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Abstract

We investigate new extensions of the Kruskal-Friedman theorems concerning well-quasi-
ordering of finite trees with the gap condition. For two labelled treess andt we say that
s is embedded with gap intot if there is an injection from the vertices ofs into t which
maps each edge ins to a unique path int with greater-or-equal labels. We show that finite
trees are well-quasi-ordered with respect to the gap embedding when the labels are taken
from an arbitrary well-quasi-ordering and each tree path can be partitioned intok ∈ N or
less comparable sub-paths. This result generalizes both [Křı́89] and [OT87], and is also
optimal in the sense that unbounded partiality over tree paths yields a counter example.
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1 Introduction

Kruskal theorem, stating that finite trees are well-quasi-ordered under homeomorphic em-
bedding, and its extensions, aside from being interesting as a combinatorial result by itself,
has played an important role in both logic and computer science. In logic, and in particular
proof theory, it was shown as independent of certain logical systems by exploiting its close
relationship with ordinal notation systems, and in computer science it provides a common
tool for proving the termination of many rewrite-systems.

The termination property is one of the most important properties of a rewrite system.
Many times termination proofs amounts to showing that the rewrite relation is included in
some well-founded ordering of the terms under consideration. The latter ordering is then
called atermination ordering. A canonic such termination ordering is therecursive path
ordering[Der82].

At the heart of proving the termination of the recursive path ordering is Kruskal’s tree
theorem which states that finite trees are well-quasi-ordered under homeomorphic embed-
ding; meaning that there is a one-to-one mapping froms to t, such that vertices are mapped
to vertices and edges to unique paths. However, the embeddability property inherent in the
recursive path ordering is also responsible for its limitations.

A term ordering is said to have thesubterm propertyif all terms are always bigger then
their subterms. Termination orderings that have the subterm property are calledsimplifica-
tion orderings. Any such simplification ordering is bound to include also the homeomor-
phic embedding relation. Nevertheless, it is sometimes necessary to prove termination of
rewrite systems that are not simplifying.

Take for example the following rewrite rule:ff → fgf . The rewrite relation induced
by this rule is clearly terminating since the number of adjacentf symbols decreases in
every application of the rule. In addition, the left termff is homeomorphic embedded
in fgf . Thus, for any simplifying termination orderingff is smaller thanfgf , which
means that any such termination ordering fails to prove the termination of this rewrite rule.
Indeed, in order to prove termination, we must orient the left term to be greater than the
right term. Hence, it would be worthwhile to look for extensions of Kruskal theorem which
uses embedding relation not possessing the subterm property.

One such embedding is theembedding with gap condition, which is at the center of
investigation in this work. The first explicit introduction of the gap embedding is due to
H. Friedman (see [Sim85]). Since its introduction, other variants of gap embeddings were
introduced, most of which made use of atotal orderingon the labels. The results in [Křı́89],
[Křı́95] are of pure combinatorial nature. Those of [Gor89], [Gor90] are centered around
proof theoretical matters. Other where applied to term graph rewriting (see [Oga95]).

Since, with regard to term rewriting, the tree labels ordering corresponds to the ordering
of the function symbols pertaining to a certain signature, it would be beneficial, in regard
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to termination proofs, to usepartial or quasiorderings on the labels, rather then a total one.
Extensions of Kruskal theorem not possessing the subterm property are also believed to be
of benefit for facilitating termination orderings for typed and higher order rewrite systems
(see [JR98]).

The relationship between well-partial-ordered precedence relations on functions sym-
bols and the order type of the induced termination ordering is investigated in [Wei92]. It
is shown that many important order-theoretic properties of the precedence relation carry
over to the induced termination ordering. This is done by defining a general framework
for precedence-based termination orderings via a (so-called)relativized ordinal notations.
Usually an ordinal notation system is given by a primitive-recursive set of termsT and a
primitive-recursive relation< onT . The terms ofT are built by some constant symbol, say
”0”, and the tree constructors. Although there is no standard ordinal notation used in proof
theory, [Wei92] uses a sufficiently strong ordinal notation system and the corresponding
relativizedsystem is defined such that”0” is replaced by the elements ofQ, with minor
changes applied to¹ in order to deal with all the symbols inQ, yielding the relative ordi-
nal notation system(TQ,≺). Based on few examples, it is further conjectured that every
such application of a partial-order to an ordinal notation system, carries the order-theoretic
properties of the partial-order to the relativized notation system. An example of such a
construction, using Takeuti’s ordinal diagrams, is introduced also in [OT87] by the name
quasi-ordinal-diagrams. The definition of these diagrams is the only result known to us
that deals with gap embedding of trees andquasiordered labels. However, this result is
limited in that the quasi ordering only resides on theleavesof trees, while interior vertices
are bound to be labelled by some well ordering. Furthermore, the tree embedding is defined
so that it forms a partial order over the fields of trees and not a quasi ordering. [OT87] also
connects Friedman independence result for various formulations of Kruskal theorem with
ordinal diagrams.

H. Friedman introduced the concept of embedding with gap in order to achieve order-
ings of large types, so that sufficient strong formal systems of arithmetic would be unable
to prove the well foundedness of these orderings (see [Sim85]). The motivation was to
produce a ’natural’ mathematical statement, in contrast to the familiar metamathematical
ones (e.g. G̈odel’s incompleteness proof), which is nevertheless independent of these for-
mal systems (hence, the name ’natural independence’). There was criticism that although
Kruskal theorem is a truly natural combinatorial result, the gap conditions are not, as they
are cooked up in advance to yield the desired result. However the gap embedding was
shown to be ’natural’ due to its importance in proving the celebrated Graph Minor Theorem
of Robertson and Seymour (see [FRS87], and [Rat94]; the latter contains a general discus-
sion on the ’rewards of ordinal representation systems’). In this context Kruskal theorem,
as a fundamental result of well-quasi-order theory is a result pertaining to combinatorics
which is interesting enough by itself.
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1.1 Results of this work

We show by a simple counter example (§2, prop. 2.7) that unbounded partiality over tree
paths yields a bad sequence w.r.t. the gap embedding. We then prove it to be a canonic such
structure for generating a bad sequence, by proving that bounding the partiality allowed on
tree paths results in a wqo (§3, thm.3.1).

The proof of theorem3.1 follows the road of [Křı́89], technically however, it is some-
what more involved than the original. The main novelty here is the insight that as long as
the label ordering is a wqo it is sufficient to maintain the totality only of the order induced
by each tree path, instead of requiring that the label ordering on all trees should be total.

In section4, based on the result of the preceding section we use a different approach
to prove that if each tree path can be partitioned into some apriorik ∈ N comparable
sub-paths, then the wqo property is preserved (§4, thm.4.2).

Section2 sets up the basic terminology and results we relate to in this work. Conclu-
sions and some open problems are discussed in Section5.
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2 Kruskal-Friedman Type Theorems

In this section we review certain facts about Kruskal-Friedman style theorems concerning
well quasi orderings of finite trees.

2.1 Preliminaries

A quasi orderingis a setQ together with a reflexive and transitive relation¹. Given a quasi
ordering(Q,¹) and two elementsa, b ∈ Q, we say thata andb arecomparableif either
a ¹ b or b ¹ a, otherwise we say that they areincomparable. We denote by≺ the strict
part of¹, i.e., a ≺ b iff a ¹ b and b 6¹ a.

A quasi ordering(Q,¹) is a well-quasi-ordering(wqo) if for all infinite sequences
(ai)i∈N ⊆ Q there existi < j ∈ N such thatai ¹ aj . A sequence(ai)i∈N s.t. for alli < j,
ai 6¹ aj holds is called abadsequence, otherwise it is called agoodsequence. An infinite
sequence(ai)i∈N is said to be anantichainif ai is incomparable toaj for all i < j ∈ N.

We shall deal with infinite sequences of elements from some quasi order(A,¹). We
defineN(ω) to be the set of all infinite subsets ofN. Formally an infinite (ω-) sequence
overA is a functionf : M → A, whereM ∈ N(ω). We denote the domain off by Df .

Greek lettersα, β, γ, . . . will use to denote ordinals, where an ordinalα is identified
with the set{β ∈ On : β < α}. We shall use the lettersi, j andk to denote the natural
numbers. We also identify sometimes the natural numbers inN with the ordinals< ω.

A finite tree is defined to be a finite partial ordering(t,≤t) such that the set of ancestors
{v ∈ t : v ≤t u} of each vertexu in t, forms a linear ordering with a unique minimal
element called theroot. We assume also that the immediate successors of each vertex, i.e.
its children, arelinearly ordered. A subtreeof a treet, rooted atu ∈ t, is the upward
closure{v ∈ t : u ≤t v} of u. We denote by[u, v] the path beginning fromu to v. For
a given path[u, v] we define naturally a sub-path to be[u′, v′] whereu ≤t u′ ≤t v′ ≤t v.
We also use(u, v] etc. in the obvious way. We shall usually write simply≤ instead of≤t,
when it is clear from the context which ordering is used.

Let TQ denote the set of all finite trees with labels fromQ. We shall useT to denote the
labelled trees overQ in sections 3 and 4. Formally the labels of a treet ∈ TQ are determined
by a labelling functionlt : t → Q and a labelled tree is a set of vertices (identified witht)
combined with a partial ordering and a labelling function. We denote byr(t) the root of
t and bypred(u) the immediateancestor of a vertexu ∈ t (i.e. its predecessor). When it
is not ambiguouswe shall identify a vertex with its label. Thusv ≤ u means thatv is an
ancestor ofu in the tree ordering, whilev ¹ u means thatv has a less-or-equal label than
u. Let us denote also byu u v thegreatest common ancestorof a pair of verticesu, v.
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2.2 Gap Embedding

Definition 2.1 (tree embedding) For two treess, t we say thats is embeddedinto t if:
(1) there is an injectionf :s → t such thatf(v u u) = f(v) u f(u) for all verticesv,u in
s; and
(2) Letv be a vertex ins andv1 andv2 are distinct immediate successors ofv such that
v1 precedesv2 in the linear ordering ofv’s children. Iff : v 7→ z, thenz1 precedesz2 in
the linear ordering ofz’s children, wherez1 is the immediate successor ofz on the path to
f(v1) andz2 is the immediate successor ofz on the path tof(v2).

Remark.(i) The second condition of definition2.1is introduced so that for each vertex ofs,
the order of siblings ins is preserved in the embedding intot.
(ii) In the literature this kind of embedding appears also under the nameshomeomorphic
embedding(cf. [DJ90]) or topological minor relation(cf. [RS84]).

Definition 2.2 (tree embedding with gap) For two treess, t we say thats is embedded
with gapinto t and writes ↪→ t if there is an embeddingf : s → t for which the following
conditions hold:
(1) (label increasing)∀v ∈ s. v ¹ f(v) ;
(2) (gap condition) for all edges(u, v) in s and for all w ∈ t s.t. f(u) < w < f(v),
w º v ;
(3) (root gap condition)u º r(s) for all verticesu in the access path[r(t), f(r(s))] of
t.

3

7

2 11

1

4

7

9

6 11

1

2

3

s 
t

f 7

Figure 2.1:Gap embeddings ↪→ t

9



The gap embedding forms a quasi-ordering over trees labelled by some quasi-ordering:
reflexivity is obvious and transitivity stems from transitivity of tree embedding (without
the gap conditions), and the transitivity of the labels ordering. A set of trees is well-quasi-
ordered under gap embedding↪→, if every infinite sequence of trees contains a pairs, t of
trees, one preceding the other such thats ↪→ t.

The following theorem was originally conjectured by H. Friedman and proved by I.
Křı́ž in [Křı́89].

Theorem (Kř ı́ž [’89]) 2.3 For any well-order(W,≤), (TW , ↪→) is a wqo.

2.3 Gap Embedding for Edge Labelled Trees

A different and more intuitive definition of the gap embedding can be given by trees with
labels on theedgesinstead of the vertices. Let us define naturally for a tree(t,≤) the
set of its edges byEt := {〈u, v〉 ∈ t× t : u = pred(v)} and the labelling functionlt :
Et → Q for some quasi-order(Q,¹). An edgee ∈ Et is said to bein the path[u, v] if
e ∈ ([u, v]×[u, v]) ∩ Et. We have the following gap definition.

Definition 2.4 (tree embedding with gap second version) Let s, t be two trees with edge
labelling. We writes ↪→e t iff there is an embedding ofs into t such that each edge ofs is
mapped to a path int with¹ labels.

Remark. Note that↪→e lacks a root gap condition corresponding to the one in↪→.

Let us denote byT ′Q the set of trees with labels on their edges, and let0̂ be a new

minimum element ofQ s.t. ∀q ∈ Q.0̂ ¹ q . For a tree(t′,≤′) ∈ T ′Q, we define its
corresponding tree(t,≤) ∈ TQ, having labels on vertices instead of on the edges, by the
rules:

(i) (t,≤) := (t′,≤′);
(ii) lt(r(t)) := 0̂ ;
(iii) for all edges(u, v) in Et let lt(v) := lt′(u, v) .

That is, we simply put each edge label of(u, v), wherev ≥ u to label the vertexv, and put
0̂ as the root label.

Proposition 2.5 Let s′, t′ be two trees inT ′Q and s, t be their corresponding trees in
TQ∪{0̂} , achieved by following the above three rules, thens′ ↪→e t′ iff s ↪→ t .

Proof. By straightforward verification of the gap embedding conditions in definition (2.2).
Assumef : s′ ↪→e t′, then thisf is applicable also tos, t since the tree structure stays
the same. Sinces′ ↪→e t′ then for all verticesu ∈ s excluding the root ofs and for all
edgese ∈ [f(pred(u)), f(u)] in t′ we havels′(pred(u), u) ¹ lt′(e). Hence for all vertices
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v ∈ (f(pred(u)), f(u)] in t we havev º u. The root gap condition ofs ↪→ t also holds
since the new root label ofs is 0̂ which is less or equal to all other labels and in particular
to all the labels in the access path from the root oft to f(r(s)).

Conversely, ifs ↪→ t (for which, by definition,r(s) and r(t) have 0̂ labels) then a
similar verification process shows that indeeds′ ↪→e t′ in T ′Q. 2

Consequently, if every infinite sequence inTQ∪{0̂} is good then every infinite sequence in
T ′Q is good, since the existence of an infinite bad sequenceb ⊆ T ′Q would imply that the
correspondingTQ∪{0̂} trees form a bad sequence either. Hence we have the following.

Corollary 2.6 If for all wqo Q, (TQ, ↪→) is a wqo, then for all wqoQ, (T ′Q, ↪→e) is a wqo.

Therefore, it would be sufficient to prove that(TQ, ↪→) is wqo in order to show that both
embeddings are. From now on we shall deal only with the first gap embedding definition.

2.4 Quasi Ordered Labels

It seems natural to extend Theorem2.3, stating that finite trees with well-ordered labels
are well-quasi-ordered under gap embedding, to some arbitrary well-quasi-ordered labels.
Indeed, finite trees ordered by embeddability (without the gap condition) with wqo labels is
the result proven originally by Kruskal [Kru60]. As it turns out, however, wqo is not closed
under embedding with gap. Even ifQ has only one pair of disjoint elements then there is a
counter example.

Proposition 2.7 If (Q,¹) is not total then(TQ, ↪→) is not a wqo.

Proof. SinceQ is not total then there exist an incomparable pair of elementsa andb in Q.
We have the following antichain:

a

aa

a

a b

a

a

a

aa

b

a

aa

a

aa

b

a

aa

a

a

ab

Note that in any embedding of two trees in this sequence, roots ought to be mapped to
roots and the same thing happens with the immediate predecessors of leaves, since these
are the only vertices having two children. 2
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In this work we show that this counter example is thecanonicone.

Definition 2.8 Given a tree path[u, v], we say that the path iscomparableif all the vertices
in it have comparable labels, that is,∀x, y ∈ [u, v]. x ¹ y ∨ y ¹ x.

Let Q be a wqo and letT k be the set of all trees labelled fromQ such that each path in
a tree, beginning in the root, can be partitioned into some fixedk ∈N or less comparable
sub-paths (surely, any path of lengthn can also be partitioned inton comparable sub-paths,
each sub-path contains only one vertex). The main result of this work is the following.

Main Theorem 2.9 T k is wqo under gap embedding.

The proof is the corollary of the next two sections.
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3 Comparable Path Trees

3.1 Definitions and Terminology

Let us denote bŷT the set of trees labelled byQ such thateach path consists of only
comparable labels fromQ. Note that siblings might be disjoint that way. The following is
the main theorem of this section.

Theorem 3.1 T̂ is well-quasi-ordered by gap embedding for all wqoQ.

In order to prove the theorem we first prove aminimal bad sequence theoremwhich is
a variant of the main theorem in [Křı́89] accommodated to our settings. Before we do this
we need yet some more definitions.

Definition 3.2 (gap subtree) For two labelled treess, t we say thatt is a gap subtree ofs
and writet £ s iff t is a subtree ofs and the access path[r(s), r(t)] from the root ofs to
the root of t, keeps the following gap condition:

min
¹

(r(s), . . . , r(t)) ∈ {r(s), r(t)} .

Accordingly, we writet¢s if t is a proper subtree ofs and the above gap condition holds.

We shall use also the notations¥ and¤ to denote the inverse of£ and¢, respectively.
We have the following three properties:

s ¥ t ¥ u ∧ r(t) º r(u) ⇒ s ¥ u (3.1)

s ¥ t ¥ u ∧ r(s) ¹ r(t) ⇒ s ¥ u (3.2)

s ↪→ t £ u ∧ r(t) ¹ r(u) ⇒ s ↪→ u (3.3)

Note that in contrast to the usual subtree relation, the gap subtree relation£ is not
transitive. For that reason we introduce two more subtree relations for which transitivity
does hold.

Definition 3.3 For two labelled treess andt , such thatt is a subtree ofs we define
(i) t ¢º s ⇔ t ¢ s ∧ r(t) º r(s) ;
(ii) t ¢≺ s ⇔ t ¢ s ∧ r(t) ≺ r(s) .

The following is a key observation of our proof, which stems from the condition that
paths are comparable in̂T .

Observation. Both¢º and¢≺ relations are transitive as relations onT̂ .

For simplicity we shall denote bySeq the set of all infinite sequences overT̂ and by
Bad the set of all infinite bad sequences fromSeq.

We now define several relations on the setSeq that correspond to the basic gap-subtree
relations above.
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Definition 3.4 For two sequencesa, b ∈ Seq s.t.Db ⊆ Da we write

(1) a ¤ b iff ∀i ∈ Db. a(i) ¤ b(i)
(2) a ¥ b iff ∀i ∈ Db. a(i) ¥ b(i) ;

(3) a ¤¹ b iff ∀i ∈ Db. a(i) ¤¹ b(i) ;

(4) a ¤Â b iff ∀i ∈ Db. a(i) ¤Â b(i) ;

Remark. Note that the relations defined in (3.4) are allelement-wiserelations, but they
ignore positions at which one or both are undefined. Also notice that(¤¹)−1 = ¢º and
(¤Â)−1 = ¢≺.

The following observation is essential to the proof, and is the counterpart of the previ-
ous observation.

Observation. Both¢º and¢≺ relations are transitive as relations onSeq.

4

7

9

6 11

3

7 20

2

6

2 11

4

7

2

6

2 11
1

2

3

c

1

2

3

b

Figure 3.1:Two sequences of trees labelled fromN such thatc ¢º b .

For a given sequences and a constantk ∈ N we write s|<k to denoteu ¹ (Du∩k);
appropriatelys|≤k denotesu ¹ (Du∩(k + 1)). We shall use⊗ to denote the concatenation
of two sequences defined as follows.

Definition 3.5 Given two sequencesh, g ∈ Seq such that i := min Dg, we define the
concatenation ofh to g by h⊗ g := h|<i ∪ g .
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We now introduce a minimization relation. The proof of the theorem is based on the
existence of such relation for which certain closure properties are preserved. Consequently,
we would always be able to define a new ’minimal’ sequence w.r.t. this relation.

Definition 3.6 For two sequencesu, v ∈ Seq(Q), we write u <lex v iff either ∃k ∈
Du. u|<k = v|<k andu(k) ≺ v(k) or min(Du) < min(Dv).

For two sequencesg, g′ ∈ Seq we writeg <lex g′ to mean that the sequence ofroots
from Q induced by the trees ofg is <lex than that induced byg′. We call a sequence
a1, a2, . . . from Q increasingif i < j ∈ N impliesai ¹ aj . We shall call also a sequence
of treesg ∈ Seq increasingif its roots sequence induces an increasing sequence. ByBad↑
we denote the set of all sequences ofBad that are also increasing.

In what follows we shall use the fact that sinceQ is wqo each infinite sequence has an
increasing infinite subsequenceby Ramsey. For a sequenceg ∈ Seq denote byg ↑ some
infinite increasingsubsequence ofg.

Notice that by the pigeonhole principle, for two sequencesa, b ∈ Seq s.t.a ¢ b either
there exists an infinite subsequencea′ of a s.t.a′ ¢º b or ana′ s.t. a′ ¢≺ b.

In the next sections we concentrate on proving the following minimal bad sequence
theorem.

Theorem (minimal bad sequence) 3.7Let Q be some wqo. If there is a bad infinite se-
quence fromT̂ then there exists a minimal bad increasing sequencem s.t. there is no
infinite bad sequencef with f¢ m.

3.2 The Minimal Bad Sequence Theorem

Let us restate more succinctly theminimal bad sequencetheorem.

Theorem 3.7 Bad 6= ∅ =⇒ ∃m∈Bad↑ .m ∈ min¢ Bad .

3.2.1 The Construction

In order to prove the theorem we assume it is false and build a construction yielding a
contradiction via a cardinality argument. Thus, we assume by a way of contradiction the
following hypothesis.

(hyp) Bad 6= ∅ ∧ min
¢

Bad = ∅ .

15



Note that this hypothesis is indeed the negation of theorem3.7sinceBad 6= ∅ ⇒ Bad↑6= ∅
by Ramsey. Under this hypothesis we build by transfinite induction a sequence〈hα |α <

ω1〉 of distinct increasing bad sequences with order typeω1:

h0 ¥ h1 ¥ h2 . . . ¥ hω . . . ¥ hα . . . (α < ω1) ,

hα ∈ Bad↑ and ∀β < α.Dhβ ⊇ Dhα .

Let g′0 := z for some z ∈ min<lex
Bad. Then we put

h0 := g′0↑

Having builthα already, in order to buildhα+1 we do the following. Define

g′α+1 := min
<lex

{s ∈ Bad : s ¢ hα} .

We will show thatg′α+1 exists in§3.2.5(1),(2). Then, takegα+1 to be a subsequence of
g′α+1, such that

hα ¤¹ gα+1 . (3.4)

Such agα+1 exists by Lemma3.11(p. 21). Now define

hα+1 := hα⊗ (gα+1↑) . (3.5)

Note that the sequenceshα are indeed distinct from each other since for allα + 1 < ω1 we
have thathα ¤¹ gα+1 ⊆ hα+1 .

For a limit ordinalλ we definehλ as follows.

Dgλ :=
⋂
{Dhα|α < λ}

gλ(i) := lim
α→λ

hα(i) for i ∈ Dgλ

f := min
<lex

{s ∈ Bad | s ¢ gλ}
hλ := f↑

We shall show in the sequel thatlimα→λ hα(i) is converging to somefixed tree for any
limit α < ω1 andi ∈ Dgλ. Further,gλ will be shown bad, hencef exists by (hyp) and
§3.2.5(1),(2).

Consequently, we have the following twoinvariantsof the construction.

∀n ∈ N∀α < ω1. hα ¥¹ hα+n (3.6)

For all limit λ 6= 0 we have

∀i ∈ Dgλ∃α < λ. gλ(i) = hα(i) (3.7)
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Figure 3.2:THE INDUCTIVE CONSTRUCTION. Illustration of an initial segment of the sequence〈hα |α <
ω1〉 up tohω2. For each bad sequencehα, the bright trees are the fixed (limit) trees taken from the previous
bad sequence, while the dark ones are those inDgα. The shaded background represents the domainsDgα. At
the limits, these domains vanish, and the limit sequences contain only the limit trees. Note that a fixed tree in
hn for n ∈ N is fixed only up toω, after which it can be reduced again by some of its proper subtrees. This
rule applies to all limits less thenω1.

Invariant3.6holds by3.4and the definition of¥¹ (recall that the relation¥¹ overtreesis
transitive, hence the corresponding element-wise relation¥¹ oversequencesis also transi-
tive). Invariant3.7holds by definition ofgλ.

3.2.2 Correctness of the Construction

We show now that the construction maintains the fact thathα+1 is indeed an increasing bad
sequence for any ordinalα, and that the limit sequences defined for limit ordinals, are
indeed infinite bad.
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Lemma 3.8 For all α < ω1 we have thathα+1 ∈ Bad↑.

Proof. We show first thathα+1 is increasing.

gα+1 ¢º hα =⇒
∀k ∈ Dgα+1. r(gα+1(k)) º r(hα(k)) . (3.8)

Define
i := min Dgα+1 and j := max Dhα|<i .

If j = ∅ then the claim is obvious, otherwise we have the following:

(by definition ofhα+1) hα+1(j) = hα(j)

(sincehα is increasing ) ¹ hα(i)

(by (3.8)) ¹ gα+1(i)

(again, by definition ofhα+1) = hα+1(i),

Since by the definition of the concatenation operation⊗, hα+1(i) immediately succeeds
hα+1(j) in the sequencehα+1, we conclude thathα+1 is increasing .

To show thathα+1 ∈ Bad, assume otherwise. Hence there ares ∈ hα+1|<i and
t ∈ gα+1 for which s ↪→ t. Let w be the corresponding super-tree oft in hα. Since
r(t) º r(w) andt¢w thenr(w) holds the minimum label on the access path tot in w. By
increasingness ofhα we have thatr(s) ¹ r(w) so the root gap condition holds fort in w

hences ↪→ w which contradicts the badness ofhα. 2

Lemma 3.9 For all limit λ < ω1 we have thatgλ ∈ Bad.

Proof. That the limit sequencegλ is bad is obvious from the definition, since any pair of
trees, one embedded into the other ingλ, would also imply this forhγ for someγ < λ by
invariant (3.7). Therefore it is sufficient to show that the sequenceshγ for γ < λ converge
to some infinite sequence.

Intuitively speaking, this is indeed the case since the trees are finite, hence for each tree
in the initial sequenceh0, taking a subtree can occur only finitely many times throughout
the construction.

Formally, since all trees are finite andλ is a limit, then for any indexi ∈ N there is a
maximalβ < λ beyond which there are no more gap subtrees taken fromhβ(i). Hence we
have

∀i∈N∃β<λ∀γ. β<γ <λ → i 6∈ Dgγ .
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This means that starting fromhβ up untilgλ the value in indexi is fixed(might be∅). Thus,
the trees converge for all indicesi ∈ N so that the following holds

lim
γ→λ

inf(min Dgγ) = ω. (3.9)

It remains to show that the limit sequencegλ converges into aninfinitesequence. There-
fore, note that when we buildhβ+1, if the first index ofDgβ, denoted byi, is less then that
of Dgβ+1 thenhβ(i) (= gβ(i)) gets intohβ+1. Now, if everysuch first index ofDgγ is
greater thani for all β < γ < λ thenhβ(i) remains a tree in every sequencehγ , i.e.
hγ(i) = hβ(i) for all β < γ < λ. By 3.9we know that this must be the case for infinitely
manyDgβ whereβ < λ. Formally we have

{
inf

β≤γ<λ
(min Dgγ) | β < λ

}
⊆

⋂
{Dhγ | γ < λ} ,

with the left hand side infinite. Thus we can buildgλ by taking the limit trees in the domain⋂ {Dhγ | γ < λ}. 2

3.2.3 Existence Conditions For The Construction

Let us repeat, and restate, the wayhα was defined in§3.2.1. To findgα+1 we work through
the following steps.

(i) DefineK0 := Bad and putg′0 := z for some z ∈ min<lex
K0 . Then we defineh0

to be some infinitely increasing subsequenceg′0 ↑ of g′0.

(ii) Define Kα+1 := {s ∈ Bad : s ¢ hα} ,

and put
g′α+1 := min

<lex

Kα+1 .

(iii) We shall show that although we know by (hyp) only that there exists some¢hα

sequence, we actually have

∀α < ω1 ¬∃g ∈ Bad. g ¢≺ hα (3.10)

Therefore, we can letgα+1 ⊆ g′α+1 be an infinite sequence s.t.gα+1 ¢º hα. Let
Jα+1 := {s ∈ Bad : s ¢≺ hα}, so (3.10) becomes

∀α < ω1.Jα+1 = ∅ (3.11)
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We have the following induction invariant which will be used throughout the next sec-
tions.

Corollary 3.10 Minimality w.r.t. <lex:

∀β < α¬∃s. s∈Kβ+1 ∧ s <lex g′β+1 .

It remains to prove (3.11) and thatKα+1 is closed under<lex, that is:

min
<lex

Kα+1 6= ∅ (3.12)

3.2.4 Outline of the Existence Proof

For someI ⊆ Seq let us denote byCL(I) thatI is closed, that is,

CL(I) ⇔ ∀z ∈ Seq. (∀i ∈ N ∃z′ ∈ I. z′|≤i = z|≤i ) → z ∈ I ,

Let us denote by i.h.(α) that induction hypothesisJγ+1 = ∅ holds for allγ + 1 ≤ α,
hence the construction exists (and its invariants hold) up tohα, by the previous section.
Note that ifα is a limit then it is sufficient to have for allγ < α thatJγ = ∅ in order to
know that the construction invariants hold up toα includingα itself.

The following is an outline of what we prove next.

1. ∀S ⊆ Seq. CL(S) ⇒ (S 6= ∅ → min<lex
S 6= ∅) ;

2. CL(Kα+1) for all α < ω1 ;

3. (i) i.h.(0): min<lex
K0 6= ∅ ;

(ii) i.h.(α) ⇒ Jα+1 = ∅ .

By (hyp) we already know thatKα+1 6= ∅, hence by (2) and (1) we get (3.12). (3i) is
the base case of the induction, combined with (3ii) we get (3.11).

3.2.5 The Existence Proof

(1) ∀S ⊆ Seq. CL(S) ⇒ (S 6= ∅ → min<lex
S 6= ∅).

Remark. Note that this is actually the original Nash-Williams’ sense of a minimal bad
sequence, except that we need here to skip empty ’slots’ in the domains of sequences (i.e.,
natural numbers absent from the domains), and we order elements by the relation¹ on
their roots, instead of by their size.

Proof. We simply build a ’minimal till i’ sequence by induction for every finitei, and
by assumption conclude that the corresponding limit sequence exists and therefore is a
minimal sequence.
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Formally, assume thatS 6= ∅ then let us build by induction onn ∈ N a minimal
sequencefn of lengthn, with no g ∈ S s.t. g|≤in <lex fn|≤in . For the base case let
i1 := min {i ∈ N : ∃g∈S. card(Dg|≤i) = 1} , i.e. i1 is the minimal index of the first
elements in all sequences inS. SinceQ is well founded andS 6= ∅ then there is a (not
necessarily unique) minimal sequenceg of length1 that starts ati1, thus letf1 := g|≤i1 .

Now, having builtfn, in order to buildfn+1 we letS := {g ∈ S : g|≤in = fn} and
put in+1 := min{i ∈ N : ∃g∈S. card(Dg|≤i) = n + 1}. Again, sinceQ is well founded
we have a<lex-minimal sequenceg of lengthn + 1 from S, then letfn+1 := g|≤in+1 .

Let f be the limit sequencef := limn→ω fn. By closure assumption forS we have
f ∈ S. Further,f is clearly<lex-minimal inS, otherwise it would have contradicted our
choice offn for somen ∈ N. 2

(2) CL(Kα+1) for all α < ω1 .

If every finite initial segment of some sequences ∈ Seq is bad, then clearlys ∈ Bad.
Furthermore, since the¢ relation is element-wise then again if for every initial segment
of s ∈ Seq that ends atj ∈ N, we have∀i ∈ Ds. i ≤ j → s(i) ¢ hα(i), then obviously
s ¢ hα.

(3i) min<lex
K0 6= ∅.

Proof. Similarly to (2),K0 = Bad is closed since if a sequencez ∈ Seq is not bad then
there is agoodfinite initial segmentz|≤j for somej ∈ N, which implies that not all finite
initial segments ofz could be an initial segments of some sequence inBad.

By assumptionBad 6= ∅ then (1) above implies thatmin<lex
K0 6= ∅. 2

(3ii) This statement,Jα+1 = ∅, is at the heart of the proof. Equivalently, we have the
following lemma.

Lemma 3.11 If i.h.(β) holds then there is nog ∈ Bad s.t. g ¢≺ hβ.

Proof. Assume that the lemma is false and letg ∈ Bad be such thatg ¢≺ hβ.
We have to deal with three different cases: (i)β = 0; (ii) β = γ + 1 for someγ < ω1;

(iii) β = λ is a limit ordinal< ω1.
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(i) β = 0.
Define

l := g′0⊗ (g|Dg′0) .

We need to show thatl ∈ Bad andl <lex g′0 in contrast to the base case in which we took
a<lex-minimal sequenceg′0 ∈ Bad.

By definitionl andg′0 are identical up tomin(Dg). We have

g ¢≺ h0 ⊆ g′0 ⇒ Dg ⊆ Dg′0 ,

and
g ¢≺ h0 ⇔ ∀i ∈ Dg. g(i) ¢≺ h0(i) = g′0(i) .

Consequently,g¢≺g′0 which means that bothg(j) andg′0(j) are defined andg(j)¢≺g′0(j),
hencer(g(j)) ≺ r(g′0(j)). Therefore, by<lex definition we havel <lex g′0.

Now, assume by a way of contradiction thatl is good. Hence there arey ↪→ t, where
y ∈ g′0|min(Dg) and t ∈ g ( if g′0|<minDg = ∅ then the claim is trivial). Letw be the
corresponding supertree oft in h0 Sinceg ¢≺ h0 then r(t) ≺ r(w) and r(t) has the
minimum label on the access path tot in w. Thereforey ↪→ w, a contradiction to the
badness ofh0.

(ii) β = γ + 1 for someγ < ω1.
We abuse the notation slightly and writeβ−1 for γ. We haveg ¢≺ hβ £ hβ−1, thus by

property (3.1) (see on p.13) we get
g ¢ hβ−1 . (3.13)

Define
l := g′β ⊗ (g|Dg′β

) .

By (3.13) we have that
l ¢ hβ−1 . (3.14)

By the construction ofhβ we haveg ¢≺ hβ = hβ−1⊗ gβ. This means also thatg ¢≺ g′β ⊇
gβ (recall that the relation¢≺ on Seq is element-wise and ignores undefined places).
Similarly to the previous case then,g ¢≺ g′β implies

l <lex g′β . (3.15)

We need to show now thatl is bad, which, combined with (3.14) and (3.15), contradicts
corollary (3.10). Assume thatl is good. Hence there ares ↪→ t for s ∈ g′β|<minDg and
t ∈ g (if g′β|<minDg = ∅ then the claim is trivial). Letw be the corresponding super-tree
of t in gβ. Sinceg ¢≺ hβ ⊇ gβ then r(t) ≺ r(w) and so r(t) is the minimal label
on the access path tot in w. Sincer(s) ¹ r(t), by the gap embedding definition, then
∀x ∈ [r(w), r(t)]. r(s) ¹ r(x). Thus,s ↪→ w which contradicts the badness ofgβ (and
hence ofg′β ⊇ gβ too).
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(iii) β = λ is a limit ordinal.
We have

g ¢≺ hλ . (3.16)

Let gλ be the limit sequencelimα→λ hα andf := min<lex
{s ∈ Bad | s ¢ gλ} as defined

in §3.2.1,.
We shall show that the sequence defined byf⊗g yields a contradiction to the definition

of f itself.

By definitionhλ = f ↑ , thus as beforeg ¢≺ hλ implies

f⊗ g <lex f . (3.17)

Let u be any tree ing, w its supertree inf andz the supertree ofw in gλ. By (3.16) we
haver(u) ≺ r(w) which implies thatmin {r(u), r(w), r(z)} ∈ {r(u), r(z)}, thusu ¢ z.
We have then

f⊗ g ¢ gλ . (3.18)

Sincer(u) ≺ r(w) then for allv ∈ f |<min Dg:

v ↪→ u ⇒ v ↪→ w

in contrast tof badness, hence
f⊗ g ∈ Bad . (3.19)

By (3.17), (3.18) and (3.19) we reach a contradiction to the minimality off w.r.t. <lex .
2

3.2.6 Concluding the Minimal Bad Sequence Theorem3.7

For anyα < ω1 we had built a bad increasing infinite sequence. These sequences form a
sequence of distinct increasing bad sequences〈hα |α < ω1〉 of lengthω1, such thathβ ¥hα

for all β<α .
In any sequencehα+1 we replace some tree, sayhα(i), by itspropersubtreehα+1(i).

This process is obviously finite for every finite treeh0(i) wherei ∈ N. Consequently,
the amount of such replacements, and hence the amount of such distinct sequenceshα, is
bounded from above by

∑
i<ω |h0(i)|. Let λ be the supremum of the sizes of trees inh0

then we have ∑

i<ω

|h0(i)| ≤
∑

i<ω

λ ≤ ℵ0 · ℵ0 = ℵ0 .

Therefore we can have onlyℵ0 sequenceshα in 〈hα |α < ω1〉, which yields a contradiction.
2
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3.3 Concluding Theorem3.1

Let us now restate the main theorem we were intending to prove in this section.

Theorem 3.1 T̂ is well quasi ordered by↪→ for any wqoQ.

Proof. We apply here the usual Nash-Williams’ method [NW63]. Assume by a way of
contradiction that the theorem is false. We takem := min¢ Bad↑. By theorem (3.7) such
an m exists. LetS be the set consisting ofall immediate subtreesof trees inm, that is,
trees rooted by immediate children of trees inm. SinceQ is a wqo then there are at most
finitely many trees of one vertex inm, thereforeS is infinite.

Let t be the ith tree ofm, that is,t = m(i). We let〈t1, . . . tni〉 denote the finite ordered
sequence consisting of the immediate subtrees oft, in the order they occur as children of
r(t). Hencet = r(t)(t1, . . . tni), represented as a term.

Now, if S is a wqo then let(si)i∈Dm be an infinite sequence defined s.t.

∀i ∈ Dm. si := 〈m(i)1, . . . m(i)ni〉 .

SinceS is a wqo then by Higman lemma [Hig52], (si)i∈Dm is a good sequence w.r.t. the
embedding relation on finite sequences of trees fromT̂ defined by

〈s1, . . . sk〉 ↪→ 〈t1, . . . , tl〉 ⇔
∃f :{1,. . . ,k} → {1, . . . , l} ∧ f is strictly monotone∧ ∀j (1≤j≤k). sj ↪→ tf(j) .

Therefore, sincem is increasingthere exists a pair oftreess, t in m, s.t. s precedest
ands = r(s)(s1, . . . sk) ↪→ r(t)(t1, . . . , tl) = t (for s andt represented as terms), where
the root is mapped to the root and the immediate subtrees ofs are mapped to those oft,
according to the Higman embedding. Hence we arrive at a contradiction to the badness of
m.

In caseS is not a wqo then take a bad infinite sequenceb ⊆ S. Since for each tree inm,
the number of children pertaining to the root is finite, then we can assume thatb contains
atmostone subtree for each tree inm. Therefore,b ¢ m in contradiction to the minimality
of m. 2
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4 Comparable Sub-Paths Trees

Let us denote bŷT (A) the set of all trees for which internal vertices are labelled byQ

and leaves labelled byA ∪ Q for some two independent quasi-orderingsQ andA. Let us
call a leaf labelled byA anA-leaf. All other vertices (including possible leaves) are called
Q-vertices.

The gap embedding for̂T (A), denoted by↪→′, is defined the same as before except for
leaves labelled byA, for which the gap condition is not applicable.

Definition 4.1 (↪→′ tree embedding) For two treess, t ∈ T̂ (A), we write s ↪→′ t iff there
is an embeddingf : s → t with the following properties:

1. for all Q-vertices ofv ∈ s we havev ¹ f(v) ;
2. If u ∈ s is anA-leaf, thenf(u) ∈ t is a leaf too andu ¹ f(u) ;
3. (root gap condition)If the root ofs, r(s), is not anA-vertex then for all verticesu in

the access path fromr(t) to f(r(s)) we haveu º r(s) ;
4. (gap condition)For all edges(u, v) in s wherev is not anA-vertex and for allw ∈ t

such thatf(u) < w < f(v) we havew º v .

Also note that if there are noA-leaves ins then the gap embeddings ↪→′ t is the same
as↪→.

The main theorem of this section is the following (see also page12).

Main Theorem 4.2 Let Q be a wqo and letT k be the set of all finite trees such that each
path in a tree can be partitioned intok ∈ N or less comparable sub-paths thenT k is a wqo
under gap embedding↪→.

We prove the main theorem in two steps. First we show that putting an arbitrary well-
quasi-ordering on leaves from̂T yields a wqo under↪→′. And then show how this construc-
tion can be applied by inductionk times.

Let Seq(A) be the set of all infinite sequences overT̂ (A), Bad(A) the set of bad
sequences fromSeq(A) andBad ↑(A) the set of increasing sequences fromBad(A). All
other definitions of the previous section concerningT̂ remain the same when applied to
T̂ (A).

Lemma 4.3 T̂ (A) is well quasi ordered by↪→ for any two well quasi orderingsQ andA.

To prove this we need the following variant of the minimal bad sequence theorem.

Theorem (minimal bad sequence forT̂ (A)) 4.4 If there is a bad infinite sequence from
T̂ (A) then there exists a minimalm ∈ Bad ↑(A) s.t. there is no infinite bad sequencef

with f¢ m.
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Proof. We verify that the same proof of3.7applies here too. We need to prove

Bad(A) 6= ∅ =⇒ ∃m∈Bad↑(A).m ∈ min
¢

Bad(A) .

The contradiction hypothesis (hyp) now becomesBad(A) 6= ∅ ∧ min¢ Bad(A) = ∅.
Consequently, for allh ∈ Bad(A) we have some subtree subsequenceh′ ∈ Bad(A) s.t.
h′ ¢ h. However, sinceA is a wqo then there are only finitely many trees inh′ that have
a root fromA (these are trees of only one vertex) or elseh′ was good. Therefore, we can
ignore all of these trees. This means thatBad(A) andBad ↑(A) contain only sequences
whose roots are entirely fromQ (which are infinite, since we ignore only finitely many
elements in each sequence). Consequently, sinceBad(A) = Bad and Bad ↑ (A) =
Bad↑ we can repeat each step in the proof of3.7. The construction and its existence proof
thus remain the same. 2

Proof of4.3. Similar to the proof of (3.1). We takem := min¢ Bad↑(A). By 4.4such an
m exists. LetS be the set consisting ofall immediate subtreesof trees inm.

If S is a wqo then let(si)i∈Dm be defined s.t.∀i ∈ Dm. si := 〈m(i)1, . . . m(i)ni〉,
wherem(i)k is thekth immediate subtree ofm(i) (cf. p. 24). SinceS is wqo then by Hig-
man lemma(si)i∈Dm is good with respect to the↪→′ relation extended to finite sequences
of trees. Therefore, sincem is increasingwe have a contradiction asm turns out to be good
too.

In caseS is not a wqo, then take a bad infinite sequenceb ⊆ S. Again we can assume
w.l.g. thatb contains at most one subtree for each tree inm. As A is a wqo thenb has only
finitely manytrees whose roots are fromA. Hence we can discard these trees fromb, and
get a bad infinite sequenceb′ such thatb′ ¢ m in contradiction to the minimality ofm. 2

We saw that every infinite sequence from̂T (A) has a pair of treess ↪→′ t wheres

precedest. Assume thatA itself is a set of trees ordered by the embeddability relation
↪→′ and ’unfold’ the leaves ofs and t s.t. all leavesu ∈ s andv ∈ t labelled fromA

become the correspondingsubtreesof s, and the upward closure ofu(v) becomes the tree
from A that was labellingu (respectively,v). We denote these leaf-unfolded trees bys∗

andt∗, respectively. In order to show that the set of such unfolded trees is a wqo under↪→,
theorem4.3 is not sufficient since we have not guaranteed the gap condition for leaves in
T̂ (A). Indeed we can see in figure4 that the leafu ∈ s is embedded with gap intov ∈ t

but since the gap condition foru does not hold, thenf : s∗ 6↪→ t∗.
Consequently, in order to keep this gap condition we should take care thatimmediate

predecessors of leaves are mapped to each other, and not to other internal vertices. This is
what we do next.
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Figure 4.1:↪→′ embedding between two treess, t in T̂ (A ∪Q), does not yield necessarilys ↪→ t.

Let T̂ be the set of path comparable trees overQ and letA be some other set of labelled
trees. We shall denote bŷT *(A) the set of trees from̂T (A) s.t. each leaf fromA is
unfolded. Accordingly,̂T *(T̂ ) is the set of all trees labelled fromQ s.t. each tree path can
be partitioned into two or less comparable sub-paths.

For two treess, t ∈ T̂ (T̂ ) such thatf : s ↪→′ t , let rng(f) ⊆ t denote the range off ,
and lets∗, t∗ ∈ T̂ *(T̂ ) be the corresponding leaf-unfolded trees fors, t, respectively.

Observation. For alls, t ∈ T̂ (T̂ ) such thatf : s ↪→′ t we have

∀u ∈ rng(f). leaf(u) → pred(u) ∈ rng(f) (4.1)

=⇒ s∗ ↪→ t∗

Let∞ be a new maximum element ofQ such that∞ Â x for all x ∈ Q. For all leaves
v of trees inT̂ (T̂ ) we shall break the edge(u, v) into two edges,(u, x) and(x, v), wherex
is a new vertex labelled by∞ andu ≤ x ≤ v for the tree order≤. Denote this set byT∞.
Since∞ is comparable to all elements ofQ then all the paths ofT∞ (excluding perhaps
the leaves) are comparable. Further, sinceT̂ is a wqo, then by4.3 T∞ is a wqo under↪→′ .

Lemma 4.5 For two treess∞, t∞ ∈ T∞, let s, t ∈ T̂ (T̂ ) be their original corresponding
trees, achieved by deleting all∞ vertices, respectively. Thens∞ ↪→′ t∞ implies that
s∗ ↪→ t∗.
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Proof. Let f be the gap embedding function fors∞ ↪→′ t∞. Each∞ leaf ins∞ ought to be
mapped to some∞ leaf in t∞. We shall show that wheneverv ∈ rng(f) for a leafv ∈ t∞,
then its grandfatheru = pred(pred(v)) is in rng(f) too.

That there is a↪→′ embedding with gap betweens andt is immediate (we just contract
the∞ edges. Recall that this embedding does not necessarily respects the gap condition
for leaves). Now, take a leafv in t such thatv ∈ rng(f) and letw ∈ s∞ be its source
leaf in the embeddingf , that is,f : w 7→ v. Thus, the vertexpred(w) ∈ s∞ is an
∞-vertex and so, by the embedding definition, it must be mapped to some ancestor of
v ∈ t∞, which is also an∞-vertex int∞. The only such ancestor ispred(v). Thus we
havef : pred(w) 7→ pred(v).

Let u := pred(pred(v)) ∈ t∞ and assume by a way of contradiction thatu 6∈ rng(f).
Hence, we have thatpred(pred(w)) is mapped to someancestor ofu, thus by the gap
conditionu º pred(w) = ∞, a contradiction, sinceu ≺ ∞ . Therefore we have that
s ↪→′ t and condition (4.1) holds, which yields, by the above observation, thats∗ ↪→ t∗. 2

Corollary 4.6 T̂ *(T̂ ) is a wqo under↪→.

Proof. By lemma4.5, the existence of a bad sequence in(T̂ *(T̂ ), ↪→) implies a corre-
sponding bad sequence in the wqo(T∞, ↪→′), a contradiction. (For eacht∗ ∈ T̂ *(T̂ ) let
t ∈ T̂ (T̂ ) be its corresponding tree; andt∞ is the corresponding tree inT∞, achieved by
putting∞ vertices as predecessors of leaves). 2

We now restate the main theorem.

Main Theorem 4.7 LetQ be a wqo and letT k be the set of all trees labelled fromQ such
that each path in a tree, beginning from the root, can be partitioned intok ∈ N or less
comparable sub-paths, thenT k is a wqo under gap embedding↪→.

Proof. The proof is a simple corollary of4.6. By 4.6 the theorem holds fork = 2. Hence
by 4.3, T̂ (T 2) is also a wqo under↪→′, which implies thatT̂ * (T 2) = T 3 is a wqo under
↪→ too. (Note that in the proof of4.5, we only use the fact that the labels of the leaves form
a wqo, therefore any wqo labelling of leaves (e.g.T 2) is applicable to it and hence also to
corollary4.6.) Hence by induction the theorem holds fork. 2
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5 Conclusions and Directions of Further Research

We have showed how to extend the gap embedding to trees with wqo labels. We also
showed that bounding the amount of comparable sub-paths in each tree path is not only
sufficient but necessary in order to obtain a well-quasi-ordering.

Comparing our minimal bad sequence theorem (MBS) (3.7) and that of [Křı́89], we no-
tice that the conditions for the abstract framework introduced by Křı́ž for aquasi-ordering
with gap conditionare all satisfied (Ibid. definition 1.4). Hence we obtain a similar result
to the main theorem of [Křı́89], that is,an abstract formulation of MBS which holds for an
arbitrary wqo (no concept of bounding comparable paths is relevant here, since we only
introduce this concept so that the set of finite labelled trees would comply with the condi-
tions of the abstract formulation of the MBS). This can be proved by simple verification
that each of the conditions in section 1.4 [Křı́89] holds also in the proof of (3.7) in this
work.

A natural application of our main result should be a corresponding extension of Okada-
Takeuti q.o.d. [OT87], so that quasi ordered label would not be restricted to leaves only.
In this context, Okada showed in [Oka88] how to extend Buchholz’s variant of the Hydra
game [Buc87] from ordinals less thenω +1 labels to ordinals belowε0. The termination of
the Hydra game, as defined by Okada, is proved by exploiting its relationship with ordinal-
diagrams. Consequently, we can further extend this result to a game on trees labelled by
some wqoQ, with a fixed boundk on their comparable sub-paths partitions (i.e. what we
denote byT k), whereQ has no chain of length greater thanε0.

As mentioned in the introduction, [Wei92] speaks of the interrelations between a prece-
dence relation on function symbols and the induced termination ordering. Precedence or-
derings seem to transfer elementary properties to the corresponding termination orderings.

It remains to find the best way to use our extension of Kruskal theorem or that of Křı́ž,
in order to construct a new recursive path ordering which can orient non-simplifying rewrite
systems (i.e. systems that lack the subterm property). We have done a preliminary attempt
in this direction. As mentioned in the introduction, some applications of the gap embedding
(with a somewhat different definition) for proving termination of term graph rewriting was
introduced in [Oga95].

With regard to pure proof theoretical matters, the strength of theorem (2.3) which states
that(TOn, ↪→) is a wqo, i.e., its proof theoretic ordinal, is not known yet [Sim99]. Further-
more, it might be that the strength of the universal statement ”for all naturalk, T k is a wqo”
is bigger than that of2.3.
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