
ALGEBRAIC PROOFS OVER NONCOMMUTATIVE FORMULAS

IDDO TZAMERET ∗

Abstract. We study possible formulations of algebraic propositional proof systems operating with
noncommutative formulas. We observe that a simple formulation gives rise to systems at least as
strong as Frege, yielding a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable)
algebraic analog of Frege proofs, different from that given in [BIK+97, GH03]. We then turn to
an apparently weaker system, namely, polynomial calculus (PC) where polynomials are written as
ordered formulas (PC over ordered formulas, for short). Given some fixed linear order on variables,
an arithmetic formula is ordered if for each of its product gates the left subformula contains only
variables that are less-than or equal, according to the linear order, than the variables in the right
subformula of the gate. We show that PC over ordered formulas (when the base field is of zero
characteristic) is strictly stronger than resolution, polynomial calculus and polynomial calculus
with resolution (PCR), and admits polynomial-size refutations for the pigeonhole principle and
the Tseitin’s formulas. We conclude by proposing an approach for establishing lower bounds on
PC over ordered formulas proofs, and related systems, based on properties of lower bounds on
noncommutative formulas [Nis91].

The motivation behind this work is developing techniques incorporating rank arguments (similar
to those used in arithmetic circuit complexity) for establishing lower bounds on propositional proofs.

Contents

1. Introduction 2
1.1. Results and related work 2
2. Preliminaries 4
2.1. Noncommutative polynomials and formulas 4
2.2. Proof systems and simulations 5
2.3. Polynomial Calculus 6
3. Polynomial calculus over noncommutative formulas 7
3.1. The proof system NFPC 7
4. Polynomial calculus over ordered formulas 11
5. Simulations, short proofs and separations for OFPC 14
5.1. OFPC polynomially simulates PCR 14
5.2. Resolution over linear equations R(lin) and its subsystem R0(lin) 15
5.3. OFPC polynomially simulates R0(lin) 17
5.4. Short proofs and separations 26
6. Useful lower bounds on products of ordered polynomials 27
6.1. Suggested lower bound approach 29

Date: July 2011.
Key words and phrases. Proof complexity, algebraic proof systems, Frege proofs, lower bounds, noncommutative

formulas, polynomial calculus.
∗Institute for Theoretical Computer Science, The Institute for Interdisciplinary Information Science (IIIS), FIT

building, Tsinghua University, Beijing, 100084, China, Email: tzameret@tsinghua.edu.cn . This work was supported
in part by the National Basic Research Program of China Grant 2007CB807900, 2007CB807901, the National Natural
Science Foundation of China Grant 61033001, 61061130540, 61073174. Part of this research was done while the author
was a part of the Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Prague 1, Czech
Republic; Supported by The Eduard Čech Center for Algebra and Geometry and The John Templeton Foundation.

1

Acknowledgments 31
References 31

1. Introduction

This work investigates algebraic proof systems establishing propositional tautologies, in which
proof lines are written as noncommutative arithmetic formulas (noncommutative formulas, for
short). Research into the complexity of algebraic propositional proofs is a central line in proof
complexity (cf. [Pit97, Tza08] for general expositions). Another prominent line of research is that
dedicated to connections between circuit classes and the propositional proofs based on these classes.
In particular, considerable efforts were made to borrow techniques used for lower bounding certain
circuit classes, and utilize them to show lower bounds on proofs operating with circuits from the
given classes. For example, bounded depth Frege proofs can be viewed as propositional logic oper-
ating with AC0 circuits, and lower bounds on bounded depth Frege proofs use techniques borrowed
from AC0 circuits lower bounds (cf. [Ajt88, KPW95, PBI93]). Pudlák [Pud99] and Atserias et al.
[AGP02] studied proofs based on monotone circuits, motivated by known exponential lower bounds
on monotone circuits. Raz and the author [RT08b, RT08a, Tza08] investigated algebraic proof
systems operating with multilinear formulas, motivated by lower bounds on multilinear formulas
for the determinant, permanent and other explicit polynomials [Raz09, Raz06]. Atserias et al.
[AKV04], Kraj́ıček [Kra08] and Segerlind [Seg07] have considered proofs operating with ordered
binary decision diagrams (OBDDs).

The current work is a contribution to this line of research, where the circuit class is noncom-
mutative formulas. The motivation behind this work is the hope that certain rank arguments,
found successful in lower bounding the size of certain types of arithmetic circuits, might also help
in establishing lower bounds for the corresponding algebraic proofs. For this purpose, the choice of
noncommutative formulas is natural, since such formulas constitute a fairly weak circuit class, and
the proof of exponential-size lower bounds on noncommutative formulas, given by Nisan [Nis91],
uses a considerably transparent rank argument.

We will show that for certain formulations of propositional proof systems over noncommutative
formulas demonstrating lower bounds is likely to be hard, as the systems we get are quite strong,
and specifically, at least as strong as Frege proofs. On the other hand, by formulating a proof
system operating with fairly restricted formulas that compute a certain type of noncommutative
polynomials, we obtain a system that we show is strictly stronger than known algebraic proof
systems (like the polynomial calculus). For this apparently weaker system, demonstrating lower
bounds seems not to be outside the reach of current techniques. In particular, we propose to study
the complexity of these proofs by measuring the maximal rank of a polynomial appearing in a proof,
instead of the maximal degree (the latter is done in the polynomial calculus). It is known that the
rank of a noncommutative polynomial (as defined for instance by Nisan [Nis91]) is proportional
to the minimal size of a noncommutative formula computing the polynomial. We argue for the
usefulness of measuring the maximal rank of a polynomial in algebraic proofs, by demonstrating a
certain property of ranks of “ordered polynomials” (as defined formally), and relating it to proof
complexity lower bounds (via an example of a conditional lower bound).

1.1. Results and related work. We concentrate on algebraic proofs establishing propositional
contradictions where polynomials are written as noncommutative formulas. We deal with two kinds
of proof systems—both are variants (and extensions) of the polynomial calculus (PC) introduced in
[CEI96]. In PC we start from a set of initial polynomials from F[x1, . . . , xn], the ring of polynomials
with coefficients from F (the intended semantics of a proof-line p is the equation p = 0 over F). We

2

derive new proof-lines by using two basic algebraic inference rules: from two polynomials p and q,
we can deduce α · p + β · q, where α, β are elements of F; and from p we can deduce xi · p, for a
variable xi (i = 1, . . . , n). We also have Boolean axioms x2

i −xi = 0, for all i = 1, . . . , n, expressing
that the variables range over {0, 1} values. Our two proof systems extend PC as follows:

NFPC: PC over noncommutative formulas. This proof system operates with noncommuta-
tive polynomials over a field, written as noncommutative formulas, where every proof-line
consists of a polynomial p and can be written as any formula F that computes p (these
kind of algebraic proof systems are sometimes called semantic proof systems). The rules
of addition and multiplication are similar to PC, except that multiplication is done either
from left or from right. We also add a “Boolean” axiom xixj − xjxi, for any pair of vari-
ables, that expresses the fact that for 0, 1 values to the variables, multiplication is in fact
commutative (indeed, note that in any noncommutative F-algebra this axiom must be true
when the variables xi, xj range over {0, 1} values; see Section 3.1).

OFPC: PC over ordered formulas. This proof system is PC operating with ordered polyno-
mials written as ordered formulas, in which, as before, every ordered polynomial p inside
the proof can be written as any ordered formula F that computes p. An ordered polynomial
is a noncommutative polynomial such that the order of products in all monomials respects
a fixed linear order on the variables, and an ordered formula is a noncommutative formula
in which every subformula computes an ordered polynomial (see Definition 4.1). The rules
of OFPC are similar to PC, namely, addition of two previously derived ordered polynomials
and the product of a previously derived ordered polynomial p with a variable xi (where now,
the result of multiplying p by xi is the corresponding ordered polynomial; e.g., multiplying
the ordered polynomial x1 · x4 + x3 by x2 results in x1 · x2 · x4 + x2 · x3, assuming the order
on variables is defined via the increasing order on their indices).

Both proof systems are shown to be Cook-Reckhow systems (that is, polynomial verifiable, sound
and complete proof systems for propositional tautologies).

(1) The first proof system NFPC is shown to polynomially simulate Frege (this is partly because
of the choice of Boolean axioms). This gives a semantic definition of a Cook-Reckhow proof system
operating with arithmetic formulas, simpler in some way from that proposed by Grigoriev and
Hirsch [GH03]: the paper [GH03] aims at formulating a formal propositional proof system for
establishing propositional tautologies (that is, a Cook-Reckhow proof system), which is an algebraic
analog of the Frege proof system. In order to make their system polynomially-verifiable, the authors
augment it with a set of auxiliary rewriting rules, intended to derive arithmetic formulas from
previous arithmetic formulas via the polynomial-ring axioms (that is, associativity, commutativity,
distributivity and the zero and unit elements rules). In this framework arithmetic formulas are
treated as syntactic terms, and one must explicitly apply the polynomial-ring rewrite rules to
derive a formula from previous ones. Our proof system NFPC is simpler in the sense that we
get a similar proof system to that in [GH03], while adding no rewriting rules: both proof systems
can simulate Frege and both are polynomially verifiable and operate with arithmetic formulas,
or in our case with noncommutative formulas. The idea is that because we use noncommutative
formulas as proof-lines, to verify that a line was derived correctly from previous lines we can use
the deterministic polynomial identity testing algorithm for noncommutative formulas devised by
Raz and Shpilka [RS05] (and so we do not need any rewriting rules).

(2) For the second proof system OFPC we show that, despite its apparent weakness, it is
stronger than Polynomial Calculus with Resolution (PCR; and hence it is also stronger than both
PC and resolution), and also can polynomially simulate a proof system operating with restricted
forms of disjunctions of linear equalities called R0(lin) (introduced in [RT08a]). The latter implies

3

polynomial-size refutations for the pigeonhole principle and the Tseitin graph formulas, due to
corresponding upper bounds demonstrated in [RT08a].

We then propose a simple lower bound approach for OFPC, based on properties of products
of ordered formulas (these properties are proved in a similar manner to Nisan’s size lower bounds
on noncommutative formulas, that is, by lower bounding the rank of certain matrices associated
with noncommutative polynomials). We show that certain conditions are sufficient to yield super-
polynomial lower bounds on OFPC proofs.
Note: All the results in this paper hold when one considers algebraic branching programs (ABPs)
(Definition 6.1) instead of noncommutative formulas, and ordered -ABPs instead of ordered-
formulas. An ordered -ABP is an ABP such that the order of variables appearing on the edges
of every path from source to sink on the ABP graph, respects a fixed linear order on the variables
(see [JQS10] for a close model called π-ordered ABP).

Related work. There is some resemblance between noncommutative formulas (and in fact, alge-
braic branching programs) and ordered binary decision diagrams (OBDDs) (e.g., close techniques
were used to obtain polynomial identity testing algorithms for noncommutative formulas [RS05]
and for OBDDs [Waa97]). Thus, proofs operating with noncommutative formulas are reminiscent
to the OBDD-based proof systems introduced and studied in [AKV04, Kra08, Seg07]. Nevertheless,
one difference between OBDD-based proofs and noncommutative formulas-based proofs is that the
feasible monotone interpolation lower bound technique is applicable in the case of OBDD-based
systems, while this technique does not known to lead to super-polynomial size lower bounds even on
PC proofs (and thus, also on OFPC proofs which are shown to polynomially simulate PC proofs).

Another proof system, that is even closer to OFPC, is that operating with multilinear formulas
introduced in [RT08b] (under the name fMC). The upper bounds on OFPC proofs are similar to that
shown for multilinear proofs in [RT08b]. Moreover, the technique used by Raz to establish super-
polynomial lower bounds on multilinear formulas in [Raz09] is close (though more involved and
includes additional ingredients) to that used by Nisan in the lower bound proof for noncommutative
formulas [Nis91]. Therefore, proving lower bounds on OFPC proofs might help in establishing lower
bounds on multilinear proofs.

2. Preliminaries

For a natural number we let [n] = {1, . . . , n}.

2.1. Noncommutative polynomials and formulas. Let F be a field. Denote by F[x1, . . . , xn]
the ring of (commutative) polynomials with coefficients from F and variables x1, . . . , xn. We denote
by F〈x1, . . . , xn〉 the noncommutative ring of polynomials with coefficients from F and variables
x1, . . . , xn. In other words, F〈x1, . . . , xn〉 is the ring of polynomials (where a polynomial is a formal
sum of products of variables and field elements) conforming to all the polynomial-ring axioms
excluding the commutativity of multiplication axiom. For instance, if xi, xj are two different
variables, then xi · xj and xj · xi are two different polynomials in F〈x1, . . . , xn〉 (note that variables
do commute with field elements).

We say that A is an algebra over F, or an F-algebra, if A is a vector space over F together with
a distributive multiplication operation; where multiplication in A is associative (but it need not be
commutative) and there exists a multiplicative unity in A.

A noncommutative formula is just a (standard, commutative) arithmetic formula, except that
product gates compute product of polynomials in the noncommutative ring F〈x1, . . . , xn〉 (and thus
children of product gates are ordered):

Definition 2.1 (Noncommutative formula). Let F be a field and x1, x2, . . . be variables. A noncom-
mutative arithmetic formula (or noncommutative formula for short) is a labeled tree, with edges

4

directed from the leaves to the root, and with fan-in at most two, such that there is an order on the
edges coming into a node (the first edge is called the left edge and the second one the right edge).
Every leaf of the tree (namely, a node of fan-in zero) is labeled either with an input variable xi or a
field F element. Every other node of the tree is labeled either with + or × (in the first case the node
is a plus gate and in the second case a product gate). We assume that there is only one node of
out-degree zero, called the root. A noncommutative formula computes a noncommutative polyno-
mial in F〈x1, . . . , xn〉 in the following way. A leaf computes the input variable or field element that
labels it. A plus gate computes the sum of polynomials computed by its incoming nodes. A product
gate computes the noncommutative product of the polynomials computed by its incoming nodes ac-
cording to the order of the edges. (Subtraction is obtained using the constant −1.) The output of
the formula is the polynomial computed by the root. The depth of a formula is the maximal length
of a path from the root to the leaf. The size of a noncommutative formula f is the total number of
nodes in its underlying tree, and is denoted |f |.

Definition 2.2 (Arithmetic formula). An arithmetic formula is defined in a similar way to a
noncommutative formula, except that we ignore the order of multiplication (that is, a product node
does not have order on its children and there is no order on multiplication when defining the
polynomial computed by a formula).

Given a pair of noncommutative formulas F and G and a variable xi, we denote by F [G/xi] the
formula F in which every occurrence of xi is substituted by the formula G.

Raz and Shpilka [RS05] showed that there is a deterministic polynomial identity testing (PIT)
algorithm that decides whether two noncommutative formulas compute the same noncommutative
polynomial:

Theorem 2.3 (PIT for noncommutative formulas [RS05]). There is a deterministic polynomial-
time algorithm that decides whether a given noncommutative formula over a field F computes the
zero polynomial 0.1

Let p ∈ F[x1, . . . , xn] be a polynomial. Then, p is said to be multilinear if the power of every
variable in all its monomials is at most one. Also, p is said to be homogenous if the total degree
of each of its monomials is the same. If p is a polynomial of (total) degree d, then p =

∑d
i=0 p

(i),
where p(i) is the ith homogenous component of p, that is, the sum of all monomials of total degree
i in p.

2.2. Proof systems and simulations. Let L ⊆ Σ∗ be a language over some alphabet Σ. A proof
system for a language L is a polynomial-time algorithm A that receives x ∈ Σ∗ and a string π over
a binary alphabet (“the [proposed] proof” of x), such that there exists a π with A(x, π) = true
if and only if x ∈ L. Following [CR79], a Cook-Reckhow proof system (or simply a propositional
proof system) is a proof system for the language of propositional tautologies in the de Morgan
basis {true, false,∨,∧,¬} (coded in some efficient [polynomial-time] way, e.g., in the binary {0, 1}
alphabet).

Assume that P is a proof system for the language L, where L is not the set of propositional
tautologies in De Morgan’s basis. In this case we can still consider P as a proof system for
propositional tautologies by fixing a translation between L and the set of propositional tautologies
in De Morgan basis (such that x ∈ L iff the translation of x is a propositional tautology [and such
that the translation can be done in polynomial-time]). If two proof systems P1 and P2 establish
two different languages L1, L2, respectively, then for the task of comparing their relative strength
we fix a translation from one language to the other.

1We assume here that the field F can be efficiently represented (e.g., the field of rationals).

5

In some cases, we shall confine ourselves to proofs establishing propositional tautologies or un-
satisfiable CNF formulas.

A propositional proof system is said to be a propositional refutation system if it establishes the
language of unsatisfiable propositional formulas (this is clearly a propositional proof system by the
definition above, since we can translate every unsatisfiable propositional formula into its negation
and obtain a tautology).

Definition 2.4. Let P1,P2 be two proof systems for the same language L (in case the proof systems
are for two different languages we fix a translation from one language to the other, as described
above). We say that P2 polynomially simulates P1 if given a P1 proof (or refutation) π of a F ,
then there exists a proof (respectively, refutation) of F in P2 of size polynomial in the size of π. In
case P2 polynomially simulates P1 while P1 does not polynomially simulates P2 we say that P2 is
strictly stronger than P1.

2.3. Polynomial Calculus. Algebraic propositional proof systems are proof systems for finite
collections of polynomial equations having no 0, 1 solutions over some fixed field. (Formally, each
different field yields a different algebraic proof system.) Proof-lines in algebraic proofs (or refuta-
tions) consist of polynomials p over the given fixed field. Each such proof-line is interpreted as the
polynomial equation p = 0. To consider the size of algebraic refutations we fix the way polynomials
inside refutations are written.
Notation: An inference rule is written as A

B or A B
C , meaning that given the proof-line A one

can deduce the proof-line B, or given both the proof-lines A,B one can deduce the proof-line C,
respectively.

The Polynomial Calculus is a propositional algebraic proof system first considered in [CEI96]:

Definition 2.5. (Polynomial Calculus (PC)). Let F be some fixed field and let Q =
{Q1, . . . , Qm} be a collection of multivariate polynomials from F[x1, . . . , xn]. Let the set of axiom
polynomials be:

Boolean axioms: xi · (1− xi) , for all 1 ≤ i ≤ n .
A PC proof from Q of a polynomial g is a finite sequence π = (p1, ..., p`) of multivariate polynomials
from F[x1, . . . , xn], where p` = g and for every 1 ≤ i ≤ `, either pi = Qj for some j ∈ [m], or pi

is a Boolean axiom, or pi was deduced from pj , pk , for j, k < i, by one of the following inference
rules:

Product:
p

xr · p
, for 1 ≤ r ≤ n .

Addition:
p q

a · p+ b · q
, for a, b ∈ F .

A PC refutation of Q is a proof of 1 (which is interpreted as 1 = 0, that is the unsatisfiable equation
standing for false) from Q. The degree of a PC-proof is the maximal degree of a polynomial in the
proof. The size of a PC proof π is the total number of monomials (with nonzero coefficients) in
all the proof-lines, denoted |π|.

Important note: The size of PC proofs can be defined as the total formula sizes of all proof-
lines, where polynomials are written as sums of monomials, or more formally, as (unbounded fan-in
depth-2 arithmetic) ΣΠ formulas.2 This complexity measure is equivalent up to a factor of n to

2A ΣΠ formula F is an arithmetic formula whose underlying tree is of depth 2 and has unbounded fan-in, such
that the root is labeled with a plus gate, the children of the root are labeled with product gates and the leaves are
labeled with either variables or field elements.

6

the standard complexity measure counting the total number of monomials appearing in the proofs
(Definition 2.5).

Definition 2.6. (Polynomial Calculus with Resolution (PCR)). The PCR proof system is
defined similarly to PC (Definition 2.5), except that for every variable xi a new formal variable
x̄i and a new axiom xi + x̄i − 1 are added to the system, and the Boolean axioms of PCR are as
follows:

Boolean axioms: xi · x̄i .

The inference rules, and all other definitions are similar to that of PC. Specifically, the size of
a PCR proof is defined as the total number of monomials in all proof-lines (where now we count
monomials in the variables xi and x̄i).

3. Polynomial calculus over noncommutative formulas

In this section we propose a possible formulation of algebraic propositional proof systems that op-
erate with noncommutative polynomials. We observe that dealing with propositional proofs—that
is, proofs whose variables range over 0, 1 values—makes the variables “semantically” commutative.
Therefore, for the proof systems to be complete (for unsatisfiable collections of noncommutative
polynomials over 0, 1 values), one may need to introduce rules or axioms expressing commutativ-
ity. We show that such a natural formulation of proofs operating with noncommutative formulas
polynomially simulate the entire Frege system. This justifies—if one is interested in concentrating
on propositional proof systems weaker than Frege (and especially on lower bounds questions)—our
formulation in Section 4 of algebraic proofs operating with noncommutative arithmetic formulas
with a fixed product order (called ordered formulas). The latter system can be viewed as operat-
ing with commutative polynomials over a field precisely like PC, while the complexity of proofs is
measured by the total size of ordered formulas needed to write the polynomials in the proof. In
other words, the role played by the noncommutativity in this system is only in measuring the sizes
of proofs: while in PC-proofs the size measure is defined as the number of monomials appearing
in the proofs—or equivalently, the total size of formulas in proofs in which formulas are written as
(depth-2) ΣΠ circuits—the proof system developed in Section 4 is measured by the total ordered
formula size.

3.1. The proof system NFPC. We now define a proof system operating with noncommutative
polynomials written as noncommutative arithmetic formulas.

In algebraic proof systems like the polynomial calculus we transform unsatisfiable propositional
formulas into a collection Q of polynomials having no solution over a field F. In the noncommuta-
tive setting we translate unsatisfiable propositional formulas into a collection Q of noncommutative
polynomials from F〈x1, . . . , xn〉 that have no solution over any noncommutative F-algebra (e.g.,
the matrix algebra with entries from F). Although our “Boolean” axioms will not force only 0, 1
solutions over noncommutative F-algebras, they will be sufficient for our purpose: every unsatis-
fiable propositional formula translates (via a standard polynomial translation) into a collection Q
of noncommutative polynomials from F〈x1, . . . , xn〉, for which Q and the Boolean axioms have no
(common) solution in any noncommutative F-algebra. Furthermore, the Boolean axioms will in
fact force commutativity of variables product—as required for variables that range over 0, 1 val-
ues (although, again, the Boolean axioms do not force only 0, 1 values when variables range over
noncommutative F-algebras). Let us elaborate further on this point:

We say that an (algebraic) proof system is implicationally complete whenever for any collection
of polynomials q1, . . . , qm, p over a field F, if every assignment that satisfies q1 = 0, . . . , qm = 0
also satisfies p = 0, then there is a proof of p from the assumptions q1, . . . , qm. In our case, since
the variables x1, . . . , xn intend to range over 0, 1 values, we have the Boolean axioms x2

i − xi,
7

for any i ∈ [n]. But since over any noncommutative F-algebra, any assignment that satisfies
x2

1−x1 = 0, . . . , x2
n−xn = 0 must satisfy also xi ·xj−xj ·xi = 0 (for all i, j ∈ [n]), any implicationally

complete propositional proof system for noncommutative polynomials over a noncommutative F-
algebra must be able to derive (from only the Boolean axioms) the polynomials xi · xj − xj · xi, for
all i, j ∈ [n].

Definition 3.1 (Polynomial calculus over noncommutative formulas: NFPC). Fix a field F and
let Q := {q1, . . . , qm} be a collection of noncommutative polynomials from F〈x1, . . . , xn〉. Let the
set of axiom polynomials be:

Boolean axioms:

xi · (1− xi) , for all 1 ≤ i ≤ n .
xi · xj − xj · xi , for all 1 ≤ i 6= j ≤ n .

Let π = (p1, . . . , p`) be a sequence of noncommutative polynomials from F〈x1, . . . , xn〉, such that
for each i ∈ [`], either pi = qj for some j ∈ [m], or pi is a Boolean axiom, or pi was deduced by
one of the following inference rules using pj , pk , for j, k < i:

Left/right product:
p

xr · p
p

p · xr
, for 1 ≤ r ≤ n .

Addition:
p q

a · p+ b · q
, for a, b ∈ F .

We say that π is an NFPC proof of p` from Q if all proof-lines in π are written as noncommutative
formulas. (The semantics of an NFPC proof-line pi is the polynomial equation pi = 0.) An NFPC
refutation of Q is a proof of the polynomial 1 from Q. The size of an NFPC proof π is defined as
the total size of all the noncommutative formulas in π and is denoted |π|.

Remark: (i) The Boolean axioms might have roots different from 0, 1 over noncommutative F-
algebras. (ii) The Boolean axioms are true for 0, 1 assignments: xi · xj − xi · xj = 0 for all
xi, xj ∈ {0, 1}.

We now show that NFPC is a sound and complete Cook-Reckhow proof system. First note
that we have defined NFPC with no rules expressing the polynomial-ring axioms (the latter are
sometimes added to algebraic proof systems operating with arithmetic formulas for the purpose
of verifying that every formula in the proof was derived correctly [via the deduction rules of the
system] from previous lines; see discussion in Section 1.1). Nevertheless, due to the deterministic
polynomial-time PIT procedure for noncommutative formulas (Theorem 2.3) the proof system
defined will be a Cook-Reckhow system (that is, verifiable in polynomial-time [whenever the base
field and its operations can be efficiently represented]).

Proposition 3.2. There is a deterministic polynomial-time algorithm that decides whether a given
string is an NFPC-proof (over efficiently represented fields).

Proof. We can assume that the proof also indicates from which previous lines a new line was inferred
via the NFPC inference rules. Then, by Proposition 2.3, there is a polynomial-time algorithm that,
e.g., given two noncommutative formulas F1, F2 such that the proof indicates that F2 was inferred
from F1 via the Left product rule, decides whether the formula xi × F1 and F2 computes the same
noncommutative polynomial. And similarly for the other deduction rules of NFPC. �

Proposition 3.3. The systems NFPC is sound and complete. Specifically, let Q be a collection of
noncommutative polynomials from F〈x1, . . . , xn〉. Assume that for every F-algebra, there is no 0, 1

8

solution for Q (that is, an 0, 1 assignment to variables that gives all polynomials in Q the value 0),
then the contradiction 1 = 0 can be derived in NFPC from Q.

Proof. Soundness holds because both rules of inference are sound over any F-algebra. Completeness
stems by the simulation of F-PC shown in Theorem 3.6 below (and the fact that if no F-algebra
has a solution then also there is no solution in F itself, which implies, by completeness of F-PC,
that there exists an F-PC refutation of Q). �

For the next statements we use the algebraic propositional proof system F-PC introduced by
Grigoriev and Hirsch [GH03] as an algebraic analog of the Frege system. The proof system F-PC is
an algebraic propositional proof system operating with (general, that is, commutative) arithmetic
formulas over a field, and it includes auxiliary rewriting rules allowing to develop equal polynomials
syntactically via the polynomial-ring axioms. The proof system F-PC has the Boolean axioms of
PC, the rules of PC and in addition the rewrite rules expressing the polynomial-ring axioms. Each
line in F-PC is treated as a term, that is, a formula, and so the rules are also syntactic: addition of
terms via the plus gate and product of a term by a variable from the left. We first need to define
the notion of a rewrite rule:

Definition 3.4 (Rewrite rule). A rewrite rule is a pair of formulas f, g denoted f → g. Given
a formula Φ, an application of a rewrite rule f → g to Φ is the result of replacing at most one
occurrence of f in Φ by g (that is, substituting a subformula f inside Φ by the formula g). We
write f ↔ g to denote the pair of rewriting rules f → g and g → f .

Definition 3.5 (F-PC [GH03]). Fix a field F. Let F := {f1, . . . , fm} be a collection of formulas3

computing polynomials from F[x1, . . . , xn]. Let the set of axioms be the following formulas:
Boolean axioms: xi · (1− xi) , for all 1 ≤ i ≤ n .

A sequence π = (Φ1, . . . ,Φ`) of formulas computing polynomials from F[x1, . . . , xn] is said to be an
F-PC proof of Φ` from F , if for every i ∈ [`] we have one of the following:

(1) Φi = fj , for some j ∈ [m];
(2) Φi is a Boolean axiom;
(3) Φi was deduced by one of the following inference rules from previous proof-lines Φj ,Φk , for

j, k < i:
Product:

Φ
xr · Φ

, for r ∈ [n] .

Addition:
Φ Θ

a · Φ + b ·Θ
, for a, b ∈ F .

(Where Φ, xr · Φ,Θ, a · Φ, b · Θ are formulas constructed as displayed; e.g., xr · Φ is the
formula with product gate at the root having the formulas xr and Φ as children.)4

(4) Φi was deduced from previous proof-line Φj, for j < i, by one of the following rewriting
rules expressing the polynomial-ring axioms (where f, g, h range over all arithmetic formulas
computing polynomials in F[x1, . . . , xn]):

Zero rule: 0 · f ↔ 0
Unit rule: 1 · f ↔ f

3Note here that we are talking about formulas (treated as syntactic terms), and not polynomials. Also notice that
all formulas in F-PC are (commutative) formulas computing (commutative) polynomials.

4In [GH03] the product rule of F-PC is defined so that one can derive Θ ·Φ from Φ, where Θ is any formula, and
not just a variable. However, the definition of F-PC in [GH03] and our Definition 3.5 polynomially-simulate each
other.

9

Scalar rule: t↔ α, where t is a formula containing no variables (only field F elements)
that computes the constant α ∈ F.

Commutativity rules: f + g ↔ g + f , f · g ↔ g · f
Associativity rule: f + (g + h)↔ (f + g) + h , f · (g · h)↔ (f · g) · h
Distributivity rule: f · (g + h)↔ (f · g) + (f · h)

(The semantics of an F-PC proof-line pi is the polynomial equation pi = 0.) An F-PC refutation
of F is a proof of the formula 1 from F . The size of an F-PC proof π is defined as the total size
of all formulas in π and is denoted by |π|.

Theorem 3.6. NFPC (over any field) polynomially-simulates Frege. Specifically, NFPC
polynomially-simulates F-PC in the following sense: let f1, . . . , fm be a set of commutative for-
mulas computing (commutative) polynomials that have no common 0, 1 root, and assume that there
is a size s F-PC refutation of f1, . . . , fm. Then, there exists an NFPC refutation of the same set of
formulas f1, . . . , fm (but now viewed as computing noncommutative polynomials) of size polynomial
in s.

Proof. By [GH03] (see Theorem 3 there), F-PC polynomially simulates Frege. We proceed by
showing a simulation of F-PC by NFPC by induction on the number of steps in an F-PC proof.

Base case: Axioms and initial formulas. All axioms of F-PC are also axioms in NFPC. Also, if the
F-PC refutation uses an initial formula fi, then we use the same formula in NFPC.

Induction step:
Case 1: Addition rule. Assume we derive in F-PC the formula p+ q. By induction hypothesis we
already have the two formulas p, q in NFPC. Thus, we can add them via the addition rule.
Case 2: Product rule. Assume we derive the formula xi · p from the formula p in F-PC. By
induction hypothesis we already have the formula p in NFPC. Thus, we can derive xi · p by the
Left product rule.
Case 3: Rewriting rules. Assume we derived a formula f using one of the rewriting rules of F-PC.
The rewriting rules of associativity, distributivity, scalar rule, and unit and zero rules of F-PC
do not change the noncommutative polynomial computed by an arithmetic formula. Therefore,
we get them “for free” in NFPC, in the sense that we can choose to write a noncommutative
polynomial p in the proof as any noncommutative formula, as long as the chosen formula computes
the noncommutative polynomial p. Thus, we only need to show how to simulate the commutativity
rule, namely to show how to simulate commuting a term inside a formula. The key lemma for this
is the following:

Lemma 3.7. Let F be any field and let f, g be two noncommutative formulas computing (non-
constant) polynomials from F〈x1, . . . , xn〉. Then, there is an NFPC proof of size polynomial in
|f |+ |g| of the formula f · g − g · f .

Proof. First, we need to show that NFPC allows for substitution of identities inside proof-lines.
Let A, h be noncommutative formulas and assume that the variable z occurs inside A only once.
Then A[h/z] denotes the noncommutative formula obtained from A by replacing the leaf labeled z
by the formula h.

Claim 3.8. Let A be a noncommutative formula, and let z be a variable that occurs only once
inside A. Let h, h′ be two noncommutative formulas h, h′ of maximal size s. Then, there is an
NFPC proof of A[h/z]−A[h′/z] from h− h′ of size polynomial in |A|+ s.

Proof of claim: Straightforward induction on the size of A. Claim

10

We get back to the proof of Lemma 3.7: proceed by induction on |f |+ |g| ≥ 2.
Base case: |f |+ |g| = 2. By assumption the polynomials computed by f, g are both non-constant,
and so f = xi and g = xj , for some i, j ∈ [n]. Therefore, we are done by the Boolean axiom
xixj − xjxi .

Induction step: Either |f | > 1 or |g| > 1. Assume without loss of generality that |f | > 1. Following
Claim 3.8, we shall use freely substitutions in formulas.
Case (i): f = f1 + f2. Start from

f · g − f · g = f · g − (f1 + f2) · g = f · g − f1 · g − f2 · g . (1)

By induction hypothesis we have a proof of f1 ·g−g ·f1 and of f2 ·g−g ·f2. Thus, we can substitute
these identities in (1), to get f · g − g · f1 − g · f2 = f · g − g · (f1 + f2) = f · g − g · f .
Case (ii): f = f1 · f2. Start from

f · g − f · g = f · g − (f1 · f2) · g = f · g − f1 · (f2 · g) . (2)

By induction hypothesis we have a proof of f2 · g − g · f2. Thus, we can substitute this identity in
(2), to get f ·g−f1 · (g ·f2) = f ·g− (f1 ·g) ·f2. By induction hypothesis again, we have f1 ·g−g ·f1.
And similarly, we get by substitution f · g − (g · f1) · f2 = f · g − g · f .

This concludes the proof of Lemma 3.7 �

To conclude the simulation of the commutativity rewrite rule of F-PC (which will also conclude
the proof of Theorem 3.6) we notice that, by Claim 3.8 and by Lemma 3.7, for any noncommutative
formula A, such that z is a variable that occurs only once inside A, there is an NFPC proof of
A[(f · g)/z]−A[(g · f)/z] of size polynomial in |A[(f · g)/z]|. �

4. Polynomial calculus over ordered formulas

In this section we formulate an algebraic proof system OFPC that operates with noncommutative
polynomials in which every monomial is a product of variables in nondecreasing order (from left to
right; and according to some fixed linear order on the variables), and where polynomials in proofs
are written as ordered formulas, as defined below.

Let X = {x1, . . . , xn} be a set of variables and let F be a field. Let � be a linear order on the
variables X, that is, a total, reflexive and antisymmetric order on X. Let f =

∑
j∈J bjMj be a

commutative polynomial in F[x1, . . . , xn], where the bj ’s are coefficient from F and the Mj ’s are
monomials in the X variables. We define JfK ∈ F〈x1, . . . , xn〉 to be the (unique) noncommutative
polynomial

∑
j∈J bj · JMjK, where JMjK is the (noncommutative) product of all the variables in

Mj such that the order of multiplications respects �. We denote the image of the map J·K :
F[x1, . . . , xn] → F〈x1, . . . , xn〉 by G. We say that a polynomial is an ordered polynomial if it is a
polynomial in G.

Definition 4.1 (Ordered formula). Assume we fix some linear order � on variables x1, . . . , xn. A
noncommutative formula (Definition 2.1) is said to be an ordered formula if the noncommutative
polynomial computed by each of its subformulas is ordered. We say that an ordered formula F
computes the commutative polynomial f ∈ F[x1, . . . , xn] whenever F computes JfK.

When we speak about ordered formulas and ordered polynomials, we shall assume we have some
fixed linear order � on the variables in the background (and so ordered formulas and ordered
polynomials are always considered with respect to this ordering).

We characterize ordered formulas in a simple syntactic way, different from Definition 4.1, and
then prove the equivalence of the two characterizations (Proposition 4.4):

11

Definition 4.2 (Syntactic ordered formula). An ordered formula is a syntactic ordered formula if
for each of its product gates the left subformula contains only variables that are less-than or equal,
via �, than the variables in the right subformula of the gate.

Definition 4.3. We say that a variable xi occurs in the polynomial h (commutative or noncom-
mutative) if there is a monomial with a nonzero coefficient in h in which xi has a positive power.

Note that a variable can appear (or “occur”) inside a formula while not occur in the polynomial
the formula computes.

Proposition 4.4. There is a polytime algorithm that receives a noncommutative formula Φ and a
linear order on its variables, and returns false if Φ is not an ordered formula (with respect to the
given linear order), and otherwise returns a syntactic ordered formula of the same size as Φ that
computes the same (ordered) polynomial.

Proof. First note that for any noncommutative formula F , the formula F [0/xi] computes the poly-
nomial f�xi=0 (namely, the polynomial f in which xi is assigned 0) and so F [0/xi] computes f iff
xi does not occur in f .

The algorithm is as follows:
(1) Search for a product node in F that has on its left subformula a variable that is strictly

greater (via the order �) from some variable in its right subformula. If there is no such
product node, then F itself is a syntactic ordered formula, and the algorithm returns F .

(2) Otherwise, let v be a product gate in F , with F1 and F2 its left and right subformulas,
respectively. And suppose that F1 contains the variable xi and F2 contains the variable xj ,
such that xi � xj (i.e., xi � xj and xi 6= xj). Let h1, h2 be the polynomials computed by
F1 and F2, respectively. Check whether xi occurs in h1. To this end:
Check if the resulted formula F1[0/xi] computes the same noncommutative polynomial as
F1 computes (using the PIT algorithm for noncommutative formulas).

Case I: If the answer is “yes”, then conclude that xi does not occur in the polynomial
h1, and run the algorithm with the input formula F in which F1 is substituted by
F1[0/xi].

Case II: If the answer is “no”, we know that the variable xi does occur in the polynomial
h1. We check in a similar manner whether xj occurs in h2.

(a) If xj does not occur in h2 run the algorithm with the formula F in which F2 is
substituted by F2[0/xj].

(b) Otherwise, xj does occur in the polynomial h2. We already know that xi occurs
in h1, and so it must be that h1 · h2 is not an ordered polynomial5, and so the
polynomial computed at v is not ordered and we return false.

Note that the algorithm described above returns either false (in case F is not an ordered formula)
or a new formula that computes the same noncommutative polynomial as F and with the same
size as F (because the only changes applied to the original formula F is substitution of variables
by the constant 0). The running time of the algorithm is polynomial in the size of F . �

We can now define OFPC in a convenient way, without referring to noncommutative polynomials:
the system OFPC is defined similarly to PC, except that the proof-lines are written as ordered
formulas.

Definition 4.5 (PC over ordered formulas: OFPC). Let π = (p1, . . . , pm) be a PC proof of pm

from some set of initial polynomials Q (that is, pi are commutative polynomials from the ring of

5Note that h1, h2 are polynomials (not formulas) and so if xi occurs in h1 and xj occurs in h2, it must be that
there is a monomial with a nonzero coefficient in h1 · h2 in which xi multiplies from left xj .

12

polynomials F[x1, . . . , xn]), and let � be some linear order on the variables x1, . . . , xn. The sequence
(f1, . . . , fm) in which fi is an ordered formula computing pi (according to the order �), is called an
OFPC proof of pm from Q. The size of an OFPC proof is the total size of all the ordered formulas
appearing in it.

Similar to the proof system NFPC we have defined OFPC with no rules expressing the
polynomial-ring axioms. Also, similar to NFPC, the system OFPC will constitute a Cook-Reckhow
proof system, that is, there is a deterministic polynomial-time algorithm that decides whether a
given string is an OFPC proof or not (whenever the base field and its operations can be efficiently
represented):

Proposition 4.6. For any linear order on the variables, OFPC is a sound, complete and
polynomially-verifiable refutation system for establishing that a collection of (commutative) poly-
nomial equations over a field does not have 0, 1 solutions. Specifically, (considering the language of
polynomial translations of Boolean contradictions) OFPC is a Cook-Reckhow proof system.

Proof. The soundness and completeness of OFPC stem from the soundness and completeness of
PC. The fact that OFPC is a Cook-Reckhow proof system is proved in Proposition 4.8 below. �

We first need the following lemma:

Lemma 4.7. For any linear order � on variables, there exists a polytime algorithm that receives
an ordered formula Φ computing JfK ∈ F〈x1, . . . , xn〉 (for some polynomial f ∈ F[x1, . . . , xn]) and
a variable xr, for some 1 ≤ r ≤ n, and outputs a new ordered formula that computes Jxr · fK.

Proof. We can assume that Φ is a syntactic ordered formula, as otherwise we can transform it into
such a formula by the algorithm in Proposition 4.4. We show that there is an algorithm A(Φ, xr)
that outputs the desired formula by induction on the size of Φ.

Base case:
(1) A(c, xr) := c · xr, for c ∈ F.
(2)

A(xi, xr) :=
{
xi · xr, if xi � xr;
xr · xi, otherwise.

Induction step:
(1) A(Φ1 + Φ2, xr) := A(Φ1, xr) +A(Φ2, xr).
(2)

A(Φ1 · Φ2, xr) :=
{
A(Φ1, xr) · Φ2, if xr is � from every variable in Φ2;
Φ1 ·A(Φ2, xr), otherwise.

�

Proposition 4.8. For any linear order � on variables, there exists a polytime algorithm that given
a sequence π of ordered formulas and another sequence (Q1, . . . , Qm, G) of ordered formulas, outputs
true iff π is an OFPC proof of the polynomial computed by G from the polynomials computed by
Q1, . . . , Qm.

Proof. We verify the following:
(1) All formulas in π are ordered formulas (according to the fixed linear order). By Proposition

4.4, this can be done in polynomial-time in the size of π.
(2) The last formula in π computes the same polynomial as G (using the PIT algorithm for

noncommutative formulas).
(3) For every proof-line f ∈ π, one of the following holds:

13

(i) The formula f computes an axiom. This can be verified by checking whether f com-
putes the same noncommutative polynomial as the formula x2

i −xi, for some 1 ≤ i ≤ n,
or whether f computes some polynomial computed by Qi, for some 1 ≤ i ≤ m (by
Theorem 2.3).

(ii) The formula f computes the same ordered polynomial as F1 +F2, for some pair F1, F2

of ordered formulas in previous proof-lines (Theorem 2.3).
(iii) The formula f computes Jxi ·hK, for some 1 ≤ i ≤ n, where h is a polynomial computed

by some previous proof-line. This can be checked as follows. Considering all possible
pairs H and xi, for H being a proof-lines (preceding f in π) and i = 1, . . . , n, run the
algorithm in Lemma 4.7 where the inputs are H and xi. We get a new ordered formula
H ′, and we check if H ′ computes the same noncommutative polynomial as f .

�

Note: Formally, for different n’s, every set of variables x1, . . . , xn may have linear orders that are
incompatible with each other. Nevertheless, in this paper, given a family Q of collections of initial
polynomials {Qn |n ∈ N} parameterized by n, and assuming that Qn ⊆ F[x1, . . . , xn] for all n, we
will consider only linear orders such that: for every n > 1, the linear order on x1, . . . , xn is an
extension of the linear order on x1, . . . , xn−1. Equivalently, we can consider one fixed linear order
on a countable set of variables X = {x1, x2, . . .}.

5. Simulations, short proofs and separations for OFPC

In this section we are concerned with the relative strength of OFPC. Specifically, we show that
OFPC, when operating with polynomials over fields of characteristic 0, is strictly stronger than the
polynomial calculus, polynomial calculus with resolution (PCR) and resolution (for a definition of
resolution, see for example [ABSRW02]). For this purpose, we show first that, for any linear order
on the variables OFPC polynomially simulates PCR. Since PCR polynomially simulates both PC
and resolution, we get that OFPC also polynomially simulates PC and resolution. Second, we show
that OFPC admits polynomial-size refutations of hard tautologies for PCR (that is, tautologies that
do not have polynomial-size PCR proofs). This is done by demonstrating that OFPC over fields
of characteristic 0 polynomially simulates the R0(lin) refutation system for the language of CNF
formulas. The system R0(lin) is an extension of resolution introduced in [RT08a]. Since R0(lin) is
provably stronger than PCR [RT08a], the result will follow.

5.1. OFPC polynomially simulates PCR. Let τ denote the linear transformation that maps
the variables xi, for any i ∈ [n], to (1 − xi), and denote p� τ the polynomial p under the transfor-
mation τ .

Proposition 5.1. For any linear order on the variables, OFPC polynomially simulates PCR
(and PC and resolution). Specifically, if there is a size s PCR proof (with the variables
x1, . . . , xn, x̄1, . . . , x̄n) of p from the axioms pj1 , . . . , pjk

, then there is an OFPC proof of p � τ
from pj1�τ, . . . , pjk

�τ of size O(n · s).

Proof. Given some linear order on the variables, we assume that all ordered formulas respect this
linear order (and so we do not refer explicitly to this order).

Let π = (p1, . . . , pt) be a PCR proof of size s from the axioms pj1 , . . . , pjk
(that is, pi’s are [com-

mutative] polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n], for some field F, such that the total number
of monomials occurring in all proof-lines in π is s). We need to show that there is an OFPC proof
π′ of pi from the axioms, such that π′ has size O(n · s).

14

Let Γ be the sequence obtained from π by replacing every product rule application in π, deriving
x̄i · p from p (for any i = 1, . . . , n), by the following proof sequence:

1. p
2. xi · p
3. (1− xi) · p

(the second polynomial is derived by the product rule from the first polynomial, and the third
polynomial is derived by the addition rule from the first and second polynomials).

Let Γ� τ be the sequence obtained from Γ by applying the substitution τ on every proof-line in
Γ. We claim that Γ�τ is a PC proof of pt�τ from the initial polynomials pj1�τ, . . . , pjk

�τ : first, note
that all product rule applications using x̄i variables were eliminated in Γ� τ , and thus all product
rule applications in Γ� τ are legitimate PC product rule applications. Second, note that for any
pair of polynomials g, h we have g� τ + h� τ = (g + h)� τ . Third, note that the axioms of PCR
transform under τ to either 0 (which we can ignore in the new proof sequence) or to the PC axiom
xi(1− xi).

By construction, every proof-line in Γ�τ is either pi�τ or xj · (pi�τ), for some pi ∈ π and j ∈ [n].
Therefore, by definition of OFPC, it suffices to show that every pi�τ and xj · (pi�τ), for some pi ∈ π
and j ∈ [n], have ordered formulas of size at most O(m · n), where m is the number of monomials
in pi. For this purpose it is enough to show that for every monomial M in pi there exists an O(n)
ordered formula computing the polynomial M � τ . The latter is true since every such polynomial
is a product of at most n terms, where each term is either xi or 1 − xi, for some i ∈ [n]; such a
product can be clearly written as an ordered formula of size O(n). �

In the rest of this section we show that OFPC polynomially simulates the proof system R0(lin),
and then use it to establish short proofs in OFPC.

5.2. Resolution over linear equations R(lin) and its subsystem R0(lin). Here we follow
[RT08a] and define the refutation systems R(lin) and R0(lin). The system R(lin) is an extension
of the resolution refutation system that works with disjunctions of linear equations instead of
disjunction of literals. R0(lin) is defined to be a subsystem of R(lin) in which certain restrictions
are put on proof-lines in a proof.

Disjunctions of linear equations. Let L be a linear equation a1x1 + . . .+ anxn = a0. Then, the
right hand side a0 is called the free-term of L and the left hand side a1x1 + . . .+ anxn is called the
linear form of L (the linear form can be 0). A disjunction of linear equations is of the following
form: (

a
(1)
1 x1 + . . .+ a(1)

n xn = a
(1)
0

)
∨ · · · ∨

(
a

(t)
1 x1 + . . .+ a(t)

n xn = a
(t)
0

)
, (3)

where t ≥ 0 and the coefficients a(j)
i are integers (for all 0 ≤ i ≤ n, 1 ≤ j ≤ t). We remove duplicate

linear equations from a disjunction of linear equations. The semantics of such a disjunction is the
following: an assignment of integral values to the variables x1, ..., xn is said to satisfy (3) if and
only if there exists j ∈ [t] so that a(j)

1 x1 + . . .+a
(j)
n xn = a

(j)
0 holds under the given assignment. The

size of a linear equation a1x1 + . . .+anxn = a0 is defined to be
∑n

i=0 |ai|, that is, the sum of the bit
sizes of all ai written in unary notation. Accordingly, the size of the linear form a1x1 + . . .+ anxn

is
∑n

i=1 |ai|. The size of a disjunction of linear equations is the total size of all linear equations in
it. Similar to resolution, the empty disjunction is unsatisfiable and stands for the truth value false.
We will consider only disjunctions of linear equations with integral coefficients. Given a vector ~a of
n integers and a vector ~x of n variables x1, . . . , xn, we write ~a · ~x to abbreviate

∑n
i=1 aixi.

15

Translation of clauses. We can translate any CNF formula to a collection of disjunctions of linear
equations as follows: every clause

∨
i∈I xi ∨

∨
j∈J ¬xj in the CNF is translated into the disjunction∨

i∈I(xi = 1)∨
∨

j∈J(xj = 0). Any Boolean assignment to the variables x1, . . . , xn satisfies a clause
D if and only if it satisfies its translation into disjunction of linear equations (where true is identified
with 1 and false with 0).

The refutation system R(lin).

Definition 5.2 (R(lin)). Let K := {K1, . . . ,Km} be a collection of disjunctions of linear equations
in the variables x1, . . . , xn. An R(lin)-proof from K of a disjunction of linear equations D is a
finite sequence π = (D1, ..., D`) of disjunctions of linear equations, such that D` = D and for every
i ∈ [`] one of the following holds:

(1) Di = Kj, for some j ∈ [m];
(2) Di is a

Boolean axiom: (xt = 0) ∨ (xt = 1), for some t ∈ [n];
(3) Di was deduced by one of the following R(lin)-inference rules, using Dj , Dk for some j, k < i:

Resolution: Let A,B be two, possibly empty, disjunctions of linear equations and let
L1, L2 be two linear equations. From A ∨ L1 and B ∨ L2 derive A ∨B ∨ (L1 − L2).
Weakening: From a possibly empty disjunction of linear equations A derive A ∨ L ,
where L is an arbitrary linear equation over the variables x1, . . . , xn.
Simplification: From A ∨ (0 = k) derive A, where A is a possibly empty disjunction
of linear equations and k 6= 0.

An R(lin) refutation of a collection of disjunctions of linear equations K is a proof of the empty
disjunction from K. The size of an R(lin) proof π is the total size of all the disjunctions of linear
equations in π (where coefficients are written in unary representation) denoted |π|.

In light of the translation between CNF formulas and collections of disjunctions of linear equa-
tions, we can consider R(lin) to be a proof system for the set of unsatisfiable CNF formulas.
The refutation system R0(lin). For our purposes we need to consider the restriction of R(lin),
denoted R0(lin) [RT08a]. The system R0(lin) operates with disjunctions of (arbitrarily many)
linear equations with constant coefficients excluding the free terms, under the following restriction:
every disjunction can be partitioned into a constant number of sub-disjunctions, where each sub-
disjunction either consists of linear equations that differ only in their free-terms or is a (translation
of a) clause. Any linear inequality with Boolean variables can be represented by a disjunction of
linear equations that differ only in their free-terms. So the R0(lin) proof system resembles, to some
extent, a proof system operating with disjunctions of constant number of linear inequalities with
constant integral coefficients.

Example: The following is an example of an R0(lin) proof-line:

(x1 + . . .+ x` = 1) ∨ · · · ∨ (x1 + . . .+ x` = `) ∨ (x`+1 = 1) ∨ · · · ∨ (xn = 1),

for some 1 ≤ ` ≤ n. Note that in the left part (x1 + . . .+ x` = 1) ∨ · · · ∨ (x1 + . . .+ x` = `) every
disjunct has the same linear form with coefficients 0, 1, and the right part (x`+1 = 1)∨· · ·∨(xn = 1)
is a translation of a clause.

To formally define the R0(lin) proof system we introduce the following definition:

Definition 5.3 (Rc,d(lin)-line). Let D be a disjunction of linear equations whose variables have
integer coefficients with absolute values at most c (the free-terms are unbounded). Assume D can
be partitioned into at most d sub-disjunctions D1, . . . , Dd, where each Di either consists of (an
unbounded) disjunction of linear equations that differ only in their free-terms, or is a translation
of a clause. Then the disjunction D is called an Rc,d(lin)-line. The size of an Rc,d(lin)-line D is

16

defined as before, that is, as the total bit-size of all equations in D, where coefficients are written
in unary representation.

Thus, any Rc,d(lin)-line is of the following general form:∨
i∈I1

(
~a(1) · ~x = `

(1)
i

)
∨ · · · ∨

∨
i∈Ik

(
~a(k) · ~x = `

(k)
i

)
∨
∨
j∈J

(xj = bj) , (4)

where k < d and for all r ∈ [n] and t ∈ [k], a(t)
r is an integer such that |a(t)

r | ≤ c, and bj ∈ {0, 1} (for
all j ∈ J), and the `(k)

i ’s are (unbounded) integers (and I1, . . . , Ik, J are unbounded sets of indices).
Since a disjunction of clauses is a clause in itself, we can assume that in any Rc,d(lin)-line only a
single (translation of a) clause occurs.

The R0(lin) proof system is a restriction of R(lin) in which each proof-line is an Rc,d(lin)-line,
for some fixed constants c, d:

Definition 5.4 (R0(lin)). Let K := {Kn | n ∈ N} be a family of collections of disjunctions of linear
equations. Then {Pn | n ∈ N} is a family of R0(lin)-proofs of K if there exist constant integers
c, d independent of n, such that: (i) each Pn is an R(lin)-proof of Kn; and (ii) for all n, every
proof-line in Pn is an Rc,d(lin)-line. The size of an R0(lin) proof is defined the same way as the
size of R(lin) proofs, that is, as the total size of all the proof-lines.

If Kn is a collection of disjunctions of linear equations parameterized by n ∈ N, we shall say that
Kn has a polynomial-size (in n) R0(lin) proof, if there are some constants c, d independent of n
and a polynomial p, such that for every n, Kn has R(lin) proof of size at most p(n) in which every
proof-line is an Rc,d(lin)-line.

Both R(lin) and R0(lin) are sound and complete Cook-Reckhow refutation systems for unsatis-
fiable CNF formulas (see Section 3.2 in [RT08a]).

5.3. OFPC polynomially simulates R0(lin). Here we prove that OFPC over fields of character-
istic 0 polynomially simulates R0(lin) for the language of unsatisfiable CNF formulas. We translate
a CNF, that is, a collection of clauses, into a collection of polynomials as follows: every clause∨

i∈I xi ∨
∨

j∈J ¬xj in the CNF is translated into
∏

i∈I(1− xi) ∨
∏

j∈J xj .

Theorem 5.5. For any linear order on the variables, OFPC operating with polynomials over a field
of characteristic 0 polynomially simulates R0(lin) for the language of unsatisfiable CNF formulas.
Moreover, we can assume that all formulas appearing in the OFPC proofs simulating R0(lin) are
ordered formulas of depth at most 3.

In the rest of this subsection we work out the proof of Theorem 5.5.
Assume we have a family of R0(lin) refutations {π` : ` ∈ N} of a CNF family {K` : ` ∈ N},

in which every line is an Rc,d(lin)-line for two constants c, d independent of `. We wish to show
an OFPC refutation of K` with size polynomial in |π`|. Thus, consider a refutation π = π` =
(D1, . . . , Dm), for some `. The proof is almost similar to the proof that multilinear proofs can
polynomial simulate R0(lin), given in [RT08a]. We begin by providing an overview of the simulation:

Step I: First we translate disjunctions of linear equations into polynomials. This is easy
to do by considering a disjunction as a product, and turning any linear equation into its
corresponding homogenous linear form. Thus, π = (D1, . . . , Dm) can be transformed into
a sequence π̃ = (D̃1, . . . , D̃m) of polynomials.

Step II: We then show how to transform the sequence π̃ into a PC refutation by adding new
PC proof-lines, so that if Dk was derived from previous lines Di, Dj by one of R(lin) rules,
then the added proof-lines will constitute a PC derivation of D̃k from previous lines D̃i, D̃j .
This is not hard to do, but we have to take care that:

17

(1) the number of added lines is polynomial in the size of the original R0(lin) refutation;
and

(2) every newly added PC proof-line is a polynomial translation D̃ of some Rc′,d′(lin)-line
D (Definition 5.6 below), where D is of size polynomial in |π| and c′, d′ are constants
independent of n.

Step III: We now have a PC proof π′ whose number of lines is polynomial in |π| in which every
line is a polynomial translation D̃ of some Rc′,d′(lin)-line D, such that |D| is polynomial in
|π|. For the current step we extend the system PCR with the Product Rule p

g·p , for any
polynomial g (note that g is not necessarily a variable), and denote this extended system
by PCR?. We then transform π′ into a PCR? proof π? in which every line is roughly a
multilinearization M[D̃] of a polynomial translation D̃ of some Rc′,d′+1(lin)-line D, where
|D| is polynomial in |π|; However, the variables in π? will be {x1, . . . , xn, x̄1, . . . , x̄n}. Also,
note that if D is a clause, then D̃ is already multilinear, which means that M[D̃] = D̃, and
so π? is a refutation of the original CNF.

Step IV: In this step we show that every proof-line in π? can be written as a certain simple
depth-3 formula of polynomial-size in |π|. This step is accomplished by observing that the
multilinearization of a polynomial translation of an Rc,d(lin)-line is close to a product of
constantly many symmetric polynomials (cf. [RT08a]). And then showing that any such
product has a ΣΠΣ depth-3 formula whose size is polynomial in the size of the original
Rc,d(lin)-line, over large enough fields (that is, over fields with at least 2n+ 1 elements, for
2n being the number of variables), and whose bottom level linear forms have only a single
variable.

Step V: We now have a PCR? proof π? of the original CNF formula with polynomial in |π|
many lines and in which the following invariant holds: every proof-line can be written as a
ΣΠΣ depth-3 formula of polynomial-size in |π| in which the bottom level linear polynomials
have only a single variable. Since in OFPC the product rule can only multiply previous
lines by a variable, we first show how to polynomially simulate in PCR, applications of
the extended PCR? product rules p

g·p that occur in π?, while keeping the above invariant.
Second, we need to change the resulting refutation into a PC refutation of the same CNF
formula K having only the {x1, . . . , xn} variables (and not using the axioms xi · x̄i and
xi + x̄i − 1), and where the above invariant on the structure of lines still holds. This is
easy to do by applying the linear transformation x̄i 7→ 1 − xi on all polynomials in the
refutation. We then claim that every line in the obtained PC refutation of K can be
written as an ordered formula of depth-3 and of polynomial-size in |π| (for any given order
on variables).

We now turn to the formal construction.
Step I. Here we show how to transform disjunctions of linear equations D into polynomials D̃.
We turn a disjunction into a product and a linear equation L = d, for d the free term, into the
polynomial L − d. Note that R0(lin) operates with unbounded free-terms: the number d in the
example above (or the `

(t)
i ’s in (4)) are unbounded (their values may depend on n). Since we

translate an integer d ∈ Z to the field element 1 + . . . + 1 (d times), we need to use a field whose
characteristic is big enough to include (an isomorphic copy of) the integers up to d. We will simply
assume that our field has characteristic 0, which means it includes every integer.

More concretely, our polynomial translation is as follows. A polynomial translation of a clause∨
j∈J(xbj

j) is any product of the form
∏

j∈J(xj − bj), where bj ∈ {0, 1} for all j ∈ J , and where xbj

j

is the literal xj if bj = 1 and ¬xj if bj = 0. Accordingly, we define the polynomial translation of a
CNF formula as the set consisting of the polynomial translations of the clauses in the CNF.

18

Definition 5.6 (Polynomial translation of Rc,d(lin)-lines). A polynomial translation of an Rc,d(lin)-
line is a product of linear polynomials (that is, polynomials of the form

∑n
i=1 aixi + a0), such that:

(1) All variables in the linear polynomials have integer coefficients with absolute values at most
c (the constant terms [that correspond to the free-terms] are unbounded).

(2) D can be written as
∏d

i=1Di, where each Di either consists of (an unbounded) product of
linear forms that differ only in their free-terms, or is a polynomial translation of a clause.

The degree of a polynomial-translation of an Rc,d(lin)-line D is defined to be the total degree of the
polynomial D.

In other words, any polynomial translation of an Rc,d(lin)-line has the following general form:

∏
j∈J

(xj − bj) ·
k∏

t=1

∏
i∈It

(
n∑

r=1

a(t)
r xr − `(t)i

)
, (5)

where k < d and for all r ∈ [n] and t ∈ [k], a(t)
r is an integer such that |a(t)

r | ≤ c, and bj ∈ {0, 1}
(for all j ∈ J) and the `(t)i ’s are integers (and I1, . . . , Ik, J are unbounded sets of indices).

Notation: As noted earlier, given an Rc,d(lin)-line D we write D̃ to denote its polynomial trans-
lation.

Step II. We now show how to obtain a PC proof π′ from the R(lin) proof π, using the polynomial
translation in Step I.

Proposition 5.7 (Translating R0(lin) proofs to PC proofs). Let K = {Km | m ∈ N} be a family
of unsatisfiable CNF formulas translated into disjunctions of linear equations and let {Pm | m ∈ N}
be a family of R0(lin)-proofs of K, where each proof line in every Pm is an Rc,d(lin)-line, for two
constants c, d independent of m. Then, there are two constants c′, d′ depending only on c, d and a
family of PC refutations {P ′m | m ∈ N} of (the polynomial translations of) K, such that for every
m ∈ N:

(i) the number of lines in P ′m is polynomial in |Pm|; and
(ii) every line in P ′m is a polynomial translation of an Rc′,d′(lin)-line of degree polynomial in
|Pm|.

Proof. We proceed by induction on the number of lines in Pm.

Base case: An R0(lin) Boolean axiom (xi = 0) ∨ (xi = 1) is translated into xi · (xi − 1) which
is already an axiom of PC (or can be derived from an axiom by multiplying b the scalar −1).
An initial disjunction of linear equations from Kn is translated into its corresponding polynomial
translation (Definition 5.6). In both cases we get polynomial translations of Rc,d(lin)-lines with a
polynomial (in |Pm|) degree (note that the initial disjunctions in K are Rc,d(lin)-lines since they
are clauses).

Induction step: We translate every R0(lin) inference rule application into a PC proof sequence
with polynomial in |Pm| number of lines, and with each line being a polynomial translation of
an Rc′,d′(lin)-line for two constants c′, d′ depending only on c, d, whose degree is bounded by a
polynomial in |Pm|. We use the following claim:

Claim 5.8. Let p, q ∈ F[x1, . . . , xn] be two polynomials and let s be the minimal size of an arith-
metic formula computing q. Then one can derive from p in PC the polynomial q · p, with only
a polynomial in s number of steps. Furthermore, assume that q, p are polynomial translations of
Rc,d(lin)-lines Q,P , respectively, for some constants c, d independent of n and with |Q|, |P | ≤ t,

19

then the PC derivation of q ·p from p has polynomial in t number of lines and contains only polyno-
mial translations of Rc′,d′(lin)-lines of degree polynomial in t, for some constants c′, d′ independent
of n.

Proof of claim: By induction on s (and t in the second statement). We omit the details. Claim

Assume that Di = Dj ∨ L was derived from Dj using the weakening inference rule of R0(lin),
and L is some linear equation. Then, by Claim 5.8, D̃i = D̃j · L̃ can be derived from D̃j with a PC
derivation having at most polynomial in |Dj ∨ L| many steps, in which every line is a polynomial
translation of an Rc′,d′(lin)-line of degree polynomial in t, for some constants c′, d′ independent of
n.

Otherwise, assume that Di was derived from Dj where Dj is Di∨(0 = k), using the simplification
inference rule of R0(lin), and k is a non-zero integer. Then, D̃i can be derived from D̃j = D̃i · −k
by multiplying with −k−1 (via the Addition rule of PC, and using the fact that we work in a field).

Thus, it remains to simulate the resolution rule application of R0(lin). Let A,B be two disjunc-
tions of linear equations and assume that

A ∨B ∨
(

(~a−~b) · ~x = a0 − b0
)

was derived in Pm from A ∨ (~a · ~x = a0) and B ∨ (~b · ~x = b0).
We need to derive

Ã · B̃ ·
(

(~a−~b) · ~x− a0 + b0

)
from Ã · (~a · ~x − a0) and B̃ · (~b · ~x − b0). This is done by multiplying Ã · (~a · ~x − a0) with B̃

and multiplying B̃ · (~b · ~x − b0) with Ã and then subtracting the second resulted polynomial from
the first resulted polynomial. By Claim 5.8, this can be done in PC with polynomial in t =
|A∨ (~a ·~x−a0)|+ |B∨ (~b ·~x− b0)| many steps and where each proof-line is a polynomial translation
of an Rc′,d′(lin)-line, where the degree of every such Rc′,d′(lin)-line is polynomial in t (which also
implies that the degree of such lines is also upper bounded by |Pm|). �

By Proposition 5.7, given our refutation π of a CNF, there exists a PC refutation π′ of K with
polynomial in |π| number of lines, and with every line a polynomial translation D̃ of an Rc′,d′(lin)-
line D with degree at most polynomial in |π|, for two constants c′, d′.
Step III. Recall that a polynomial p ∈ F[x1, . . . , xn] is said to be multilinear if the power of every
variable in all its monomials is at most one. Given the PC refutation π′ from the previous step,
we construct a PCR? refutation π? of the same CNF, and where PCR? is an extension of PCR,
defined as follows:

Definition 5.9 (PCR?). The proof systems PCR? is an extension of the PCR system (Definition
2.6) with the following product rule:

Product:
p

g · p
, for any polynomial g ∈ F[x1, . . . , xn, x̄1, . . . , x̄n].

Definition 5.10 (Multilinearization operator). Given a field F and a polynomial q ∈ F[x1, . . . , xn],
we denote by M[q] the unique multilinear polynomial equal to q modulo the ideal generated by all
the polynomials x2

i − xi, for all variables xi.

For example, if q = x2
1x2 + ax3

4 + 1 (for some a ∈ F) then M[q] = x1x2 + ax4 + 1 .

The main idea in Step III is formulated in the next proposition. It states that a PC refutation
consisting of only translations of Rc′,d′(lin)-lines can be transformed without much increase in the

20

number of lines into a “multilinearized” refutation, in which every line is roughly a multilinearization
of (a polynomial translation of) an Rc′,d′(lin)-line. Formally, we have:

Proposition 5.11. Let P be a PC refutation from an initial set K of multilinear polynomials in
F[x1, . . . , xn], and assume that every proof line in P is a polynomial translation of an Rc′,d′(lin)-line
D of size at most t, for some fixed c′, d′. Then there exists a PCR? refutation P ′ of K, such that:

(1) the number of lines in P ′ is polynomially bounded in the number of lines in P ;
(2) for every polynomial p in P ′, p is a multilinear polynomial in F[x1, . . . , xn, x̄1, . . . , x̄n] that

can be written as a sum
∑h

i=1 M[D̃i], where h is a constant (independent of n, c′, d′) and
where each D̃i is a degree O(t) polynomial translation of an Rc′,d′+1(lin)-line.

Proof. Let (p1, . . . , pm) be the PC refutation P , where for any i ∈ [m], pi is a polynomial in
F[x1, . . . , xn]. The desired PCR? proof P ′ is constructed as follows.

First, we put Q = (M[p1] , . . . ,M[pm]). We construct the PCR? refutation P ′ of K by adding
appropriate PCR? proof-sequences to Q. This is done as follows:
Case A: If pi is from K then by multilinearity of pi we have pi = M[pi]. And condition (2) in
the statement of the proposition holds by assumption that pi is a polynomial translation of an
Rc′,d′(lin)-line D, where the size of D is at most t (and hence t is an upper bound on the degree of
pi).
Case B: If pi was derived in P by the addition rule from previous lines pj , pk, for some j, k < i,
then pi = αpj + βpk, for some α, β ∈ F. Thus, M[pi] = αM[pj] + βM[pk] can be derived in PCR?

from previous lines M[pj] and M[pk]. Similarly to Case A, condition (2) holds by assumption that
pi is a polynomial translation of an Rc′,d′(lin)-line D of size at most t.
Case C: If pi = xj · pk, for some j ∈ [n] and k < i, was derived in P by the product rule from a
previous line pk, then M[pi] can be derived in P ′ as follows:

If xj does not appear with a positive power in pk, then we can derive M[pi] = M[xj · pk] =
xj ·M[pk] from M[pk] via the product rule. Otherwise, assume that xj appears with a positive
power in pk. Then we have

M[pk] = xj · f1 + f2

for some two multilinear polynomials f1, f2, where xj does not appear with a positive power in f1

and xj does not appear with a positive power in f2. We add the following PCR? proof-sequence to
Q:

1. xj · f1 + f2 this is M[pk]

2. x̄j · (xj · f1 + f2) product of (1)

3. (1− x̄j) · (xj · f1 + f2) (1) minus (2)
4. xj · x̄j Boolean axiom

5. (xj · x̄j) · f1 product of (4)

6. (1− x̄j) · (xj · f1 + f2) + (xj · x̄j) · f1 (3) plus (5)
7. xj + x̄j − 1 Boolean axiom

8. (xj + x̄j − 1) · f2 product of (7)

9. (1− x̄j) · (xj · f1 + f2) + (xj · x̄j) · f1 + (xj + x̄j − 1) · f2 (6) plus (8)
The last line (line 9) equals xj · f1 + xj · f2 = M[xj · pk] = M[pi], which is the desired line.

Observe that (by opening brackets) every line in the sequence above is a linear combination of
at most four of the following polynomials:

xj · x̄j , xj · f1, f2, x̄j · xj · f1, x̄j · f2, xj · f2. (6)

We need the following claim:
21

Claim 5.12. Every polynomial in (6) can be written as a sum M[D̃1] + M[D̃2], such that D̃1, D̃2

are (possibly zero) polynomial translations of Rc′,d′+1(lin)-lines of degree O(t).

Proof of claim: The first polynomial x̄j · xj is of the required form since it is a translation of a
clause. We now consider the rest of the polynomials in (6).

Consider the polynomials f1 and f2. By assumption, we know that xj ·f1 +f2 = M[pk] = M[D̃],
for some Rc′,d′(lin)-line D of size at most t, where xj does not appear in f1 and in f2. Therefore,

f1 = M[D̃]�xj=1 −M[D̃]�xj=0 = M
[
D̃�xj=1

]
−M

[
D̃�xj=0

]
, and

f2 = M
[
D̃�xj=0

]
(where the notation p� xj=b means that we assign the value b to the variable xj in the polynomial
p).

We thus get:

xj · f1 = xj ·M
[
D̃�xj=1

]
− xj ·M

[
D̃�xj=0

]
= M

[
xj · D̃�xj=1

]
−M

[
xj · D̃�xj=0

]
,

where xj · D̃�xj=1 and xj · D̃�xj=0 are both polynomial translations of Rc′,d′+1(lin)-lines, of degree
at most t+ 1.

The rest of the polynomials in (6), namely, f2, x̄j · xj · f1, x̄j · f2, xj · f2, can be treated in a
similar manner (note also that x̄j does not appear in f1 and f2). Claim �

Notice that if a polynomial translation D̃ of an Rc′,d′+1(lin)-line D is of degree at most |π|, then
D is of size at most O(n · |π|) (for constants c′, d′). Thus, Proposition 5.11 shows that we can
transform the PC refutation π′ from Step II into a PCR? refutation π? of the same CNF, in which
every line is a sum

∑
i∈I M[D̃i] such that:

(1) |I| is constant (independent of n, c, d);
(2) every D̃i is a polynomial translation of some Rc′,d′+1(lin)-line Di such that the size |Di| is

polynomial in the size |π| of the original refutation π (for constants c′, d′ independent of n).
(3) The number of lines in π? is polynomially bounded in the number of lines in π.

Note again that the new PCR? proof may contain the “negative” variables x̄1, . . . , x̄n.
Step IV. We now show that every PCR? proof-line in π? has a certain simple depth-3 arithmetic
formula. We shall use the fact that Rc,d(lin)-lines are close to a product of d symmetric polynomials,
and the fact that multilinear symmetric polynomials can be computed by small ordered formulas
(of depth-3) over large enough fields [Ben80] (cf. [Tza08] for a proof).

We say that an arithmetic formula Φ is a ΣΠΣ formula if every path from the root to the leaf in
the formula tree starts with a plus gate and the number of alternations in the path between plus
and product gates is at most two, where field elements α ∈ F can label any edge e in the formula,
meaning that the polynomial computed in the tail of e (i.e., the node the edges e emanates from)
is multiplied by α. In other words, Φ can be written as a sum of products of linear polynomials.

We need the following proposition, proved in [RT08b]:

Proposition 5.13 ([RT08b], Proposition 7.27). Let F be a field such that |F| > n. For a constant
c, let X1, . . . , Xc be c finite sets of variables (not necessarily disjoint), where

∑c
i=1 |Xi| = n . Let

f1, . . . , fc be c symmetric polynomials over X1, . . . , Xc (over the field F), respectively. Then,
there is a ΣΠΣ formula Φ for M[f1 · · · fc] of size polynomial (in n), such that all bottom level
linear forms consist of only a single variable (that is, axi + b, for some a, b ∈ F).

Observation: Note that for any order on variables, every ΣΠΣ formula Φ as in Proposition 5.13
can be transformed into an ordered formula with the same size: since all products are of linear

22

forms, each with a single variable, for any order � on variables one can order the products in the
formula in a way that respects �.

The key lemma of the simulation is the following:

Lemma 5.14. Let F be a field such that |F| > n. Let s, t be two constants, let D be an Rs,t(lin)-line

with n variables and let D̃ be the polynomial translation of D. Then, M
[
D̃
]

has a ΣΠΣ formula
Φ of size polynomial in |D| over F, such that all bottom level linear forms consist of only a single
variable (that is, axi + b, for some a, b ∈ F).

Proof. Assume that the underlying variables of D are ~x = {x1 . . . , xn}.6 By assumption, we can
partition the disjunction D into a constant number t of disjuncts, where each disjunct is a (possibly
empty translation of a) clause C (if there is more than one clause in D we combine all the clauses
into a single clause) and all other disjuncts have the following form:

m∨
i=1

(~a · ~x = `i) , (7)

where the `i’s are integers, m is bounded by |D| and ~a denotes a vector of n constant integer
coefficients, each having absolute value at most s.

Suppose that the clause C is
∨

i∈I xi ∨
∨

j∈J ¬xj , and let

q =
∏
i∈I

(xi − 1) ·
∏
j∈J

xj (8)

be the polynomial representing C.
Consider a disjunct as shown in (7). Since the coefficients ~a are constants (having absolute value

at most s), ~a · ~x can be written as a sum of constant number of linear forms, each with the same
constant coefficient. In other words, ~a · ~x can be written as z1 + . . . + zd, for some constant d
(depending on s only), where for all i ∈ [d]:

zi := b ·
∑
j∈J

xj , (9)

for some J ⊆ [n] and some constant integer b. We shall assume without loss of generality that d
is the same constant for every disjunct of the form (7) in D (otherwise, take d to be the maximal
such d). Thus, (7) is translated (as in Definition 5.6) into:

m∏
i=1

(z1 + ...+ zd − `i) . (10)

By fully expanding the product in (10), we arrive at:

∑
r1+...+rd+1=m

(
α~r ·

d∏
k=1

zrk
k

)
, (11)

where the ri’s are non-negative integers, and where each α~r’s, for ~r = 〈r1, . . . , rd+1〉, is an integer
coefficient.

6We will apply Lemma 5.14 on lines with 2n variables {x1, . . . , xn, x̄1, . . . , x̄n}. For the sake of simplicity, in this
lemma we assume that our underlying variables are {x1, . . . , xn}.

23

Claim 5.15. The polynomial translation D̃ of D is a linear combination (over F) of polynomially
(in |D|) many terms, such that each term can be written as

q ·
∏
k∈K

zrk
k , (12)

where K is a collection of a constant number of indices, rk’s are non-negative integers, and the zk’s
and q are as above (that is, the zk’s are linear forms, where each zk has a single coefficient for all
variables in it, as in (9), and q is from (8)).

Proof of claim: By assumption, the total number of disjuncts of the form (7) in D is ≤ t. In
D̃, we actually need to multiply at most t many polynomials of the form shown in (11) and the
polynomial q.

For every j ∈ [t] we write the (same) linear form in the jth disjunct as a sum of constantly many
linear forms zj,1 + . . . + zj,d, where each (sub-)linear form zj,k has the same coefficient for every
variable in it. Thus, D̃ can be written as:

q ·
t∏

j=1

∑

r1+...+rd+1=mj

(
α

(j)
~r ·

d∏
k=1

zrk
j,k

)
︸ ︷︷ ︸

(?)

 , (13)

(where the mj ’s are bounded by |D|, and the coefficients α(j)
~r are as above except that here we

add the index (j) to denote that they depend on the jth disjunct in D). Denote the maximal mj ,
for all j ∈ [t], by m0. We have m0 ≤ |D|. Note that since d is a constant (depending only on s)
the number of summands in each of the big (middle) sums in (13) is polynomial in m0, which is
at most polynomial in |D| (specifically, it is ≤

(
m0+d

m0

)
< (m0 + d)d). Therefore, since t is constant

(independent of n), by expanding the outermost product in (13), we arrive at a sum of polynomially
in |D| many summands. Each summand in this resulting sum is a product of t terms (each of the
form designated by (?) in Equation (13)) multiplied by q. But this is precisely the required form of
a summand in (12); where also, since d, t are constants, |K| is a constant independent of n. Claim

To finish the proof of Lemma 5.14 it remains to apply the multilinearization operator (Definition
5.10) on D̃, and verify that the resulting polynomial has the desired form. Since M[·] is a linear
operator, it suffices to show that when applying M[·] on each summand in D̃, as described in Claim
5.15, one obtains a polynomial that has a ΣΠΣ formula of size polynomial in |D| over F, such that
all bottom level linear forms consist of only a single variable. This is established in the following
claim:

Claim 5.16. (Under the same notation as in Claim 5.15) the polynomial M
[
q ·
∏

k∈K zrk
k

]
has a

ΣΠΣ formula (over F) of polynomial-size in the number of variables n and with a plus gate at the
root, such that all bottom level linear forms consist of only a single variable (that might be different
for each linear form).

Proof of claim: Note that a power of a symmetric polynomial is a symmetric polynomial in
itself. Thus, since for any k ∈ K, zk is a symmetric polynomial, zrk

k is also symmetric. The
polynomial q is a translation of a clause, hence it is a product of two symmetric polynomials (over
different variables): the symmetric polynomial that is the translation of the disjunction of literals
with positive signs, and the symmetric polynomial that is the translation of the disjunction of
literals with negative signs. Therefore, q ·

∏
k∈K zrk

k is a product of constant number of symmetric
polynomials (over different, though possibly not disjoint, sets of variables). By Proposition 5.13,

24

M
[
q ·
∏

k∈K zrk
k

]
(where here the M[·] operator operates on the ~x variables in the zk’s and q) is

a polynomial for which there is a ΣΠΣ polynomial-size (in n) formula such that all bottom level
linear forms consist of only a single variable (over F). Claim �

Step V. In the previous step we obtained a PCR? refutation π? = (q1, . . . , qr) of the CNF K with r
polynomial in |π|, and such that every qi can be computed by a ΣΠΣ formula Qi of polynomial-size
in |π|, and where each bottom level in Qi consists of only a single variable (that is, axi + b, for
some a, b ∈ F).

Note that π? is not a legal PCR refutation of K since π? used the extended PCR? product rule
p

g·p , for some polynomial g, while in PCR we only have the rule p
x·p , for some variable x. We now

show that we can add new PCR proof-sequences to π? to obtain a PCR refutation of K with the
appropriate properties:

Claim 5.17. Assume that in π? the polynomial qi = g · p was derived from qj = p by the PCR?

product rule. Then, there exists a PCR proof of Qi from Qj with size polynomial in |Qi| (where
Qi, Qj are the corresponding formulas for qi, qj, respectively), such that every proof-line can be
written as a ΣΠΣ formula of polynomial-size in |Qi| in which each bottom level consists of only a
single variable.

Proof of claim: If g is a variable from {x1, . . . , xn, x̄1, . . . , x̄n}, then we are done. Otherwise, by
construction of π?, the polynomial qi = g ·p is either an instance of Line 5 or of Line 8 in the PCR?

proof-sequence described in Proposition 5.11. By Claim 5.12 and Lemma 5.14 we thus obtain that
one of the following holds:

(1) qi = (xj · x̄j) · f1 for p = (xj · x̄j), such that xj , x̄j do not appear in f1;
(2) qi = (xj + x̄j − 1) · f2 for p = (xj + x̄j − 1), such that xj , x̄j do not appear in f2,

and where both f1 and f2 can be computed by a ΣΠΣ formula Qi of polynomial-size in |π|, and
the bottom level linear polynomials in Qi consists of only a single variable.

The proof of the claim now is straightforward. First, we derive from g in PCR the polynomial
g · Fi, for any i such that Fi is the polynomial computed by the ith product gate in Qi. Each such
proof of g · Fi can be carried out by induction on the degree of qi. Then, we add together g · Fi,
for all i, which yields the desired ΣΠΣ formula computing the polynomial qi. Also, note that every
proof-line in this derivation can be written as a ΣΠΣ formula of polynomial-size in |Qi| such that
each bottom level linear polynomial consists of only a single variable, and where the number of
proof-lines is polynomial in |Qi|. Claim

By Claim 5.17 there exists a PCR refutation π′′ of K of size polynomial in |π| in which every
line is a ΣΠΣ formula in which each bottom level consists of only a single variable.

Since the formulas in π′′ possibly contain the variables x̄1, . . . , x̄n, we need to take these variables
out in order to construct our final PC refutation with only the x1, . . . , xn variables. We do this by
first substituting every variable x̄i, i ∈ [n], by (1−xi) in every line of π′′, and then adding required
PC lines to transform the resulting sequence into a legal PC refutation.

Let τ denote the linear transformation that maps the variables x̄i, for any i ∈ [n], to (1 − xi),
and denote p�τ the polynomial p under the transformation τ .

Claim 5.18. Let Π be the sequence of polynomials π′′� τ obtained from π′′ by applying τ to every
proof-line. Then, there exists a PC refutation Π′ refuting the same CNF as π′′ does, with only a
polynomial increase in numbers of lines, and whose each line can be computed by a ΣΠΣ formula of
polynomial-size in |π|, such that each bottom level in the formula consists of only a single variable.

Proof of claim: By induction on the number of lines in π′′.
Base case: Axioms turn into axioms (the axiom xi + x̄i− 1 turns into the polynomial 0, which can

25

be ignored in the refutation).
Induction step:
Case 1: Addition rule in π′′ stays legal in Π.
Case 2: Product rule: if we derive xi ·p from p in π′′, for some i ∈ [n], then in Π we derive xi ·(p�τ)
from p�τ , which is legal.

Assume we derived x̄i · p from p. Then, we need to derive (1 − xi) · (p� τ) from p� τ . For this,
first derive xi · p�τ , and then use the addition rule to add p�τ with −xi · p�τ .

Note also that all lines in the new PC refutation Π′ can be written as ΣΠΣ formulas of polynomial-
size in |π|, and where each bottom level in the formula consists of only a single variable. Claim

Now, since every proof-line in the refutation Π′ obtained from Claim 5.18 can be written as a
ΣΠΣ ordered formula of size polynomial in |π| in which all bottom levels are linear forms axi + b,
for some a, b ∈ F and some i ∈ [n], every proof-line in Π′ can be written as an ordered formula of
size O(|π|). This is because we can simply order the linear forms hanging from any product gate
in a way that respects the order �. Also, Since the number of proof-lines in Π′ is polynomial in
|π|, we conclude that OFPC polynomially simulates R0(lin).

This concludes the proof of Theorem 5.5.

5.4. Short proofs and separations. For natural numbers m > n, denote by ¬FPHPm
n the

following unsatisfiable collection of polynomials:

Pigeons : ∀i ∈ [m], (1− xi,1) · · · (1− xi,n)
Functional : ∀i ∈ [m]∀k < ` ∈ [n], xi,k · xi,`

Holes : ∀i < j ∈ [m]∀k ∈ [n], xi,k · xj,k

(14)

As a consequence of the polynomial simulation of R0(lin) by OFPC, and the upper bounds on
R0(lin) refutations demonstrated in [RT08a], we get the following result:

Corollary 5.19. For any linear order on the variables, and for any m > n there are polynomial-size
(in n) OFPC refutations of the m to n pigeonhole principle ¬FPHPm

n (over fields of characteristic
zero).

The contradiction ¬FPHPm
n is a direct translation of the CNF formula for the m to n functional

pigeonhole principle. Thus, by known lower bounds, OFPC is strictly stronger than resolution and
is separated from bounded depth Frege. On the other hand, Razborov [Razb98] and subsequently
Impagliazzo et al. [IPS99] gave exponential lower bounds on the size of PC-refutations of a different
low degree version of the Functional Pigeonhole Principle. In this low degree version the Pigeons
polynomials in (14) are replaced by 1− (xi,1 + . . .+xi,n), for all i ∈ [m]. It is not hard to show (via
reasoning inside R0(lin)) that OFPC admits polynomial-size refutations also for this low-degree
version of the functional pigeonhole principle. This shows that OFPC is strictly stronger than PC
(under the size measures defined for OFPC and PC).

The Tseitin graph tautologies were proved to be hard tautologies for several propositional proof
system. We refer the reader to [RT08a], Definition 6.5, for the precise definition of the (generalized,
mod p) Tseitin tautologies. We have the following:

Corollary 5.20. Let G be an r-regular graph with n vertices, where r is a constant, and fix some
modulus p. Then, for any linear order on the variables there are polynomial-size (in n) OFPC
refutations (over fields of characteristic 0) of the corresponding Tseitin mod p formulas over G.

This stems from the R0(lin) polynomial-size refutations of the Tseitin mod p formulas demon-
strated in [RT08a]. From the known exponential lower bounds on PCR (and PC and resolution)

26

refutation size of Tseitin mod p tautologies (when the underlying graphs are appropriately expand-
ing; cf. [BGIP01, BSI99, ABSRW04]), and for the polynomial simulation of PCR by OFPC, we
conclude that OFPC is strictly stronger than PCR.

6. Useful lower bounds on products of ordered polynomials

In this section we show that the ordered formula size of certain polynomials can increase expo-
nentially when multiplying the polynomials together. We use this to suggest an approach for lower
bounding the size of OFPC proofs in Section 6.1. We use a method of partial derivatives matrix in-
troduced by Nisan to obtain exponential-size lower bounds on noncommutative formulas in [Nis91].
We shall state the results of Nisan using the model of algebraic branching programs (ABP) (this
will help us in the example of conditional lower bound discussed in the next sub-section). Algebraic
branching programs can polynomially simulate noncommutative formulas, and hence also ordered
formulas.

Definition 6.1 (ABP). An algebraic branching program is a directed acyclic graph with one node
of in-degree zero, called the source, and one node of out-degree zero called the sink. The graph is
partitioned into levels 0, . . . , d, and nodes in level i = 0, . . . , d−1 have edges only to level i+1. The
source is the only node in level 0 and the sink is the only node in level d. The edges of the graph
are labeled with homogenous linear forms in the variables x1, . . . , xn and coefficients from a field
F (i.e., linear polynomials with no free terms). An ABP computes a noncommutative polynomial
in F〈x1, . . . , xn〉 as follows: every directed path from the source to a node v computes the product
of linear forms on the path in the order of their appearance. The node v computes the sum of
all the polynomials computed by all the directed pathes from source to v. An ABP computes the
noncommutative polynomial computed at its sink.

Note that an ABP computes only homogenous polynomials. We have the following simple struc-
tural property, showing that the noncommutative formula size of a noncommutative polynomial is
polynomially proportional to its ABP size:

Lemma 6.2 (Lemma 2.2 in [RS05]). Let f be a noncommutative polynomial which is computed
by a noncommutative formula of size s. Assume that the free term of f is zero (in other words,
f(0, . . . , 0) = 0). Then there exist deg(f) noncommutative ABP’s such that the ith ABP computes
the homogeneous component of f of degree i, for i = 1, . . . ,deg(f). Moreover, the size of each of
these ABP’s is O(s2).

Let f ∈ F[x1, . . . , xn] be a commutative polynomial. Recall that JfK is the noncommutative
polynomial obtained from f by ordering the products in every monomial in accordance to the
linear order �, and that an ordered formula computing f is a noncommutative formula computing
JfK. Thus, if we denote by OF (f) the minimal size of an ordered formula computing f and by
A(f) the minimal total ABP-sizes of a sequence of ABP’s computing the homogenous components
f (1), . . . , f (deg(f)) of f , then by Lemma 6.2, we have:

OF (f) ≥ (A(f))O(1)

(note that deg(f) ≤ OF (f), because f is a formula). To conclude, a super-polynomial lower bound
on the ordered formula size of f ∈ F[x1, . . . , xn] follows from a super-polynomial lower bound on
the minimal total ABP-sizes of a sequence of ABP’s computing the homogenous components of the
noncommutative polynomial JfK.

Proposition 6.3. Let F be a field, X := {x1, . . . , xn} be a set of variables and � some linear order
on X. Then, for any natural numbers m ≤ n and d ≤ bn/mc, there exist polynomials f1, . . . , fd

27

from F[x1, . . . , xn], such that every fi can be computed by an ordered formula of size O(m) and
every ABP computing J

∏d
i=1 fiK has size 2d.

Proof. First, note that it is sufficient to prove the proposition for m = 2 and any d ≤ bn/2c.
(Because, assume that the proposition holds for m = 2 and any d ≤ bn/2c. And let m′, d′ be such
that m′ ≤ n and d′ ≤ bn/m′c. By assumption, for m = 2 and d′ ≤ bn/m′c ≤ bn/2c, there are
f1, . . . , fd′ from F[x1, . . . , xn] that can be computed by ordered formulas of size constant [that is,
O(2), and hence of size O(m′)], and such that every ABP computing J

∏d′

i=1 fiK has size 2Ω(d′).)
Thus, let m = 2 and d ≤ bn/2c. Assume without loss of generality that the linear order � is

such that x1 � x2 � . . . � xn. Abbreviate the variables x1, . . . , xd as y1, . . . , yd, respectively, and
abbreviate the variables xd+1, . . . , x2d as z1, . . . , zd, respectively (that is, the yi’s and zi’s are just
abbreviations for their corresponding xi variables, introduced to simplify the writing). We thus
have y1 � . . . � yd � z1 � . . . � zd.

For every i = 1, . . . , d, define the following polynomial (that obviously has a constant size ordered
formula):

fi := (yi + zi) .
Define

HARDd :=
d∏

i=1

fi =
d∏

i=1

(yi + zi) .

We show that every ABP computing JHARDdK (under �) is of size at least 2d. Note that HARDd is
a homogenous noncommutative and multilinear polynomial of degree d. To lower bound the ABP
size of a homogenous noncommutative polynomial we use the rank argument introduced in [Nis91].
Nisan defined the matrix Mk(f) associated with a homogenous noncommutative polynomial f as
follows:

Definition 6.4 ([Nis91]). Let f ∈ F〈x1, . . . , xn〉 be a noncommutative homogenous polynomial of
degree d. For every 0 ≤ k ≤ d, we define Mk(f) to be a matrix of dimension nk × nd−k as follows:
(i) there is a row corresponding to every degree k noncommutative monomial over the variables
{x1, . . . , xn}, and a column corresponding to every degree d − k noncommutative monomial over
the variables {x1, . . . , xn}; (ii) for every degree k monomial M and every degree d − k monomial
N , the entry in Mk(f) on the row corresponding to M and column corresponding to N is the
coefficient of the degree d monomial M ·N in f .

Theorem 6.5 ([Nis91] Theorem 1). Let f be a degree r homogenous noncommutative polynomial.
Then, every ABP computing f has size at least

∑r
k=0 rank (Mk(f)).

In view of Theorem 6.5, it suffices to prove the following claim:

Claim 6.6. For any 0 ≤ k ≤ d: rank(Mk(JHARDdK)) ≥
(
d
k

)
.

Proof of claim: Consider the matrix Mk(JHARDdK). Let Ak be the matrix obtained from
Mk(JHARDdK) by removing all rows and columns excluding the following rows and columns:

(1) the rows corresponding to degree k multilinear monomials containing only yi variables, such
that the order of products in the monomial respects � ;

(2) the columns corresponding to degree d − k multilinear monomials containing only zi vari-
ables, such that the order of products in the monomial respects �.

Consider a degree k monomial M = yi1 · · · yik , where i1 < . . . < ik. Let J = [d]\{i1, . . . , ik}. We
can denote the elements of J as {j1, . . . , jd−k}, where j1 < . . . < jd−k. Observe that the monomial
M has on its corresponding row in Ak only zeros, except for a single 1 in the position (that is,
column) corresponding to the degree d − k monomial N = zj1 · · · zjd−k

. (Indeed, note that the
coefficient of the degree d monomial M ·N in JHARDdK is 1.)

28

Note that Ak contains
(
d
k

)
rows corresponding to all possible degree k multilinear monomials M

in the y variables whose product order respect �. Similarly, Ak contains
(
d
k

)
columns corresponding

to all possible degree d−k multilinear monomials N in the z variables whose product order respect
�. By the previous paragraph: (i) each of the rows in Ak has only one nonzero entry; and (ii) for
every row, the nonzero entry is in a different column from those of other rows. We then conclude
that Ak is a permutation matrix. Therefore:

rank(Ak) =
(
d

k

)
.

The claim follows since clearly rank(Ak) ≤ rank(Mk (JHARDdK)) . Claim

By the claim and by Theorem 6.5, we conclude that the ABP size of JHARDdK is at least
d∑

k=0

rank (Ak) =
d∑

k=0

(
d

k

)
= 2d .

�

6.1. Suggested lower bound approach. Here we discuss a simple possible approach intended
to establish lower bounds on OFPC proofs, roughly, by reducing OFPC lower bounds to PC degree
lower bounds and using the bound in Section 6 (Proposition 6.3).

Setting 1 : Let Q1(x), . . . , Qm(x) be a collection of constant degree (independent of n) polyno-
mials from F[x1, . . . , xn] with no common solutions in F, such that m is polynomial in n. Let
f1(y), . . . , fn(y) be m homogenous polynomials of the same degree from F[y1, . . . , y`], such that the
ordered formula size of each fi(y) (for some fixed linear order on the variables) is polynomial in n
and such that the fi(y)’s do not have common variables (that is, each fi(y) is over disjoint sets of
variables from y). Suppose that for any distinct i1, . . . , id ∈ [n] the ABP size of J

∏d
j=1 fij (y)K is

2Ω(d).

Note: By the proof of Proposition 6.3, the conditions above are easy to achieve. Indeed, the
fi(yi, zi)’s defined in the proof of Proposition 6.3 have these properties: homogeneity, same degrees
for all fi’s and disjointness of variables, and an exponential increase in ABP sizes computing
products of the fi’s.

Consider the polynomials Q1(x), . . . , Qm(x) after applying the substitution:

xi 7→ fi(y) . (15)

In other words, consider

Q1(f1(y), . . . , fn(y)), . . . , Qm(f1(y), . . . , fn(y)) . (16)

Note that (16) is also unsatisfiable over F.
We suggest to lower bound the OFPC refutation size of (16), based on the following simple

idea: it is known that some families of unsatisfiable collections of polynomials require linear Ω(n)
degree PC refutations (where n is the number of variables). In other words, every refutation of
these polynomials must contain some polynomial of linear degree. By definition, also every OFPC
refutation of these polynomials must contain some polynomial of linear in n degree.

For the purpose of super-polynomial lower bounds even a weaker ω(log n) degree lower bound on
PC refutations would suffice. Hence, assume that the initial polynomials Q = {Q1(x), . . . , Qm(x)}
in the x1, . . . , xn variables require ω(log n) degree PC refutations. This means that every PC

29

refutation of Q contains some polynomial h of degree ω(log n). Then, we might expect that every
PC refutation of its substitution instance (16) contains a polynomial g ∈ F[y] which is a substitution
instance (under the substitution (15)) of an ω(log n) degree polynomial in the x variables. This, in
turn, leads (under some conditions; see below) to a lower bound on OFPC refutations.

An example of sufficient conditions for super-polynomial OFPC lower bounds, are the following:
assume that every PC refutation of (16) contains a polynomial g so that one of g’s homogenous
components is a substitution instance of a degree ω(log n) multilinear polynomial from F[x1, . . . , xn].
We formalize this argument:

Example: Conditional OFPC size lower bounds. (Assume the above Setting 1 and notations.)
If: every PC refutation of (16) that has polynomial in n number of proof-lines contains a polynomial
g ∈ F[y1, . . . , y`] such that for some t = poly(n), the t-th homogenous component g(t) of g is
a substitution instance of a degree ω(log n) multilinear polynomial from F[x1, . . . , xn] (under the
substitution (15));
Then: every OFPC refutation of (16) is of super-polynomial size (in n).

Proof of example: It suffices to show that any ordered formula of g is of super-polynomial size in
n. By Lemma 6.2, it suffices to show that Jg(t)K, the t-th homogenous component of JgK (note that
JgK(t) = Jg(t)K), requires an ABP of super-polynomial size in n.

By assumption, g(t) is a substitution instance of some degree ω(log n) multilinear polynomial
h ∈ F[x1, . . . , xn]. Since g(t) is homogenous and all the fi(y)’s have the same degree and are
homogenous, h must be homogenous too. Since h is multilinear we can write h =

∑
j∈J bjMj ,

where the Mj ’s are multilinear monomials in the x variables and bj are coefficients from F. Now,
consider some single monomial M from

∑
j∈J bjMj . By multilinearity and homogeneity of h every

other monomial M ′ 6= M in h must contain an xi variable that does not appear in M . We can
assign 0 to such xi. Doing this for every monomial M ′ 6= M , we get that h (under this partial
assignment to the x variables) is equal to bM , for some coefficient b ∈ F. In a similar manner, by
disjointness of the variables in the fi(y)’s, there exists a partial assignment ρ : y → {0}, such that
g(t)�ρ is just a substitution instance (under the substitution (15)) of a single multilinear monomial
of degree ω(log n) in the x variables. This means that g(t)� ρ is the product of ω(log n) distinct
fi(y)’s (multiplied by b). Therefore, by assumption on the fi(y)’s, every ABP computing Jg(t)K is
of size 2ω(log n), which is super-polynomial in n.

Remark: The conditional lower bound example above inherits its hardness from the hard polyno-
mials in Proposition 6.3. Since the hard polynomial HARDd in the proof of Proposition 6.3 is hard
for ordered formulas (and ABP’s) only with respect to a specific order on variables, the family of
polynomials in (16) are (conditionally) hard for OFPC only with respect to this specific order.

According to the lower bound suggested above, a natural starting point to search for hard
candidates for OFPC might be the following: assume that the substitution (15) consists of
f1(y1,1, . . . , y1,n), . . . , fn(yn,1, . . . , yn,n), where fi(y1, . . . , yn) has exponentially many monomials,
while still having small ordered formulas, for any i = 1, . . . , n; e.g.,

fi(yi,1, . . . , yi,n) = (yi,1 + yi,2) · · · (yi,(n/2)−1 + yi,n/2).

(Then ` = n2 in the notation of (15).) Then, one might expect that the premise of the example for
conditional OFPC size lower bounds above possibly hold. Intuitively, the (speculative) reason is
that any PC refutation with a polynomial in n number of proof-lines would need to operate with
the fi’s as “almost atomic formulas”, since they include exponential many monomials.

30

Acknowledgments

I wish to thank Emil Jeřabek, Sebastian Müller, Pavel Pudlák, Neil Thapen and Youming Qiao
for helpful discussions on issues related to this paper and the anonymous referees for many comments
improving the exposition of this paper. I also wish to thank Ran Raz for suggesting this research
direction, and Jan Kraj́ıček for inviting me to give a talk at TAMC 2010 on this subject.

References

[ABSRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space complexity
in propositional calculus. SIAM J. Comput., 31(4):1184–1211 (electronic), 2002. 5

[ABSRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudorandom
generators in propositional proof complexity. SIAM J. Comput., 34(1):67–88, 2004. (A preliminary
version appeared in Proceedings of the 41st Annual Symposium on Foundations of Computer Science
(Redondo Beach, CA, 2000)). 5.4

[AGP02] Albert Atserias, Nicola Galesi, and Pavel Pudlák. Monotone simulations of non-monotone proofs. J.
Comput. System Sci., 65(4):626–638, 2002. Special issue on complexity, 2001 (Chicago, IL). 1

[Ajt88] Miklós Ajtai. The complexity of the pigeonhole principle. In Proceedings of the IEEE 29th Annual
Symposium on Foundations of Computer Science, pages 346–355, 1988. 1

[AKV04] Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint propagation as a proof system.
In CP, pages 77–91, 2004. 1, 1.1

[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between degrees
for the polynomial calculus modulo distinct primes. J. Comput. System Sci., 62(2):267–289, 2001. Special
issue on the 14th Annual IEEE Conference on Computational Complexity (Atlanta, GA, 1999). 5.4

[BIK+97] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák, Alexander A. Razborov, and Jǐŕı
Sgall. Proof complexity in algebraic systems and bounded depth Frege systems with modular counting.
Comput. Complexity, 6(3):256–298, 1996/97. (document)

[Ben80] Michael Ben-Or. Unpublished notes, 1980. 5.3
[BSI99] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the polynomial calculus. In Pro-

ceedings of the IEEE 40th Annual Symposium on Foundations of Computer Science (New York, 1999),
pages 415–421. IEEE Computer Soc., Los Alamitos, CA, 1999. 5.4

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm to
find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on the Theory of
Computing (Philadelphia, PA, 1996), pages 174–183, New York, 1996. ACM. 1.1, 2.3

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. The
Journal of Symbolic Logic, 44(1):36–50, 1979. 2.2

[GH03] Dima Grigoriev and Edward A. Hirsch. Algebraic proof systems over formulas. Theoret. Comput. Sci.,
303(1):83–102, 2003. Logic and complexity in computer science (Créteil, 2001). (document), 1.1, 3.1,
3.5, 4, 3.1

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jǐŕı Sgall. Lower bounds for the polynomial calculus and the
Gröbner basis algorithm. Comput. Complexity, 8(2):127–144, 1999. 5.4

[JQS10] Maurice Jansen, Youming Qiao, and Jayalal Sarma. Deterministic black-box identity testing π-ordered
algebraic branching programs. Electronic Colloquium on Computational Complexity (ECCC), TR10-015,
February 2010. 1.1

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of bounded depth
Frege proofs of the pigeonhole principle. Random Structures Algorithms, 7(1):15–39, 1995. 1

[Kra08] Jan Kraj́ıček. An exponential lower bound for a constraint propagation proof system based on ordered
binary decision diagrams. J. Symbolic Logic, 73(1):227–237, 2008. 1, 1.1

[Nis91] N. Nisan. Lower bounds for non-commutative computation. Proceedings of the 23th Annual ACM Sym-
posium on the Theory of Computing, pages 410–418, 1991. (document), 1, 1.1, 6, 6, 6.4, 6.5

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Comput.
Complexity, 6(3):217–234, 1997.

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the pigeonhole
principle. Comput. Complexity, 3(2):97–140, 1993. 1

[Pit97] Toniann Pitassi. Algebraic propositional proof systems. In Descriptive complexity and finite models
(Princeton, NJ, 1996), volume 31 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 215–
244. Amer. Math. Soc., Providence, RI, 1997. 1

31

[Pud99] Pavel Pudlák. On the complexity of the propositional calculus. In Sets and proofs (Leeds, 1997), volume
258 of London Math. Soc. Lecture Note Ser., pages 197–218. Cambridge Univ. Press, Cambridge, 1999.
1

[Razb98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Complexity, 7(4):291–324,
1998. 5.4

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing, Vol. 2, article 6,
2006. 1

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM,
56(2), 2009. 1, 1.1

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non commutative models.
Comput. Complexity, 14(1):1–19, 2005. 1.1, 2.1, 2.3, 6.2

[RT08a] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs. Ann. Pure Appl.
Logic, 155(3):194–224, 2008. arXiv:0708.1529. 1, 1.1, 5, 5.2, 5.2, 5.2, 5.3, 5.3, 5.4, 5.4, 5.4

[RT08b] Ran Raz and Iddo Tzameret. The strength of multilinear proofs. Comput. Complexity, 17(3):407–457,
2008. 1, 1.1, 5.3, 5.13

[Seg07] Nathan Segerlind. Nearly-exponential size lower bounds for symbolic quantifier elimination algo-
rithms and OBDD-based proofs of unsatisfiability. Electronic Colloquium on Computational Complexity
(ECCC), TR07-009, January 2007. 1, 1.1

[Tza08] Iddo Tzameret. Studies in Algebraic and Propsitional Proof Complexity. PhD thesis, Tel Aviv University,
2008. 1, 5.3

[Waa97] Stephan Waack. On the descriptive and algorithmic power of parity ordered binary decision diagrams.
In STACS, pages 201–212, 1997. 1.1

Institute for Theoretical Computer Science, the Inst. for Interdisciplinary Information Science,
FIT building, Tsinghua University, Beijing, 100084, China. http://itcs.tsinghua.edu.cn/~tzameret

E-mail address: tzameret@tsinghua.edu.cn

32

http://itcs.tsinghua.edu.cn/~tzameret

	1. Introduction
	1.1. Results and related work

	2. Preliminaries
	2.1. Noncommutative polynomials and formulas
	2.2. Proof systems and simulations
	2.3. Polynomial Calculus

	3. Polynomial calculus over noncommutative formulas
	3.1. The proof system NFPC

	4. Polynomial calculus over ordered formulas
	5. Simulations, short proofs and separations for OFPC
	5.1. OFPC polynomially simulates PCR
	5.2. Resolution over linear equations R(lin) and its subsystem R0(lin)
	5.3. OFPC polynomially simulates R0(lin)
	5.4. Short proofs and separations

	6. Useful lower bounds on products of ordered polynomials
	6.1. Suggested lower bound approach

	Acknowledgments
	References

