB
1 -definable

in V
0. We only need to construct, given some level d and the pair (i, j), the sub-circuits whose

nodes will be (d, (i, j), ℓ), for some ℓ, according to the definition in (14). We will use the following

notation and functions in the theory for this purpose.

Notations andbasic functions for constructing sub-circuits. LetF be one of the fourminors

in (14) used to define thematrix inverseX−1, for example δ(X)−1 (we use the termminor to refer to

a sub-matrix). We will denote by writeF (n, d, ℓ, I, O) the following string function: the inputs are
I, O serving as the input and output nodes, respectively, to the circuitF , d is the index “level” (used
to record the induction-level of the inductive circuit constructions as in (14)) and ℓ is the “running
index” of a node in a given level d, and n stands for the “dimension” of the operation defined by F
(e.g., inner product of vectors of size n, or matrix product of two n× nmatrices has dimension n).
The output is a string, but we abuse notation and assume it is three separate strings encoding the

(output) circuit, for simplicity, as follows: E, V,G as described above.

More formally, we define writeF (n, d, ℓ, I, O) = (E, V,G) as follows (similar to the above

notation): V is a string describing the vertices in an algebraic circuit. E is a string describing the

edges between vertices in V . G is a string describing the gate-types of vertices in V . Every vertex

is of the form (d, (i, j), ℓ) with d the recursive level in the definition ofX−1 in (14), (i, j) means

that the node is in the (i, j)’s part of the definition ofX−1, and ℓ is the running index of nodes in
the same level d and same part (i, j), where ℓ = 0 iff the node is an output node of that level d (it is
not necessarily the output node of the whole circuit). Assume that F (I) is some algebraic function

with m0 integer inputs I and m1 integer outputs O. Then, we supply writeF (n, d, ℓ, I, O) with
the node indices (as encoded in V) to be used as input nodes and output nodes for the (sub-)circuit

computing F . Here is an example of the input and output nodes of F1.

Example: Consider the multi-output circuit F1 := X−1
1 (In−1 + δ(X)−1vt1v2X

−1
1) from (14). We

want to construct a ΣB
0 -formula that bit-defines a function that given n outputs F1. Note that

F1 is implicitly a recursive function in the sense that it uses as inputs the outputsX−1
1 which are

computed in the previous recursive level d−1, together with the “new” nodes in row d and column

d inX . Therefore, the inputs ofF1 are the following nodes: (d−1)2 input nodes forX−1
1 , 2(d−1)

input nodes for vt1 and v2, and finally one input node xdd (needed for computing δ(X)−1), which

sums up to d2 input nodes in total. The number of output nodes for F1 is (d − 1)2, as it defines
a (d − 1) × (d − 1) minor of X−1. Therefore, in our encoding scheme, the input nodes for F1

(viewed as a d× dmatrix) are:



(d− 1, (1, 1), 0) . . . (d− 1, (1, d− 1), 0) (0, (1, d), 0)
...

. . .
...

...

(d− 1, (d− 1, 1), 0) . . . (d− 1, (d− 1, d− 1), 0) (0, (d− 1, d), 0)
(0, (d, 1), 0) . . . (0, (d, d− 1), 0) (0, (d, d), 0)




and the output nodes (viewed as a (d− 1)× (d− 1)matrix) are:




(d, (1, 1), 0) . . . (d, (1, d− 1), 0)
...

. . .
...

(d, (d− 1, 1), 0) . . . (d, (d− 1, d− 1), 0)


 .

25

Let F2, F3, F4 be the other three functions used in the definition ofX
−1 in (14) (for the other

simpler three minors). We define similar writeFi
functions for these Fi’s.

To show that writeX−1(n) is aΣB
1 -definable function inV

0 we need to demonstrate how to

bit-define this function using aΣB
0 -formula, and for this we need to show how to bit-define its sub-

circuits. In our case we need to show how to bit-define for example writev·u using aΣ
B
0 -formula,

given two n-element vectors of integers v, u representing nodes in the circuit. This is quite easy

to do: simply output a binary tree with the appropriate plus and products nodes, and plug the

input nodes v, u to the leaves accordingly as demonstrated in Section 2.6.1. Here we denote the

nodes in the circuit computing the inner-product v · u in level d using the running index: every
node excluding the output nodes of this level d (which are unique for every fixed d and (i, j)) has
a different running index ℓ > 0, namely has the tuple (d, (i, j), ℓ) associated with level d and the
(i, j) entry in the matrix computed at level d.

Similarly, we have Σ
B
0 -formulas for constructing other formulas like writevA and writeAvt ,

given the input nodes for an n×nmatrixA, and the input nodes for an n-elements vector v. Also,
given a node z it is immediate to output a circuit computing z−1 or −z, and given two matrices

A,B (i.e., 2n2 nodes) it is easy to give aΣB
0 bit-definition of writeA+B inV0.

Now that we have set up the notation and the functions for constructing sub-circuits, we can

bit-define with aΣB
0 -formula writeX−1 inV

0 as follows. First, for i = 1, . . . , 4, define InpFi
(d)

andOutFi
(d) to be the string functions that output the sequence of input and output nodes of the

dth recursive level ofX−1 for each of the Fi’s, respectively, as shown for F1 in the example above.

They all haveΣB
0 -formulas that bit-define them.

Letwritelevel(X−1)(n, d, ℓ, I, O) be the string function that outputs (E, V,G) encoding the sub-
circuit for the dth inductive level ofX−1, and let writex−1

11

(
n, 1, 0, ((0, (1, 1), 0)), ((1, (1, 1), 0))

)

be the string function that outputs the encoding of the circuit “x−1
11 ” (given the overall dimension n,

inductive-level 1, running index 0, input entry (1, 1) inX represented by (0, (1, 1), 0) and output
represented by (1, (1, 1), 0)). Assuming that writelevel(X−1) and writex−1

11
have both Σ

B
0 -formulas

that bit-define them, then the bit-definition of writeX−1 is given by the following Σ
B
0 -formula

ϕ(n, i), for n, i number sorts, and using writelevel(X−1) and writex−1
11

as function symbols:

∃2 ≤ d ≤ n
(
writelevel(X−1)

(
n, d, 1, InpF1

(d),OutF1(d)
)
(i) ∨ · · · ∨

writelevel(X−1)

(
n, d, 1, InpF4

(d),OutF4(d)
)
(i)
)
∨writex−1

11
(n, 1, 0, ((0, (1, 1), 0)), ((1, (1, 1), 0))) (i)

)
,

In the sequel we will be less formal about encoding inV0 circuits in the P−1
c (Z)-proofs in the

theory.

3.2 Encoding andWitnessing Polynomial Identity Proofs

Recall the proof-systems Pc(Z) and P−1
c (Z) which are proof systems that establish equalities be-

tween algebraic circuits without and with division, respectively, over the integers, and recall also

the concept of correct and syntactically correct proofs (Section 2.9).

P−1
c (Z)- and Pc(Z)-proofs are encoded as two dimensional arrays S (that is, a string encoding

an array of strings) in which the ith string S[i], also called the ith row of S, is the ith equation in the
proof written as a pair of circuits with division (and where circuit encoding is done as described

in Section 3.1.3). Furthermore, the encoding of P−1
c (Z)- and Pc(Z)-proofs will always consist of

additionalwitnesses for syntactic correctness, as follows:

26

1. Each row S[i] specifies whether it is an axiom, and if it is not an axiom we specify the proof-

lines from which it was derived as well as the rule by which it was derived.

2. For the four rules R1-R4, we have the following convention to witness the correctness of

applying the rule: the encoding of the circuits F,G,H and F1, F2, G1, G2 in the antecedent

and consequence of the rules are identical, that is, with the samenode numbers in their respec-

tive sets of nodes V . In other words, the respective strings encodingF,G,H, F1, F2, G1, G2

in the antecedent and consequence are identical.

3. For the axioms A1-A9, and the axiom Div in P−1
c , the circuits F,G,H in both sides of the

equations are encoded identically, as in part 2 above.

4. The scalar axioms A10 is encoded as a circuit with scalar inputs as usual. Only that we will

not verify their correctness, as this will not be needed.

5. The axioms C1, C2 need a special treatment. Consider F1 ⊕F2 = F1 +F2, and let V be the

set of nodes (numbers) belonging to F1 ⊕ F2. Every node u ∈ V , excluding the plus at the

root, occurs as at most two different nodes u1, u2 in F1 + F2. To witness this rule we add a

string that stores (as an array of number pairs) the mapping from the nodes of F1 in F1 +F2

to the nodes of F1 in F1 ⊕ F2, and similarly for F2. Given such a witness it is immediate to

verify (with aΣB
0 -formula) that the C1 axiom is applied correctly5. C2 is treated similarly.

Whenwe talk aboutP−1
c (Z)- orPc(Z)-proofs in the theory, unless otherwise stated, we assume

that the proof encoding includes its witness for syntactic correctness as above. Whenwe talk about

P−1
c (Z)-proofs specifically, we shall say that “the theory proves the existence of a syntactic correct

P−1
c (Z)-proof” tomean that the proof is encodedwith thewitness as above, only thatwe emphasize

that the proof and witness only ensure syntactic correctness (since division by zero may occur in

such proofs).

Definition 3.1 (ΣB
1 -definable P−1

c (Z), Pc(Z)-proofs). Let (πn)n∈N be a sequence of P−1
c (Z) or

Pc(Z)-proofs. We say that πn is a Σ
B
1 -definable P

−1
c (or Pc(Z), resp.) proof in a theory T if

the string function f(n) that on the number input n outputs πn is ΣB
1 -definable in T . In case πn is a

P−1
c (Z)-proof (resp. Pc(Z)-proof), we also assume that T proves the syntactic correctness (resp. correct-

ness) of πn. (When the parameter n is clear from the context we suppress it and may say that a Pc(Z)- or
P−1
c (Z)-proof of F = G isΣB

1 -definable in T , meaning that F = G is parameterized by n).

By Section 2.5, to show that f(n) isΣB
1 -definable inV

0 (and can be used in the induction and

comprehension schema of V0) it is enough to show the existence of a ΣB
0 -formula ϕ(n, i) with

two natural numbers parameters n, i, that bit-defines the function f(n).
We shall use the following simple statement that allows to use substitutions in P−1

c (Z)-proofs:

Proposition 3.2 (Substitution in P−1
c (Z)-proofs). Assume that in a theory T ⊇ V

0 the function that

receives n = |~x| and outputs a syntactically correct P−1
c (Z)-proof of F (~x) = G(~x) is ΣB

1 -definable.

Let H be a sequence of circuits ΣB
1 -definable as a string function from natural numbers n = |~x| to H .

Then, the string function from n to a (provably inV0) syntactically correct P−1
c (Z)-proof of F (~x/H) =

G(~x/H), where the variables in ~x are replaced by the circuits inH , isΣB
1 -definable in T .

5One can also use an NL algorithm, formalizable in VNC
2 (since NL ⊆ NC

2), to verify that both sides of the

axiomC1 are different representation of the same circuit. However, it will not be easy to prove for ourP−1
c

(Z)-proofs
that they are correct with such a predicate of correctness.

27

Proof. Since the function that outputs a syntactically correct P−1
c (Z)-proof of F (~x) = G(~x) is

Σ
B
1 -definable inT , and since by assumptionT proves the syntactic correctness of this proof, T can

Σ
B
1 -define the function that outputs each circuit in the proof (and prove it is syntactically correct).

In each such circuit we substitute the input variables ~x byH : since circuits are encoded as graphs

substitution is formalized by substituting input nodes by graphs which is easily shown to be aΣB
1 -

definable function in V
0 (note that the function that given a circuit outputs its input nodes is by

itself aΣB
1 -definable number function inV0).

4 Existence of Proofs with Division for the Determinant

Identities

4.1 Overview

We denote by X, Y the symbolic n × n matrices where the (i, j)th entries of X and Y are the

variables xij and yij , respectively. Accordingly, in our P−1
c (Z)-proofs the X, Y matrices are en-

coded by their entries xij, yij to which we refer as theX, Y variables (namely,X, Y are not formal

variables by themselves).

In this section we show (Proposition 4.5) a ΣB
1 -definable string function in V

0 that given a

natural number n outputs a correct P−1
c (Z)-proof of the following equations:

Detcirc−1(X) · Detcirc−1(Y) = Detcirc−1(XY) (16)

Detcirc−1(U) = u11 · · · unn (17)

where U is a lower (equivalently, upper) triangular matrix in the variables xij (where each entry in
U is a circuit possibly with division).

Recall that P−1
c -proofs consist of sequences of equations between algebraic circuits over Z. In

the proofs we construct in this section circuits have exponential syntactic-degrees (though the the-

ory cannot express this fact), they are not necessarily homogeneous, and they have division gates.

Recall also from Section 3.1.3 that Detcirc−1(X) computes the determinant as a rational function

and not as a polynomial (namely, it contains division gates).

To express the fact that a P−1
c (Z)-proof is correct in the theory we use the notion of syntactic

correctness together with witnesses that witness that the division gates used throughout the proof

are nonzero (as required by the axiom Div of P−1
c (Z)); hence all rules and axioms in the proof

are applied correctly. More precisely, we introduce the notion of provably good nodes which are

division nodes for which there are (specific kind of) P−1
c (Z)-proofs witnessing they evaluate to

1 when the matrices X, Y are the identity matrices. In fact, we will specify precisely for which

matrices that substitute X, Y and U , respectively, such witnesses for division nodes in the proof

can be constructed.

We are going to construct aΣB
0 -formula that bit-defines a string function that given the number

n outputs the P−1
c (Z)-proofs. Recall that this would mean that the P−1

c (Z)-proof isΣB
1 -definable

inV0 according to Definition 3.1.

28

4.2 Provably Good Nodes

We begin by providing background definitions and statements that will help us eliminate division

gates from circuits in the theory in future sections. Since division elimination in general [Str73]

is not a uniform process as it builds on the mere existence of an assignment of field elements that

allow for division elimination, we are going to show that a specific assignment, namely the identity

matrix assignment, is sufficient for our purposes. The idea is to show that the theory can prove that

every division gate in a circuit in the proof does not lead to division by zero when the matrices are

substituted for the identity matrices. For this we introduce the following definitions.

A P−1
c (Z)-proof is said to be division axiom free if it does not use the axiom Div of division

F ·F−1 = 1. Given a circuitF and a substitution ρ of variables inF by other circuits,F ↾ ρ stands
for a substitution instance of F in which substitution are performed as in Section 3.2.

Definition 4.1 (Identity matrices assignment). Given a natural number n, the identity matrices

assignment ρ is defined to be the assignment of 0 and 1 elements to the variables xij , yij such that

ρ(xij) = ρ(yij) = 1 if i = j ∈ [n] and ρ(xij) = ρ(yij) = 0, if i 6= j ∈ [n]. In other words,

X ↾ ρ = Y ↾ ρ = In, for In the n× n identity matrix andX, Y two n× n symbolic matrices.

Definition 4.2 (Provably good node, circuit and proof). Let n be a natural number and ρ be the

identity matrices assignment and let u−1 be a division gate in a circuit that uses the variables xij, yij (for
i, j ∈ [n]). We say that the division gate u−1 is provably goodwheneveru ↾ ρ = 1 has a division axiom
free P−1

c (Z)-proof π in which all division gates in π already appear in u ↾ ρ (that is, we do not introduce
new division gates in the proof). In this case we also say that ρ is provably good foru−1. Accordingly, if all

the division gates in a circuitC (a P−1
c (Z)-proof, resp.) are provably good we say that ρ is provably good

for C (for the P−1
c (Z)-proof, resp.) and that C (the P−1

c (Z)-proof, resp.) is provably good. We say

thatV0 proves that u−1 is provably good wheneverV0 proves that u ↾ ρ = 1 has a syntactically
correct division axiom free P−1

c (Z)-proof π in which all division gates in π already appear in u ↾ ρ.
Accordingly, if V0 proves that all the division gates in a circuit C (a P−1

c (Z)-proof, resp.) are provably
good we say thatV0 proves that C (the P−1

c (Z)-proof, resp.) is provably good.

Using the concept of provably correct proofs we can now express in the theory the correctness

of P−1
c (Z)-proofs (and not merely syntactic correctness): let π be a P−1

c (Z)-proof. We say that

V
0 proves that π is correct wheneverV0 proves that π is both syntactically correct and provably

good. In Sections 8 and 9 that wewill show that indeed such a correctness property suffices for our

purposes in the sense that the theory will be able to prove the correctness of a (division-free)Pc(Z)-
proof of the determinant identities based on this formulation of correctness for P−1

c (Z)-proof.

We will use the following definition:

Definition 4.3 (Provably invertible matrix). LetM be a matrix in which each entry is a circuit in the

variables xij, yij . Then,M is said to be a provably invertible matrix if every division gate inM−1
n is

provably good.

Note that ifMn is a ΣB
1 -definable family of matrices in V

0 (parameterised by n) then (using

Proposition 3.2)M−1
n is also a ΣB

1 -definable matrix-family V0, since the latter is a substitution

instance ofX−1 of n×n in which we substitute entries ofMn. What we will need to show in some

cases is not only thatM−1
n is ΣB

1 -definable in V
0, but that V0 can also prove that M is provably

invertible, namely that every division gate in M−1
n is provably good. Formally this would mean

showing that there is a string function that on the natural number input n outputs the syntactically

29

correct division axiom free P−1
c (Z)-proofs that witness the fact that all the division gates inM−1

are good.

In particular, we will strengthen the results of [HT15] that demonstrated the cases in which the

P−1
c (Z)-proofs of the determinant identities are definable, into provable definability: we show that

not only the P−1
c (Z)-proofs do not contain zero division, but thatV0 can prove the existence of

syntactically correct division axiom free P−1
c (Z)-proofs that witness this fact. More formally, the

statement that expresses the fact that a matrixA is provably invertible is a formula that states that

ifA is a matrix and u is a division gate inA−1, then u−1 is provably good.

For an n × n matrix A and a natural number k ≤ n we denote by A[k] the k × k matrix

restricted to rows 1 to k and columns 1 to k, namely the matrixA(i, j)i,j∈[k].
We have the following lemma:

Proposition 4.4 (Some facts about provably invertible matrices). Let n be a natural number and

assume that A is a matrix in which each entry is a circuit in the variables xij, yij , for i, j ∈ [n], which is
Σ

B
1 -definable inV

0. Then the following hold:

1. V0 proves that the symbolic matrixX is provably invertible.

2. IfV0 proves that A is provably invertible thenV0 proves that Detcirc−1(A) is provably good.

3. If V
0 proves that A is a triangular matrix with a11, . . . , ann on the diagonal such that

a−1
11 , . . . , a

−1
nn are provably good thenV0 proves that A is provably invertible.

4. V0 proves that A[1], . . . , A[n − 1] are provably invertible and δ(A)−1 is provably good iff V0

proves that the matrix A is provably invertible.

Proof. (1) We know that X−1 is ΣB
1 -definable in V

0 by Section 3.1.2. We need to show that V0

proves that every division gate u−1 in X−1 is provably good, namely has a division axiom free

P−1
c (Z)-proof of u ↾ ρ = 1with all division gates in this proof already appearing inu ↾ ρ. Observe

using (14) that every division gate u−1 inX−1 is either x−1
11 , or is δ(X[k])−1 for some k = 1, . . . , n,

where δ(X[k]) = xkk − v2k(X[k])−1vt1k , such that v2k is the kth row ofX[k] excluding the kth
columnentry, and vt1k is thekth columnofX[k] excluding thekth rowentry (similar to the notation

in (12)). The division gate x−1
11 is immediately proved inV0 to be provably good. The gates (xkk −

v2k(X[k])−1vt1k)
−1 are also proved easily in V

0 to be provably good, because under the identity

matrices assignment v2k = 0 and v1k = 0 are zero vectors, and xkk = 1.
(2) By assumptionV0 proves that every division gate inA−1 is provably good. By the definition

of Detcirc−1(A) in (15) every division gate in Detcirc−1(A) already appears inA−1, and soV0 can

prove it is provably good.

(3) Assume that A is lower triangular (the case for upper triangular matrices is similar). We

know that V0 proves that division by each diagonal entry aii in A is provably good. Since A is

Σ
B
1 -definable inV

0 the inverse matrix A−1 is alsoΣB
1 -definable and we only need to make sure

thatV0 proves that all the division gates in A−1 are provably good. This follows by inspection of

the inverse matrix as in Definition 14. Specifically, we consider all the division gates in A−1, as

follows.

In each inductive leveln in (14), forn the dimensionof thematrix, thenewdivision gates that are

introduced are those from δ(A)−1 = (ann − v2(A[n− 1])−1
0)

−1
, where 0 is the (n− 1)-length

(transposed) zero vector (corresponding to the vector (A(1, n), . . . , A(n − 1, n)), which is zero

since A is upper triangular) and v2 is the bottom vector of A excluding the entry A(n, n), namely

30

(A(n, 1), . . . , A(n, n−1)). All the other division gates inA−1 come fromprevious inductive levels

smaller than n and are placed inside (A[n − 1])−1. V0 proves that the equation ann − v2(A[n −
1])−1

0 = ann has a syntactically correct division axiom free P−1
c (Z)-proof, and without adding

new division gates that do not already occur in the equation, simply by using zero product axioms

A8: F · 0 = 0 of P−1
c (Z). Hence, by substitution in P−1

c (Z)-proofs, V0 proves that δ(A)−1 =
(ann − v2(A[n− 1])−1

0)
−1

= a−1
nn has a division axiom free P−1

c (Z)-proof. Since we assumed

that V0 proves that a−1
nn is provably good we conclude that V0 proves that δ(A)−1 is provably

good as well.

Since all division gates inA−1 come from some inductive level, each division gate inA−1 is of

the form δ(A[k])−1 for some k = 1, . . . , n, and thusV0 can prove it is provably good.

(4) This is similar to part (3) above: in each inductive level n in (14), for n the dimen-

sion of the matrix, the new division gates that are introduced are those from δ(A)−1 =
(ann − v2(A[n− 1])−1vt1)

−1
, where v1 is the vector (A(1, n), . . . , A(n− 1, n)) and v2 is the bot-

tom vector (A(n, 1), . . . , A(n, n − 1)). All the other division gates in A−1 come from previous

inductive levels smaller than n and are placed inside (A[n− 1])−1.

4.3 Constructing the P−1
c (Z)-Proofs in the Theory

Proposition 4.5.

1. Let U be an n× n (upper or lower)ΣB
1 -definable triangular matrix inV

0 with u11, . . . , unn on
the diagonal, in the variables xij , yij for i, j ∈ [n]. Then the P−1

c (Z)-proof of

Detcirc−1(U) = u11 · · · unn (18)

isΣB
1 -definable inV

0, and furtherV0 proves that if u−1
11 , . . . , u

−1
nn are all provably good then the

proof is provably good.

2. LetX and Y be n× n symbolic matrices. Then the P−1
c (Z)-proof of

Detcirc−1(X · Y) = Detcirc−1(X) · Detcirc−1(Y) (19)

is ΣB
1 -definable in V

0. Further, the proof is provably good for X = A, Y = B provided that

V
0 proves thatA[k], B[k] andA[k]B[k] are provably invertible for every k ∈ [n], andA,B are

Σ
B
1 -definable matrices inV

0.

The rest of this subsection is devoted to proving Proposition 4.5.

We shall follow the construction in [HT15, Section 7]: we show that the construction can be

carried out inV0, but in additionwe also show thatV0 explicitly proves that theP−1
c (Z)-proofs are

provably good (that is, no zero division occurs in the proofs) whenever thematrices in the equation

proved are provably invertible.

We prove parts 1 and 2 together, and we break the P−1
c (Z)-proofs into several parts. We need

to bit-define the function that constructs the required proofs. More precisely, we show that there

exists a ΣB
0 -formula ϕ(n, i) such that for all natural numbers n, i, ϕ(n, i) holds iff i ≤ poly(n)

and the ith bit in the string that encodes the P−1
c (Z)-proof of the n× n determinant identity (18)

is 1 (and similarly for (19)). The fact that these P−1
c (Z)-proofs are syntactically correct provably in

V
0 will be straightforward, while for showing they are provably good we need to do some work.

We use in our construction, as well as in the sequel, the following simple statement that allows

to encode inV0 proofs that consist ofnparts, inwhich each part uses the conclusion of the previous

31

part as an assumption, provided that each part is constructed independently and uniformly from

the other parts:

Proposition4.6 (V0 construction ofP−1
c (Z)-proofs in parts). Let (ψn)n∈N be a sequence of equations

between algebraic circuits with division overZ, and let F (n) be the string function that on input n outputs
a P−1

c (Z)-proof of ψn from assumption ψn−1. Suppose that ϕ(n, i) is a Σ
B
0 -formula that bit-defines

F (n), where n, i are two number variables. Then, the P−1
c (Z)-proof of (ψn)n∈N isΣB

1 -definable inV
0.

Proof. The idea is thatF (n) depends only on the numbern and not the previous proof-lines, hence
there is no need to useΣB

1 -induction here. More precisely, we need to demonstrate aΣB
0 -formula

that bit-defines the function that on input n outputs the P−1
c (Z)-proof of ψn. We encode the

P−1
c (Z)-proof so that it is a two-dimensional array S: the jth string in S, denoted S[j], is the (par-

tial) P−1
c (Z)-proof F (n). Since ϕ(n, i) bit-defines F (n), the following ΣB

0 -formula bit-defines

the two-dimensional array S:

Φ(n, k) := ∃j ≤ n (k = (j, i) ∧ ϕ(j, i)) .

The only thing left to make sure is that F (n) correctly points to the proof-line that holds the as-

sumption ψn−1. For this we can simply assume that the first proof-line (i.e., equation) in F (n) is
ψn−1, and that it points to the last proof-line in F (n− 1) (which is also ψn−1; hence, repeating the

same equation, and assuming that repetition of proof-lines is legitimate in P−1
c (Z)-proofs).

We begin ourV0-construction with the proof ofX ·X−1 = In. Given n×nmatricesX, Y,A,
the expressionsXY = A in the context of a P−1

c (Z)-proof is an abbreviation of a sequence of n2

equalities between the appropriate entries. Note however that whereas before we treatedX−1 as a

singlemulti-output circuit, the expressionX−1 = A stands for a set of n2 separate circuits for each

of the entries in X−1 (this is achieved by taking the same single multi-output circuit for X−1 as

before, and duplicating each of the n2 output gates together with their sub-circuits, so the increase

in size is by a factor of n2).

Lemma 4.7. Let X be an n × n symbolic matrix. Then, the P−1
c (Z)-proofs of X · X−1 = In and

X−1 ·X = In areΣ
B
1 -definable inV

0. Moreover, ifX = A is aΣB
1 -definable matrix thatV

0 proves

is provably invertible thenV0 proves that these P−1
c (Z)-proofs are provably good.

Proof. This can potentially be constructed by induction onn. However, similar to the construction

of Detcirc−1 in the theory (Section 3.1.3), we cannot use (number) induction on Σ
B
1 -formulas in

VNC
2, and thuswe need towork out an encoding of the proof that is bit-defined by aΣB

0 -formula

in V
0 (equivalently, a ΣB

1 -definable function in V
0). Since we already have the basic encoding

scheme for circuits in the proof this is quite easy to achieve. We proceed as follows.

If n = 1, we have x11 · x
−1
11 = x−1

11 · x11 = 1 which is a P−1
c axiom, and in which all division

gates are provably good because ρ(x11) = 1. Otherwise, let n > 1 andX be as in (12). We want to

construct a P−1
c (Z)-proof ofX ·X−1 = In from the assumptionX1 ·X

−1
1 = In−1.

Abbreviate a := δ(X) and D := In−1 + a−1vt1v2X
−1
1 − a−1vt1v2X

−1
1 , and E := v2X

−1
1 +

a−1(v2X
−1
1 vt1 − xnn)v2X

−1
1 . Using some rearrangements, and the definition of a, we have (see

32

[HT15, Proposition 7.2]):

X ·X−1 =

(
X1 vt1
v2 xnn

)
·

(
X−1

1 (In−1 + a−1vt1v2X
−1
1) − a−1X−1

1 vt1
−a−1v2X

−1
1 a−1

)

=

(
D −a−1vt1 + a−1vt1
E a−1(−v2X

−1
1 vt1 + xnn)

)

=

(
In−1 0

v2X
−1
1 − a−1av2X

−1
1 a−1a

)

=

(
In−1 0

0 1

)
.

(20)

To encode this proof we do the following: we use aΣB
0 -formula denoted ϕ(n, i) to bit-define the

string function that given a natural number n outputs the above P−1
c (Z)-proof in (20), from the

assumptionX1 ·X
−1
1 = I , whereX1 has dimension (n− 1)× (n− 1). This is done by specifying

X1 ·X
−1
1 = I as a previous proof-line (formally, a collection of (n−1)2 proof-lines) fromwhichwe

derive our newproof-lines. Such a sequence is bit-defined by aΣB
0 -formula similar to the encoding

in Section 3.1.3: we compose basic constructions of matrix multiplications (which are written as

separate equations for each entry), dot products, plus andminus, construction of the identitymatrix

of dimension k, and X−1
1 (which we encoded explicitly in Section 3.1.3). Proposition 4.6 suffices

thus to conclude the first part of Lemma 4.7.

For the second part of the lemma: ifX = A, for ann×nΣB
1 -definable and provably invertible

matrix A in V
0, then by definition every division gate in A−1 is provably good. Hence, every

division gate in the top equation in (20) is provably good. By inspection of the proof-lines that come

after this top line we see that every division gate is one of the inverse gates that already appeared

inA−1. For example, let us inspect the (n, n)th entry in the second line from the top in (20), which

when substitutingA forX is v2 ·(−a
−1A−1

1 vt1)+anna
−1 (whereA1 = A[n−1]), whichwe turned

by simple rearrangement to a−1(−v2A
−1
1 vt1 + ann). The term a−1 appears already inA−1, as well

as all the division gates in A−1
1 . This then is equal to a−1 · a by definition of a, which then leads

by the division axiom to 1, concluding that all division gates appearing in this derivation already

appear inA−1.

Lemma 4.8. The P−1
c (Z)-proof of the identity (XY)−1 = Y −1X−1, for two n× n symbolic matrices

X, Y , isΣB
1 -definable inV

0. Furthermore, ifX = A, Y = B whereA,B,AB areΣB
1 -definable and

provably invertible inV0, thenV0 proves that this P−1
c (Z)-proof is provably good.

Proof. To keep distinctness of variables, we encode the variables xij differently from the variables

yij (e.g., the input variables xij are encoded as before, while the yij variables are encoded as the

pair 0with the encoding of xij , which is always different from the encoding of xij since the pairing
function is injective). By Proposition 3.2, since we have a P−1

c (Z)-proof of XX−1 = In, we can
substitute in this proof to get a proof of (XY)−1(XY) = In. We also haveP−1

c (Z)-proofs of basic
properties of matrix products like associativity of matrix products and addition, and of InX =
X . Hence, we can construct P−1

c (Z)-proofs of ((XY)−1(XY))Y −1X−1 = Y −1X−1. On the

other hand, by associativity of matrix product and Proposition 4.7 ((XY)−1(XY))Y −1X−1 =
(XY)−1(X(Y Y −1)X−1) = (XY)−1 and so (XY)−1 = Y −1X−1.

For the second part of the lemma, we observe that sinceAB is provably invertible, by Proposi-

tion 4.7 every division gate in theP−1
c (Z)-proof of (AB)−1(BA) = In is provably good. And since

A and B are provably invertible then by Proposition 4.7 the proof of (AB)−1(A(BB−1)A−1) =
(AB)−1 is provably good.

33

LetX be as in (12) and similarlyY =

(
Y1 ut1
u2 ynn

)
.Bydefinition ofX−1 in (14) (and similarly

Y −1) the entry in the bottom right corner of (XY)−1 is δ(XY)−1, and the entry in the bottom right

corner of Y −1X−1 is δ(Y)−1δ(X)−1((u2Y
−1
1)(X−1

1 vt1) + 1). By Lemma 4.8 we have a proof of

(XY)−1 = Y −1X−1 and so

δ(XY)−1 = δ(Y)−1δ(X)−1
(
(u2Y

−1
1)(X−1

1 vt1) + 1
)
.

Multiplying both sides by δ(XY)δ(Y)δ(X) we obtain a P−1
c (Z)-proof of

δ(Y)δ(X) = δ(XY)(1 + u2Y
−1
1 X−1

1 vt1), (21)

where the proof is provably good if X = A and Y = B for A, B,AB provably invertible and

Σ
B
1 -definable matrices inV0.

We proceed to construct the P−1
c (Z)-proofs of the identities (18), (19). We first provide the

following two lemmas.

Lemma 4.9.

1. LetA,L, U ben×nΣB
1 -definable matrices inV

0 withL lower triangular andU upper triangular

and assume thatV0 proves thatA,L, U are provably invertible. Then the string function that given

n in unary outputs the syntactically correct P−1
c (Z)-proof of

Detcirc−1(LAU) = Detcirc−1(L)Detcirc−1(A)Detcirc−1(U) (22)

isΣB
1 -definable inV

0. Moreover,V0 proves thatLAU is provably invertible and that theP−1
c (Z)-

proof of (22) is provably good.

2. Let A be an n × n Σ
B
1 -definable matrix inV

0. ThenV0 proves that if A is provably invertible

then there exists a provably invertible lower triangular matrixL(A) and a provably invertible upper
triangular matrixU(A) such thatA = L(A) ·U(A) has a syntactically correct and provably good
P−1
c (Z)-proof.

Proof. Part 1. Using LAU = L(AU)In it is easy to see that it is enough to separately consider the
cases in which U = In and L = In. We prove the former, the latter is similar. We thus construct

the proof of Detcirc−1(LA) = Detcirc−1(L)Detcirc−1(A).
As before, by Proposition 4.6 it suffices to demonstrate a Σ

B
0 -formula that bit-defines a

string function that given a natural number n outputs a P−1
c (Z)-proof of Detcirc−1(LA) =

Detcirc−1(L)Detcirc−1(A) from the assumption Detcirc−1(L1A1) = Detcirc−1(L1)Detcirc−1(A1),
where L,A have dimension n × n and L1, A1 have both dimension (n − 1) × (n − 1). Such a

sequence is bit-defined by aΣB
0 -formula similar to the encoding shown in Section 3.1.3, as follows.

If n = 1, theΣB
0 -formula is clear. If n > 1, write

L =

(
L1 0

u ℓnn

)
, A =

(
A1 vt1
v2 ann

)
, and so LA =

(
L1A1 L1v

t
1

uA1 + ℓnnv2 ℓnnann + uvt1

)
.

(23)

Assume that V0 proves that L1A1 is provably invertible and that there exists a syntactically

correct and provably good P−1
c (Z)-proof of Detcirc−1(L1A1) = Detcirc−1(L1)Detcirc−1(A1). We

34

want to show that V0 proves that LA is provably invertible and that there exists a syntactically

correct and provably good P−1
c (Z)-proof of Detcirc−1(LA) = Detcirc−1(L)Detcirc−1(A).

By δ(A) = ann − v2A
−1
1 vt1, and using rearrangement and Lemma 4.8 we can construct inV0

the P−1
c (Z)-proof:

δ(LA) = (ℓnnann + uvt1)− (uA1 + ℓnnv2)(L1A1)
−1L1v

t
1 =

= (ℓnnann + uvt1)− (uA1 + ℓnnv2)A
−1
1 L−1

1 L1v
t
1 =

= ℓnnann + uvt1 − uvt1 − ℓnnv2A
−1
1 vt1 = ℓnn(ann − v2A

−1
1 vt1) =

= δ(L)δ(A) .

SinceV0 proves that L and A are provably invertible, Proposition 4.4 part 4 implies thatV0 also

proves that δ(L)−1 and δ(A)−1 are provably good. Hence, by the above P−1
c (Z)-proof V0 also

proves that δ(LA)−1 is provably good: we first derive δ(LA)−1 = (δ(L)δ(A))−1 = δ(L)−1 ·
δ(A)−1 using the above proof—this does not add new division gates that do not already appear in

δ(LA)−1; and then we use the fact thatV0 proves that δ(L)−1 and δ(A)−1 are provably good.

By assumptionV0 proves thatL1A1 is provably invertible, which by (23) means that (LA)[n−
1] is provably invertible. From this and the fact that V0 proves that δ(LA)−1 is provably good,

using Proposition 4.4 part 4, we conclude thatV0 proves that LA is provably invertible.

Finally, by definition we have Detcirc−1(A) = Detcirc−1(A1) · δ(A) and Detcirc−1(L) =
Detcirc−1(L1)δ(L) and Detcirc−1(LA) = Detcirc−1(L1A1)δ(LA). We can conclude

Detcirc−1(LA) = Detcirc−1(L)Detcirc−1(A) from the assumption Detcirc−1(L1A1) =
Detcirc−1(L1)Detcirc−1(A1) and the equation δ(LA) = δ(L)δ(A).

For part 2 we proceed once more to use Proposition 4.6. We construct a ΣB
0 -formula to bit-

define a string function that given a natural number n outputs L(A), U(A) and a syntactically

correct P−1
c (Z)-proof of L(A)U(A) = A from the assumption L(A1)U(A1) = A1, where

L(A1), U(A1) are lower and upper triangular, respectively, and have dimension (n−1)× (n−1).
If n = 1, letL(a11) = a11 andU(a11) = 1. If n > 1, writeA as in (23). By Lemma 4.7 we have

aΣB
0 -formula that bit-defines theP−1

c (Z)-proofs ofL(A1)L(A1)
−1 = 1 andU(A1)

−1U(A1) = 1.
Therefore, we have aΣB

0 -formula defining the following elementary P−1
c (Z)-proof (in which we

also define L(A), U(A)) using as assumption the proof-lineA1 = L(A1)U(A1):

(
A1 vt1
v2 ann

)
=

(
L(A1) 0
v2U(A1)

−1 ann − v2A
−1
1 vt1

)
·

(
U(A1) L(A1)

−1vt1
0 1

)
.

The fact thatV0 proves thatL(A), U(A) are provably invertible, provided thatV0 proves that

A is provably invertible, follows from similar reasoning as before.

Lemma 4.10. Let A be an n × nΣ
B
1 -definable matrix inV

0 thatV0 proves to be provably invertible

and let v1, v2 be n × 1 ΣB
1 -definable vectors in V

0 (with coordinates being algebraic circuits) such that

V
0 proves that A+ vt1v2 is provably invertible. Then, the P

−1
c (Z)-proof of

Detcirc−1(A+ vt1v2) = Detcirc−1(A)(1 + v2A
−1vt1)

isΣB
1 -definable inV

0, and furtherV0 proves that the proof is provably good.

Proof. We start with the special case:

Detcirc−1(In + vt1v2) = 1+ v2v
t
1 , whereV0 proves that In + vt1v2 is provably invertible. (24)

35

Let v1 = (u1, c1) and v2 = (u2, c2). We show a P−1
c (Z)-proof of (24) from the following two

assumptions: (i) the P−1
c (Z)-proof of Detcirc−1(In−1 + ut1u2) = (1 + u2u

t
1) is Σ

B
1 -definable

in V
0; and (ii) V0 proves both that this P−1

c (Z)-proof is provably good and that In−1 + ut1u2 is
provably invertible. By Proposition 4.6 the first condition implies that the P−1

c (Z)-proof of (24) is
Σ

B
1 -definable inV

0. By the second conditionV0 also proves this P−1
c (Z)-proof is provably good,

becauseV0 proves that each part of the proof is.

If n = 1, the statement is clear. If n > 1, write In + vt1v2 as follows

In + vt1v2 =

(
In−1 + ut1u2 c2u

t
1

c1u2 1 + c1c2

)
.

We first note the following:

Claim. The P−1
c (Z)-proof of (In−1 + ut1u2)

−1 = In−1 − (1 + u2u
t
1)

−1ut1u2 isΣ
B
1 -definable inV

0

andV0 proves it is provably good.

Proof of claim: AbbreviateD = ut1u2 and β = (1+u2u
t
1). Then we need to show (In−1+D)−1 =

In−1 − β−1D. Recall that we assume that In−1 +D is provably invertible (assumption (ii) above).

Multiplying both sides by (In−1 + D) we get In−1 = In−1 + D − β−1(In−1 + D)D = In−1 +
D − β−1D − β−1D2. Multiplying both sides by β we get

βIn−1 = β(In−1 +D)− (In−1 +D)D. (25)

Hence it is enough to show a Pc(Z)-proof of (25), that isΣ
B
1 -definable and provably good inV

0.

By elementary rearrangementsD2 = ut1(β − 1)u2 = (β − 1)D. And so we can use this identity

to prove (25) as follows: β(In−1 + D) − (In−1 + D)D = βIn−1 + βD − D − D2 = βIn−1 +
βD −D − (β − 1)D = βIn−1 + βD −D − βD +D = βIn−1. Our P

−1
c (Z)-proof is provably

good by construction (stemming from In−1 +D being provably invertible). Claim

Let α := u2u
t
1. By the claim, the definition of Detcirc−1 and the assumption Detcirc−1(In−1 +

ut1u2) = 1 + α, we obtain

Detcirc−1(In + vt1v2) =Detcirc−1(In−1 + ut1u2)
(
(1 + c1c2)− c2u2(In−1 + ut1u2)

−1c1u
t
1

)
=

=(1 + α)
(
(1 + c1c2)− c2u2(In−1 − (1 + α)−1ut1u2)c1u

t
1

)
=

=(1 + α)(1 + c1c2)− (1 + α)c1c2u2u
t
1 + c1c2u2u

t
1u2u

t
1 =

=(1 + α)(1 + c1c2)− (1 + α)c1c2α + c1c2α
2 =

=1 + α + c1c2 = 1 + v2v
t
1 .

This gives a P−1
c (Z)-proof of (24) which is also provably good, provably inV0.

Finally, we need to conclude Detcirc−1(A + vt1v2) = Detcirc−1(A)(1 + v2A
−1vt1) from (24),

and show that V0 proves that the proof is provably good. Let L := L(A) and U := U(A) be
the matrices from the statement of Lemma 4.9 part 2. This lemma (and the definition ofDetcirc−1)

gives a P−1
c (Z)-proof of:

Detcirc−1(A+ vt1v2) =Detcirc−1(LU + vt1v2) = Detcirc−1(L)Detcirc−1(In + L−1vt1v2U
−1)Detcirc−1(U) =

=Detcirc−1(LU)(1 + v2U
−1L−1vt1) = Detcirc−1(A)(1 + v2A

−1vt1) .

The aboveP−1
c (Z)-proof is provably good because by assumptionA andA+vt1v2 are both provably

good.

36

We can now conclude the main proof of this section:

Proof of Proposition 4.5. Part 1 follows from the definition ofDetcirc−1 . Specifically, assume that U
is lower triangular (the other case is similar), thenDetcirc−1(U) = Detcirc−1(U1) ·(unn−v2U

−1
1 0),

where v2 is the nth row of U excluding unn, and U1 = U [n − 1]. Similar to previous arguments

in this section, the P−1
c (Z)-proof of unn − v2U

−1
1 0 = unn isΣ

B
1 -definable inV

0, andV0 proves

that the proof is provably good: the division gates in this proof come from U−1
1 , but we assumed

thatV0 proves that u−1
11 , . . . , u

−1
nn are all provably good and so by Proposition 4.4 part 3V

0 proves

that U (and specifically U [n − 1]) are provably invertible. Hence, using as before Proposition 4.6

we can conclude part 1.

Part 2 is proved once more by using Proposition 4.6. If n = 1, it is immediate. Assume that n > 1.
Let

X =

(
X1 vt1
v2 xnn

)
, Y =

(
Y1 ut1
u2 ynn

)
.

Wewant to show that the P−1
c (Z)-proof ofDetcirc−1(XY) = Detcirc−1(X)Detcirc−1(Y) from the

assumption that Detcirc−1(X1Y1) = Detcirc−1(X1)Detcirc−1(Y1) isΣ
B
1 -definable inV

0 and that

V
0 proves that it is provably good.

Note that (XY)[n− 1] = X1Y1 + vt1u2. Thus, by the definition ofDetcirc−1 , we have

Detcirc−1(X) = Detcirc−1(X1)δ(X) , Detcirc−1(Y) = Detcirc−1(Y1)δ(Y) and

Detcirc−1(XY) = Detcirc−1(X1Y1 + vt1u2)δ(XY) ,

and we are supposed to prove:

Detcirc−1(X1Y1 + vt1u2)δ(XY) = Detcirc−1(X1)δ(X) · Detcirc−1(Y1)δ(Y) . (26)

By Lemma 4.10 we have

Detcirc−1(X1Y1 + vt1u2) = Detcirc−1(X1Y1)(1 + u2(X1Y1)
−1vt1), (27)

whereV0 proves that theP−1
c (Z)-proof of this equation is provably goodwheneverV0 proves that

(XY)[n− 1] = X1Y1 + vt1u2 is provably invertible. We know thatV0 proves thatX1Y1 + vt1u2 is
provably invertible because by assumptionV0 proves thatX[n]Y [n] = XY is provably invertible,

and (X1Y1 + vt1u2)
−1 = ((XY)[n− 1])−1 is used in the definition of (XY)−1.

We now use the P−1
c (Z)-proof of (X1Y1)

−1 = Y −1
1 X−1

1 from Lemma 4.8. Note that if we

assume thatV0 proves thatX = A, Y = B andA[k], B[k], A[k]B[k] are provably invertible for
all k ∈ [n], then in particularV0 proves thatX1 = A[n−1], Y1 = B[n−1] andA[n−1]B[n−1]
are provably invertible, and thus under this assumption Lemma 4.8 states thatV0 proves that the

P−1
c (Z)-proof of (X1Y1)

−1 = Y −1
1 X−1

1 is provably good. From this, (27), and the assumption

Detcirc−1(X1Y1) = Detcirc−1(X1)Detcirc−1(Y1), we get

Detcirc−1(X1Y1 + vt1u2) = Detcirc−1(X1)Detcirc−1(Y1)(1 + u2Y
−1
1 X−1

1 vt1) .

Hence, in order to prove (26), it suffices to prove

(1 + u2Y
−1
1 X−1

1 vt1)δ(XY) = δ(X)δ(Y) ,

which follows from (21) (where V0 proves that the P−1
c (Z)-proof of (21) is provably good if V0

proves thatX = A, Y = B andA,B andAB are provably invertible).

37

5 Homogenization inV
0

In the previous section we constructed in V
0 a P−1

c (Z)-proof with division of the determinant

identities. The theoryV0 proves that this P−1
c (Z)-proof is correct in the sense that it proves that

each proof-line follows from previous lines correctly, or is an axiom, and that all division gates are

provably good (meaning specifically that there is no division by zero, and that the Div inference

rule is applied correctly). On the other hand, the syntactic-degrees of circuits in the P−1
c (Z)-proof

(as defined for circuits with division in Definition 6.2) are not polynomially bounded. In order to

be able to balance the circuits and then use the reflection principle for division-free Pc(Z)-proofs
in Theorem 11.3 we need to eliminate division and high syntactic-degrees. In this section we start

developing an approach to eliminate high syntactic-degrees from Pc(Z)-proofs inV
0.

Recall the concepts of a homogeneous polynomial and a syntactic homogeneous circuit from

Section 2.7. Here we demonstrate a ΣB
1 -definable FAC

0 algorithm in V
0, for homogenizing al-

gebraic circuits without division. This means that the algorithm receives algebraic circuits with no

division gates and outputs the corresponding sum of homogenous components of the polynomial

computed by the input circuit. Wewill use this algorithm in the theory in Section 9 in order to elim-

inate high syntactic-degrees from proofs, but we also use it in Section 6 to write the determinant

as a circuit with no division gates.

In order to balance circuits in Section 10 we will need to work with the syntactic-degrees of

nodes in homogeneous circuits. Nevertheless, we show that for most part we can get away with

syntactic-degree upper bounds and not (the precise) syntactic-degrees, and so our homogenization

algorithm below outputs a circuit inwhich every node carries a label specifying its syntactic-degree

upper bound. On the other hand, for technical reasons, in the proof of the Cayley-Hamilton theo-

rem in Section 12we need to know precisely the syntactic-degree of nodes in some circuit (in order

to use Lemma 7.3 part (3)). In this case we shall simply witness the syntactic-degrees of every node

in the specific circuit we need, in which case the algorithm below outputs a homogeneous circuit

with syntactic-degrees specified on every node.

Remark 5.1. We note that we do not know of an FAC
0 algorithm that computes the syntactic-degree

of a node in a given circuit. On the other hand, computing the syntactic-degree of a node in a circuit is

doable in NC
2. This was noted for example by Allender et al. [AJMV98] (replace every scalar gate by 0,

every variable gate by 1, every product gate by+ and every plus gate bymax, and then evaluate the circuit
withinNC

2; e.g., using the algorithm implicit in [AJMV98], or the algorithm in [MRK88]). However, to

actually use this algorithm in the theory we would also need to prove its correctness; this is likely doable (as

we essentially show for the [VSBR83] circuit balancing algorithm in Section 10), but we have opted for a

shorter solution that uses syntactic-degree upper bounds or witness syntactic-degrees.

Definition 5.2. A witness for the syntactic-degree of all nodes in a circuit is a string that stores pairs

of numbers (v, d), with v the node label and d its syntactic-degree, for every node v in the circuit.

We can store each syntactic-degree as a natural number since we need to witness only circuits

with polynomial syntactic-degrees. It is easy to formulate aΣB
0 -formula φ(C,W)withC a circuit

andW the string that contains all the syntactic-degrees d(v) of the nodes v inC , such thatφ(C,W)
holds iffW is correct: for every addition gate t = v1+v2 it checks that d(t) = max{d(v1), d(v2)},
and for every product gate t = v1 · v2 it checks that d(t) = d(v1) + d(v2), and for leaves it checks
d(xi) = 1 and d(c) = 0 for c ∈ Z, and xi a variable.

38

Homogenization Algorithm in UniformFAC
0

Input: an algebraic circuitC with no division of size s and a natural number d.

Optional input 1: A syntactic-degreewitness (Definition 5.2) for all the nodes inC (including the

root that has syntactic-degree d).

Optional input 2: A natural number i (the intended degree of the syntactic homogeneous com-

ponent to compute).

Output:

1. An algebraic circuit C ′ of size O(d2 · s) such that C ′ is a sum of syntactic homogeneous

circuits C ′ = C(0) + · · ·+ C(d).

2. If optional input 1 was supplied, then for every gate v in C ′ the duplicate gate [v, j] for j >
d(v) is the circuit 0 (see below for the notation “[u, j]”).

3. If the input C is (declared to be)6 a (sum of) syntactic homogeneous circuits
∑

i∈I C
(i) for

I ⊆ {0, . . . , d} then output C , augmented with the nodes [u, j] = 0, for all nodes u ∈ C
and all j ∈ {0, . . . , d} \ I .

4. If optional input 2 was supplied, then C ′ = C(i), namely the ith homogeneous component.

If moreover the input circuit C is already a syntactic homogeneous circuits C(j) then the

output is the circuit 0 if j 6= i and is C(i) if j = i.

Algorithm: We follow the standard Strassen [Str73] algorithm, only that instead of building the

circuits by induction from leaves towards the rootwe construct all nodes simultaneously as follows.

(1) Assumewedonot have thewitness for syntactic-degrees of all the nodes (namely, thewitness

was not supplied as an input). Every node v is duplicated d+1 times into the nodes [v, 0], . . . , [v, d].
For a node [v, i] we call i the syntactic-degree upper bound of [v, i], denoted as

dub([v, i]) := i.

The node [v, i] is (the root of) a syntactic-homogeneous circuit of syntactic-degree at most i

computing either 0 or the degree i homogeneous part of the polynomial Ĉv . The algorithm is

computable in FAC
0 because every new node [v, i] depends only on the copies of the two nodes

u, w that goes into v, and these nodes are already known from the input circuit, namely, they are

[u, i], [w, i], for i = 0, . . . , d + 1, where v = u + w or v = u · w in C . Hence, the wiring of the
new circuit is done in parallel for each of the new nodes as follows:

Case 0: v is a leaf inC . If v is a constantα, then define [v, 0] = α, and [v, i] = 0 for all i = 1, . . . , d.
Otherwise, v is a variable xj , and we define [v, 1] = xj , and [v, i] = 0 for all 1 6= i ∈ {0, . . . , d}.
Case 1: v = u+ w in C . Define [v, i] := [u, i] + [w, i] for every i = 0, . . . , d.
Case 2: v = u× w in C . Define [v, i] :=

∑
j+k=i

j,k=0,...,d
[u, j]× [w, k].

Finally, C(i) := r(i), for r the root of C , for all i = 0, . . . , d.

6The algorithm does not check for correctness ofC being a (sum of) syntactic homogeneous circuits.

39

(2) Otherwise, assume that a witness for the syntactic-degree d(v) for every node v in C was

supplied as an input. In this case the algorithm is the same as above, except that the ith duplicate
[v, i] of a node v is defined to be the circuit 0 whenever i > d(v). More precisely:

Case 0: v is a leaf in C . If v is a constant α, then define [v, 0] = α. Otherwise, v is a variable xj ,
and we define [v, 1] = xj , and [v, j] = 0, for all 0 ≤ j ≤ d and j 6= 1.
Case 1: v = u + w in C . Define [v, i] := [u, i] + [w, i] for every i = 0, . . . , d(v), and [v, i] := 0
for i = d(v) + 1, . . . , d.
Case 2: v = u×w inC . Define [v, i] :=

∑
j+k=i

j,k=0,...,d
[u, j]× [w, k], for every i = 0, . . . , d(v), and

[v, i] := 0 for i = d(v) + 1, . . . , d.7

Finally, C(i) := r(i), for r the root of C , for all i = 0, . . . , d.

Note on syntactic-degree upper bounds. Notice that if we do not have a witness for syntactic-

degrees the above algorithm produces a syntactic homogeneous circuit (or a sum of such circuits)

in which each node [u, i] is of syntactic-degree i, except that for [̂u, i] = 0, the syntactic degree of
the circuit rooted at [u, i] can be smaller than i (but not bigger). This means that the circuit contains

in itself a witness for the upper bound of the syntactic-degree of each node (but not a witness for the

syntactic-degree; this witness can be checked by following the upper bounds of syntactic-degrees

of each of the nodes leading to the node). Assuming we get as input a correct syntactic-degree upper

bound, that is, d ≥ d(C), then in output (1) we get Ĉ ′ = Ĉ .
If we receive a syntactic-degree witness for every node in C as an input then assuming [u, i]

is not the circuit 0, the original node u has syntactic-degree at least i. Also, if the input to the

algorithm is already a sum of syntactic homogeneous circuits
∑k

i=0C
(i) then [u, i] = ∅ if i > k

for every node u in C .

We are going to construct Pc(Z)-proofs that contain witnesses for the syntactic-degree upper
bounds of every node.

Definition 5.3 (syntactic-degree upper bounds in proofs; dub). Given a Pc(Z)-proof π we say that

every node in every circuit in the proof appears with its syntactic-degree upper bound if every such

node u is a pair of numbers [u, i] for dub(u) = i, according to the construction in the homogenization
algorithm above.

We have the following main theorem about homogenization of proofs:

Theorem 5.4 (HomogenizingPc(Z)-proofs homogeneous component-wise). LetF,G be twoΣB
1 -

definable algebraic circuits over Z with syntactic-degree d, and assume that there is a Pc(Z)-proof of
F = G which isΣB

1 -definable inV
0. Then, for every k = 0, . . . , d, the following proof isΣB

1 -definable

inV0: the Pc(Z)-proof of F
(k) = G(k) in which every circuit is a sum of syntactic homogeneous circuits

inside which every node u appears with its syntactic-degree upper bound, and dub(u) ≤ k.

Remark 5.5. Under the conditions stated in Theorem 5.4 we can also conclude easily that the following

proof is ΣB
1 -definable in V

0: the Pc(Z)-proof of
∑k

i=0 F
(i) =

∑k

i=0G
(i) in which every node u in

the proof appears with its syntactic-degree upper bound, and dub(u) ≤ k. However, from this we cannot

7Note that thismeans that provably inV0 there exists aPc(Z)-proof of [v, i] :=
∑

j+k=i

0≤j≤d(u),0≤k≤d(k)
[u, j]×[w, k],

for every i = 0, . . . , d, since [u, j] = 0 for j > d(u) and [w, k] = 0 for k > d(u).

40

always conclude inV0 that F = G is Pc(Z)-provable. This is because without syntactic-degree witnesses
for F we cannot necessarily conclude inV0 that there is a Pc(Z)-proof of F =

∑k

i=0 F
(i). In Section 9

we are going to show that for the purpose of the determinant identities we do not need the syntactic-degree

witnesses.

We need the following lemmas before concluding this theorem.

Lemma 5.6. Let F1 ⊕ F2 and F1 ⊗ F2 be two Σ
B
1 -definable circuits

8 in V
0 and let k be a natural

number. Then, the following equation have ΣB
1 -definable Pc(Z)-proofs in V

0, in which every circuit is

a sum of syntactic homogeneous circuits inside which every node u appears with its syntactic-degree upper
bound:

1. (F1⊕F2)
(k) = F

(k)
1 + F

(k)
2 ;

2. (F1⊗F2)
(k) =

∑k

i=0 F
(i)
1 · F

(k−i)
2 .

Proof. Using the homogenizationFAC
0-algorithm abovewe construct (F1⊕F2)

(k). By definition,

(F1⊕F2)
(k) := F

(k)
1 ⊕F

(k)
2 , and by axiom C1, F

(k)
1 ⊕F

(k)
2 = F

(k)
1 + F

(k)
2 . We thus construct

this one-line proof, adding to the proof a witness for the application of axiom C1. Note that

given a circuit A ⊕ B we can construct inV
0 a witness for the correctness of applying C1 to get

A⊕B = A+B. The witness will say thatA inA⊕B is identical toA inA+B, by an explicit

mapping of nodes from the former to the latter copy; and similarly forB. Furthermore, note that

in this one-line Pc(Z)-proof every node u in every circuit appears with its syntactic-degree upper

bound: in (F1⊕F2)
(k) this is true by construction of (·)(k) and in F

(k)
1 + F

(k)
2 we simply specify

every node u in F
(k)
1 + F

(k)
2 to have the same syntactic-degree upper bound as its origin node in

(F1⊕F2)
(k) (note that this is indeed a true upper bound on the syntactic-degree of u).

This concludes 1. Part 2 is similar using the homogenization algorithm above.

We now conclude the proof of the theorem:

Proof of Theorem 5.4. For every k = 0, . . . , d, we devise a ΣB
1 -definable function inV

0 that pro-

duces aPc(Z)-proof ofF
(k) = G(k) with every node u in every circuit in the proof appears with its

syntactic-degree upper bound dub(u) (that is, it appears as [u, i] where i = dub(u)) and such that
dub(u) ≤ k. This is done in a manner resembling the algorithm above for homogenizing circuits

and using Proposition 4.6. Specifically, for every k = 0, . . . , d and every line S = T in π, we
construct in parallel a part of the proof of S(k) = T (k) (that taken collectively would amount to a

proof of S(k) = T (k)).

Though some proof-lines S = T possess syntactic-degree witnesses while some are already

syntactic homogeneous, and some proof-lines do not fall into the two former categories, the proof

we show works for all these three cases; this stems from the way we defined the homogenization

algorithm: the algorithm constructs the nodes [u, i] for every original node u in its input and every
i = 0, . . . , d (even in the case where i exceeds the specified syntactic-degree of u in the syntactic-
degree witnesses input; and similar for the output of the homogenization algorithm part 3).

Case 1: S = T is an axiom of Pc(Z). We construct a Pc(Z)-proof of S
(k) = T (k) with syntactic

degree≤ k.
Lemma 5.6 gives ΣB

1 -definable in V
0 Pc(Z)-proofs of (F1⊕F2)

(k) = (F1 + F2)
(k) and

(F1⊗F2)
(k) = (F1 · F2)

(k), as required for the axioms C1 and C2.

8Recall that we mean here that we pick one such circuit out of all possible circuits of these form.

41

Axioms A1 and A10 are immediate. For the other axioms, consider for example the axiom

F1 · (F2 · F3) = (F1 · F2) · F3. We have to construct a proof of

(F1 · (F2 · F3))
(k) = ((F1 · F2) · F3)

(k) . (28)

By part (ii) of Lemma 5.6 the equations

(F1 · (F2 · F3))
(k) =

k∑

i=0

(
F

(i)
1 ·

k−i∑

j=0

F
(j)
2 F

(k−i−j)
3

)
(29)

((F1 · F2) · F3)
(k) =

k∑

i=0

(
i∑

j=0

F
(j)
1 F

(i−j)
2

)
· F

(k−i)
3 , (30)

can be proved in Pc(Z). In Pc(Z), the right hand sides of both (29) and (30) can be written as∑
i+j+l=k F

(i)
1 F

(j)
2 F

(l)
3 . This gives the proof of (28).

Case 2: If the line S = T is S1 · S2 = T1 · T2, and it was derived using the rule R4 as follows:

S1 = T1 S2 = T2
S1 · S2 = T1 · T2

. (31)

From previous linesS1 = T1 andS2 = T2, we construct the derivation ofS
(k) = T (k) by using the

lines S1
(i) = T1

(i) and S2
(i) = T2

(i), for all i = 0, . . . , k, as follows: by Lemma 5.6 (in fact, direct

construction suffices here, because here S1, S2 are disjoint circuits and the same with T1, T2), we

can construct the proofs of (S1 ·S2)
(k) =

∑
i=0,...,k S

(i)
1 ·S

(k−i)
2 and (T1 ·T2)

(k) =
∑

i=0,...,k T
(i)
1 ·

T
(k−i)
2 . Hence, (S1 · S2)

(k) = (T1 · T2)
(k) can be proved from the assumptions S

(i)
1 = T

(i)
1 , S

(i)
2 =

T
(i)
2 , i = 0, . . . k.
Note that, similar to Proposition 4.6, this is done independently and simultaneously for every

proof-line. That is, given the rule application (31), we construct the (partial) proof of (S1 · S2)
(k) =

(T1 · T2)
(k)

using only the linesS1
(i) = T1

(i) andS2
(i) = T2

(i), for all i = 0, . . . , k; and in addition,
since we also want to record the information about which line was derived from which previous

lines we add pointers to previous lines. The latter can be defined via aΣB
1 -definableV

0 number

function given as input the line-numbers of S1 = T1 and S2 = T2. Hence the whole construction
is inV0.

Case 3: If the line S = T is one of the rules R1 to R3, then this is similar to the case for rule R4.

The fact that in the Pc(Z)-proof we constructed every node u in every circuit appears with its
syntactic-degree upper bound is clear from the construction, since we used the homogenization

algorithm to produce the syntactic homogeneous circuits and Lemma 5.6. That every proof-line is

written as a sum of syntactic homogeneous circuits follows by inspection of the construction.

We will need the following claim (we sometimes use the notation “(inV0)” when the statement

that follows (suitably encoded) is proved in the theoryV0 (and similar forVNC
2)):

Claim 5.7 (in V
0). Given a syntactic homogeneous circuit F (d) there exists a Pc(Z)-proof of

F (d) =
∑d

i=0

(
F (d)

)(i)
in which every node u in every circuit appears with its syntactic-degree upper

bound.

Proof of claim: This is by the definition of the homogenization algorithm: if the input to the algo-

rithm is the (already) syntactic homogeneous circuit F (d) then (F (d))
(i)

= ∅, for all i 6= d, and

(F (d))
(i)

= F (d), for i = d. Claim

42

6 Preliminaries for Division Elimination

6.1 Overview

In this section we begin to provide the preliminaries for division elimination that we use in latter

sections. Standard division elimination by Strassen [Str73] requires finding a total assignment to

the variables such that no division gate in the circuit equals zero under this assignment. [HT15]

used Strassen’s method to eliminate division gates from proofs, by asserting the existence of an

assignment that does not nullify any division gate in the proof. Such a non-constructive result was

sufficient in [HT15], but not for our purpose: we do not know how to uniformly find such assign-

ments in (uniform) NC
2, and so we do not know how to eliminate division gates from general

algebraic circuits inVNC
2. Our solution is to use the concept of provably good P−1

c (Z)-proofs
that we introduced for this reason in Section 4.2: we show that as long as the theory proves every di-

vision gate in the proof is provably good then we can eliminate division gates from P−1
c (Z)-proofs.

In Section 6.2 we show how to use a power series (which can be written as a circuit without

division) to simulate in some sense division gates. For example, we can reason in V
0 as follows

about division elimination. Start with the following P−1
c (Z)-proof: x · x−1 = 1. Then, apply the

linear transformation x 7→ 1 − y which yields (1 − y) · (1 − y)−1. Substitute (1 − y)−1 by the

term Invk(1− y) defined as:

Invk(1− y) := 1 + y + y2 + · · ·+ yk,

which serves to “approximate” the inverse of 1−y up to degree k, in the sense that (1−y)·Invk(1−
y) = 1− yk+1. For a circuit F denote by F (i) the syntactic-homogeneous component of degree i
of F , which computes the sum of all (syntactic-)degree imonomials in F . Then,V0 can prove the

following statement:

“Let k ≥ 1 be a natural number. Given x · x−1 = 1, substitute 1 − y for x, and then

substitute the circuit Invk(1 − y) for (1 − y)−1. If (1− y)(0) = 1 has a Pc(Z)-proof,
then there exist Pc(Z)-proofs of syntactic-degree at most k for the following equations:

((1− y) · Invk(1− y))(0) = 1, (32)

((1− y) · Invk(1− y))(i) = 0, for 1 ≤ i ≤ k.” (33)

We show in Section 8 (cf. Lemma 8.3) that assuming roughly that the inverse gate x−1 is provably

good (for instance, in case ρ assigns 1 to x) then (1− y)(0) = 1 has a Pc(Z)-proof.

In Section 6.3 we show how to normalize circuits with division gates inV0. In particular, we

say that a circuit C has a division at the top whenever C is of the form F · (G)−1 or (G)−1 · F , for
two circuits F,G. If F,G do not have themselves division gates we say that C has a single division

gate at the top. We need our circuits to have, roughly, a single division gate at the top, because later

we replace division gates by their corresponding power series, but we do not know how to do it

with nested divisions.

6.2 Approximating Inverses by Power Series

Let F be a division-free circuit and let F (0) be the syntactic homogeneous division free circuit that

computes the constant term of F (namely, the polynomial F under the all-zero assignment to its

43

variables); we showed that such a syntactic homogeneous circuit can be constructed inV0 in Sec-

tion 5. We now define the circuit Invk(F) that will serve as an inverse of F modulo high degree

monomials, in the sense that

F · Invk(F) = 1 + [monomials of degree greater than k] . (34)

Note that because we work overZ the only way for (34) to hold (for k > 1) is when the polynomial

computed by F (0), that is F̂ (0), equals 1, since if the constant term in F is not 1, no product of F
can compute 1. (In general, the division elimination (as in Strassen [Str73]) needs to work over a

field and have an inverse element for F̂ (0).)

Assume that F̂ (0) = 1 has a Pc(Z)-proof and define the circuit Invk(F) as

Invk(F) :=
(
1 + (1− F) + (1− F)2 + · · ·+ (1− F)k

)
,

where powers like (1 − F)k are abbreviations of (1 − F) · · · (1 − F), k times (written as a loga-

rithmic in k depth circuit; since k will always be polynomial in our applications this will be enough

for our purposes). Note that Invk(1− z) for a variable z is the truncated Taylor expansion of 1
1−z

at the point z = 0.
The following lemma demonstrates that Invk(F) can provably serve as the inverse of F up to

degree k (note that neither F nor Invk(F) contain division), under some conditions:

Lemma 6.1. Assume that F is a Σ
B
1 -definable circuit without division in V

0 and let η be a Σ
B
1 -

definable Pc(Z)-proof of F
(0) = 1 and k ≥ 1 be a natural number. Then, the Pc(Z)-proofs of the

following equations areΣB
1 -definable inV

0, and every node in every circuit in the proofs appears with its

syntactic-degree upper bound (see Definition 5.3):

(F · Invk(F))
(0) = 1 (35)

(F · InvkF)
(i) = 0, for 1 ≤ i ≤ k . (36)

Proof. Denote a = F (0). We construct the following simple Pc(Z)-proof sequences. We have

a(1− (1− F)) = aF , and by assumption that a = 1 has a Pc(Z)-proof η, we get a Pc(Z)-proof
of F = (1− (1− F)).

By definition Invk(F) = (1 + (1 − F) + (1 − F)2 + · · · + (1 − F)k). By elementary

rearrangement, we prove in Pc(Z):

F · Invk(F) = (1− (1− F)) ·
(
1 + (1− F) + (1− F)2 + · · ·+ (1− F)k

)

= 1 + (1− F) + · · ·+ (1− F)k − (1− F) ·
(
1 + (1− F) + (1− F)2 + · · ·+ (1− F)k

)

= 1 + (1− F) + · · ·+ (1− F)k − (1− F)− (1− F)2 − · · · − (1− F)k+1

= 1− (1− F)k+1 . (37)

From (37) and Theorem 5.4 and Lemma 5.6 we construct a Pc(Z)-proof of

(F · Invk(F))
(0) = (1− (1− F)k+1)(0) = 1(0) − ((1− F)k+1)(0) = 1− ((1− F)k+1)(0),

wherein every node in every circuit in the proof appears with its syntactic-degree upper bound.

From Theorem 5.4 we have a Pc(Z)-proof of
(
(1− F)k+1

)(0)
=
(
(1− F)(0)

)k+1
= (1 −

F (0))k+1, and using η we have that the rightmost term is (1 − 1)k+1 = 0, hence we conclude
(35).

44

To conclude (36) we proceed as follows. From (37) andTheorem5.4we constructPc(Z)-proofs
(F ·Invk(F))

(i) = (1−(1−F)k+1)(i), for all 1 ≤ i ≤ k, with all nodes appear with their syntactic-

degree upper bounds. From Lemma 5.6 we prove (1− (1−F)k+1)(i) = 1(i)− ((1− F)k+1)
(i)

=

0− ((1− F)k+1)
(i)
.

To construct in the theory thePc(Z)-proof of ((1−F)
k+1)(i) = 0, for 1 ≤ i ≤ k, we use again

Lemma 5.6. We omit the details. (Note that sinceF (0) = 1 by assumption, we have (1−F)(0) = 0,
meaning that all monomials in (1 − F) are of positive total degree. Therefore (1 − F)k+1 can

only have monomials of degree greater than k, and so ((1− F)k+1)
(i)

= 0 is a true identity for all
i ≤ k.)

6.3 Division Normalization

We now show aΣB
1 -definable function inV

0 that receives an algebraic circuitF with division and

normalizes it by converting it into a circuit with a single division gate “at the top”, namely a circuit of

the formNum(F) ·Den(F)−1 (formally, the output gate is a product gate with one of its children

being a division gate). Accordingly we are going to normalize P−1
c (Z)-proofs, so that circuits in

the proofs have no division gates that occur in the scope of other division gates (roughly speaking,

normalizing every circuit in the proof so that the division gate appears only at the top). We need

to normalize circuits in such a way in order to be able to eliminate division gates: as we shall see

in Section 8, we replace a division gateG−1 with Invk(G); but for Invk(G) to be defined we need
G to be a division free circuit, and this can be guaranteed only if no division occurs in the scope of

other division gates.

To extract the denominator and numerator of circuits with divisions we do the following: for

every node v in a circuit F with division we introduce two nodes Den(v) and Num(v) that will
compute as polynomials (that is, they will be circuits with no division) the numerator and denomi-

nator of the rational function computed by v, respectively, as follows:

1. If v is an input node of F , letNum(v) := v andDen(v) := 1.

2. If v = u−1, letNum(v) := Den(u) andDen(v) := Num(u).

3. If v = u1 · u2, letNum(v) := Num(u1) · Num(u2) andDen(v) := Den(u1) ·Den(u2).

4. If v = u1 + u2, letNum(v) := Num(u1) ·Den(u2) +Num(u2) ·Den(u1) andDen(v) :=
Den(u1) ·Den(u2).

LetNum(F) andDen(F) be the circuits with the output nodeNum(w) andDen(w), respec-
tively, where w is the output node of F .

Definition 6.2 (Syntactic-degree for circuitwith division). The syntactic-degree of a circuitC with

division is

d(C) := d(Num(C)) + d(Den(C)).

Division normalization is formalized by aΣB
1 -definable string function inV

0 as follows: every

internal node u in the input circuit F is duplicated into two copies denotedNum(u) andDen(u).
We then construct (in parallel) the division normalized circuit by wiring the nodes Num(u) and
Den(u) for each u inF as in the original definition: (i) If v is an input node ofF , letNum(v) := v
andDen(v) := 1; (ii) ifu = v+wwe constructNum(u) := Num(v)·Den(w)+Num(w)·Den(v)

45

and Den(u) := Den(v) · Den(w); (iii) if v = u−1, let Num(v) := Den(u) and Den(v) :=
Num(u); and finally (iv) if v = u1 · u2, let Num(v) := Num(u1) · Num(u2) and Den(u) :=
Den(u1) ·Den(u2).

We have the following:

Proposition 6.3 (inV0). Let F,G be circuits with division. Assume that F = G has a P−1
c (F)-proof.

Then Num(F) · Den(F)−1 = Num(G) · Den(G)−1 has a syntactically correct9 P−1
c (F)-proof such

that no division gate in the proof occurs in the scope of another division gate.

Proof. The proof of Proposition 6.3 is similar to the proof of Theorem5.4 (and Proposition 4.6). We

demonstrate only the following case (others are similar): assume that in the original P−1
c (Z)-proof

of F = Gwe have the following rule application: from S = T andH = K derive S ·H = T ·K .

We are going to construct a P−1
c (Z)-proof of:

Num(S ·H) ·Den(S ·H)−1 = Num(T ·K) ·Den(T ·K)−1

using (pointers to) P−1
c (Z)-proofs of

Num(S) ·Den(S)−1 = Num(T) ·Den(T)−1 and

Num(H) ·Den(H)−1 = Num(K) ·Den(K)−1.

BydefinitionNum(S·H) = Num(S)·Num(H),Den(S·H) = Den(S)·Den(H),Num(T ·K) =
Num(T) ·Num(K) andDen(T ·K) = Den(T) ·Den(K). Hence, the following is aΣB

1 -definable

P−1
c (Z)-proof inV0 (we do not show some trivial rule applications such as associativity, etc.):

Num(S ·H) ·Den(S ·H)−1 = Num(S) · Num(H) · (Den(S) ·Den(H))−1

= Num(S) · Num(H) ·Den(S)−1 ·Den(H)−1

= Num(S) ·Den(S)−1 · Num(H) ·Den(H)−1

= Num(T) ·Den(T)−1 · Num(K) ·Den(K)−1

= Num(T) · Num(K) ·Den(T)−1 ·Den(K)−1

= Num(T ·K) ·Den(T ·K)−1 .

Note that in the aboveP−1
c (Z)-proof no division gate appears in the scope of another division gate

(becauseNum(·),Den(·) are circuits with no division).

We now show that provably good nodes are preserved under division normalization, in the

sense that for every node in a provably good circuit, V0 proves there exists a Pc(Z)-proof of
Den(v ↾ ρ) = 1. Recall that a division gate u−1 is provably good (Definition 4.2) whenever there

is a division axiom free P−1
c (Z)-proof η of u ↾ ρ = 1where η does not contain new division gates

not already in u ↾ ρ. Hence, if u has no division gates then η is a Pc(Z)-proof (namely, it does

not include division gates by itself). This then implies in particular that if we normalize divisions

in a circuit with division F , then in Num(F) · Den(F)−1, there is only a single division gate and

V
0 proves there exists a Pc(Z)-proof ofDen(F ↾ ρ) = 1. This will be used in Section 8 when we

completely eliminate division from P−1
c (Z)-proofs.

Lemma 6.4 (inV0). Let F be a circuit with division and assume that all division gates in F are provably

good. Then, for every (not necessarily division) node v inF there exists aPc(Z)-proof ofDen(v ↾ ρ) = 1.

9Preservation of provably good nodes will be shown in what follows.

46

Proof. Simultaneously, for every node v in F we construct a Pc(Z)-proof ofDen(v ↾ ρ) = 1, from
which we conclude thatDen(F ↾ ρ) = 1 is provable in Pc(Z).

This is done by cases as follows.

Case 1: v is an input node. HenceDen(v) = 1 by definition ofDen.
Case 2: v = w1 ◦ w2, for ◦ ∈ {+, ·}, then Den(v ↾ ρ) := Den(w1 ↾ ρ) · Den(w2 ↾ ρ).
Thus we construct the proof of Den(w1 ↾ ρ) · Den(w2 ↾ ρ) = 1 by pointing to the proofs of

Den(w1 ↾ ρ) = 1 andDen(w2 ↾ ρ) = 1 and using basic rules of Pc(Z) such as 1 · 1 = 1.
Case 3: v = u−1. This is the relatively more difficult case. We need to use the following claim:

Claim (inV0). If there exists a P−1
c (Z)-proof of u ↾ ρ = 1 in which we do not use the axiom Div and

in which we do not add new10 division gates apart from the division gates already in u ↾ ρ then
there exists a Pc(Z)-proof ofNum(u ↾ ρ) = Den(u ↾ ρ).

Proof of claim: By Proposition 6.3 and by assumption that there is a P−1
c (Z)-proof of u ↾ ρ = 1

in which we do not use the axiom Div, we can show that there is a P−1
c (Z)-proof of Num(u ↾

ρ) · Den(u ↾ ρ)−1 = 1 · 1−1 that does not use the Div axioms, excluding trivial applications of

the Div axioms (these applications stem from the construction of the P−1
c (Z)-proof in the proof

of Proposition 6.3). By multiplying each proof-line by Den(u ↾ ρ) we get a a P−1
c (Z)-proof of

Num(u ↾ ρ) · Den(u ↾ ρ)−1 · Den(u ↾ ρ) = Num(u ↾ ρ) = Den(u ↾ ρ) · 1 · 1−1 that does not

use the Div axioms, excluding trivial applications of the Div axioms and the last application of Div

Den(u ↾ ρ)−1 · Den(u ↾ ρ) = 1. From this it is possible to show that there is a Pc(Z)-proof of
Num(u ↾ ρ) = Den(u ↾ ρ) (we omit the details). Claim

To finish case 3 we need to construct a Pc(Z)-proof of Den(v ↾ ρ) = 1. By definition

Den(v) = Num(u), and so by substitution (Proposition 3.2) we have a Pc(Z)-proof of Den(v ↾

ρ) = Num(u ↾ ρ). By assumption we have a division axiom freeP−1
c (Z)-proof of u ↾ ρ = 1, from

which by the claim above we have a Pc(Z)-proof ofNum(u ↾ ρ) = Den(u ↾ ρ). Since we assume

that we already have a Pc(Z)-proof ofDen(u ↾ ρ) = 1 (using pointers to this proof) we finally get
a Pc(Z)-proof ofDen(v ↾ ρ) = 1.

UsingLemma6.4we cannow strengthen the divisionnormalization ofP−1
c (Z)-proofs as stated

in Proposition 6.3 by showing that normalizing proofs preserves provably good nodes:

Corollary 6.5. Let F,G be circuits with division in theX, Y variables. Assume that F = G has aΣB
1 -

definable inV0 P−1
c (F)-proof. Suppose thatV0 proves that for every division gate v = t−1 in this proof

there exists aPc(Z)-proof ofDen(v ↾ ρ) = 1.11 Then,Num(F)·Den(F)−1 = Num(G)·Den(G)−1

has a P−1
c (F)-proof such that no division gate in the proof occurs in the scope of another division gate.

Furthermore, this P−1
c (Z)-proof isΣB

1 -definable inV
0, andV0 proves that for every division gate v =

u−1 in this proof there exists a Pc(Z)-proof of u ↾ ρ = 1.

Proof. The statement is identical to Proposition 6.3, except that we require additionally that in the

resulting normalized proof for every division gate v = u−1 there exists aPc(Z)-proof ofu ↾ ρ = 1.
Inspecting the proof of Proposition 6.3, we observe that every division gate in the resulting division

normalized P−1
c (Z)-proof is of the form Den(H)−1 for some H that appears in the original P−1

c (Z)-
proof of F = G. Therefore, by assumptionV0 proves thatDen(H ↾ ρ) = 1 has a Pc(Z)-proof and
we are finished.

10We do not care for repeated occurrences of the same division gates in the proof.
11Note thatDen(v)may be different from t because t can have division gates by itself.

47

7 From a Rational Function to the Determinant as a Polyno-

mial

7.1 Overview

In order to be able to eliminate both division gates and high syntactic-degrees from the P−1
c (Z)-

proofs in Section 4, we will need to construct in the theory a P−1
c (Z)-proof of the determinant

identities in which the determinant circuits appearing in the final identities that are proved are,

firstly, written as polynomials and not as rational functions, that is, as circuits without division; and

secondly, have small syntactic-degrees. This is similar to division gates elimination from circuits

following Strassen’s work [Str73]: to eliminate division from circuits the circuit should compute a

polynomial and not a rational function. (Nevertheless, note that some intermediate P−1
c (Z) proof-

lines will contain the determinant written with division gates and having high syntactic-degrees;

but as long as this only happens in intermediate proof-lines these can be eliminated from the proof

in the sequel.)

Let F = F (x, z) be a circuit with division of syntactic-degree d. Similar to [HT15], we define

coeffzk(F) as a circuit in the variables x, computing the (polynomial) coefficient of zk in F , where
F is written as a power series at z = 0. In other words,

∑d

i=0 coeffzi(F) · z
i are the first d + 1

terms in the Taylor expansion of F at z = 0.
Let

DetTaylor(X) := coeffzn(Detcirc−1(In + zX))

be the circuit computing the nth term of the Taylor expansion of Detcirc−1(In + zX) at z = 0.
Then, DetTaylor(X) computes the determinant function: since every variable xij is multiplied by

z, the coefficient of zn is precisely the determinant.

By construction,DetTaylor(X)will compute the determinant as a polynomial, except that it will

contain some division gates in a sub-circuit that computes a constant (here we differ from [HT15];

due to the fact that we cannot simply substitute division gates u−1 that compute 1 by the node 1,

because the theory needs to prove the correctness of this substitution in some way).

In Section 7.4 we show that there is a P−1
c (Z)-proof of

DetTaylor(X) = Detcirc−1(X),

for ann×n symbolicmatrixX , which isΣB
1 -definable inV

0 and thatV0 proves that it is provably

good (Definitions 3.1 and 4.2). Combined with the P−1
c (Z)-proof from Section 4, we will get that

V
0 proves the existence of a P−1

c (Z)-proof of the determinant identities in which the determinant

circuit in the final identities is replaced byDetTaylor.

In Section 7.5we reduce the syntactic-degree of the circuitDetTaylor(X)whichhas exponential
syntactic-degree (here we once more differ from [HT15], since we do not know how to formulate

and prove the correctness of an NC
2-algorithm that eliminates 0 nodes in general algebraic cir-

cuits, or nodes of high syntactic-degree that compute the zero polynomial). We show in V
0 that

there exists a P−1
c (Z)-proof of

DetTaylor(X) = Det
#
Taylor(X),

where Det
#
Taylor(X) has no division gates, computes the determinant as a polynomial and has

syntactic-degree n.
We start with Section 7.2 in which we show some P−1

c (Z)-proofs that express how Detcirc−1

behaves under elementary row and column operations.

48

7.2 Elementary Row and Column Operations

We formalize some elementary Gaussian operations that will be useful in the sequel.

Lemma 7.1. Let A be an n × n matrix in the xij , yij variables (for i, j ∈ [n]) that is ΣB
1 -definable

in V
0 and assume that V0 proves that A is provably invertible. Then the following identities all have

Σ
B
1 -definable P

−1
c (Z)-proofs inV0 andV0 proves the proofs are provably good under the assignment of

identity matrices to the variables (i.e., xij = yij = 0 and xii = yii = 1 for i 6= j ∈ [n]):

1. Detcirc−1(A) = −Detcirc−1(A′), where A′ is a matrix obtained from A by interchanging two

rows or columns.

2. Detcirc−1(A′′) = uDetcirc−1(A), whereA′′ is obtained by multiplying a row inA by u, such that
u−1 is provably good (and similarly for a column).

3. Detcirc−1(A) = Detcirc−1(A′′′), where A′′′ is obtained by adding a row to a different row in A
(and similarly for columns).

4. Detcirc−1(A) = annDetcirc−1(A1 − a−1
nnv

t
1v2), where A1, v1 and v2 comes from the decomposi-

tion (12) (with A instead ofX).

Proof. Part 2 follows from Proposition 4.5: A′′ = TA (or A′′ = AT for the case of multiplying a

column by u) for T a diagonal matrix with either 1 or u on the diagonal. Hence, V0 proves that

T [k], A[k] are provably invertible by Proposition 4.4. Moreover, since for every k ∈ [n], T [k] is a
diagonal matrix with either 1 or u on the diagonal andV0 proves that A[k] is provably invertible,
V

0 clearly also proves that T [k]A[k] is provably invertible. Thus, by Proposition 4.5 (part 2) we

have thatDetcirc−1(A′′) = uDetcirc−1(A) has aΣB
1 -definableP

−1
c (Z)-proof inV0 thatV0 proves

is provably good.

Part 3 is similar to Part 2: in this caseA′′′ = T ′A, where T ′ is a suitable triangular matrix that

V
0 can prove is provably invertible.

In part 1 we cannot directly apply Proposition 4.5: we have A′ = TA where T is a transpo-

sition matrix, but T is not necessarily provably invertible (because not all division gates in T−1

are provably good). However, we can write T = B1B2, where both B1, B2 are provably invert-

ible 0-1 triangular matrices and Detcirc−1(B1)Detcirc−1(B2) = −1. For example,

(
0 1
1 0

)
=

(
1 1
1 0

)(
1 0

−1 1

)
.

More formally, there exists aΣB
1 -definable string function inV

0 that given the natural num-

ber n and two natural numbers i, j, outputs two 0-1 matrices B1, B2 such that B1B2 is the

n × n transposition matrix of rows i and j (similar with columns) and such that V0 proves that

B1[k], B2[k], B2[k]A[k], B1[k](B2A)[k] are provably invertible for all k ∈ [n], and furthermore

V
0 proves that Detcirc−1(B1)Detcirc−1(B2) = −1. By Proposition 4.5 we get that the following

equations haveΣB
1 -definable P

−1
c (Z)-proofs inV0 thatV0 proves are provably good:

Detcirc−1(B1B2A) = Detcirc−1(B1)Detcirc−1(B2A) = Detcirc−1(B1)Detcirc−1(B2)Detcirc−1(A) .

49

Part 4 is proved as follows:

Detcirc−1(A) = Detcirc−1(A1) · δ(A)

= Detcirc−1(A1) · (ann − v2A
−1
1 vt1)

= Detcirc−1(A1) ·
(
ann ·

(
1− a−1

nn · v2A
−1
1 vt1

))

= ann ·
(
Detcirc−1(A1) ·

(
1− a−1

nn · v2A
−1
1 vt1

))

= ann ·
(
Detcirc−1(A1 − a−1

nnv
t
1v2)

)

where the last equality follows from Lemma 4.10, the first equality from the definition ofDetcirc−1

and the rest are elementary rearrangements.

7.3 Extracting Polynomial Coefficients: Taylor Expansion

In order to compute the determinant as a polynomial, and not as a rational function (with division,

that is), we need to write the determinant as the coefficient of zn in the Taylor expansion (at z = 0)
of a circuit with division that computes the determinant of In+zX , forX a symbolicn×nmatrix.

The idea behind this Taylor expansion is the following: if a polynomial F = F (x, z) has no
occurrence of the variable z in a division sub-circuit u−1 thenwe simply use the same homogeniza-

tion approach as in Section 5 to extract the polynomial coefficients of each power zk computed by

F . Otherwise, the variable z occurs in a division sub-circuit u−1. In this case we use the method

in Section 6.3 to define the numerator and denominator of F simulating the denominator of F as

a polynomial “up to the k-th degree”, hence eliminating the division gates in F (for technical rea-

sons there will still be some division gates left that we shall deal with later). Then, the polynomial

coefficient of zk is extracted as before (again, as in Section 5). Formally the coefficients of a Taylor

expansion are defined as follows:

Definition 7.2 (Taylor expansion). Let F = F (x, z) be a circuit with division. Define coeffzk(F) as
a circuit in the variables x, computing the (rational function in x) coefficient of zk inF , when F is written

as a Taylor power series at z = 0, in the following way:

Case 1: Assume that no division gate inF contains the variable z. Then we define coeffzk(F), for k ≥ 0,
by induction on the structure of F as follows:

1. coeffz(z) := 1 and coeffzk(z) := 0, if k 6= 1.

2. If F does not contain z, then coeffz0(F) := F and coeffzk(F) := 0, for k > 0.

3. coeffzk(F +G) := coeffzk(F) + coeffzk(G).

4. coeffzk(F ·G) :=
∑k

i=0 coeffzi(F) · coeffzk−i(G).

Case 2: Assume that z occurs in the scope of some division gate in F . We let F0 be the denominator of the

rational function computed by F when z = 0:

F0 :=
(
Den(F)

)
(0/z).

Note that F0 is not necessarily a constant, as it may contain variables different from z. If F̂0 = 0 then

coeff is undefined. Assume that F̂0 6= 0 and let

G = (1− F−1
0 ·Den(F)) .

50

We define

coeffzk(F) := F−1
0 · coeffzk

(
Num(F) ·

(
1 +G+G2 + · · ·+Gk

))
. (38)

Note that z does not occur in any division gate inside Num(F) ·
(
1 +G+G2 + · · ·+Gk

)
,

and so coeffzk(F) is well-defined. Also, note that in Case 1 above coeffzk(F)may contain division
gates whenever a division gate that does not contain z occurs in F . Further, in Case 2 the only

division gate that can occur in coeffzk(F) is the division gate that occurs in the root of F−1
0 . In

our application, when using coeffzk(F) we will need to make sure thatV0 can prove that F−1
0 is

provably good.

The construction of coeffzk(·) inV
0 is similar to the constructions in Section 5, and is shown

formally below in Section 7.3.2. The following are the main properties of coeffzk(·) (similar to

[HT15]) that we can use already inV0:

Lemma 7.3. 1. If F0, . . . , Fk are circuitswith division not containing the variable z,Σ
B
1 -definable

in V
0, and such that V0 proves that all division gates in the Fi’s are provably good, then

coeffzj

(∑k

i=0 Fiz
i
)
= Fj has aΣ

B
1 -definableP

−1
c (Z)-proof inV0, thatV0 proves is provably

good, for every j ≤ k.

2. Assume that F,G are circuits with division, ΣB
1 -definable in V

0. Suppose that F = G has a

Σ
B
1 -definable P

−1
c (Z)-proof andV0 proves that the proof is provably good. Then, coeffzk(F) =

coeffzk(G) has aΣ
B
1 -definable P

−1
c (Z)-proof inV0 andV0 proves it is provably good, for every

natural number k.

3. Let F be aΣB
1 -definable inV

0 circuit without division, together with a witness for the syntactic-

degree (Definition 5.2) of all nodes in F , where d(F) = d. Then, F =
∑d

i=0 coeffzi(F) · z
i has

aΣB
1 -definable Pc(Z)-proof inV

0. 12

Proof. Since the construction of coeffzk(·) is very similar to the homogenization algorithm in Sec-

tion 5, the proofs of parts 1 and 2 are almost identical to the proof of Theorem5.4 for homogenizing

Pc(Z)-proofs, only that herewe need in addition tomake sure that theP−1
c (Z)-proofs are provably

good. The fact that theP−1
c (Z)-proofs are provably good can be demonstrated as in the Section 4.3,

only that for part 2 we use Proposition 6.3, and the fact that if a circuit with division F is provably

good thenDen(F)−1 is provably good, which follows from Lemmas 6.4. We omit the details. The

proof of part 3 is given in section 7.3.1 below (Lemma 7.5).

7.3.1 Witnessing Syntactic-Degrees

Lemma 7.4 (inV0). There exists a witness for the syntactic-degrees of all nodes in Det#Taylor(X).

Proof. We provide details on how to witness in the theoryV0 the syntactic-degrees of the nodes in

Det
#
Taylor(X). Recall the definition ofDet#Taylor(X) in (44) (see also (40)), which is a circuit without

division of syntactic-degreen that computes as a polynomial the determinant of the symbolicn×n
matrixX .

We explain how toΣB
1 -define a number function inV0 that computes the syntactic-degree of a

node v, given the number n and the node v as inputs, where v is a node inDet#Taylor(X). Consider

12The only place where we need this part is the proofs of the Cayley-Hamilton theorem in Section 12.

51

a node v in Num(Detcirc−1(In + zX)) or in Den(Detcirc−1(In + zX)). If we can compute in

V
0 the syntactic-degree of such a node v then by inspection of the circuit Det

#
Taylor(X) and and

the definition of coeffk we can conclude that there is aΣ
B
1 -definable number function inV0 that

computes the syntactic-degree of any given node v in Det#Taylor(X) (given n as an input).

Consider a node v in Num(Detcirc−1(In + zX)) for example. Recall the encoding scheme

for circuits Detcirc−1(In + zX) described in 3.1.3, and let d denote the “inductive level” in the

definition of Detcirc−1 in (15). To compute the syntactic-degrees of nodes that are at most n in

Num(Detcirc−1(In+zX))wewish to compute the pair of syntactic-degrees of the numerator and

denominator (d(Num(v)), d(Den(v))) that we call the syntactic-degree pair of v, for every node v
in Detcirc−1(In + zX).

Observe that every inductive level d in the circuitDetcirc−1(X) has a “base” syntactic-degree (as
a function of d), on top of whichwe add a number that depends on the gate we consider to compute

its syntactic-degree. For example, consider the circuitF1 := X−1
1 (In−1 + δ(X)−1vt1v2X

−1
1) from

(14). If we know the syntactic-degree of the output nodes in level n− 1, namely the output nodes

of X−1
1 , then we can easily compute the syntactic-degrees of other nodes in F1. Note however

that this cannot be computed inductively in such a way withinV0, rather we need to have explicit

(ΣB
1 -definable inV

0) number functions. Also, notice the syntactic-degree of some nodes in F1 is

exponential because the repeated multiplication ofX−1
1 by itself, hence we need to consider only

those nodes whose syntactic-degree is polynomial in n.
For example, some gates in F1, for every level d, are leaves—for instance, the entries of In−1

correspond to scalar leaves that have a syntactic-degree pair (0, 0), and some others are variable

leaves—for instance, vt1v2 corresponds to an inner productwith leaves variables from v1, v2, having
a syntactic-degree pair (1, 0), for every level d.

We demonstrate this idea on δ(X)−1 for n = 2, which is the (n, n) entry ofX−1 of dimension

n×n. Similar reasoning works for the rest of the entries ofX−1 as well asDetcirc−1(In+zX). We

have that δ(X)−1 = (x22−x21 ·x
−1
11 ·x12)

−1. Thus,Num(δ(X)−1) = Den(x22) ·Den(x21 ·x
−1
11 ·

x12) = Den(x22) ·Den(x21) ·Den(x
−1
11) ·Den(x12) = 1 · 1 · x11 · 1. Hence, d(Num(δ(X)−1)) =

1.

Using witnesses for syntactic-degrees we can now prove Lemma 7.3 part 3 (which will be used

in the proof of Theorem 12.1).

Lemma 7.5 (in V
0). Given a division free circuit F of syntactic-degree d and a witness for the

syntactic-degrees of all nodes in F , there exists a Pc(Z)-proof of F =
∑d

k=0 F
(k). Moreover, F =∑d

i=0 coeffzi(F) · z
i has a Pc(Z)-proof.

Proof. We shall prove the first statement (the second is similar). Note that a big sum is an abbre-

viation of a sum written as a logarithmic depth tree of plus gates with the summands at the leaves

(we also need to use obvious steps such as applying the associativity and commutativity of addition

axioms in Pc(Z)-proofs of big sums).

For every node v inF we construct simultaneously a (partial)Pc(Z)-proof sequence terminating

with

Fv =

d(v)∑

k=0

F (k)
v (39)

as follows:

52

Case 1: v is a variable xi. Then we construct a proof of Fv := xi =
∑d(v)

k=0 Fv
(k), which is immedi-

ate by construction. Similarly for a constant node.

Case 2: v = u⊕ w and let d = d(v). Then we use Lemma 5.6 to construct the following (partial)

Pc(Z) proof-sequence. In the witnesses for this proof-sequencewe add pointers to proof-lines that
are constructed in parallel (for nodes that appear closer to the leaf in the tree). We can compute the

line numbers to be pointed to just by looking at the current node (hence we can carry out the

construction in V
0). The pointers are constructed as number-functions by using the nodes (e.g.,

we can label line numbers with the nodes inF they correspond to, adding a secondary index to the

index of the line).

∑d

i=0
F (i)
v =

∑d

i=0
(Fu ⊕ Fw)

(i)
by assumption

=
∑d

i=0
(Fu

(i) + Fw
(i)) by Lemma 5.6

=
∑d

i=0
Fu

(i) +
∑d

i=0
Fw

(i) rearrangement

= Fu + Fw by “previous” lines

(add explicit pointers to the appropriate proof-lines)

= Fu⊕Fw = Fv by axiom C1.

Case 3: v = u⊗ w and let d1 = d(u), d2 = d(w) and d = d(v) = d1 + d2. This is similar to the

Case 2 only that it is crucial here to use the specified syntactic-degrees of nodes along paths from

leaves to the root.

∑d

i=0
F (i)
v =

∑d

i=0
(Fu ⊗ Fw)

(i)
by assumption

=
∑d

i=0

∑

l+j=i

0≤l≤d1,0≤j≤d2

F
(l)
1 · F

(j)
2 . by Lemma 5.6 part (3)

=
∑d1

i=0
Fu

(i) ·
∑d2

i=0
Fw

(i) rearrangement

= Fu · Fw by “previous” lines

(add explicit pointers to the appropriate proof-lines)

= Fu⊗Fw = Fv by axiom C1.

7.3.2 Algorithm for coeff

The following is similar to the homogenization algorithm from Section 5. It assumes that the input

circuit is an algebraic circuit possibly with division, in which z does not occur in the scope of any

division gate. In case z does occur in the scope of a division gate in the circuit we apply Case 2 (using
Equation (38)) of Definition 7.2 and then use the algorithm that follows.

Algorithm for Constructing coeffzk(·) in UniformFAC
0

Input: an algebraic circuit C with z not occurring in the scope of any division gate and a natural

number k (given in unary).
Output: an algebraic circuit computing coeffzk(C).

53

Algorithm: Every node v inC is duplicated k+1 times into the nodes [v, 0], . . . , [v, k], such that

[v, i] is (the root of) a circuit computing the (polynomial) coefficient of zi in Ĉv . The algorithm

is doable in FAC
0 because every new node [v, i] depends only on the copies of the two nodes

u, w that goes into v, and these nodes are already known from the input circuit, namely, they are

[u, i], [w, i], for i = 0, . . . , k + 1, where v = u + w or v = u · w in C . Hence, the wiring of the
new circuit is done in parallel for each of the new nodes as follows:

Case 0: v is a leaf in C . If v 6= z then define [v, 0] = v, and [v, i] = 0 for all i = 1, . . . , k.
Otherwise, v = z and we define [v, 1] = 1, and [v, i] = 0 for all 1 6= i ∈ {0, . . . , k}.
Case 1: v = u+ w in C . Define [v, i] := [u, i] + [w, i] for every i = 0, . . . , k.
Case 2: v = u× w in C . Define [v, i] :=

∑
j+r=i

j,r=0,...,k
[u, j]× [w, r].

7.4 FromDeterminant as Rational Function to a Polynomial in P−1
c (Z)

Asmentioned in the overview for this section, given a symbolicn×nmatrixX the polynomial-size

(in n) circuit computing the determinant as a polynomial is defined as follows:

DetTaylor(X) := coeffzn(Detcirc−1(In + zX)). (40)

By the definition of coeffzn , the circuit coeffzn(Detcirc−1(I + zX)) contains occurrences of
the following inverse gate: (Den(Detcirc−1(In + zX)))−1 at the point z = 0 (this is F−1

0 in the

notation of (38)). Den(Detcirc−1(In + zX))(0/z) has an exponential syntactic-degree which will
be dealt with below in Section 7.5.

We can now use Lemma 7.3 to construct the desired P−1
c (Z)-proof:

Lemma 7.6. Let U be a ΣB
1 -definable triangular matrix in V

0 in the variables xij for i, j ∈ [n] and
with u11, . . . , unn on the diagonal. Assume thatA is eitherX,XY , orU , whereX, Y aren×n symbolic
matrices.

1. The P−1
c (Z)-proof of

DetTaylor(U) = u11 · · · unn

is ΣB
1 -definable in V

0, and furtherV0 proves that if u−1
ii are provably good for all i ∈ [n] then

the proof is provably good.

2. The P−1
c (Z)-proof of

DetTaylor(A) = Detcirc−1(A)

isΣB
1 -definable inV

0. Further, forA = X,XY the theoryV0 proves that the proofs are provably

good, and for A = U , V0 proves that if u−1
ii are provably good for all i ∈ [n] then the proof is

provably good.

To prove Lemma 7.6 we use Lemma 7.3 parts 1 and 2 (since we do not use part 3 of Lemma 7.3

we do not need to construct awitness for the syntactic-degrees of any circuit in this case). The proof

follows [HT15, Proposition 7.9] except that we need tomake sure thatV0 proves theP−1
c (Z)-proof

to be provably good. We start with the following technical lemma:

Lemma 7.7. Let A be an n× n matrix in the variables xij, yij , zij for i, j ∈ [n] that isΣB
1 -definable

in V
0and that V0 proves is provably invertible. Then, there exist circuits with divisions P0, . . . , Pn−1

not containing the variable z, such that

Detcirc−1(zIn + A) = zn + Pn−1z
n−1 + · · ·+ P0

54

has aΣB
1 -definable P

−1
c (F)-proof inV0, and for z = 0 the theoryV0 proves that the proof is provably

good.

Proof. Let F be a circuit in which z does not occur in the scope of any inverse gate. Then, we

define the z-degree of F as the syntactic-degree ofF considered as a circuit computing a univariate

polynomial in z (so that all other variables are treated as constants).
We construct aΣB

1 -definableP
−1
c (Z)-proof inV0 ofDetcirc−1(A1) = · · · = Detcirc−1(An) =

zn + f , where A1, . . . , An are matrices to be constructed below with A1 = zIn + A and f is a

circuit with z-degree smaller than n in which z is not in the scope of any division gate, and such

thatV0 proves the proof to be provably good when z = 0. Writing f as
∑n−1

i=0 Piz
i will conclude

the lemma. For this purpose, by Proposition 4.6 it suffices to demonstrate the following for every

k ∈ [n]:

1. Assume thatAk is aΣ
B
1 -definable inV

0 (n− k + 1)× (n− k + 1)matrix of the form

(
zk + f w
vt zIn−k +Q

)

where all the entries are circuits with division in which z does not occur in the scope of any
division gate, v and w are 1 × (n − k) vectors, and further: f as well as every entry of w
have z-degree less than k and both v andQ do not contain the variable z. (Hence, specifically
when k = nwe get thatAk = zk+f , with f a circuit with z-degree smaller than n in which
z is not in the scope of any division gate, as required.)

2. Assume also that V0 proves that all division gates in Ak are provably good and that Ak is

provably invertible, for z = 0.

3. There is aΣB
1 -definable inV

0 (n− k + 1)× (n− k + 1)matrixAk+1 of the form

(
zk+1 + f w
vt zIn−k−1 +Q

)

with the same notation as in (1) above (when k + 1 is replaced for k; note that the values
of w, v,Q, f may be different from the values in (1)). Further, there is a ΣB

0 -formula that

bit-defines the string function that given a natural number k outputs a P−1
c (Z)-proof of

Detcirc−1(Ak) = Detcirc−1(Ak+1), andV
0 proves the proof is provably good when z = 0.

In particular by 4.4 part 4,V0 proves thatAk+1 is provably invertible when z = 0.

4. V0 proves that all division gates inAk+1 are provably good when z = 0.

We construct the following P−1
c (Z)-proof (as required by part (3)) and encode it by a Σ

B
0 -

formula similar to the encoding shown in Section 3.1.3. Assume thatAk is written as

Ak =




zk + f1 w f2
ut1 zIm +Q ut2
a1 v z + a2




where m = (n − k − 1) and we allow the possibility that m = 0. Suppose that f1, w and f2
have z-degree smaller than k, and z does not occur in u1, u2, Q, a1, a2 and v. By Lemma 7.1 part

55

1, since Ak is a matrix in the variables xij , yij , zij (for i, j ∈ [n− k + 1]) that isΣB
1 -definable in

V
0 and thatV0 proves thatAk is provably invertible when z = 0, we can switch the first and last

column to obtain a P−1
c (Z)-proof of

Detcirc−1(Ak) = −Detcirc−1




f2 w zk + f1
ut2 zIm +Q ut1
z + a2 v a1


 (41)

that is ΣB
1 -definable inV

0, and thatV0 proves is provably good when z = 0. Furthermore, V0

clearly proves that the matrix on the right hand side of (41) is provably invertible because it proves

that Detcirc−1(·) of this matrix is provably good for z = 0 (and also using 4.4 part 4).
By Lemma 7.1 part 4, we have the following Σ

B
1 -definable in V

0 P−1
c (Z)-proof which V

0

proves is provably good when z = 0:

Detcirc−1(Ak) = −a1Detcirc−1

(
f2 − a−1

1 (zk + f1)(z + a2) w − a−1
1 (zk + f1)v

ut2 − a−1
1 ut1(z + a2) zIm +Q− a−1

1 ut1v

)
=

Detcirc−1

(
(zk + f1)(z + a2)− a1f2 (zk + f1)v − a1w
ut2 − a−1

1 ut1(z + a2) zIm +Q− a−1
1 ut1v

)
. (42)

We can write (zk + f1)(z + a2) = zk+1 + (f1z + a2z
k + f1a2), where the z-degree of (f1z +

a2z
k + f1a2), as well as of every entry of (z

k + f1)v− a1w, is at most k. Multiplying the matrix in

(42) by

(
1 0
−a−1

1 ut1 Im

)
from the right we obtainAk+1 of the form required above in (3). Using

Lemma 4.9 we get that (3) is equal toDetcirc−1(Ak+1)with aP
−1
c (Z)-proof that isΣB

1 -definable in

V
0 and whichV0 proves is provably good for z = 0, and furtherV0 proves thatAk+1 is provably

invertible (as before, by using using 4.4 part 4 and the fact thatV0 proves that Detcirc−1(·) of this
matrix is provably good for z = 0).

Proof of Lemma 7.6. Part 1: By Proposition 4.5 we have a P−1
c (Z)-proof of Detcirc−1(In + zU) =

(1+zu11) · · · (1+zunn), thatV
0 proves is provably good for z = 0. By Lemma 7.3 part 2 we thus

conclude the proof.

Part 2 follows from Lemma 7.7 as follows. SinceX−1 (forX a symbolic matrix in xij variables)
is ΣB

1 -definable in V
0 which V

0 proves is provably invertible, there is a ΣB
1 -definable P

−1
c (Z)-

proof inV0 of the following equation:

Detcirc−1(zIn +X−1) = zn +Qn−1z
n−1 + · · ·+Q0, (43)

where theQi’s are circuits with division that do not contain the variable z and the proof is provably
good for z = 0.

By Proposition 4.5 part 2 the following equation has a ΣB
1 -definable proof in V

0, that V0

proves to be provably good for z = 0:

Detcirc−1(In + zX) = Detcirc−1(zIn +X−1) · Detcirc−1(X) .

From equation (43) we get aΣB
1 -definable proof inV

0 of

Detcirc−1(In + zX) = znDetcirc−1(X) + zn−1Q′
n−1 + · · ·+Q′

0,

56

where Q′
n−1, . . . , Q

′
0 do not contain z. V0 proves the proof is provably good for z = 0 and so

Lemma 7.3 gives aΣB
1 -definable P

−1
c (Z)-proof inV0 of the following equation thatV0 proves is

provably good for z = 0

coeffzn(Detcirc−1(In + zX)) = coeffzn(z
nDetcirc−1(X) + zn−1Q′

n−1 + · · ·+Q′
0).

Since DetTaylor(X) = coeffzn(Detcirc−1(In + zX)) and by the definition of coeffzn(·),
coeffzn(z

nDetcirc−1(X) + zn−1Q′
n−1 + · · ·+Q′

0) = Detcirc−1(X), we are done.
This concludes the proof of Lemma 7.6.

7.5 Reducing the Syntactic-Degree of the Determinant Polynomial

The (division-free) circuit DetTaylor(X) := coeffzn(Detcirc−1(In + zX)) has an exponential

syntactic-degree as we explain below. However, in order to eliminate division gates in P−1
c (Z)-

proofs (see Corollary 8.2) we need to write the determinant as a division-free circuit with a poly-

nomially bounded syntactic-degree (specifically syntactic-degree n) in the equations we prove (in-
terim equations in the P−1

c (Z)-proof can use higher syntactic-degrees).
Potentially, this problem can be remedied by eliminating 0 nodes from circuits, and this is how

it was dealt with in [HT15]. However, since we do not know how to formulate and prove the cor-

rectness of an NC
2-algorithm that eliminates 0 nodes in general algebraic circuits, or nodes of

high syntactic-degree that compute the zero polynomial, our solution is different: we are going to

explicitly construct inV
0 a P−1

c (Z)-proof that witnesses the fact that DetTaylor(X) is equivalent
to a circuit with a polynomially-bounded syntactic-degree.

Let F (X) = F (x1, , . . . , xn) be a circuit with division in the displayed input vari-

ables. Assume that every input variable is now multiplied by a new variable z, to get

F (zx1, . . . , zxn), which we denote by F ′. By Definition 7.2, coeffzk(F
′) = F ′−1

0 ·
coeffzk

(
Num(F ′) ·

(
1 +G+G2 + · · ·+Gk

))
for G := (1 − F ′−1

0 · Den(F ′)), and F ′
0 :=

Den(F ′)(0/z). The variable z does not occur in the scope of any division gate in Num(F ′) ·(
1 +G+G2 + · · ·+Gk

)
and z multiplies each of the xi variables, and the only division gates

in coeffzk(F
′) are of the form F ′−1

0 = (Den(F ′)(0/z))−1. Thus, by construction ofDen we have

thatDen(coeffzk(F
′)) is a power of F ′

0 (namely, computes F̂ ′p
0 , for some p).

Recall that the syntactic-degree of a circuit with division is the sum of the syntactic-degrees

of its denominator and its numerator. By inspection of the construction of coeffzk(·) (Definition
7.2) we observe that every subcircuit in coeffzk(F

′) contributes to the overall syntactic-degree13 at
most k, except for the occurrences of the subcircuit F ′−1

0 which contribute to the overall syntactic-

degreed(Den(F ′)) thatmaybe greater thank; in otherwords, ifwe substitute 1 for the occurrences
of F ′−1

0 in coeffzk(F
′) we obtain a circuit of syntactic-degree at most k.

According to the discussion above, DetTaylor(X) = coeffzn(Detcirc−1(In + zX)) con-

tains occurrences of (Den (Detcirc−1 (In + zX)) (0/z))−1 that are of syntactic-degree greater

than n, while all other nodes contribute at most n to the overall syntactic-degree. To

remedy this we define Det
#
Taylor(X) as the circuit DetTaylor(X) in which we replace the

subcircuit (Den (Detcirc−1 (In + zX)) (0/z))−1
by the constant 1. Denote by b the circuit

(Den (Detcirc−1 (In + zX)))−1
. Note that indeed b(0/z) computes the polynomial 1. Then we

define the determinant circuit with syntactic-degree n as follows:

Det
#
Taylor(X) := (DetTaylor(X))(1/(b(0/z))) . (44)

13The syntactic-degree here is with respect to all variables, not only z.

57

Lemma 7.8. LetA be an n× n symbolic matrixX or the product of two n× n symbolic matricesXY ,
or a ΣB

1 -definable in V
0 triangular n × n matrix U in the variables xij for i, j ∈ [n], with diagonal

entries u11, . . . , unn such thatV
0 proves that u−1

ii is provably good, for all i ∈ [n]. Then, there exists a
Σ

B
1 -definable inV

0 P−1
c (Z)-proof of

Det
#
Taylor(A) = DetTaylor(A).

Further,V0 proves that for every division gate v = w−1 in the P−1
c (Z)-proof there exists a Pc(Z)-proof

ofDen(v ↾ ρ) = 1.

Remark 7.9. Note that by Lemma 6.4, ifV0 proves that a division gate v is provably good thenV0 proves

that there exists a Pc(Z)-proof of Den(v ↾ ρ) = 1. Hence, the former is a stronger property than the
latter. We show in Section 8 that the latter property suffices for our purposes.

Proof. We assume that A = X . The other cases are similar. Note that by previous constructions

the circuits Det
#
Taylor(X) and DetTaylor(X) are ΣB

1 -definable in V
0. We first construct in V

0 a

P−1
c (Z)-proof ofDen (Detcirc−1 (In + zX)) (0/z) = 1. For this, we initially construct a P−1

c (Z)-
proof of

(Detcirc−1 (In + zX))(0/z) = Detcirc−1 (In) . (45)

Since (In + zX)(0/z) = In has a ΣB
1 -definable P

−1
c (Z)-proof in V

0 (replacing in each step of

the P−1
c (Z)-proof 0 ·u by 0 and 0+u by u, for u any subcircuit14), (Detcirc−1 (In + zX))(0/z) =

(Detcirc−1 ((In + zX) (0/z))) = Detcirc−1 (In) has also such a proof inV
0. Also,V0 easily proves

that the P−1
c (Z)-proof is provably good since (Detcirc−1 (In + zX))(0/z) and Detcirc−1 (In) are

provably good circuits.

By Proposition 4.5 the P−1
c (Z)-proof of

Detcirc−1 (In) = 1 (46)

is ΣB
1 -definable in V

0 and V
0 proves the proof is provably good. Using (45), (46) and Corollary

6.5,V0 proves the P−1
c (Z)-proof of

Den (Detcirc−1 (In + zX)) (0/z) = 1 (47)

isΣB
1 -definable inV

0 and further, for every division gate v = t−1 in this proofV0 proves there

exists a Pc(Z)-proof ofDen(v ↾ ρ) = 1.
The P−1

c (Z)-proof of Det
#
Taylor(X) = DetTaylor(X) is then constructed as follows.

First we derive (47), and then using (47) we substitute each occurrence of the subcircuit

Den (Detcirc−1 (In + zX)) (0/z) in DetTaylor(X) by the constant 1, to get the desired equality

(using also the Div axiom 1 · 1−1 = 1). Thus, in the first part of the proof, for every division gate

u−1
V

0 proves there exists a Pc(Z)-proof ofDen(v ↾ ρ) = 1. In the second part, when we substi-
tute by 1 subcircuits, the proof uses still the same division gates that occur in the first part (because

the only division gates inDetTaylor(X) areDen (Detcirc−1 (In + zX)) (0/z)).

From Proposition 4.5, Lemma 7.6, Lemma 7.8 and Remark 7.9 we get a P−1
c (Z)-proof of the

determinant identities where the identities proved have no division gates and are of low syntactic-

degree as follows:

14Note that this is not done for an arbitrary circuit, namely, we do not know of anNC
2 algorithm that receives a

circuit C , such that Ĉ 6= 0, and discards in such a way every 0 constant in the circuit. We only build a P−1
c

(Z)-proof
that witnesses such a gradual procedure for discarding 0’s from the specific circuit (Detcirc−1 (In + zX))(0/z).

58

Corollary 7.10. LetX, Y be n×n symbolic matrices andU be aΣB
1 -definable inV

0 triangular n×n
matrix in the variables xij for i, j ∈ [n], such thatV0 proves that u−1

ii are provably good for all i ∈ [n].
Then, the P−1

c (Z)-proofs of the determinant identities

Det
#
Taylor(X) · Det#Taylor(Y) = Det

#
Taylor(XY) and (48)

Det
#
Taylor(U) = u11 · · · unn (49)

areΣB
1 -definable inV

0, andV0 proves that for every division gate v = t−1 in the P−1
c (Z)-proof there

exists a Pc(Z)-proof ofDen(v ↾ ρ) = 1.

8 Eliminating Division Gates

8.1 Overview

In this section we apply our previous results to eliminate division gates from the P−1
c (Z)-proofs of

the determinant identities we constructed inV0 in Corollary 7.10. Recall the concept of provably

good nodes, the identity matrices assignment ρ, the power series Invk from Section 6, and division

normalization in Section 6.3.

To eliminate division gates we take the P−1
c (Z)-proof in Corollary 7.10, normalize division so

that every division gate does not appear in the scope of another division gate. We then apply a

linear shift on the variables by adding to each variable the value it gets under the identity matrices

assignment ρ, so that the all zero assignment would not nullify any division gate (provably inV0),

and then substitute every division gate F−1 by a truncated power series Inv2n(F). Note that F
(0)

is the value of F under the zero assignment to its variables, and since we shifted the variables by

ρ, F (0) evaluates to 1 by our assumption that all division nodes of the original P−1
c (Z)-proofs are

provably good. This way we get a division free proof-sequence that is correct, except that the Div

axiom F · F−1 = 1 is replaced by F · Inv2n(F) = 1which is neither an axiom nor a true identity.

We shall deal with this in the next section (Section 9) when eliminating high syntactic-degrees.

8.2 Eliminating Division

In the first phase eliminating division in the proofs will result in proofs that are correct, but only

up to some prescribed degree, as defined in what follows.

Definition 8.1 (Correct up to degreekPc(Z)-proof). Let k be a natural number. We say that aPc(Z)-
proof sequence π is correct up to degree k if (i) every proof-line in π is an equation between algebraic

circuits with no division that was derived by one of the derivation rules of Pc(Z) from previous lines; or (ii)

is a variant of the division axiom Div, where instead of F · F−1 = 1 we have the line F · Invk(F) = 1;
or (iii) is an axiom of Pc(Z) different from Div.

The witness for syntactic correctness of a correct up to degree k Pc(Z)-proof is similar to

that in Section 3.2. Note that we do not need to witness the syntactic-degree of nodes in circuits

in a correct up to degree k Pc(Z)-proof. In other words, there exists a ΣB
0 -formula ψ(Z, k) that

holds iffZ is a correct up to degree k Pc(Z)-proof (whereZ contains also the syntactic correctness

witness as in Section 3.2). The formula ψ(Z, k) only needs to verify that in the division axiom Div

we have F · Invk(F) = 1, and checking whether a circuit is Invk(F) is done without the need to
witness the syntactic-degree of F or Invk(F).

The following will be used in Corollary 9.2:

59

Corollary 8.2 (Homogenizing correct up to degree d Pc(Z)-proofs). Let F,G be twoΣB
1 -definable

algebraic circuits over Z with syntactic-degree d, and assume that there is a correct up to degree d Pc(Z)-
proof of F = G that is ΣB

1 -definable in V
0. Suppose that for every occurrence of Invd(H) in this

Pc(Z)-proof of F = G, for some circuit H , V0 proves there exists a Pc(Z)-proof of H
(0) = 1. Then,

for every k = 0, . . . , d, the following proof is ΣB
1 -definable in V

0: the Pc(Z)-proof of F
(k) = G(k)

in which every circuit is a sum of syntactic homogeneous circuits inside which every node u in the proof

appears with its syntactic-degree upper bound, and dub(u) ≤ k.

Proof. This stems from direct inspection of Theorem 5.4 and its proof. The simulation of all rules

and axioms is the same as in Theorem 5.4 except for the simulation of the Div axiom. In the case of

Div inspecting of the proof of Theorem5.4 shows thatwe donot use the homogeneous components

of degree greater than d. Thus, we only need to make sure thatV0 proves there exist Pc(Z)-proofs

of (H · Invd(H))(i) = 0, for every 1 ≤ i ≤ d, and of (H · Invd(H))(0) = 1, for every proof-line
H · Invd(H) = 1 appearing in the Pc(Z)-proof of F = G, and that these proofs also contain the
syntactic-degree upper bound for every node in every circuit. But this stems from Lemma 6.1 and

the assumption thatV0 proves there exists a Pc(Z)-proof ofH
(0) = 1.

Let r be one of the variables in X, Y , that is r ∈ {xij , yij : i, j ∈ [n]} and let wr be a new

variable not inX, Y . The mapping

σ : r 7→ (ρ(r)− wr)

linearly shifts the variablesX, Y by the identity matrices assignment ρ (and also replaces the orig-
inal variablesX, Y by the wr variables for the sake of clarity).

Recall that substitutions in P−1
c (Z)-proofs areΣB

1 -definable inV
0 by Proposition 3.2. Hence,

if aP−1
c (Z)-proofπ ofF = G isΣB

1 -definable inV
0 then also theP−1

c (Z)-proof ofF ↾ σ = G ↾ σ
is. Recall also that F ↾ σ stands for the circuit F represented as a graph with the input variables

replaced based on the assignment σ. Further, notice that Den(F ↾ σ)(0) computes precisely the

value ofDen(F) under the identity matrices assignment, that is
̂

Den(F ↾ σ)(0) = ̂Den(F ↾ ρ) =
̂

Den(F ↾ ρ)(0). We have the following:

Lemma 8.3. Let F be a ΣB
1 -definable circuit inV

0 in the X, Y variables and assume thatV0 proves

that there exists a Pc(Z)-proof of F ↾ ρ = 1, then there exists a Pc(Z)-proof of (F ↾ σ)(0) = 1.

Proof. By the definitions of σ, ρ and basic rearrangements in Pc(Z) we have a Pc(Z)-proof of F ↾

ρ = (F ↾ σ) ↾ 0 (where C ↾ 0 means substituting 0 for all variables in a given circuit C). By
the construction of syntactic-homogeneous circuits (Section 5) the underlying graph of a (division

free) circuit C ↾ 0 and the structure of C(0) are identical: constant gates stay the same; variables

turn into 0 nodes; plus gatesw = v1 + v2 add the zero-copies [v1, 0], [v2, 0] of v1, v2, respectively;
and product gates w = v1 · v2 multiply the zero-copies [v1, 0], [v2, 0] of v1, v2, respectively (in
particular, no new plus or product gates are added to the circuit). Hence, (F ↾ σ) ↾ 0 = (F ↾ σ)(0)

is Pc(Z)-provable.

We are now ready to construct the (division free) Pc(Z)-proof of the determinant identities,

with some restrictions (namely, it is correct only up to a prescribed degree and its variables are

linearly shifted).

60

Lemma 8.4. LetX, Y be n × n symbolic matrices and U be aΣB
1 -definable inV

0 triangular n × n
matrix in the variables xij for i, j ∈ [n] with no division gates. Then, the correct up to degree 2n Pc(Z)-
proofs of the shifted determinant identities

(Det#Taylor(X) · Det#Taylor(Y)) ↾ σ = Det
#
Taylor(XY) ↾ σ and (50)

Det
#
Taylor(U) ↾ σ = (u11 · · · unn) ↾ σ (51)

are ΣB
1 -definable inV

0. Moreover, for every occurrence of Inv2n(H) in the proofs, for some circuit H ,

V
0 proves there exists a Pc(Z)-proof ofH

(0) = 1.

Proof. By Corollary 7.10 V
0 proves there exists a P−1

c (Z)-proof π of the determinant identities

where the determinant is written as Det
#
Taylor (intermediate proof-lines may represent the deter-

minant differently, e.g., by DetTaylor or Detcirc−1), and further V0 proves that for every division

gate v = t−1 in the P−1
c (Z)-proof there exists a Pc(Z)-proof ofDen(v ↾ ρ) = 1.

Applying Corollary 6.5 on π we get thatV0 proves there exists a P−1
c (Z)-proof π′ of the deter-

minant identities written as Det
#
Taylor in which each division gateH−1, for some circuit H , does

not occur in the scope of another division gate, and furthermore V0 proves that there exists a

Pc(Z)-proof ofH ↾ ρ = 1. Therefore, by Lemma 8.3V0 proves that for every division gateH−1

in the proof there exists a Pc(Z)-proof of (H ↾ σ)(0) = 1.
Now apply the linear shift σ : r 7→ (ρ(r)−wr) to the variables in π

′ as described above to get

theP−1
c (Z)-proof π′ ↾ σ. Since no division gate occurs in the scope of another division gate we can

substitute every divisionH−1 ↾ σ in in π′ ↾ σ by the truncated power series Inv2n(H ↾ σ) (we use
2n because this is the degree of the determinant identities). Let π0 be the corresponding division-
free proof-sequence obtained from π′ ↾ σ by replacing every division gate in such a way. Note that
by the above for every occurrence of Inv2n(H ↾ σ) in π0,V

0 proves there exists a Pc(Z)-proof of
(H ↾ σ)(0) = 1.

(To clarify, wenote that by definitionwehave Ĥ ↾ σ· ̂Inv2n(H ↾ σ) = 1+[terms of degree> 2n].

Hence, by itself π0 is not a legal Pc(Z)-proof, rather a correct up to degree 2n Pc(Z)-proof, since
the axiom of division F · F−1 = 1 in P−1

c (Z) does not translate into an axiom in Pc(Z), rather it
translates intoH ↾ σ · Inv2n(H ↾ σ) = 1, which is neither a legal axiom, nor a true identity.)

9 Eliminating High Degrees From the Proofs

Here we show how to eliminate within V
0 all nodes of syntactic degrees that exceed 2n from

the correct up to degree 2n proofs constructed in Lemma 8.4. This process will also result in all

proof-lines appearing as sums of homogeneous components in which every node appears with its

syntactic-degree upper bound (which is useful for applying the balancing algorithm in Section 10).

Let C be an algebraic circuit. Recall that d(C) is the syntactic-degree of C defined to be the

maximal syntactic-degree of a node inC (Definition 2.14) and thatC(i) is a syntactic-homogeneous

circuit computing the degree i homogeneous part ofC (Section 2.7). For a node v inC ,Cv denotes

the circuit rooted at v.

Claim9.1. LetF (x1, , . . . , xm) be aΣ
B
1 -definable inV

0 circuit without division, in the displayed input

variables. Assume that every input variable is nowmultiplied by a new variable z to getF (zx1, . . . , zxm),
which we denote by Fz . Then, there exists aΣ

B
1 -definable inV

0 Pc(Z)-proof of coeffzi(Fz) = F (i) in

which every node u in every circuit appears with its syntactic-degree upper bound.

61

Proof of claim: This is by construction of coeffzi(·) and (·)
(i)
. Consider the construction of coeffzi(·)

inV0 as shown in Section 7.3.2. Then, having each variablexj multiplied directly by z in the circuit
F ′ means that coeffzi(F

′) = F (i) are syntactically identical except for the bottom level of the

circuits, namely coeffz1(z · xj) = 1 · xj (ignoring zero terms, and applying basic rearrangements),

and coeffzr(z · xj) = 0 for all 1 6= r ≤ k and all j ∈ [n]. And accordingly, xj
(1) = xj and

xj
(r) = 0, for all 1 6= r ≤ k and all j ∈ [n]. Claim

Recall the definitions of DetTaylor (40) and Det
#
Taylor (44) and observe that Det

#
Taylor(X) is a

division free circuit such that everyX variable in it is a product of z. Therefore, by Claim 9.1 we

can assume from now on thatDet#Taylor(X) is written as a syntactic homogeneous circuit of degree n, and

similar for Det#Taylor(Y). Accordingly, by the homogenization algorithm in Section 5:

(Det#Taylor(X))(i) = 0, for all i < n, (52)

(Det#Taylor(X))(n) = Det
#
Taylor(X) . (53)

(because when given as input to the homogenization algorithm it will output the input circuit, or a

single homogeneous component as in part 3 of the output). And the same holds forDet
#
Taylor(Y).

Corollary 9.2. LetX, Y be n × n symbolic matrices and U = {uij}i,j∈[n] be a Σ
B
1 -definable inV

0

triangular n×nmatrix in the variables xij for i, j ∈ [n] with no division gates. Then, the Pc(Z)-proofs
of the following determinant identities

Det
#
Taylor(X) · Det#Taylor(Y) = Det

#
Taylor(XY) and (54)

Det
#
Taylor(U) = u11 · · · unn (55)

areΣB
1 -definable inV

0. Moreover, in these proofs every circuit is a sum of syntactic homogeneous circuits

in which every node v appears with its syntactic-degree upper bound dub(v) ≤ 2n.

Proof. By Lemma 8.4 there exists a correct up to degree 2n Pc(Z) proof-sequence π of the shifted

determinant identities (50) and (51), such that for every occurrence of Inv2n(H) in the proofs, for
some circuit H , V0 proves there exists a Pc(Z)-proof of H

(0) = 1. Hence, by Corollary 8.2 we

have a Pc(Z)-proof of

(
Det

#
Taylor(X) · Det#Taylor(Y)

)(k)
↾ σ = (Det#Taylor(XY))(k) ↾ σ, (56)

for every k = 0, . . . , 2n, and similarly for (51), wherein every circuit is a sum of syntactic homo-

geneous circuits inside which every node appears with its specified syntactic-degree upper bound

of at most 2n.
We now shift back the variables and substitute ρ(r) − wr , for every r inX, Y , by the original

variable r. We getΣB
1 -definable inV

0 Pc(Z)-proofs of

(
Det

#
Taylor(X) · Det#Taylor(Y)

)(k)
= (Det#Taylor(XY))(k), and

Det
#
Taylor(U)

(k) = (u11 · · · unn)
(k)

for every k = 0, . . . , 2n, and where in every proof the syntactic-degree upper bound of at most k
is specified on all nodes.

62

Finally, we can conclude the corollary reasoning as follows.

By Lemma 5.6 we have a Pc(Z)-proof of

∑2n

i=0

(
Det

#
Taylor(X) · Det#Taylor(Y)

)(i)
=
∑2n

i=0

∑

l+j=i

0≤l≤2n,0≤j≤2n

Det
#
Taylor(X)(l)·Det#Taylor(Y)(j) .

(57)

This equals

∑2n

i=0

∑

l+j=i

0≤l≤n,0≤j≤n

Det
#
Taylor(X)(l) · Det#Taylor(Y)(j)+

∑2n

i=0

∑

l+j=i

n<l≤2n,n<j≤2n

Det
#
Taylor(X)(l) · Det#Taylor(Y)(j) , (58)

where the rightmost big term is a sum of only zeros, by construction of the homogeneous circuits

(since Det
#
Taylor(X) and Det#Taylor(Y) are written as syntactic homogeneous circuits when input

to the homogenization algorithm Det
#
Taylor(X)(l) = Det

#
Taylor(Y)(l) = 0, for all l > n). We are

thus left with the leftmost big sum in (58). We proceed with

∑2n

i=0

∑

l+j=i

0≤l≤n,0≤j≤n

Det
#
Taylor(X)(l) · Det#Taylor(Y)(j)

=
∑n

i=0
Det

#
Taylor(X)(i) ·

∑n

i=0
Det

#
Taylor(Y)

(i)
(59)

= Det
#
Taylor(X) · Det#Taylor(Y), (60)

where the first equality is by rearrangement and the second equality is by (52) and (53). By summing

(56) for all k = 0, . . . , 2n and using similar reasoning for Det
#
Taylor(XY), we conclude that there

exists a Pc(Z)-proof of

Det
#
Taylor(X) · Det#Taylor(Y) = Det

#
Taylor(XY).

Note that by our construction, in the above Pc(Z)-proof every proof-line is a sum of syntactic

homogeneous circuits. Observe that this also holds for (59), (60), because
∑n

i=0 Det
#
Taylor(X)(i) =

Det
#
Taylor(X)(n) = Det

#
Taylor(X) is a syntactic homogeneous circuit by (52) and (53) (ignoring

zero summands), and similarly for
∑n

i=0 Det
#
Taylor(Y)(i), and a product of syntactic homogeneous

circuits is a syntactic homogeneous circuit in itself. Furthermore, note that every node in the proof

appears with its syntactic-degree upper bound dub by the use of Corollary 8.2. The proof of (55) is
similar.

10 Balancing Algebraic Circuits and Proofs in the Theory

10.1 Overview

In this sectionwe take thePc(Z)-proofs we constructed in the previous section, and turn them into

balanced proofs, namely proofs in which each circuit is ofO(log2 n)-depth. This is the first step in

63

which we will use the full power ofVNC
2 (contrasted with the constructions inV

0 in previous

sections).

We first ΣB
1 -define in VNC

2 a circuit balancing algorithm: this is a string function that re-

ceives a sum of syntactic homogeneous algebraic circuits C (without division) with size s and a

number d which stands for an upper bound on the syntactic-degree of C , and outputs a circuit

denoted [C] computing Ĉ with depthO(log s · log d) and size poly(s, d). OurFNC
2-algorithm

provides an FAC
0-implementation of most parts of the classic Valiant et al. [VSBR83] algorithm,

combining it with some ideas from the Miller et al. [MRK88] algorithm, while also using matrix

powering, which then entails working inFNC
2.

More generally, we show a ΣB
1 -definable function in VNC

2 that receives a Pc(Z)-proof of
F = Gwith syntactic-degree d (and in which every proof-line is a sum of syntactic homogeneous

circuits), and outputs a Pc(Z)-proof of [F] = [G] in which every circuit is of depthO(log s · log)
and the size of the proof is poly(s, d).

Applying this function to the Pc(Z)-proof constructed in the previous section, demonstrates

that the depth O(log2 n) Pc(F)-proof of the determinant identities where the determinant in

the identities proved is written as a balanced division free circuit of syntactic-degree n denoted

Detbalanced, isΣ
B
1 -definable function inVNC

2.

10.2 Background Concepts for the Balancing Algorithm

We start by providing some required concepts.

Definition 10.1 (Balanced circuit). LetD be an algebraic circuit of size s and syntactic-degree d. Then,
we say thatD is balanced if the depth ofD isO(log s log d).15 Specifically, if d is polynomial in s, then
the depth ofD isO(log2 s).

Our balancing algorithm follows the general scheme of Valiant et al. [VSBR83] that proceeds

by induction on the logarithm of the degree of the polynomial computed by the circuit, however

there are differences that help us fit the algorithm in FNC
2 (for a very clear exposition of the

original [VSBR83] algorithmwe refer the reader to [RY08] (cf. [HT15]), though our treatment is self

contained).

Notation: Recall that we now only work with division free circuits. We use the following notation

throughout this section: F,C are circuits and F̂ , Ĉ are the corresponding polynomials they com-

pute. For convenience we denote by f the polynomial F̂ . For a node v in F we write Fv to denote

the subcircuit rooted at v and fv denotes the polynomial F̂v . We write u ∈ F to mean that u is a

node in the circuit F .

We will need to construct with anFNC
2 algorithm some linear polynomials computed by Fv ,

whenever v ∈ F and dub(v) ≤ 1, as well as the linear polynomials ∂wfv (defined below) whenever
0 ≤ dub(v)− dub(w) ≤ 1. However, we cannot directly compute the integer coefficients in these

linear polynomials because their (sub-)circuits are not balanced (and the evaluation of circuits of

depth ω(log2 n) is apparently beyondVNC
2).

15O(log s log d+ log2 d) is the standard depth of “balanced” circuits [VSBR83], when the original circuitC of size

s and degree d is not necessarily syntactic homogeneous. The term log2 d in the depth is incurred due the conversion
of C to a syntactic homogeneous circuit beforehand. Since we will input to our balancing algorithm circuits that are

already (sums of) syntactic homogeneous circuits, the depth we get isO(log s log d).

64

We show how to compute the linear polynomials we need in Lemmas 10.4 and 10.6. For the

purpose of these lemmas we need to treat scalar nodes c ∈ Z occurring in the circuit as if they

are variables (and hence even circuits with only scalars get balanced throughout the balancing al-

gorithm). Formally, this means defining their syntactic-degree as 1 instead of 0, as follows (hence

both variables and scalars are now treated as syntactic-degree 1 circuits).

Denote by d+ub(·) the syntactic-degree upper bound defined similar to dub(·), except that scalar
nodes are associated with syntactic-degree upper bound 1 (instead of 0) in the algorithm for ho-

mogenizing circuits shown in Section 5. Note that any circuit Fv rooted by the node v such that

d+ub(v) ≤ 1 cannot contain product nodes (as this would make d+ub(v) > 1 by definition). In

Lemma 10.4 we show how to evaluate inFNC
2 a circuit with no product nodes.

Also note that it may happen that a node v in a circuit has polynomially bounded dub(u) but
exponential large d+ub(u), for example in case we have an iterated squaring such as (((2)2)2 . . .2) =
22

n

. We deal with this problem in Section 10.3.1.

Definition 10.2 (Partial derivative polynomial ∂wfv). Let w, v be two nodes in F . We define the

partial derivative of Fv with respect to w, denoted ∂wfv , as the following polynomial:

∂wfv :=





0, if w 6∈ Fv ,

1, if w = v, and otherwise:
∂wfv1 + ∂wfv2 , v = v1 + v2;
(∂wfv1) · fv2 , if either v = v1 · v2 and d

+
ub(v1) ≥ d+ub(v2)

or v = v2 · v1 and d
+
ub(v1) > d+ub(v2).

(61)

The idea behind this definition is the following: let w, v be two nodes in F and assume that

d+ub(w) >
d+ub(v)

2
(wewill use∂wfv only under this assumption). Then for any product nodev1·v2 ∈

Fv , w can be a node in at most one of Fv1 , Fv2 , namely the one with the higher syntactic-degree.

If we replace the node w in Fv by a new variable z that does not occur in F , then Fv computes a

polynomial g(z, x1, . . . , xn) which is linear in z, that is g(z, x1, . . . , xn) = h0 · z + h1 for some

polynomials h0, h1 in the x1, ..., xn variables, and ∂wfv = h0. Namely, ∂wfv in our case is the

standard partial derivative ∂zg.

Proposition 10.3. Let w, v be two nodes in a syntactically homogeneous circuit F such that d+ub(w) >
d+ub(v)

2
. Then the polynomial ∂wfv has degree at most d

+
ub(v)− d+ub(w).

Proof. By induction on the size of Fv .

Base case: Fv is a single node. IfFv = w then ∂wfv = 1, and so d+ub(∂wfv) = 0 = d+ub(v)−d
+
ub(w)

and the claim holds. If Fv 6= w then ∂wfv = 0 and the claim holds similarly.

Induction step:

Case 1: v = v1 + v2. Then ∂wfv = ∂wfv1 + ∂wfv2 , and by induction hypothesis the degrees

of ∂wfv1 and ∂wfv2 are at most d+ub(v1) − d+ub(w) and d
+
ub(v2) − d+ub(w), respectively. Since F

is syntactically homogeneous d+ub(v) = d+ub(v1) = d+ub(v2) and so the degree of ∂wfv is at most

d+ub(v)− d+ub(w).
Case 2: v = v1 ·v2. Assume that d+ub(v1) ≥ d+ub(v2). Then ∂wfv = (∂wfv1) ·fv2 and by induction
hypothesis the degree of ∂wfv1 is at most d+ub(v1) − d+ub(w). Thus, the degree of ∂wfv is at most

d+ub(v1)+d
+
ub(v2)−d

+
ub(w) = d+ub(v)−d

+
ub(w). The case where d

+
ub(v1) < d+ub(v2) is similar.

Comment: We have defined ∂wfv as a polynomial. Below we shall construct (polynomial-size

and balanced) circuits [∂wfv] that compute the polynomial ∂wfv . We will make sure that the con-

65

struction of [∂wfv] is correct in the sense that it computes ∂wfv and also that it has a syntactic-

degree at most d+ub(v)− d+ub(w). The correctness of the construction follows from [VSBR83] (see

also [RY08, HT15]) where in our construction the notion of a syntactic-degree upper bound (plus),

namely, d+ub is used, instead of the notion of degree.

Overview of the balancing algorithm: Let F be a syntactic-homogeneous arithmetic circuit

of syntactic-degree d. For every node v ∈ F we introduce the corresponding node [Fv] in [F]

(intended to compute the polynomial f̂v); and for every pair of nodes v, w ∈ F such that d+ub(w) >
d+ub(v)

2
, we introduce the node [∂wfv] in [F] (intended to compute the polynomial ∂wfv). Note that

given a syntactic-homogeneous circuit F , we can assume that every node comes with a number

that denotes its syntactic-degree—this stems from our FAC
0 algorithm for homogenization in

Section 5; but notice that according to this algorithm circuits that compute zero may be assigned

higher syntactic-degrees than they actually possess. Since we are given an upper bound on the

syntactic-degree of the circuit in advance this will not interfere with the algorithm.

The algorithm starts with a preprocessing step that determines some properties of the circuit

graph. Specifically, we use this preprocessing step to record in advance for every pair of nodes w
and v if w is in the scope of the circuit rooted by v. Then it proceeds in steps i = 0, . . . , ⌈log d⌉.
In each step i we construct:

1. Circuits computing fv , for all nodes v in F with 2i−1 < d+ub(v) ≤ 2i;

2. Circuits computing ∂wfv , for all pairs of nodesw, v inF with 2i−1 < d+ub(v)−d
+
ub(w) ≤ 2i

and d+ub(w) >
d+ub(v)

2
.

Each step adds depth O(log s) to the new circuit, which at the end amounts to a depth O(log d ·
log s) circuit. Furthermore, each node v in F addsO(s) nodes in the new circuit and each pair of

nodes v, w inF addsO(s) nodes in the new circuit. This amounts finally to a circuit of sizeO(s3).
The preprocessing step as well as step i = 0 are done in FNC

2 as they both use matrix pow-

ering (in fact the class DET, which is the AC
0-closure of matrix powering, suffices here; matrix

powering is known to beΣB
1 -definable inVNC

2 and hence is computable inFNC
2 [CF12]). Each

of the other stages constructs a group of nodes (namely, a part of the circuit having depthO(log s)).
Steps i = 1 to i = ⌈log d⌉ are done inFAC

0 by constructing the nodes andwiring simultaneously.

Thus, overall the balancing algorithm is inFNC
2.

Our algorithm is different from that of Valiant et al. [VSBR83], since we use a preprocessing

step and in the first stage of the algorithm where i = 0 (which corresponds to the base case of

the Valiant et al. algorithm) we need to compute the coefficients of certain linear forms computed

by possibly non-balanced circuits. Another difference is that while Valiant et al. [VSBR83] use the

notion of degrees of a node, and Hrubeš and Tzameret [HT15] use syntactic-degrees of nodes, our

constructions use theFAC
0-computable relaxed notion of syntactic-degree upper bound dub(v) of a

node v introduced in Section 5 and its variant d+ub(v).

10.3 Preliminaries for the Balancing Algorithm

Lemma 10.4. There is a ΣB
1 -definable string function in VNC

2 that given a (division free) algebraic

circuit F of size s with no product gates outputs a depth O(log n) algebraic circuit computing F̂ of size

poly(s), for n the number of variables.16

16Notice that if the input algebraic circuit F was a formula instead of a circuit, it would have been trivial to output

the balanced formula computing F̂ : simply build a balanced binary tree whose leaves are all the variables occurring in

66

Proof. By assumption, the circuit F computes a big sum of variables, where a variable can occur

with an integer coefficient. We will now represent circuits with unbounded fan-in as adjacency

matrices. We first construct an upper triangular matrix A = {Aij}i,j∈[s] that represents F : for
every j > i ∈ [s], Aij is labeled with the number of edges from node i to node j in the circuit. In the

initial stage, A is a 0-1 matrix because every node i can have at most one directed edge to node j.
This construction is done already inV0.

Given such a matrixA representing F , the algorithm simply computesAs. The matrixAs has

c on its (i, r)th entry iff the number of different paths from node i to the output gate r is c. Thus,
we can consider the matrix As as corresponding to a depth 1 circuit: each leaf i in this circuit

represents the input variable xi or a scalar k ∈ Z, and is connected to the root r of the original
circuit with a single edge labelled with some integer c; this integer c is the total number of different

paths in the original circuit leading from the input node xi or a scalar k ∈ Z to the root. Thus cxi
or ck is the contribution of the input node xi or the scalar node k to the linear polynomial F̂ . It
is thus immediate to construct a circuit (of depth O(log n)) that computes the linear polynomial

F̂ : simply construct a big sum of the cxi’s and ck’s. The fact that matrix powering is definable in

VNC
2 is shown in Cook and Fontes [CF12].

We will also need the following two lemmas:

Lemma 10.5. There is aΣB
1 -definable function inVNC

2 for deciding, given a circuitC and two nodes

w, v in C , if w is in Fv .

Proof. This is similar to Lemma 10.4 above. We first construct the adjacency matrix AC of the

circuit C as a directed graph: the dimension of AC is s × s with s being the number of nodes in

C , each entry in AC is of number sort, and AC(w, u) is 1 iff w has a directed edge towards u or

w = u, and 0 otherwise.
Then, w has a directed path to v iff As

C(w, v) 6= 0, where matrix powering is definable in

VNC
2 as mentioned above.

Lemma 10.6. There is aΣB
1 -definable string function inVNC

2 whose input is a (division free) circuit

F with n variables and a pair of nodes w, v in F where w is in Fv and 0 ≤ d+ub(v)− d+ub(w) ≤ 1, and
whose output is an O(log(n))-depth circuit computing ∂wfv .

Proof. In case v = w we output the circuit 1. Otherwise, first note that since 0 ≤ d+ub(v) −
d+ub(w) ≤ 1, either d+ub(v) ≤ 1 or d+ub(v) ≥ 2 and d+ub(w) > d+ub(v)/2. Hence, by Proposition
10.3, the polynomial ∂wfv is a linear polynomial a1x1 + · · ·+ anxn + b. Therefore, it remains to

show how to construct the circuit that computes this linear polynomial inVNC
2.

Fact 1: by definition of d+ub, for every node r in F we have d+ub(r) ≥ 1. Hence, for every product
gate u = t · s we have d+ub(u) = d+ub(t) + d+ub(s) ≥ 2.

Fact 2: there cannot be a product gate u in Fv such that w has two different paths directed from w
to u (recall that edges are directed from leaves to root).

This is because otherwise d+ub(v) ≥ d+ub(u) ≥ 2d+ub(w) ≥ 2 (the last inequality is by the fact
above), and hence d+ub(v)− d+ub(w) ≥ d+ub(w) ≥ 2 in contrast to the assumption.

Fact 3: Let ρ be a path from v to w (including v and excluding w) in Fv . Then there exist at most

one product gate in ρ.

F (variables that occur more than once should also occur more than once in the resulting formula). Also, notice that

although there are no scalars inC , a monomial can occur with a coefficient in Ĉ different from 1.

67

The reason is as follows: assume there are more than one product gates in ρ (occurring “above”
w). By Fact 1 every such product gate in ρ increases the syntactic-degree upper bound d+ub along ρ
by at least 1. Hence, d+ub(v) ≥ d+ub(w)+2 in contrast to the assumption that d+ub(v)−d

+
ub(w) ≤ 1.

We thus conclude that every product gate u 6= w in Fv , either does not have w in its scope, or

is the only product gate on the path from w to v along u. Let u = t · s be a product gate in Fv

that hasw in its scope, and assume without loss of generality thatFt hasw in its scope and Fs does

not (by Fact 2 it cannot be that both have w in their scope). We argue that Fs has no product gates.

Otherwise, by Fact 1 d+ub(s) ≥ 2 and so d+ub(v) ≥ d+ub(u) ≥ d+ub(w) + d+ub(s) ≥ d+ub(w) + 2 in
contrast to the assumption d+ub(v)− d+ub(w) ≤ 1.

LetU be the set of all product gatesu = tu·su inFv such thatFtu has (without loss of generality)

in its scopew. The above arguments imply that the polynomial ∂wfv =
∑

u∈U F̂su and that there

are no product gates in the Fsu ’s. But the set U is easily ΣB
0 -defined inV

0. And by Lemma 10.4

we can thus construct aO(log n) depth circuit, for n the number of variables, computing the sum∑
u∈U F̂su .

10.3.1 Taking Care of Nodes with High d+ub Values

To be able to carry out the balancing construction of circuits and proofs in the theory we need to

make sure that in all the circuits we consider nodes have polynomially bounded d+ub values (and

not only polynomially bounded dub values). We first claim that all results about dub that have

been proved up to this point hold also for d+ub. After which we show that the determinant iden-

tities proved can be assumed to be of polynomial (in fact, 2n) syntactic-degree with respect to d+ub,
and then by the same reasoning as before we can assume that intermediate proof-lines have low

d+ub values as well, using high syntactic-degree elimination in proofs, leading to same statement of

Corollary 9.2 in which d+ub replaces dub.

Fact 10.7. All the statements about proof-construction and transformations that we presented up to this

point for dub also hold true for d
+
ub.

Fact 10.7 holds because of the following: letC be a circuit and letC ′ be the sum of its syntactic

homogeneous components with all nodes inC ′ appearingwith their syntactic-degree upper bound.

Let CY be C in which we substitution every scalar leaf c ∈ Z to a new variable yc. Then the

output of the homogenization algorithmon the inputCY results in a sumof syntactic homogeneous

components of CY such that every node appear with its syntactic-degree upper bound d+ub. If we
now substitution back the scalars c ∈ Z for the variables yc we get the circuit C

′ in which every

node appears with its syntactic-degree upper bound d+ub (instead of dub).

Lemma 10.8 (Existence of division free circuit for the determinant with low d+ub values). There

exists a circuit denoted Det⋆Taylor(X) computing the determinant of X with all nodes having syntactic-

degree d+ub at most n, such that the Pc(Z)-proof of Det
#
Taylor(X) = Det⋆Taylor(X) isΣB

1 -definable in

V
0.

Proof. We will witness our desired circuit Det⋆Taylor(X). We start by observing the way scalars

can contribute to syntactic-degrees d+ub inDet
#
Taylor(X). Recall the circuitDetcirc−1(X). The only

scalars inDetcirc−1(X) are the 0-1 constants that occur in the identitymatrix In−1 in (14), and these

scalars occur as 1 ·h or 0 ·h for some h that contains variables. Now considerDetcirc−1(In+ zX),

68

which results by replacing the variables xij inDetcirc−1(X) by the term 0 + zxij or by 1 + zxij in
case i = j. Hence, the only scalars inDetcirc−1(In+ zX) are still 0-1, either from the replacement

0+zxij or by 1+zxij or from In−1 in (14) as before. RecallDetTaylor(X) = coeffzn(Detcirc−1(In+

zX)) and Det#Taylor(X) = (DetTaylor(X))(1/(b(0/z))), where b = Den (Detcirc−1 (In + zX))
(see definition (44)). Here, the Denand Numconstructions can add 1’s to the circuit, and coeffzn

adds 1’s and 0’s to the leaves of the circuit. We thus have that still the only scalars in Det
#
Taylor(X)

are 0-1. Recall that by Section 7.5 every node u inDet#Taylor(X) has dub(u) ≤ n. By inspection of

the circuit all 1’s and 0’s that cause d+ub to become more than n are of the form 1 · (· · · (1 · · ·) · · ·)

(and similarly for 0). We need to make sure that all nodes u in Det#Taylor(X) have d+ub(u) ≤ n.
For this purpose we construct a P−1

c (Z)-proof that eliminates 1 from products with 1 in

Det
#
Taylor(X) using repeatedly the axiom 1 · 1 = 1 (and similarly 0 · F = 0). We can do this

because the construction of the circuitDet
#
Taylor(X) is aΣB

1 -definable function inV
0 as we have

demonstrated, which means that there is aΣB
0 -formula (in the language LA) that defines the con-

struction ofDet
#
Taylor(X) (given the parameter n forX an n×nmatrix). We thus can assume that

there are pointers to the occurrences of 1’s that we want to discard using 1 · 1 = 1 (and similarly

for 0’s).

Using Lemma 10.8, homogenization of Pc(Z)-proofs (Lemma 5.4) and previous constructions

inV0 of the determinant identities leading up to the Pc(Z)-proofs in Corollary 9.2, and Fact 10.7
showing that we can assume that nodes in Pc(Z)-proofs appear with their syntactic-degree upper
bound d+ub, we arrive at:

Corollary 10.9. LetX, Y be n×n symbolic matrices andU be aΣB
1 -definable inV

0 triangular n×n
matrix in the variables xij for i, j ∈ [n] with no division gates. Then, there exists a division free circuit
computing the determinant of X denoted Det⋆Taylor(X) with all nodes u having d+ub(u) ≤ n, such that
the Pc(Z)-proofs of the following determinant identities

Det⋆Taylor(X) · Det⋆Taylor(Y) = Det⋆Taylor(XY) and (62)

Det⋆Taylor(U) = u11 · · · unn (63)

areΣB
1 -definable inV

0. Moreover, in these proofs every circuit is a sum of syntactic homogeneous circuits

in which every node u appears with its syntactic-degree upper bound d+ub, and d
+
ub(u) ≤ 2n.

10.4 Formal Description of the Balancing Algorithm

For a syntactically homogeneous circuitG and a natural numberm let

Bm(G) :=
{
t ∈ G : t = t1 · t2, where d

+
ub(t) > m and d+ub(t1), d

+
ub(t2) ≤ m

}
. (64)

Notice thatBm(G) is aΣ
B
0 -definable relation inV

0 assuming d+ub(v) is provided for every node v
inG.

Note: In the construction of the balanced circuit ofF , given nodes v, w ∈ F , [Fv] and [∂wfv] stand
for nodes (and not circuits). When we write [Fv] := C for a circuit C we mean that the node [Fv]
is defined to be the root of the circuitC , whereC possibly contains other (previously constructed)

nodes like [Fu], for some u ∈ F . In other words, the algorithm simply connects the node [Fv] to a
circuit for which some of its leaves are already constructed nodes.

69

FNC
2-Algorithm for Balancing a Circuit F (Construction of [F])

Input: An algebraic circuitF of size swritten as a sum of one ormore syntactic-homogeneous cir-

cuits over the variables x1, . . . , xn, in which every node u appears with its syntactic-degree
upper bound d+ub(u).

Output: An algebraic circuit denoted [F] of fan-in two computing the polynomial F̂ , such that

depth([F]) = O(log s · log d) and the size of [F] is poly(s, d), where d = d+ub(F).

Algorithm: Assume that F =
∑

j Fj , where each Fj is a syntactic-homogeneous circuit of

syntactic-degree upper bound d+ub(Fj) = j. Then the algorithm below is applied to each syntactic-

homogeneous circuit Fj separately, and the output of the algorithm will be defined as the sum∑
j[Fj] (this adds only a logarithm in d to the depth). For simplicity of writing we assume be-

low in the algorithm that F is a single syntactic-homogeneous circuit (that is, a single Fj , for some

j).

Preprocessing step: For every pair of nodesw, v we prepare a list that determines whetherw is inFv .

This is done by running in parallel for all pairsw, v in F theNC
2-algorithm described in Lemma

10.5 for checking if w is in Fv .

Step i = 0:

Part (a):17 We construct the node [Fv], for all nodes v ∈ F such that d+ub(v) ≤ 1 = 2i.
Let v ∈ F be such that d+ub(v) ≤ 1.

Claim 10.10. F̂v = a1x1+ · · ·+anxn+
∑

c∈J bcc, for a1, . . . , an, bc ∈ Z and J ⊂ Z. Furthermore,

there exists an FNC
2-construction that given F constructs the depth O(log n) circuit a1x1 + · · · +

anxn +
∑

c∈J bcc.

Proof of claim: Since d+ub(v) ≤ 1, there are no product gates in Fv . Thus, Fv is a circuit with only

plus gates, which means F̂v is as stated in the claim. By Lemma 10.4 (and Theorem 2.7) we can

construct in FNC
2 the circuit a1x1 + · · · + anxn +

∑
c∈J bcc (we do not evaluate the circuit).

Claim

Define

[Fv] := a1x1 + · · ·+ anxn +
∑

c∈J
bcc.

Part (b): Let w, v be a pair of nodes in F with 2d+ub(w) > d+ub(v):

Case 1: Assume w is not a node in Fv (this can be checked using the list from the preprocessing

step). Define

[∂wfv] := 0.

Case 2: Assume that w is in Fv and 0 ≤ d+ub(v) − d+ub(w) ≤ 1. Again, this is checked by the list
from the preprocessing step, and since the input circuit F is assumed to contain the value of d+ub
for each node.

17This base case uses an FNC
2 algorithm, but since it is done only in the base case, and not in the induction step,

the whole algorithm still is inFNC
2.

70

Thus, by Proposition 10.3, the polynomial ∂wfv is a linear polynomial a1x1 + · · ·+ anxn + b.
Using Lemma 10.6 and similar notation and reasoning as Claim 10.10 define

[∂wfv] := a1x1 + · · ·+ anxn +
∑

c∈J
bcc .

Step i+ 1:

The construction in this step is done inV0, assuming we have the list from the preprocessing

step above.

Part (a): Assume that for some 0 ≤ i ≤ ⌈log(d)⌉:

2i < d+ub(v) ≤ 2i+1.

Putm = 2i, and define (recall that here [∂wfv], [Ft1] and [Ft2] are nodes)

[Fv] :=
∑

t∈Bm(Fv)
t=t1·t2

[∂tfv] · [Ft1] · [Ft2] .

Part (b): Let w, v be a pair of nodes in F with 2d+ub(w) > d+ub(v):

Assume that w is in Fv and that for some 0 ≤ i ≤ ⌈log(d)⌉:

2i < d+ub(v)− d+ub(w) ≤ 2i+1.

Putm = 2i + d+ub(w). Define:

[∂wfv] :=
∑

t∈Bm(Fv)

[∂tfv] · [∂wft1] · [Ft2] ,

where here for every given t ∈ Bm(Fv), t1, t2 are nodes such that t = t1 · t2 and d
+
ub(t1) ≥ d+ub(t2),

or t = t2 · t1 and d
+
ub(t2) < d+ub(t1).

Finally, let [F] be the circuit with output node [Fu], where u is the output node of F . (Recall
also that if F is a sum of two or more syntactic-homogeneous circuits Fj then [F] is defined as the

sum
∑d

j=0[Fj], where this sum is written as a depthO(log d) circuit.)

By construction, the algorithm computes the correct output: the fact that [F] has the correct
depth stems from the construction as explained in the overview of the balancing algorithm above

(see also [VSBR83, RY08, HT15]). The fact that [F] has the correct size stems from the fact that the

algorithm isΣB
1 -definable inVNC

2. The fact that [F] computes F̂ is shownbelowby constructing

in VNC
2 a Pc(Z)-proof of F = [F] for a syntactic homogeneous circuit F (this stems from

Lemma 10.13; see again [VSBR83, RY08, HT15]).

As mentioned in Section 1.1, given an algebraic circuit F with d+ub(u) polynomially bounded,

for all nodes u in F , by first balancing and then evaluating the circuit (assuming, e.g., it is over the

integers, as in the next section)we obtain anNC
2 evaluation procedure for algebraic circuits of any

depth (given as input an upper bound on their syntactic-degree in unary and assuming the syntactic

degree d+ub of the circuit is polynomial). The obtained algorithm is different from the previously

known algorithm byMiller et al. [MRK88] (their algorithm does not require the syntactic-degree as

input) and from that of Allender et al. [AJMV98] (which is implicit in that work but can be extracted

from their text [All18]).

71

10.5 Balancing Proofs inVNC
2

For balancing Pc(Z)-proofswe need to show the proof-theoretic counterpart of the balancing algo-

rithm described above for circuits. This is similar to the proof-theoretic counterpart of the homog-

enization theorem shown in Section 5. We start by showing some properties of the constructions

of the base cases of the balancing algorithm described in Lemmas 10.4 and 10.6 that VNC
2 can

prove.

Lemma 10.11 (inVNC
2). (i) Let F be a circuit with no product gates and no scalars (and no divi-

sion gates). Assume that v = v1 + v2 is a node in F such that d+ub(v) ≤ 1. Then, there exists a
Pc(Z)-proof of [Fv] = [Fv1] + [Fv2].

(ii) Let F be a circuit with no scalars and syntactic-degree d, and a pair of nodes w, v in F , such that
w is in Fv and 0 ≤ d+ub(v)− d+ub(w) ≤ 1. Then, there is a Pc(Z)-proof of

[∂wFv] = [∂wFv1] + [∂wFv2], in case v = v1 + v2; (65)

[∂wFv] = [∂wFv1] · [Fv2], in case v = v1 · v2 and d
+
ub(v1) ≥ d+ub(v2)

or v = v2 · v1 and d
+
ub(v1) > d+ub(v2). (66)

Proof. Part (i). Consider Lemma 10.4. The circuit [Fv] is constructed according to this lemma by

first computing the integer coefficients of each of the input variables in the linear form computed

by Fv . It thus suffices to prove (inVNC
2) that for every input variable xi in Fv , the coefficient of

xi in Fv equals the sum of the coefficients of xi in Fv1 , Fv2 . Assuming we can prove this, we can

directly construct the Pc(Z)-proof of [Fv] = [Fv1] + [Fv2].
We use a result from Cook and Fontes [CF12], stating that the theory V#Lwhich is contained

in VNC
2, ΣB

1 -defines the string function PowSeqZ(n, s, A). This string function receives an

n× n integer matrixA and outputs a string coding the sequence of powers ofA: (A,A2, . . . , As).
Let F ′

v1
:= Fv1 ∪ {(v1, r)} and F

′
v2

:= Fv2 ∪ {(v2, r)}. That is, F
′
v1
is the (non-legit) circuit

Fv1 to which we add the directed edge from v1 to the output node r in Fv , and similarly F ′
v2
, so

that Fv = F ′
v1

∪ F ′
v2
. Assume that Av, Av1 , Av2 are the 0-1 adjacency matrices of the circuits

Fv, F
′
v1
, F ′

v2
, respectively, where the dimensions of all the matrices all equal s, the number of nodes

in Fv and the (u, w)th entry in all three matrices corresponds to a directed edge from node u
to node w. Using the number ΣB

0 -induction on the power i = 1, . . . , s, and using the strings

(Av, A
2
v, . . . , A

s
v), (Av1 , A

2
v1
, . . . , As

v1
), (Av2 , A

2
v2
, . . . , As

v2
), we argue that for every input node u

in Fv

Ai
v[u, r] = Ai

v1
[u, r] + Ai

v2
[u, r] ,

whereA[u, r] denotes the (u, r)th entry of the matrixA, and as before r is the output node of Fv .

Part (ii). Here we use the construction in Lemma 10.6.

Case 1: v = v1 + v2. According to Lemma 10.6, [∂wFv] is defined as the sum
∑

u∈U F̂su , where

U is the set of all product gates u = tu · su in Fv such that Ftu has (without loss of generality) in its

scopew, and where we construct eachFsu in the sum using Lemma 10.4, similar to part (i). Similar

to part (i) we proceed by the number ΣB
0 -induction on i = 1, . . . , s, where s is the size of Fv to

prove

Ai
v[u, r] =

∑

u∈U

Ai
su
[u, r] .

72

Case 2: v = v1 · v2. This is similar to case 1. According to Lemma 10.6 and using the terminology

of case 1 above, [∂wFv] is defined as the sum
∑

u∈U F̂su . Only that by assumption, the only product

gate that has w is in its scope must be v itself (because there can be no two nested product gates

withw in their scope by assumption d+ub(v)−d
+
ub(w) ≤ 1). Assume without loss of generality that

v1 hasw in its scope. Then, v2 does not havew in its scope (by assumption on degree, as explained

in the proof of Lemma 10.6). Thus, [∂wFv] =
∑

u∈U F̂su = F̂v2 = 1 · [Fv2] = [∂wFv1] · [Fv2].

Recall that the length number function ⌈log2(n)⌉ is a Σ
B
1 -definable function in V

0 [CN10].

The following is the main theorem of this section:

Theorem10.12 (BalancingPc(Z)-proofs inVNC
2). LetF,G be twoΣB

1 -definable algebraic circuits

over Z and assume that there is a Pc(Z)-proof of F = G of size s which is ΣB
1 -definable in VNC

2,

in which every circuit is a sum of syntactic homogeneous circuits with every node u appearing with its

syntactic-degree upper bound d+ub(u) ≤ d. Then, the Pc(Z)-proof of [F] = [G] is ΣB
1 -definable in

VNC
2 and the depth of every circuit in the proof is O(log s · log d).

Theorem 10.12 will be proved analogously to Theorem 5.4: the proof is similar to the proof

of Theorem 5.4, only that instead of using Lemma 5.6 we use the analogous Lemma 10.13 below

demonstrating some essential properties of [F] that have short Pc(Z)-proofs.

Lemma 10.13. LetF1, F2 beΣ
B
1 -definable circuits inVNC

2 each with size at most s, written as a sum
of syntactic homogeneous circuits and with every node u appearing with its syntactic-degree upper bound
d+ub(u) ≤ d. Then, the following equations haveΣB

1 -definable inVNC
2 proofs:

[F1 ⊕ F2] = [F1] + [F2] , (67)

[F1 ⊗ F2] = [F1] · [F2] , (68)

andVNC
2 proves that the size of proofs is poly(s, d) and the depth of every circuit in the proof isO(log d·

log s). Furthermore, [z] = z has a constant-size proof whenever z is a variable or an integer.

We first prove Lemma 10.13 and then Theorem 10.12.

Proof of Lemma 10.13. The proof is similar to Lemma 4.4 in [HT15], except that we use d+ub(·) in-
stead of syntactic-degrees d(·) and that we construct the Pc(Z)-proof in FNC

2 instead of by in-

duction on the structure of F (which would have necessitate usingΣB
1 -induction).

The statement concerning [z] = z is clear: if z is an integer, [z] and z are the same circuit. If z
is a variable, [z] is the circuit 1 · z.

We need to construct proofs of equations (67) and (68).

Letm(s, d) and r(s, d) be functions such that for any circuit F with d+ub(F) = d and size s,
[F] has depth at most r(s, d) and size at mostm(s, d). By construction of the balancing algorithm
and the remarks that follow it, we can choose

m(s, d) = poly(s, d) and r(s, d) = O(log d · log s).

Notation: In the following, [Fv] and [∂wFv]will denote circuits: [Fv] and [∂wFv] are the subcircuits
of [F] with output nodes [Fv] and [∂wFv], respectively; the defining relations between the nodes

of [F] (see the definition of [F] above) translate to equalities between the corresponding circuits.

73

For example, if v andm are as in part (a) Case 2, of the definition of [F], then, using just the axioms

C1 and C2, we can prove

[Fv] =
∑

t∈Bm(Fv)

[∂tFv] · [Ft1] · [Ft2] . (69)

Here, the left hand side is understood as the circuit [Fv] in which [∂tFv], [Ft1], [Ft2] appear as sub-
circuits, and so can share common nodes, while on the right hand side the circuits have disjoint nodes.

Also, note that if F has size s and degree d, the proof of (69) has sizeO(s2m(s, d)) and has depth
O(r(s, d)). We shall use these kind of identities in the current proof.

Let λ(s, i) be a function such that

λ(s, 0) = O(s4) and λ(s, i) ≤ O(s4 ·m(s, d)) + λ(s, i− 1). (70)

Recurrence (70) implies λ(s, d) = poly(s, d).
The following proposition (which is a constructive version of Proposition 4.10 in [HT15])

shows how to construct the desired Pc(Z)-proofs of (67) and (68) when F is either F1 ⊕ F2 or

F1 ⊗ F2 (and v is the root of F), and where F1 ⊕ F2 and F1 ⊗ F2 are each a single syntactic ho-

mogeneous circuit, and not a sum of syntactic homogeneous circuits. To see that this suffices for

the general case of (67) and (68), note first that in fact F1 ⊗ F2 cannot be a sum of more than one

syntactic homogeneous circuits because the gate at its root is a product gate. Second, if F1 ⊕ F2

is a sum of two or more syntactic homogeneous circuits Fj written as
∑

j Fj , then we can assume

without loss of generality that F1 is a syntactic homogeneous circuit and F2 =
∑

j Fj is a sum of

one or more syntactic homogeneous circuits. Hence, F1⊕F2 = F1 +
∑

j Fj and by the definition

of the balancing algorithm [F1 ⊕ F2] = [F1] +
∑

j[Fj] = [F1] + [F2] and we are done.

Proposition 10.14. Let F be a syntactically homogenous circuit with all nodes v having their syntactic
degree upper bound d+ub(v) ≤ d given, and assume that F is of size s and is ΣB

1 -definable in VNC
2.

Then, for every i = 0, . . . , ⌈log d⌉ there exists aΣB
1 -definable inVNC

2
Pc(Z) proof-sequence Ψi of

size at most λ(s, i) and depth at most O(r(s, d)), such that:

Part (a): For every node v ∈ F with

d+ub(v) ≤ 2i, (71)

Ψi contains the following equations:

[Fv] = [Fv1] + [Fv2] , in case v = v1 + v2, and (72)

[Fv] = [Fv1] · [Fv2] , in case v = v1 · v2. (73)

Part (b): For every pair of nodes w 6= v ∈ F , where w ∈ Fv , and with

d+ub(v)− d+ub(w) ≤ 2i and (74)

2d+ub(w) > d+ub(v), (75)

Ψi contains the following equations:

[∂wFv] = [∂wFv1] + [∂wFv2], in case v = v1 + v2; (76)

[∂wFv] = [∂wFv1] · [Fv2], in case v = v1 · v2 and d
+
ub(v1) ≥ d+ub(v2)

or v = v2 · v1 and d
+
ub(v1) > d+ub(v2). (77)

74

Proof. Similar to previous constructions the idea is to construct all parts of the Pc(Z)-proof simul-
taneously inVNC

2. This is done in an analogous manner to the balancing algorithm above.

Step i = 0. We need to devise the proof sequenceΨ0.

Part (a): proof of (72). Let d+ub(v) ≤ 20. By definition, [Fv] =
∑n

i=1 aixi + b, where ai’s are
integers and b is a sum of constant integers. Further, by construction [Fv] does not contain product
gates and thus v = v1 + v2, and we need to prove only (72). This stems from Lemma 10.11 part (i).

Part (b): proof of (76) and (77). Similarly to part (a) above, this follows from Lemma 10.11 part

(ii).

Overall,Ψ0 will be the union of all the above proofs, so thatΨ0 contains all equations (72) (for

all nodes v satisfying (71)), and all equations (76) and (77) (for all nodes v, w satisfying (74) and (75)).

The proof sequenceΨ0 has size λ(s, 0) = O(s4) and has depthO(log s).

Step i+ 1: We wish to construct the proof-sequenceΨi+1.

Part (a): proof of (72) and (73). Let v be any node in F such that

2i < d+ub(v) ≤ 2i+1.

Case 1: Assume that v = v1 + v2. We show how to construct the proof of [Fv] = [Fv1] + [Fv2].
Letm = 2i. From the construction of [·] we have:

[Fv] = [Fv1+v2] =
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂t(Fv1+v2)] . (78)

Since d+ub(v1) = d+ub(v2) = d+ub(v), we also have

[Fve] =
∑

t∈Bm(Fve)

[Ft1] · [Ft2] · [∂t(Fve)], for e ∈ {1, 2} . (79)

If t ∈ Bm(Fv) then d
+
ub(t) > m = 2i. Therefore, for any t ∈ Bm(Fv), since d

+
ub(v) ≤ 2i+1,

we have d+ub(v)− d+ub(t) < 2i and 2d+ub(t) > d+ub(v) and t 6= v (since t is a product gate). Thus, by
construction, the proof-sequenceΨi contains, for any t ∈ Bm(Fv), the equations

[∂t(Fv1+v2)] = [∂tFv1] + [∂tFv2],

and we can compute the positions of these proof-lines in the string encoding of Ψi (using some

natural encoding). Therefore, pointing to these proof-lines inΨi as premises, we construct aPc(Z)-
proof that (78) equals:

∑

t∈Bm(Fv)

[Ft1] · [Ft2] · ([∂tFv1] + [∂tFv2])

=
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv1] +
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv2].
(80)

If t ∈ Bm(Fv) and t 6∈ Fv1 then [∂tFv1] = 0. Similarly, if t ∈ Bm(Fv) and t 6∈ Fv2 then

[∂tFv2] = 0. Hence we can prove
∑

t∈Bm(Fv)

[∂tFve] =
∑

t∈Bm(Fve)

[∂tFve], for e = 1, 2. (81)

75

Thus, using (79) we have that (80) equals:
∑

t∈Bm(Fv1)

[Ft1] · [Ft2] · [∂tFv1] +
∑

t∈Bm(Fv2)

[Ft1] · [Ft2] · [∂tFv2]

= [Fv1] + [Fv2].

(82)

The above proof of (82) fromΨi has sizeO(s
2 ·m(s, d)) and depthO(r(s, d)).

The proof of Case 2 where v = v1 · v2, and the proofs of Part (b) for equations (76) and (77) are
similar to Case 1 above, and are identical to those cases in [HT15, proof of Proposition 4.10]; like

Case 1, the difference from [HT15] is that we construct with an FNC
2 procedure all the Pc(Z)-

proofsΨi together, for every i = 0, . . . , ⌈log d⌉, where inΨi+1 we point to proof-lines that appear

inΨi (whose position can be computed using a natural encoding scheme for proof-lines).

This concludes the proof of Proposition 10.14.

Hence we also concluded Lemma 10.13.

Proof of Theorem 10.12. We assumed that π is aΣB
1 -definable inVNC

2
Pc(Z)-proof of F = G of

syntactic-degree at most d and size s, in which every circuit is a sum of syntactic homogeneous cir-

cuits with every node appearing with its d+ub value. Simultaneously for each proof-line F1 = F2 in

πwe are going to construct a (part of a)Pc(Z)-proof of [F1] = [F2] using pointers to previous lines
(the pointers areΣB

1 -definable number functions inVNC
2). This resembles the proof structure of

Theorem 5.4. We can use the balancing algorithm on F1, F2 because by assumption these circuits

are given as a sum of syntactic homogeneous circuits with all nodes appearing together with their

associated syntactic-degree upper bound d+ub.

Case 1: F = H is an axiomofPc(Z). Then, [F] = [H] has aΣB
1 -definablePc(Z)-proof inVNC

2

as follows. The axiom A1 is immediate and the axiom A10 follows from the fact that [F] = F̂ , for
F = c, c ∈ Z. The rest of the axioms are an application of Lemma 10.13, as follows. Axioms C1

and C2 are already the statement of Lemma 10.13. For the other axioms, consider for example

F1 · (G1 +G2) = F1 ·G1 + F1 ·G2 .

We need to show that the following has aΣB
1 -definable Pc(Z)-proof:

[F1 · (G1 +G2)] = [F1 ·G1 + F1 ·G2] .

Since we assume that all proof-lines are written as sums of syntactic homogeneous circuits with all

nodes having their syntactic-degree upper bounds specified, F1 · (G1 +G2) and F1 ·G1 +F1 ·G2

are written as such circuits and hence F1, G1, G2 andG1 +G2 must also be sums of one or more

syntactic homogeneous circuits. Therefore, by Lemma 10.13 we have aΣB
1 -definablePc(Z)-proof

of:

[F1 · (G1 +G2)] = [F1] · [G1 +G2] = [F1] · ([G1] + [G2]) = [F1] · [G1] + [F1] · [G2] .

Lemma 10.13 gives again:

[F1] · [G1] + [F1] · [G2] = [F1 ·G1] + [F1 ·G2] = [F1 ·G1 + F1 ·G2].

Case 2: An application of rules R1, R2 translates to an application of R1, R2. For the rules R3 and

R4, it is sufficient to show the following: if π uses the rule

F1 = F2 G1 = G2

F1 ◦G1 = F2 ◦G2

, ◦ ∈ {·,+},

76

then by Lemma 10.13 and the assumption that F1, F2, G1, G2 and F1 ◦F2, G1 ◦G2 are all written

as sums of syntactic homogeneous circuits, from the equations [F1] = [G1] and [F2] = [G2] there
is a proof of [F1 ◦G1] = [F2 ◦G2].

Altogether, we obtain aΣB
1 -definable proof of [F] = [G].

We can now finally obtain the balanced Pc(Z)-proofs of the determinant identities inVNC
2.

Denote by Detbalanced the circuit obtained by applying the balancing algorithm on Det⋆Taylor(X).
That is,

Detbalanced(X) := [Det⋆Taylor(X)]. (83)

Corollary 10.15. LetX, Y be n×n symbolic matrices andU = {uij}i,j∈[n] be aΣ
B
1 -definable inV

0

triangular n×nmatrix in the variables xij for i, j ∈ [n] with no division gates. Then, the Pc(Z)-proofs
of the following determinant identities

Detbalanced(X) · Detbalanced(Y) = Detbalanced(XY) and (84)

Detbalanced(U) = u11 · · · unn (85)

areΣB
1 -definable inVNC

2. Moreover, in these proofs every circuit has depth O(log2 n).

Proof. By Corollary 10.9 the proofs of Det⋆Taylor(X) · Det⋆Taylor(Y) = Det⋆Taylor(XY) and

Det⋆Taylor(U) = u11 · · · unn are Σ
B
1 -definable in V

0, and every circuit in these proofs is a

sum of syntactic homogeneous circuits in which every node u appears with its syntactic-degree

upper bound d+ub(u) ≤ 2n. Applying Theorem 10.12 on these Pc(Z)-proofs we obtain a

Σ
B
1 -definable in VNC

2
Pc(Z)-proofs of [Det

⋆
Taylor(X) · Det⋆Taylor(Y)] = [Det⋆Taylor(XY)]

and [Det⋆Taylor(U)] = [u11 · · · unn]. Using Lemma 10.13 and the definition of Detbalanced(X)
we obtain a proof of [Det⋆Taylor(X) · Det⋆Taylor(Y)] = [Det⋆Taylor(X)] · [Det⋆Taylor(Y)] =
Detbalanced(X) · Detbalanced(Y) = Detbalanced(XY).

11 Reflection Principle andWrapping Up

Here we conclude the proofs of the determinant identities in the theory by proving and applying

the reflection principle for Pc(Z)-proofs inVNC
2.

11.1 AlgebraicNC
2-Circuit Value Problem

We show that there is aΣB
1 -definable inVNC

2 algorithm that receives an algebraic circuit overZ

with n input variables that is balanced according to the balancing algorithm in Section 10 together

with an assignment of integers to the variables written as an array of binary strings, and outputs

the value of the circuit under the assignment. We use the fact that the balancing algorithm we

provided in Section 10 results in fact in O(log n) depth algebraic circuits in which plus gates can

be considered to be unbounded fan-in and product gates have fan-in two (see Fact 11.1).

The algorithm proceeds as follows: i) convert the input balanced algebraic circuit into a bal-

anced Boolean circuit computing the same polynomial, where integers are written as binary strings

and the Boolean circuit is multi-output, that is, has more than one output gate, one for each bit of

the computed integer; ii) layer the circuit; iii) evaluate the balanced layered Boolean circuit using

the evaluation function for such circuits.

77

Step (i): From balanced algebraic circuits to balanced Boolean circuits. We show how to

transform a balanced polynomial-size algebraic circuit as was constructed in Section 10.4 into a

polynomial-sizeO(log2 n)-depth Boolean circuit with aΣB
1 -definableVNC

2 algorithm. We use

the following two facts:

Fact 11.1 (Observed by Vinay [Vin91]). Given an algebraic circuit of poly(n)-size and poly(n)-
degree, our algorithm in Section 10.4 (and the original [VSBR83] algorithm) that balances the circuit into

O(log2 n)-depth, in fact balances the circuit intoO(log n)-depth circuit except that the plus gates have
unbounded fan-in (and product remains of fan-in two).

Westress that all our circuitswhether algebraic orBoolean, formally have fan-in two gates. How-

ever, the outputs of the balancing algorithm in Section 10.4 can be considered as having O(log n)
depthwith unbounded fan-in plus gates and fan-in two product gates. In otherwords, our balanced

algebraic circuits are fan-in two circuits that result from O(log n)-depth circuits with fan-in two

product gates and unbounded fan-in plus gates by turning each iterated plus gates u1 + · · · + um
into a tree of logarithmic inm depth with fan-in two plus gate and u1, . . . , um on the leaves. We

say that such fan-in two balanced algebraic circuits are implicitly an O(log n)-depth circuit with
unbounded fan-in plus gates and fan-in two product gates. We can assume further that the balanc-

ing algorithm in Section 10.4 outputs circuits with all the the iterated plus gates also specified as

such, hence we will be able to convert the circuit into a balanced Boolean circuit in the algorithm

that follows.

Fact 11.2. The Boolean (multi-valued) function denoted ItAddfunc computing the iterated addition of (two

or more) integers written in binary is in FO-uniform FTC
0 (see [CN10, IX.3.6.1]). The Boolean (multi-

valued) function StringMult computing the product of two integers written in binary is in FO-uniform

FTC
0 (see [CN10, IX.3.6]). Both of these are ΣB

1 -definable in V TC
0 (and hence also inVNC

2), the

theory that corresponds to TC
0, as shown in [CN10, IX.3.6].

By Fact 11.2 both plus gates of unbounded fan-in (equivalently, iterated addition) and product

gates of fan-in two are computable in FTC
0 (⊆ FNC

1), and hence both have O(log n)-depth
fan-in two Boolean circuits of polynomial-size with ∧,∨,¬ gates only (where n is the input size,

namely total size of all numbers written in binary). Denote by ItAddcirc the corresponding Boolean

circuit of iterated addition ItAddfunc (see Section 11.2).

By Fact 11.1 an implicitO(log n)-depth algebraic circuit of poly(n) size with unbounded fan-
in plus gates and fan-in two product gates can be simulated by fan-in two O(log2(nm))-depth
Boolean circuits of poly(n,m) size, assuming the inputs to the circuit are written in binary, each

withm number of bits. Accordingly, we have the following:

Σ
B
1 -definable function inVNC

2 for transforming balanced algebraic circuits intoBoolean circuits

Input: A fan-in two algebraic circuit C of size s, syntactic-degree d and depth O(log s log d)
which is implicitly an O(log d)-depth circuit with unbounded fan-in plus gates and fan-in

two product gates, together with a numberm (given in unary) for the bit-length of integers.

Output: A multi-output fan-in two Boolean circuit of depth O(log d · log(sm)) and size

poly(s, d,m) that computes the same polynomial as the input circuit.

Algorithm

78

1. If S = D1 + · · · + Dr (for some r ≤ s) is an iterated sum in C written as a fan-in two

circuit then replace it with a polynomial-size fan-in two and depth O(log(rm)) Boolean
circuit computing the corresponding iterated sum of integers.

Note that we can assume that each iterated sum in C is already marked as such (namely,

as part of the specified iterated sum), during the algorithm for balancing in Section 10.4.

Moreover, notice that in the balancing algorithm an iterated sum like S is written as a tree

with leavesDi’s, namely no+ gate in S is re-used in the circuit.

2. Every fan-in two product gate is replaced by a polynomial-size, fan-in two and depth

O(logm) Boolean circuit computing the corresponding product of two integers.

The algorithm is a straightforward node-by-node transformation of the algebraic circuit and

is doable inFNC
2 and henceΣB

1 -definable inVNC
2.

This resulting Boolean circuit is encoded in the same way that algebraic circuits are encoded;

namely, via the encoding scheme in Section 3.1.1 (with the obvious modifications: instead of des-

ignating+, · we designate ∧,∨,¬).

Step (ii): Layering Boolean circuits. For the evaluation of Boolean circuits in the theory we need

to have circuits that are layered, namely in which every node belongs to a single layer i, and nodes
in layer imay only go to nodes in layer i+1. While in Section 2.4 the circuits weremonotone, here

they are not necessarily monotone. The encoding of layered Boolean circuits is done similar to

Section 2.4: a layered Boolean circuit with d+1 layers 0, . . . , d is encoded with a string variable I ,
with |I| ≤ n, which defines the (Boolean) input gates to the circuit. We have a three-dimensional

string variable G such that for 0 ≤ x ≤ d, G(x, y, 0) holds if the yth gate in layer x is ∧, and
G(x, y, 1) holds if the gate is ∨ and G(x, y, 2) holds if the gate is ¬; this is the only difference

between the encoding of non-monotone circuits and monotone circuits (where the latter hadG as

a two-dimensional array). Accordingly, the wires of C are encoded by a three-dimensional array

E such that E(z, x, y) holds iff the output of gate x on layer z is connected to the input of gate y
on layer z + 1.

We can convert with aΣB
1 -definable inVNC

2 algorithm anyO(log2 n)-depth Boolean circuit
(with multi-output gates) from Step (i) above into a layered Boolean circuit, as follows.

FNC
2-algorithm for layering balanced Boolean circuits

Input: A multi-output Boolean circuit F of depth d = c log2 n, for some constant c (encoded as
in Section 3.1.1).

Output: A layered multi-output Boolean circuit F ′ computing the same function as F with d lay-
ers.

Algorithm

1. LetA be the s× s 0-1 adjacency matrix of F where s is the number of nodes in F , and the
(u, w)th entry in A, denoted A[u, w], is 1 iff there is a directed edge from node u to node

w in F . Note that A is a ΣB
1 -definable in V

0 function of F . Using the ΣB
1 -definable in

VNC
2 string function PowSeqZ(n, s, A) (as in Section 10) that receives as input an n× n

integer matrixA and outputs a string coding the sequence (A,A2, . . . , As) of powers ofA,

79

we find the maximal length of a directed path from each of the internal gates in F to each

of the output gates in F : note thatAi[u, v] is the number of distinct directed paths of length

precisely i from u to v. Hence, the longest path from any given output gate r to u is the

maximal iwithAi[u, r] 6= 0. (Observe thatAi[u, r] only includes paths of length precisely i
and not paths of length smaller than i.)

2. Let F ′ be the circuit F in which for every node u ∈ V , for V the set of nodes of F , we
change u into the pair (u, d− ℓ), where ℓ is the maximal length of a directed path from u to
an output node in F (the maximum over all output nodes). The number d − ℓ will serve as
the layer of (u, d− ℓ) in F ′.

3. We now add dummy edges and nodes “1 · u” to F ′, to force every node in F ′ to have edges

directed only to subsequent layers. Specifically, we scan the nodes of F ′ from layer 0 to the

top d = c log2 n layer, and for each node (u, k) that is connected with a directed edge e to
node (v, j), for j > k + 1, we discard e and add two new nodes and three new edges as

follows. Assuming that (v, j) = (u, k) ◦ w, for ◦ ∈ {+, ·}, let (v, j) = ((u, k) · 1) ◦ w,
where the new node 1 is on layer k, the new node · is on layer k + 1 and two new edges are

added from (u, k) to · and from 1 to ·, and a third edge is added from · to (v, j). After this
the node (u, k) has a directed edge only to nodes in layer k + 1. Doing this sequentially for
all c log2 n layers we end up with a layered circuit F ′.

Step (iii): Evaluating Layered Boolean circuits. As described in Section 2.4, by definition the

theoryVNC
2 proves the existence of the evaluation string ofO(log2 n)depth monotone Boolean

circuits under an assignment to its inputs (as in (6)). In order to prove the reflection principle in

Section 11.2 below it ismore convenient toworkwith evaluation functions for circuits that are not-

necessarily monotone. It is possible to show thatVNC
2 proves the existence of evaluation strings

not only for balanced monotone circuits but also for balanced non-monotone circuits. However,

for our purpose it suffices to simply use the fact that the evaluation of (non-monotone) Boolean

circuits of depth O(log2 n) is in FNC
2 and hence by Theorem 2.7 the following function isΣB

1 -

definable in VNC
2: denote by Evalbool(F,A) the string function that receives a layered Boolean

circuitF possiblywithmore than one output gate, and an assignmentA to its variables, and returns

the string consisting of the output bits of f underA.
We can now define the function Evalalg(F,A) that receives the string variable F encoding an

algebraic circuit over the integers of depth O(log n), fan-in two product gates and unbounded

fan-in plus gates, together with an assignment of integers to the variables of F written as a two-

dimensional array A, and outputs the binary string representing the value of the algebraic circuit
F under the assignmentA.

We define Evalalg(F,A) in the theory so that it first constructs the corresponding lay-

ered Boolean circuit of depth O(log2 n) denoted B(F) and then evaluates it under A using

Evalbool(F,A) (remember thatA is a two-dimensional array of bit-strings representing a sequence

of integers hence the input to the former and latter function is the same). By Steps (i), (ii) and the

above discussion Evalalg is aΣ
B
1 -definable string function inVNC

2.

11.2 Proving the Reflection Principle for Pc(Z)

Now that we know how toΣB
1 -define inVNC

2 the evaluation of balanced algebraic circuits, we

show the following reflection principle for Pc(Z) in which circuits have logarithmic depth, fan-in

80

two product gates and essentially unbounded fan-in plus gates:

Theorem 11.3 (Balanced Pc(Z) reflection principle inVNC
2). Assume that the Pc(Z)-proof of the

circuit equation F = G is ΣB
1 -definable in VNC

2, and that F,G has n variables. Further, suppose

that every circuit in the Pc(Z)-proof is a fan-in two balanced algebraic circuit C which is implicitly a

O(log n)-depth circuit with unbounded fan-in plus gates and fan-in two product gates. Then VNC
2

proves that ∀n∀m∀A (Evalalg(F,A) = Evalalg(G,A)), where the assignment A is a two-dimensional

array of n integers withm bit-length each.

Before proving this theorem we provide a more general setting under which reflection prin-

ciples for unbounded depth Pc(Z)-proofs hold. This general setting may find other applications in

bounded arithmetic. Note that while in Theorem 11.3 we start with a balanced Pc(Z)-proof and
thus can evaluate every proof-line directly with the evaluation function Evalalg(F,A), in the corol-
lary below we start with an unbalanced Pc(Z)-proof.

Corollary 11.4 (Generalized Pc(Z) reflection principle in VNC
2). (i) Assume

that the Pc(Z)-proof of {Fn = Gn}
∞
n=1 is Σ

B
1 -definable in VNC

2, and suppose

that d+ub(Fn) = poly(n) and d+ub(Gn) = poly(n). Then, VNC
2 proves that

∀n∀m∀d∀A
(
Evalalg

(∑d

i=0 Fn
(i), A

)
= Evalalg

(∑d

i=0Gn
(i), A

))
. (ii) Suppose further that

every node in the Pc(Z)-proofs of {Fn = Gn}
∞
n=1 appears with a syntactic-degree d+ub wit-

ness18, where the syntactic-degree d+ub of Fn, Gn is at most poly(n). Then, VNC
2 proves that

∀n∀m∀A (Evalalg(Fn, A) = Evalalg(Gn, A)).

Proof. Part (i): first homogenize the Pc(Z)-proof using Theorem 5.4, from which we get ΣB
1 -

definable inVNC
2
Pc(Z)-proofs of Fn

(i) = Gn
(i), for all natural n ≥ 1. This leads immediately

to Pc(Z)-proofs of
∑d

i=0 Fn
(i) =

∑d

i=0Gn
(i), for all natural n ≥ 1 and all natural d ≥ 0, where

every circuit in the Pc(Z)-proofs appear as a sum of homogeneous components, and every node

appears with its syntactic-degree upper bound d+ub at most poly(n). Using Theorem 10.12 we bal-

ance these proofs so that every proof-line is of depth O(log n) with unbounded fan-in plus gates

and fan-in two product gates. Using Theorem 11.3 above we are done.

Part (ii): This follows the same proof as part (i), only that due to the precise syntactic-degrees

d+ub for each node we can conclude also that Fn =
∑d

i=0 F
(i) and Gn =

∑d

i=0G
(i), for some

d = poly(n) (see Remark 5.5 on the need to use syntactic-degrees for this purpose.)

Proof of Theorem 11.3. The proof proceeds by number induction (Proposition 2.2) on the number of

proof-lines in π, using Lemma 11.5 below.

Since the evaluation function Evalalg is Σ
B
1 -definable in VNC

2 we can use this function

in the number induction axiom (see Section 2.5). Specifically, let π be the Pc(Z)-proof of
F = G and consider the Σ

B
0 -formula (using the function symbol Evalalg) Q(n) := ∀i ≤

n
(
Evalalg

(
left
(
π[i]
)
, A
)
= Evalalg

(
right

(
π[i]
)
, A
))
, where left(π[i]) and right(π[i]) are the left

(resp. right) hand side circuits in the ith proof-line in π. Then, the induction states that assuming

the first line π[0] is true under an assignment A, namely, Q(0), and if Q(n) → Q(n + 1) is true,
namely if all proof-lines≤ n are true under an assignment A, then also the (n + 1)th line is true
under A (because it is either an axiom or was derived from previous lines). This concludes the

argument since we end up with the last proof-line F = G being true underA.

18Here we mean syntactic-degrees of nodes when considering also scalars as contributing to the syntactic-degree

of products, as was defined for d+
ub

(only that in d+
ub

we seek an upper bound and here we need a syntactic-degree).

81

It remains to prove each of the following cases: (1) Axioms of Pc(Z). We show that the eval-

uation of Pc(Z) axioms under integer assignments is universally true: ∀n∀m ≤ t(n)∀A ≤
c (Evalalg(F,A) = Evalalg(G,A)) when F = G is an axiom of Pc(Z). For example, F + 0 = F
holds for every integer assignment to the variables of F . (2) The rules of Pc(Z) are sound under

integer assignments. This is proved in Lemma 11.5 below.

To prove Lemma 11.5 wewill use the following notation and facts. For two binary stringsA,B
denote byA+bB the binary addition ofA andB (which is aΣB

1 -definable function inV
0 using the

usual carry-save addition). For an algebraic circuitF recall thatB(F) denotes the layered Boolean
circuit that is constructed by the evaluation function Evalalg(F,A) as described above in steps (i)

and (ii) (B(F) is independent of the assignment A). By definition Evalalg(F,A) first constructs
B(F) and then uses Evalbool(B(F), A) to evaluateB(F) underA.

Given n binary stringsD1, . . . , Dn of lengthm each, encoded as a two-dimensional arrayD,

ItAddfunc(D,n,m) is theΣB
1 -definable string function inVNC

2 that computes the iterated addi-

tion of theDi’s, and ItAddcirc(D,n,m) is the corresponding layeredO(log n)-depth multi-output

Boolean circuit that computes this function.

We shall assume that ItAddfunc is defined inVNC
2 using the evaluation of the Boolean circuit

for iterated addition ItAddcirc as follows. Let Z be a string variable, then ItAddfunc(D,n,m) is
defined by:

ItAddfunc(D,n,m) := Evalbool(ItAddcirc(Z, n,m), D). (86)

By the same argument as in [CN10, Section IX.3.6.2 (cf. equation (251))], V TC
0 (and hence

alsoVNC
2) proves that

ItAddfunc(D, 0,m) = ∅ and (87)

ItAddfunc(D,n,m) = ItAddfunc(D,n− 1,m) +b Dn , (88)

withDn denoting the nth number inD (that is,D[n]), and ∅ the empty string.

Lemma 11.5 (Soundness of Pc(Z) rules and axioms). Let F1, F2, G1, G2, F,G be O(log n)-depth
circuits with unbounded fan-in plus gates and fan-in two product gates, and let A be an assignment

of integers to their input variables. (i) If Evalalg(F1, A) = Evalalg(G1, A) and Evalalg(F2, A) =
Evalalg(G2, A) then Evalalg(F1 ◦ F2, A) = Evalalg(G1 ◦ G2, A), for ◦ ∈ {+,×}. (ii) If F = G
is an axiom of Pc(Z), then Evalalg(F,A) = Evalalg(G,A).

Proof. Part (i). Consider the rule in which F1 + F2 = G1 + G2 is derived from F1 = G1 and

F2 = G2. We need to prove that Evalalg(F1 + F2, A) = Evalalg(G1 + G2, A), assuming that

Evalalg(F1, A) = Evalalg(G1, A) and Evalalg(F2, A) = Evalalg(G2, A). (The rule for× is easier and

we omit the details.)

It is enough to show the following (and similarly forG1, G2):

Claim 11.6. Evalalg(F1, A) +b Evalalg(F2, A) = Evalalg(F1 + F2, A).

Having this lemma we are done, because from assumption Evalalg(F1, A) +b Evalalg(F2, A) =
Evalalg(G1, A) +b Evalalg(G2, A) (directly by equality axioms).

Proof of Claim 11.6. Consider the algebraic circuits F1, F2, G1, G2. Because algebraic circuits pos-

sess plus gates of fan-in two while in our translation to Boolean circuits we combine iterated ad-

ditions into a Boolean sub-circuit that computes this iterated addition of possibly more than two

numbers, we need to consider different cases based on the output gate of F1, F2, G1, G2.

82

Case 1: The output gates of both F1, F2 are not+. Thus, the layered Boolean circuit constructed

by Evalalg(F1 + F2, A) isB(F1 + F2) = ItAddcirc(B(F1), B(F2), 2,m), assuming the number of

bits ism and whereB(F1), B(F2) denotes the two-dimensional array with first stringB(F1) and
second string B(F2). Note that because F1, F2 have no plus gates at their output, the ItAddcirc at

the output (sub-circuit) inB(F1+F2) has only the two binary stringsB(F1), B(F2) added together
(this is simpler than Case 2 below). By definition Evalalg(F1 + F2, A) first constructs the layered
Boolean circuitB(F1 + F2) and then evaluates it underA using Evalbool(B(F1 + F2), A). Hence,
VNC

2 proves that

Evalalg(F1 + F2, A) = Evalbool

(
ItAddcirc

(
B(F1), B(F2), 2,m

)
, A
)

= ItAddfunc(Evalbool(B(F1), A),Evalbool(B(F2), A), 2,m) by (86)

= Evalbool(B(F1), A) +b Evalbool(B(F2), A) by (88)

= Evalalg(F1, A) +b Evalalg(F2, A) by definition of Evalalg.

Case 2: Both F1, F2 have+ output gates. That is, F1 = H1 + · · ·+Hr and F2 = K1 + · · ·+Kl,

where r, l ≥ 2. Let the number of bits be again m, then B(F1) = ItAddcirc(H1, . . . , Hr, r,m),
B(F2) = ItAddcirc(K1, . . . , Kl, l,m), andB(F1 + F2) = ItAddcirc(H1, . . . , Hr, K1, . . . , Kl, r +
l,m), where as before, for k strings D1, . . . , Dk we denote by D1, . . . , Dk the two-dimensional

array in which the ith string is Di. This is similar to Case 1 above, only that we need to show in

VNC
2 that

ItAddfunc(H1, . . . , Hr, r,m) +b ItAddfunc(K1, . . . , Kl, l,m)

= ItAddfunc(H1, . . . , Hr, K1, . . . , Kl, r + l,m).

Let Z be a string variable standing for a two-dimensional array of strings Z1, Z2, . . . , let
i, j, n,m be number variables, and define ItAdd•func(Z, i, j,m) to be the ΣB

1 -definable function

inVNC
2 that sums the binary numbers Zi + · · · + Zj , each of bit-lengthm (that is, ItAdd•func is

similar to ItAddfunc only that we start summing from Zi and not Z1).

Note that VNC
2 proves ItAdd•func(Z, 1, n,m) = ItAddfunc(Z, n,m) and

ItAdd•func(H1, . . . , Hr, K1, . . . , Kl, 1, r,m) = ItAddfunc(H1, . . . , Hr, r,m) and

ItAdd•func(H1, . . . , Hr, K1, . . . , Kl, r + 1, l + r,m) = ItAddfunc(K1, . . . , Kl, l,m). Hence,

it remains to prove:

ItAdd•func(H1, . . . , Hr, K1, . . . , Kl, 1, r,m)+bItAdd
•
func(H1, . . . , Hr, K1, . . . , Kl, r+1, l+r,m)

= ItAddfunc(H1, . . . , Hr, K1, . . . , Kl, r + l,m). (89)

Define the followingΣB
0 -formula (in the language LA ∪ {ItAddfunc,+b}):

ϕ(i, Z, n,m) := ItAdd•func(Z, 1, i,m) +b ItAdd
•
func(Z, i+ 1, n,m) = ItAddfunc(Z, n,m) .

To prove (89) it suffices to prove inVNC
2 ∀iϕ(i). We proceed by a number induction over

i using the formula ϕ(i, Z, n,m). The base case ϕ(0, Z, n,m) is ∅ +b ItAdd
•
func(Z, 1, n,m) =

ItAdd•func(Z, 1, n,m) = ItAddfunc(Z, n,m), and we are done. The induction step is proved using

(88) (which holds also for ItAdd•func):

ItAdd•func(Z, 1, i,m) +b ItAdd
•
func(Z, i+ 1, n,m)

= ItAdd•func(Z, 1, i,m) +b (Zi+1 +b ItAdd
•
func(Z, i+ 2, n,m))

= ItAdd•func(Z, 1, i+ 1,m) +b ItAdd
•
func(Z, i+ 2, n,m) .

83

Case 3: F1 has a plus output gate, while F2 does not, or vice versa. This is similar to the previous

cases.

Part (ii) is similar to part (i) and we omit the details. This concludes Lemma 11.5.

11.3 Wrapping Up

The Determinant Function DET inVNC
2. Given an n× n integer matrixA, the determinant

function DET(A) inVNC
2 is defined to first construct an O(log2 n)-depth algebraic circuit for

the determinant polynomial of a symbolic n× nmatrix, and then evaluate the circuit underA, as
was shown above. Recall that Detbalanced(X) is the circuit for the determinant defined in (83).

Definition 11.7 (Determinant functionDET inVNC
2). Given an integer matrixA, the determinant

inVNC
2 is defined as DET(A) := Evalalg(Detbalanced(X), A).

The fact that DET(A) computes the determinant function follows, for instance, fromTheorem

11.8 below. Since both the string functions Detbalanced(X) and Evalalg(F,A) areΣ
B
1 -definable in

VNC
2, DET isΣB

1 -definable inVNC
2.

Using the definition of DET, Theorem 11.3 and Corollary 10.15 we are finally in a position

to conclude the main theorem. LetMatZ(A, n,m) denote the predicate stating that A is an n ×
n integer matrix with integer entries encoded in binary with m bits, and triangMatZ(A, n,m)
means thatA is a lower or upper n× n triangular matrix with integers encoded in binary withm
bits, andA[i, j] is the (i, j)th integer entry ofA.

Theorem 11.8 (Main theorem). The following determinant identities are provable inVNC
2:

∀n∀m∀A∀B (MatZ(A, n,m) ∧MatZ(B, n,m) → DET(A) · DET(B) = DET(AB)) ,

∀n∀m∀A (triangMatZ(A, n,m) → DET(A) = A[1, 1] · · ·A[n, n]) .

Using the translation between bounded arithmetic theories and propositional proofs as shown

in [CN10] we can extend the result in [HT15] to work over the integers, and not only overGF (2):

Theorem 11.9. There are polynomial-size propositionalNC
2-Frege proofs of the determinant identities

over the integers.

In Theorem 11.9, NC
2-Frege proofs are defined as in [HT15], namely, as families of stan-

dard propositional (Frege) proofs with size poly(n), in which every proof-line is a circuit of depth
O(log2 n), and where we augment the system with rules for manipulating circuits similar to rules

C1, C2 inPc (it is also possible to characterize these proofs as restricted Extended Frege proofs). In-

tegers in these proofs are encoded by fixed length binary strings, that is sequences of propositional

variables (thus, for each different bit-length we have a different propositional proof).

12 Corollaries

Here we show some further theorems of linear algebra that can be proved inVNC
2, using similar

arguments as above. Specifically, we show that the Cayley-Hamilton theorem and the co-factor

84

expansion of the determinant are provable inVNC
2, as well as the hard matrix identities identified

by Soltys and Cook in [SC04].

The Cayley-Hamilton theorem states that for the (univariate) characteristic polynomial of a ma-

trixA in the variable z, defined as

pA(z) := det(zI − A),

it holds that pA(A) = 0, where pA(A) is a univariate polynomial in the matrix A, product is
interpreted as matrix product, and scalar multiplication of a matrix is interpreted as usual, and

where the right hand side 0 stands for the all zero matrix.

The characteristic polynomial pA(z) of a matrix is defined in the theory as follows: we intro-

duce aΣB
1 -definable string function p(A, n) that receives an n×n integer matrixA and outputs a

division freeO(log2 n)-depth algebraic circuit with n2 input variables and n2 output variables for

each entry of the output n × n matrix, where the coefficient of zi, for i = 0, . . . , n, is computed

(as a sub-circuit) by [
coeffzi

(
Det⋆Taylor(zIn − A)

)]
,

namely, the balanced circuit that extracts the (constant) coefficient of zi in the determinant polyno-

mial of zIn − A. Thus, overall the string function p(A, n) outputs the followingO(log2 n)-depth
algebraic circuit for the characteristic polynomial ofA:

p(A, n) :=
n∑

i=0

[
coeffzi

(
Det⋆Taylor(zIn − A)

)]
· [X i], (90)

where [X i] stands for the O(log2 n)-depth multi-output circuit of matrix powering [

i times︷ ︸︸ ︷
X · · ·X],

and the product · is the usual scalar product of a matrix, that is, for each i, the circuit[
coeffzi

(
Det⋆Taylor(zIn − A)

)]
multiplies each of the n2 output gates of [X i]. Denote by

p(A, n, i, j) the sub-circuit of p(A, n) that computes the (i, j) entry of the matrix computed by

p(A, n).

The Cayley-Hamilton theorem is expressed in the theory as follows:

∀n∀m∀A(MatZ(A, n,m) → ∀i ≤ n∀j ≤ nEvalalg(p(A, n, i, j), A) = 0) . (91)

Corollary 12.1. The Cayley-Hamilton theorem, expressed as in (91), is provable inVNC
2.

Proof of Corollary 12.1. This follows the same line of arguments demonstrated for the VNC
2-

proofs of the determinant identities. We first construct the simple Pc(Z)-proof of the Cayley-
Hamilton theorem shown in Proposition 9.4 in [HT15] which is based on the Pc(Z)-proof of the
multiplication of the determinant and then use the reflection principle as in Section 11. The only

difference is that we need to use part (3) in Lemma 7.3 (we did not use this part before), and for

this we need to supply the witnesses for the syntactic-degrees of the nodes in (90). This is shown

in Lemma 7.4.

Other basic results in linear algebra that are provable inVNC
2 are the co-factor expansion of

the determinant and the inversion principle, as follows.

The inversion principle is the following formula inVNC
2:

∀n, ∀m∀A∀B(MatZ(A, n,m) ∧MatZ(B, n,m) → (AB = In → BA = In)), (92)

85

where In stands for the n × n identity matrix. Soltys and Cook [SC04] introduced the quantifier

free theory LA that allows the basic ring properties, for example associativity ofmatrix additions, to

be formulated and proved. LA can be interpreted inVNC
2 by Cook and Fontes [CF12]19. The in-

version principle was showed [SC04] to be equivalent in LA to the following principles collectively

called (including the inversion principle itself) the hard matrix identities:

AB = I ∧ AC = I → B = C

AB = I → AC 6= 0 ∨ C = 0

AB = I → AtBt = I ,

where these identities are quantified as in (92).

The above identities are said to be “hard” in the sense that they seem to require computing in-

verses in their derivations, meaning that they necessitate using concepts fromNC
2 (and therefore

appear not to be provable in the relatively weak theory LA). The theory LAP adds the matrix pow-

ering operator to LA. Moreover, the theory LAP (over any field) proves that the Cayley-Hamilton

theorem implies the hard matrix identities [SC04]. By the results of [SC04] we know that the hard

matrix identities, like the Cayley-Hamilton theorem, are provable inVP a theory for polynomial-

time reasoning.

Our work shows the following:

Corollary 12.2. The hard matrix identities are provable inVNC
2.

For an n×nmatrixX letX[i|j] be the (n− 1)× (n− 1)minor obtained by removing the ith
row and jth column fromX (recall that a sumof integer numbers represented in binary is definable

inVNC
2 (cf. [CN10])).

Corollary 12.3. The following co-factor expansion of the determinant is provable inVNC
2:

∀n∀m∀A

(
MatZ(A, n,m) →

(
DET(A) =

n∑

j=1

(−1)i+jA(i, j)DET(A[i|j])

))
.

The proofs of Corollaries 12.2 and 12.3 are similar to the proof of Corollary 12.1. It uses

the adjoin of a matrix Adj(X) which is defined to be the n × n matrix whose (i, j)th entry is

(−1)i+jDET(X[i|j]), where DET is the determinant function (ΣB
1 -defined inVNC

2). Then we

proceed as in Corollary 12.1 following [HT15, Proposition 9.1 and 9.2] that builds on the proof of

the multiplication of the determinant. We omit the details.

13 Conclusions and Open Problems

We established a proof of the multiplicativity of the determinant and other basic statements of

linear algebra such as theCayley-Hamilton theoremand the co-factor expansionof the determinant

in the weakest logical theory known to date (and essentially conjectured to be the weakest possible

in the theories corresponding to theNC hierarchy). This answers an open question of Cook and

Nguyen [CN10, IX.7.1. Proving Cayley-Hamilton inVNC
2] and Soltys and Cook [SC04, p. 322,

19Though here we have to be careful, because the encoding of matrices and polynomials and the determinant we

introduce is different from the encoding of [SC04, CF12].

86

Conclusion and open problems, top paragraph] and Cook and Fontes [CF12]. We achieved this

by formalizing in the theoryVNC
2 the construction demonstrated in Hrubeš-Tzameret [HT15],

and using a reflection principle in the theory. Due to the central role of linear algebra and the

determinant function, these results are expected to be relevant to further basic work in bounded

arithmetic.

We showed how to carry out many constructions coming from algebraic circuit complexity

in bounded arithmetic. For instance we demonstrated under which conditions one can prove in

NC
2-reasoning the soundness of line-by-line proofs of polynomial identities over the integers

(Pc(Z)-proofs), even when the proofs are not balanced (Corollary 11.4). This should be helpful to
establish further algebraic-based identities in bounded arithmetic. More generally, since bounded

arithmetic is a useful framework for the development of the meta-mathematics of computational

complexity in which one seeks to understand the complexity of concepts needed to prove results in

complexity theory, wemay hope that our results and techniques provide new insight into themeta-

mathematics of the well developed theory of algebraic complexity (in contrast to the traditional

emphasis on Boolean complexity).

As mentioned in Section 1.1.1 the complexity classes#SAC
1 ⊆ TC

1 that are aboveDET but

belowNC
2, can compute the required depth reduction and the evaluation of algebraic circuits, and

we believe that our construction can be carried outmore or less the same in theories corresponding

to these classes (though theories for these classes have not been investigated yet).

It will be very interesting to establish the same identities in a theory that corresponds to the

complexity class DET whose complete (under AC
0-reductions) problems are the integer deter-

minant itself and matrix powering; such a theory denoted V#L was introduced in [CF12]. This

would necessitate a completely new argument different from ours (possibly following Berkowitz’

[Ber84] algorithm for the determinant) and may also contribute to the simplification of the proofs.

The reason is that our argument utilizes crucially the evaluation of Boolean NC
2-circuits in the

theory, while it is not expected that such evaluation is doable in the classDET.

Acknowledgements

We thank Pavel Hrubeš for useful discussions while working on [HT15], Eric Allender for very

helpful correspondence regarding [AJMV98] and Emil Jeřabek for clearing up things about AC
1

andTC
1. We also wish to thank the anonymous reviewers of this work for greatly contributing to

the improvement of the exposition. An extended abstract of this work appeared initially at LICS

2017.

References

[AJMV98] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay.

Non-commutative arithmetic circuits: Depth reduction and size lower bounds. Theor. Comput.

Sci., 209(1-2):47–86, 1998. 1.1, 2, 5.1, 10.4, 13

[All18] Eric Allender. Personal communication, 2018. 1.1, 2, 10.4

[BBP95] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard examples for Frege

systems? In Feasible mathematics, II (Ithaca, NY, 1992), volume 13 of Progr. Comput. Sci. Appl. Logic,

pages 30–56. Birkhäuser Boston, Boston, MA, 1995. 1

87

http://dx.doi.org/10.1016/S0304-3975(97)00227-2

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a small number

of processors. Inf. Process. Lett., 18:147–150, 1984. 1, 13

[BKKK20] Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucky. Expander construc-

tion in vnc1. Annals of Pure and Applied Logic (to appear), 2020. Extended abstract in Proceedings,
8th Conference on Innovations in Computer Science (ITCS), 2017. 1

[BKZ15] Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Konrad Zdanowski. Collapsing modular

counting in bounded arithmetic and constant depth propositional proofs. Transactions of the

AMS, (367):7517–7563, 2015. 1

[BP98] Paul Beame and Toniann Pitassi. Propositional proof complexity: past, present, and future. Bull.

Eur. Assoc. Theor. Comput. Sci. EATCS, (65):66–89, 1998. 1

[Bus86] Samuel R. Buss. Bounded Arithmetic, volume 3 of Studies in Proof Theory. Bibliopolis, 1986. 1, 2

[CF12] Stephen A Cook and Lila A Fontes. Formal Theories for Linear Algebra. Logical Methods in Com-

puter Science, Volume 8, Issue 1, March 2012. 1, 1.1, 1.1, 1.1.1, 10.2, 10.3, 10.5, 12, 19, 13

[CN10] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. ASL Perspectives

in Logic. Cambridge University Press, 2010. 1, 1.1, 1.1, 1.1, 1.1, 1.1.2, 2, 2.2, 2.2, 2.3, 2.4, 2.4, 2.7,

2.5, 2.10, 2.5, 2.5, 2.5, 2.6, 2.6, 3.1.3, 10.5, 11.2, 11.2, 11.3, 12, 13

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (preliminary ver-

sion). In STOC, pages 83–97, 1975. 1

[Coo85] StephenA. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,

64(1-3):2–21, 1985. 1

[HP93] P. Hájek and P. Pudlák. Metamathematics of First-order Arithmetic. Perspectives in Mathematical

Logic. Springer-Verlag, Berlin, 1993. 2

[HT09] Pavel Hrubeš and Iddo Tzameret. The proof complexity of polynomial identities. In Proceedings

of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18

July 2009, pages 41–51, 2009. 1.1, 1.1.2, 2, 2.8, 2.15

[HT15] Pavel Hrubeš and Iddo Tzameret. Short proofs for the determinant identities. SIAM J. Comput.,

44(2):340–383, 2015. (A preliminary version appeared in Proceedings of the 44th Annual ACM

Symposium on the Theory of Computing (STOC’12)). (document), 1, 1.1, 1.1, 1.1.2, 2, 2.8, 2.15,

2.9, 3.1.2, 4.2, 4.3, 4.3, 6.1, 7.1, 7.3, 7.4, 7.5, 10.2, 10.2, 10.2, 10.4, 10.5, 10.5, 10.5, 11.3, 11.3, 12,

12, 13, 13

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandomization. Ann.

Pure Appl. Logic, 129(1-3):1–37, 2004. 2.7

[Jeř05] Emil Jeřábek. Weak pigeonhole principle, and randomized computation. PhD thesis, PhD thesis,

Faculty of Mathematics and Physics, Charles University, Prague, 2005. 1

[Jeř11] Emil Jeřábek. A sorting network in bounded arithmetic. Annals of Pure and Applied Logic,

162(4):341–355, 2011. 1

[Kra95] Jan Krajı́ček. Bounded arithmetic, propositional logic, and complexity theory, volume 60 of Encyclo-

pedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. 2

88

http://dx.doi.org/10.2168/LMCS-8(1:25)2012
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1109/CCC.2009.9
http://dx.doi.org/10.1137/130917788
http://dx.doi.org/10.1017/CBO9780511529948

[MRK88] Gary L. Miller, Vijaya Ramachandran, and Erich Kaltofen. Efficient parallel evaluation of

straight-line code and arithmetic circuits. SIAM J. Comput., 17(4):687–695, 1988. 1.1, 5.1, 10.1,

10.4

[MT14] Sebastian Müller and Iddo Tzameret. Short propositional refutations for dense random 3CNF

formulas. Annals of Pure and Applied Logic, 165:1864–1918, 2014. Extended abstract in Proceed-

ings of the 27th Annual ACM-IEEE Symposium on Logic In Computer Science (LICS), 2012.

2.6

[NC07] Phuong Nguyen and Stephen Cook. The complexity of proving discrete jordan curve theorem.

In Proceedings of the 22nd IEEE Symposium on Logic in Computer, pages 245–254, 2007. 1

[Ngu08] Phuong Nguyen. Bounded Reverse Mathematics. PhD thesis, University of Toronto, 2008. 1

[Par71] Rohit Parikh. Existence and feasibility in arithmetic. The Journal of Symbolic Logic, 36:494–508,

1971. 1

[Pic15] Ján Pich. Logical strength of complexity theory and a formalization of the PCP theorem in

bounded arithmetic. Logical Methods in Computer Science, 11(2), 2015. 1

[PT16] Tonnian Pitassi and Iddo Tzameret. Algebraic proof complexity: Progress, frontiers and chal-

lenges. ACM SIGLOG News, 3(3), 2016. 2

[PW85] J. Paris andA.Wilkie. Counting problems in bounded arithmetic. InMethods in mathematical logic

(Caracas, 1983), volume 1130 of Lecture Notes in Math., pages 317–340. Springer, Berlin, 1985. 1

[RY08] Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Compu-

tational Complexity, 17(4):515–535, 2008. 10.2, 10.2, 10.4

[SC04] Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Ann. Pure Appl. Logic,

130(1-3):277–323, 2004. 1, 1.1, 12, 12, 19, 13

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,

27(4):701–717, October 1980. Preliminary version in the International Symposium on Symbolic

and Algebraic Computation (EUROSAM 1979). 1, 1.1

[Sim99] Stephen Simpson. Subsystems of Second Order Arithmetic. Springer, 1999. 1

[Sol01] Michael Soltys. The complexity of derivations of matrix identities. PhD thesis, University of Toronto,

Toronto, Canada, 2001. 1, 1.1

[Str73] Volker Strassen. Vermeidung von divisionen. J. Reine Angew. Math., 264:182–202, 1973. (in

German). 1, 1.1, 1.1, 4.2, 5, 6.1, 6.2, 7.1

[SY10] Amir Shpilka andAmirYehudayoff. Arithmetic circuits: A survey of recent results and open questions.

Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010. 2.7

[TS05] Neil Thapen and Michael Soltys. Weak theories of linear algebra. Arch. Math. Log., 44(2):195–

208, 2005. 1

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In

Proc. 6th IEEE Structure in Complexity Theory Conference, pages 270–284, 1991. 1.1, 1.1, 11.1

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel computation of

polynomials using few processors. SIAM J. Comput., 12(4):641–644, 1983. 1, 1.1, 1.1, 5.1, 10.1,

10.2, 15, 10.2, 10.2, 10.4, 11.1

89

http://dx.doi.org/10.1007/s00037-008-0254-0
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1007/s00153-004-0249-8

[Zip79] RichardZippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International

Symposium on Symbolic and Algebraic Computation, pages 216–226. Springer-Verlag, 1979. 1, 1.1

90

— Page left blank for ECCC stamp —

91

	Introduction
	Overview
	Note on the Choice of Theory
	Organization

	Preliminaries
	The Theory V0
	Definability in Bounded Arithmetic
	The Complexity Class NC2
	The Theory VNC2
	Introducing New Definable Functions in V0 and VNC2
	Some Basic Formalizations in V0
	Example: Binary Tree Construction in V0

	Polynomials and Algebraic Circuits
	Equational Proofs of Polynomial Identities
	Circuits and Proofs with Division

	Encoding Circuits and Proofs in the Theory
	Encoding Circuits
	Encoding of Algebraic Circuits in the Theory
	Circuit with Division for the Determinant
	Constructing the Circuit Detcirc-1 in V0

	Encoding and Witnessing Polynomial Identity Proofs

	Existence of Proofs with Division for the Determinant Identities
	Overview
	Provably Good Nodes
	Constructing the Pc-1(Z)-Proofs in the Theory

	Homogenization in V0
	Preliminaries for Division Elimination
	Overview
	Approximating Inverses by Power Series
	Division Normalization

	From a Rational Function to the Determinant as a Polynomial
	Overview
	Elementary Row and Column Operations
	Extracting Polynomial Coefficients: Taylor Expansion
	Witnessing Syntactic-Degrees
	Algorithm for coeff

	From Determinant as Rational Function to a Polynomial in Pc-1(Z)
	Reducing the Syntactic-Degree of the Determinant Polynomial

	Eliminating Division Gates
	Overview
	Eliminating Division

	Eliminating High Degrees From the Proofs
	Balancing Algebraic Circuits and Proofs in the Theory
	Overview
	Background Concepts for the Balancing Algorithm
	Preliminaries for the Balancing Algorithm
	Taking Care of Nodes with High d+ub Values

	Formal Description of the Balancing Algorithm
	Balancing Proofs in VNC2

	Reflection Principle and Wrapping Up
	Algebraic NC2-Circuit Value Problem
	Proving the Reflection Principle for Pc(Z)
	Wrapping Up

	Corollaries
	Conclusions and Open Problems

