Tel Aviv University
The Raymond and Beverly Sackler
Faculty of Exact Sciences

Kruskal-Friedman Gap Embedding Theorems
over Well-Quasi-Orderings

Thesis submitted in partial fulfillment of the requirements for the M.Sc. degree in
Tel-Aviv University, School of Computer Science

by

Iddo Tzameret

Prepared under the supervision of Prof. Nachum Dershowitz

December, 2002



Acknowledgement

I would like to thank prof. Nachum Dershowitz for the discussions we had, through the
early days when things were unclear, till the latter days where his corrections and sugges-
tions regarding the formulation of the proofs were very helpful.

Some correspondence with Moti Gitik, Igofi&, Richard Laver and Johann (Janos)
Makowsky was also helpful to clear up basic things.



Abstract

We investigate new extensions of the Kruskal-Friedman theorems concerning well-quasi-
ordering of finite trees with the gap condition. For two labelled treasdt we say that

s is embedded with gap intbif there is an injection from the vertices efinto ¢ which

maps each edge to a unique path im with greater-or-equal labels. We show that finite
trees are well-quasi-ordered with respect to the gap embedding when the labels are taken
from an arbitrary well-quasi-ordering and each tree path can be partitioned |ty or

less comparable sub-paths. This result generalizes B6it89) and [OT87, and is also
optimal in the sense that unbounded partiality over tree paths yields a counter example.
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1 Introduction

Kruskal theorem, stating that finite trees are well-quasi-ordered under homeomorphic em-
bedding, and its extensions, aside from being interesting as a combinatorial result by itself,
has played an important role in both logic and computer science. In logic, and in particular
proof theory, it was shown as independent of certain logical systems by exploiting its close
relationship with ordinal notation systems, and in computer science it provides a common
tool for proving the termination of many rewrite-systems.

The termination property is one of the most important properties of a rewrite system.
Many times termination proofs amounts to showing that the rewrite relation is included in
some well-founded ordering of the terms under consideration. The latter ordering is then
called atermination ordering A canonic such termination ordering is thexursive path
ordering[Der83.

At the heart of proving the termination of the recursive path ordering is Kruskal's tree
theorem which states that finite trees are well-quasi-ordered under homeomorphic embed-
ding; meaning that there is a one-to-one mapping fgdo, such that vertices are mapped
to vertices and edges to unique paths. However, the embeddability property inherent in the
recursive path ordering is also responsible for its limitations.

A term ordering is said to have tiseibterm propertyf all terms are always bigger then
their subterms. Termination orderings that have the subterm property aresiaifdidica-
tion orderings Any such simplification ordering is bound to include also the homeomor-
phic embedding relation. Nevertheless, it is sometimes necessary to prove termination of
rewrite systems that are not simplifying.

Take for example the following rewrite rulg’:f — fgf. The rewrite relation induced
by this rule is clearly terminating since the number of adjagesymbols decreases in
every application of the rule. In addition, the left terfyf is homeomorphic embedded
in fgf. Thus, for any simplifying termination orderinflf is smaller thanfgf, which
means that any such termination ordering fails to prove the termination of this rewrite rule.
Indeed, in order to prove termination, we must orient the left term to be greater than the
right term. Hence, it would be worthwhile to look for extensions of Kruskal theorem which
uses embedding relation not possessing the subterm property.

One such embedding is tlenbedding with gap conditipnvhich is at the center of
investigation in this work. The first explicit introduction of the gap embedding is due to
H. Friedman (seejim8Y). Since its introduction, other variants of gap embeddings were
introduced, most of which made use db&al orderingon the labels. The results iKfi89],

[KT¥i95] are of pure combinatorial nature. Those &dr89, [Gor9( are centered around
proof theoretical matters. Other where applied to term graph rewriting CsgeOf).

Since, with regard to term rewriting, the tree labels ordering corresponds to the ordering
of the function symbols pertaining to a certain signature, it would be beneficial, in regard



to termination proofs, to uggartial or quasiorderings on the labels, rather then a total one.
Extensions of Kruskal theorem not possessing the subterm property are also believed to be
of benefit for facilitating termination orderings for typed and higher order rewrite systems
(see JR99).

The relationship between well-partial-ordered precedence relations on functions sym-
bols and the order type of the induced termination ordering is investigatétidai®f. It
is shown that many important order-theoretic properties of the precedence relation carry
over to the induced termination ordering. This is done by defining a general framework
for precedence-based termination orderings via a (so-catdat)vized ordinal notations
Usually an ordinal notation system is given by a primitive-recursive set of térausd a
primitive-recursive relatiorz onT". The terms ofI” are built by some constant symbol, say
"0”, and the tree constructors. Although there is no standard ordinal notation used in proof
theory, Wei92 uses a sulfficiently strong ordinal notation system and the corresponding
relativizedsystem is defined such th&ab” is replaced by the elements &, with minor
changes applied t& in order to deal with all the symbols i3, yielding the relative ordi-
nal notation systeni7, <). Based on few examples, it is further conjectured that every
such application of a partial-order to an ordinal notation system, carries the order-theoretic
properties of the partial-order to the relativized notation system. An example of such a
construction, using Takeuti's ordinal diagrams, is introduced als@ir8[] by the name
guasi-ordinal-diagrams The definition of these diagrams is the only result known to us
that deals with gap embedding of trees apwsiordered labels. However, this result is
limited in that the quasi ordering only resides on kb&vesof trees, while interior vertices
are bound to be labelled by some well ordering. Furthermore, the tree embedding is defined
so that it forms a partial order over the fields of trees and not a quasi ordering/][also
connects Friedman independence result for various formulations of Kruskal theorem with
ordinal diagrams.

H. Friedman introduced the concept of embedding with gap in order to achieve order-
ings of large types, so that sufficient strong formal systems of arithmetic would be unable
to prove the well foundedness of these orderings (Se®m§g). The motivation was to
produce a 'natural’ mathematical statement, in contrast to the familiar metamathematical
ones (e.g. @del's incompleteness proof), which is nevertheless independent of these for-
mal systems (hence, the name ’'natural independence’). There was criticism that although
Kruskal theorem is a truly natural combinatorial result, the gap conditions are not, as they
are cooked up in advance to yield the desired result. However the gap embedding was
shown to be 'natural’ due to its importance in proving the celebrated Graph Minor Theorem
of Robertson and Seymour (sd¢eqS87, and [Rat94; the latter contains a general discus-
sion on the 'rewards of ordinal representation systems’). In this context Kruskal theorem,
as a fundamental result of well-quasi-order theory is a result pertaining to combinatorics
which is interesting enough by itself.



1.1 Results of this work

We show by a simple counter examp¥,(prop. 2.7) that unbounded patrtiality over tree
paths yields a bad sequence w.r.t. the gap embedding. We then prove it to be a canonic such
structure for generating a bad sequence, by proving that bounding the partiality allowed on
tree paths results in a wq63, thm3.1).

The proof of theoren3.1 follows the road of Kfi89], technically however, it is some-
what more involved than the original. The main novelty here is the insight that as long as
the label ordering is a wqo it is sufficient to maintain the totality only of the order induced
by each tree pathinstead of requiring that the label ordering on all trees should be total.

In sectiond, based on the result of the preceding section we use a different approach
to prove that if each tree path can be partitioned into some apriari N comparable
sub-paths, then the wqo property is presengddthm4.2).

Section2 sets up the basic terminology and results we relate to in this work. Conclu-
sions and some open problems are discussed in Séction



2 Kruskal-Friedman Type Theorems

In this section we review certain facts about Kruskal-Friedman style theorems concerning
well quasi orderings of finite trees.

2.1 Preliminaries

A quasi orderings a set) together with a reflexive and transitive relatign Given a quasi
ordering(@, =) and two elements, b € @, we say that: andb arecomparablef either

a X borb =< a, otherwise we say that they arcomparable We denote by< the strict
partof<,ie.,a < b iff a X b andb £ a.

A quasi ordering(@, <) is awell-quasi-ordering(wqo) if for all infinite sequences
(ai)ien C @ there exist < j € N such that; < a;. A sequencéa;);cy S.t. for alli < j,

a; 7 a; holds is called dad sequence, otherwise it is callegj@aodsequence. An infinite
sequencea;);cn is said to be amantichainif a; is incomparable ta; foralli < j € N.

We shall deal with infinite sequences of elements from some quasi Qddet). We
defineN®) to be the set of all infinite subsets &f. Formally an infinite ¢-) sequence
over A is a functionf : M — A, whereM e N, We denote the domain gfby D f.

Greek lettersy, 3,, ... will use to denote ordinals, where an ordimals identified
with the set{s € On : 8 < a}. We shall use the letterisj andk to denote the natural
numbers. We also identify sometimes the natural numbexsviiith the ordinals< w.

Afinite tree is defined to be a finite partial orderifig<,) such that the set of ancestors
{vet : v<,u} of each vertexu in ¢, forms a linear ordering with a unique minimal
element called theoot. We assume also that the immediate successors of each vertex, i.e.
its children, ardinearly ordered A subtreeof a treet, rooted atu € t, is the upward
closure{v € t : u <; v} of u. We denote byu, v] the path beginning frona to v. For
a given patHu, v] we define naturally a sub-path to p&, v'] whereu <; v’ <; v/ <; v.
We also uséu, v] etc. in the obvious way. We shall usually write simplyinstead of<,,
when it is clear from the context which ordering is used.

Let Ty denote the set of all finite trees with labels frgmWe shall us€” to denote the
labelled trees ovep in sections 3 and 4. Formally the labels of a tree T, are determined
by a labelling function; : ¢ — @ and a labelled tree is a set of vertices (identified wjth
combined with a partial ordering and a labelling function. We denote(bythe root of
t and bypred(u) theimmediateancestor of a vertex € ¢ (i.e. its predecessor). When it
is not ambiguousve shall identify a vertex with its laheThusv < u means that is an
ancestor of in the tree ordering, while < « means that has a less-or-equal label than
u. Let us denote also by M v thegreatest common ancestof a pair of vertices:, v.



2.2 Gap Embedding

Definition 2.1 (tree embeddingFor two treess, t we say that is embeddednto ¢ if:

(1) there is an injectiory :s — t such thatf(v Mwu) = f(v) N f(u) for all verticesv,u in
s; and

(2) Letv be a vertex ins and vy and vy are distinct immediate successorswo$uch that
v1 precedesys in the linear ordering ofv’s children. If f : v — z, thenz; precedess in
the linear ordering ot:’s children, wherez; is the immediate successor006n the path to
f(v1) and z is the immediate successor06n the path tof (v2).

Remark(i) The second condition of definitidh 1is introduced so that for each vertexf
the order of siblings i is preserved in the embedding into

(i) In the literature this kind of embedding appears also under the naoragomorphic
embeddindcf. [DJ9Q) or topological minor relationcf. [RS84).

Definition 2.2 (tree embedding with ggpFor two treess, ¢ we say thats is embedded
with gapinto ¢t and writes < t if there is an embedding : s — ¢ for which the following
conditions hold:

(1) (label increasing)vv € s. v < f(v);

(2) (gap condition)for all edges(u,v) in s and forall w € t s.t. f(u) < w < f(v),
w v,

(3) (root gap condition)u > r(s) for all verticesu in the access patfr(t), f(r(s))] of
t.

Figure 2.1:Gap embedding — ¢



The gap embedding forms a quasi-ordering over trees labelled by some quasi-ordering:
reflexivity is obvious and transitivity stems from transitivity of tree embedding (without
the gap conditions), and the transitivity of the labels ordering. A set of trees is well-quasi-
ordered under gap embeddirg, if every infinite sequence of trees contains a pairof
trees, one preceding the other such that ¢.

The following theorem was originally conjectured by H. Friedman and proved by 1.
K¥iz in [KFi89.

Theorem (Kriz ['89]) 2.3 For any well-order(W, <), (Ty, <) is a wqo.

2.3 Gap Embedding for Edge Labelled Trees

A different and more intuitive definition of the gap embedding can be given by trees with
labels on theedgesinstead of the vertices. Let us define naturally for a fiee) the

set of its edges by, := {(u,v) €t x t : u = pred(v)} and the labelling functios, :

E; — @ for some quasi-ordef), <). An edgee € E; is said to ben the path[u, v] if

e € ([u,v] x[u,v]) N E;. We have the following gap definition.

Definition 2.4 (tree embedding with gap second vers)dret s, t be two trees with edge
labelling. We writes <, ¢ iff there is an embedding afinto ¢ such that each edge efis
mapped to a path inwith < labels.

Remark Note that—, lacks a root gap condition corresponding to the one-in

Let us denote b)ZFC’g the set of trees with labels on their edges, and)lee a new
minimum element ofQ s.t. V¢ € Q.0 < ¢. For a tree(t',<') € T, we define its
corresponding tre¢, <) € Ty, having labels on vertices instead of on the edges, by the
rules:

() (t, <) :== (', <');

(i) L;(r(t)) == 0;

(iii) for all edges(u, v) in E; letl;(v) := ly(u,v).
That is, we simply put each edge label(of v), wherev > « to label the vertex, and put
0 as the root label.

Proposition 2.5 Let s', ¢’ be two trees inl, ands,t be their corresponding trees in
TQU{()} , achieved by following the above three rules, thén-, ¢’ iff s <—t.

Proof. By straightforward verification of the gap embedding conditions in definit#).(
Assumef : s’ <. t/, then thisf is applicable also t@,t since the tree structure stays
the same. Since —. t' then for all verticesu € s excluding the root ok and for all
edges € [f(pred(u)), f(u)] int’ we havely (pred(u),u) < ly/(e). Hence for all vertices
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v € (f(pred(u)), f(u)] int we havev > u. The root gap condition of — ¢ also holds
since the new root label fis 0 which is less or equal to all other labels and in particular
to all the labels in the access path from the roat @f f(r(s)).

Conversely, ifs < t (for which, by definition,r(s) andr(t) have0 labels) then a
similar verification process shows that indeed-. ' in T¢,. O

Consequently, if every infinite sequenceﬂl’au{ﬁ} is good then every infinite sequence in
ch? is good, since the existence of an infinite bad sequérr_éefl“é2 would imply that the
correspondin@Qu{O} trees form a bad sequence either. Hence we have the following.

Corollary 2.6 If for allwgo @, (Tg, —) is a wqo, then for all wqa), (Tc,ga —.) IS awqo.

Therefore, it would be sufficient to prove th@y, —) is wqo in order to show that both
embeddings are. From now on we shall deal only with the first gap embedding definition.

2.4 Quasi Ordered Labels

It seems natural to extend Theoréh3, stating that finite trees with well-ordered labels

are well-quasi-ordered under gap embedding, to some arbitrary well-quasi-ordered labels.
Indeed, finite trees ordered by embeddability (without the gap condition) with wgo labels is
the result proven originally by KruskaKfu60]. As it turns out, however, wqo is not closed
under embedding with gap. Evenifhas only one pair of disjoint elements then there is a
counter example.

Proposition 2.7 If (Q, =) is not total thenT, —) is not a wqo.

Proof. Since( is not total then there exist an incomparable pair of elemeatsds in Q.
We have the following antichain:

a a a a
as "a a g a a
a* a a a
a* a a
a* a o
a* a

Note that in any embedding of two trees in this sequence, roots ought to be mapped to
roots and the same thing happens with the immediate predecessors of leaves, since these
are the only vertices having two children. O

11



In this work we show that this counter example is ta@onicone.

Definition 2.8 Given a tree pat, v], we say that the path momparabléf all the vertices
in it have comparable labels, that I8z, y € [u,v].z Xy Vy < .

Let Q be a wgo and leT™* be the set of all trees labelled fro@ such that each path in
a tree, beginning in the root, can be partitioned into some fixedN or less comparable
sub-paths (surely, any path of lengtitan also be partitioned intocomparable sub-paths,
each sub-path contains only one vertex). The main result of this work is the following.

Main Theorem 2.9 T* is wgo under gap embedding.

The proof is the corollary of the next two sections.

12



3 Comparable Path Trees

3.1 Definitions and Terminology

Let us denote b)ﬂA“ the set of trees labelled b§ such thateach path consists of only
comparable labels fromy). Note that siblings might be disjoint that way. The following is
the main theorem of this section.

Theorem 3.1 T is well-quasi-ordered by gap embedding for all wgo

In order to prove the theorem we first provenmnimal bad sequence theoramhich is
a variant of the main theorem iK[i89 accommodated to our settings. Before we do this
we need yet some more definitions.

Definition 3.2 (gap subtreg For two labelled trees, ¢t we say that is a gap subtree of
and writet < s iff ¢ is a subtree of and the access patl(s), r(t)] from the root ofs to
the root of ¢, keeps the following gap condition:

min (r(s), ..., 7(1)) € {r(s), (1)}
Accordingly, we writef <is if ¢ is a proper subtree of and the above gap condition holds.

We shall use also the notatiorsandr> to denote the inverse af and <, respectively.
We have the following three properties:

stuAT(t) =r(u) = sPu (3.1)
stuAr(s) 2r(t) = sbu (3.2)
s—=tduAr(t) Xru) = s—u (3.3)

Note that in contrast to the usual subtree relation, the gap subtree retati®mot
transitive. For that reason we introduce two more subtree relations for which transitivity
does hold.

Definition 3.3 For two labelled trees andt, such that is a subtree o we define
i) t<a.s < t<as Ar(t)=r(s);
(i) t<ss & t<as Ar(t)<r(s).

The following is a key observation of our proof, which stems from the condition that
paths are comparable i
Observation. Both <. and<i, relations are transitive as relations Bn

For simplicity we shall denote b§eq the set of all infinite sequences oVErand by
Bad the set of all infinite bad sequences frafey.

We now define several relations on the Sef that correspond to the basic gap-subtree
relations above.

13



Definition 3.4 For two sequences, b € Seq s.t. Db C Da we write
(1) art> b iff Vi € Db. a(i) > b(i)

(2) a > b iff Vie Db. a(i)>b(i);

(3) a>< b iff Vi e Db. a(i) ><b(i);

(4) ar>, b iff Vi€ Db. a(i) >, b(i);

Remark Note that the relations defined iB8.4) are all element-wiseelations, but they
ignore positions at which one or both are undefined. Also notice(thaj~! = <. and
(>t = <.

The following observation is essential to the proof, and is the counterpart of the previ-
ous observation.

Observation. Both <. and<i relations are transitive as relations Seg.

3 2
b /\ ,
7
20 6 4
2 11 7
6
6 2
C A 1
2 1
3

Figure 3.1:Two sequences of trees labelled fréfrsuch that <. b .

For a given sequenceand a constant € N we write s|;, to denoteu | (Dunk);
appropriatelys| < denotes: [ (Dun(k + 1)). We shall use to denote the concatenation
of two sequences defined as follows.

Definition 3.5 Given two sequencds, g € Seq such thati := min Dg, we define the
concatenationoftogby h®@ g:=h|;U g.

14



We now introduce a minimization relation. The proof of the theorem is based on the
existence of such relation for which certain closure properties are preserved. Consequently,
we would always be able to define a new 'minimal’ sequence w.r.t. this relation.

Definition 3.6 For two sequences,v € Seq(Q), we writeu <., v iff either 3k €
Du. u|< = v|< andu(k) < v(k) or min(Du) < min(Dv).

For two sequenceg, g’ € Seq we writeg <., ¢’ to mean that the sequencerobts
from @ induced by the trees qf is <;., than that induced by’. We call a sequence
ai,as, ... fromQ increasingif i < j € Nimpliesa; < a;. We shall call also a sequence
of treesg € Seq increasingif its roots sequence induces an increasing sequenc&ddy
we denote the set of all sequenced3afd that are also increasing.

In what follows we shall use the fact that sin@ds wqgo each infinite sequence has an
increasing infinite subsequenbg Ramsey. For a sequengec Seq denote byy T some
infinite increasingsubsequence af.

Notice that by the pigeonhole principle, for two sequencésc Seq s.t.a <1b either
there exists an infinite subsequent®f a s.t.a’ <. b orand’ s.t. o’ <_b.

In the next sections we concentrate on proving the following minimal bad sequence
theorem.

Theorem (minimal bad sequence) 3.71.et Q be some wqo. If there is a bad infinite se-
quence fromIl" then there exists a minimal bad increasing sequemcs.t. there is no
infinite bad sequencg with f < m.

3.2 The Minimal Bad Sequence Theorem

Let us restate more succinctly thenimal bad sequendbeorem.

Theorem 3.7 Bad # () = dme€ Bad] .m € ming Bad .

3.2.1 The Construction

In order to prove the theorem we assume it is false and build a construction yielding a
contradiction via a cardinality argument. Thus, we assume by a way of contradiction the
following hypothesis.

(hyp)  Bad#0 A min Bad = 0.

15



Note that this hypothesis is indeed the negation of the@&isinceBad # ) = Bad 1+ ()
by Ramsey. Under this hypothesis we build by transfinite induction a seqiknte <
w) of distinctincreasing bad sequences with order type

ho>hi>hy...hy, ... h,... (a<w1),

ho € Badl and VB3 < a.Dhg 2 Dhy, .
Letg) := =z for some z € min.,  Bad. Then we put
ho == gol
Having builth,, already, in order to buildh, .1 we do the following. Define

Goy1 = Iglin{s € Bad : s<1hy} .
lex

We will show thatg;, , , exists in§3.2.51),(2). Then, takeg.+1 to be a subsequence of
Jh1, Such that

ha < gat1 - (3.4)
Such agq+1 exists by Lemma.11(p. 21). Now define
ha+1 = ha® (ga+1T) . (35)

Note that the sequences are indeed distinct from each other since foralt 1 < w; we
have thati, >~ go+1 € ha+1 -
For a limit ordinal\ we defineh, as follows.

Dgy = [ [{Dhalar < A}
g (i) = lirri\ ha(i)  for i € Dgy
f = min{s € Bad|s < gy}
lex
hy = f1

We shall show in the sequel thiin, . k(i) is converging to soméxedtree for any
limit « < wy andi € Dg,. Further,g, will be shown bad, hencé¢ exists by (hyp) and

§3.2.92),(2).

Consequently, we have the following twwvariantsof the construction.

Vn € NVa < wy. hq B2 haiyn (3.6)

For all limit A # 0 we have
Vi € DgyJa < A gx(i) = ha(7) (3.7)

16



Figure 3.2:THE INDUCTIVE CONSTRUCTION lllustration of an initial segment of the sequeriég, | o <

w1) up toh,2. For each bad sequenaeg, the bright trees are the fixed (limit) trees taken from the previous
bad sequence, while the dark ones are thodegn. The shaded background represents the domains At

the limits, these domains vanish, and the limit sequences contain only the limit trees. Note that a fixed tree in
hn, for n € Nis fixed only up tow, after which it can be reduced again by some of its proper subtrees. This
rule applies to all limits less then; .

Invariant3.6 holds by3.4and the definition of> (recall that the relatiof» - overtreesis
transitive, hence the corresponding element-wise rel&tionversequences also transi-
tive). Invariant3.7 holds by definition ofy,.

3.2.2 Correctness of the Construction

We show now that the construction maintains the factihat, is indeed an increasing bad
sequence for any ordinal, and that the limit sequences defined for limit ordinals, are
indeed infinite bad.

17



Lemma 3.8 For all « < w; we have that,,1 € BadT.
Proof. We show first that,, 1 is increasing.

goH_l <]i ha —
Vk € Dgat1- 7(ga+1(k)) = r(ha(k)) . (3.8)

Define
i:=min Dgoy1 and j:=maxDhy|<; .

If 5 = () then the claim is obvious, otherwise we have the following:

(by definition ofhs1) ha+1(j) = ha(j)

(sinceh,, is increasing ) =< ha(7)
(by (3.8)) = Gat1(9)
(again, by definition ofi, 1) = hat1(4),

Since by the definition of the concatenation operation, 1 (i) immediately succeeds
ha+1(7) in the sequenck, .1, we conclude thakt,, 1 is increasing .

To show thath,; € Bad, assume otherwise. Hence there are h,1|<; and
t € got+1 for which s — ¢. Let w be the corresponding super-treetah h,. Since
r(t) = r(w) andt < w thenr(w) holds the minimum label on the access pathitow. By
increasingness df,, we have that(s) < r(w) so the root gap condition holds fein w
hences — w which contradicts the badness/gf. O

Lemma 3.9 For all limit A < w; we have that, € Bad.

Proof. That the limit sequence, is bad is obvious from the definition, since any pair of
trees, one embedded into the othepjn would also imply this forh, for somey < A by
invariant @.7). Therefore it is sufficient to show that the sequencgfor v < A converge

to some infinite sequence.

Intuitively speaking, this is indeed the case since the trees are finite, hence for each tree
in the initial sequencéy, taking a subtree can occur only finitely many times throughout
the construction.

Formally, since all trees are finite ands a limit, then for any index € N there is a
maximal3 < A beyond which there are no more gap subtrees taken firgt). Hence we
have

VieNJB<AVy. B<y<A — i & Dg, .

18



This means that starting frof up until g, the value in index is fixed(might bef). Thus,
the trees converge for all indices N so that the following holds

lini\ inf(min Dgy) = w. (3.9)
’y—)

It remains to show that the limit sequengeconverges into amfinite sequence. There-
fore, note that when we builbds, 1, if the first index ofDggs, denoted by, is less then that
of Dgg1 thenhg(i) (= gg(i)) gets intohs 1. Now, if everysuch first index ofDg, is
greater thani for all 5 < v < X thenhg(i) remains a tree in every sequents, i.e.
h~(i) = hg(i) for all 3 < v < A. By 3.9we know that this must be the case for infinitely
manyDgg where < X. Formally we have

{ inf (min Dgﬂ,)ﬂ<)\}§ﬂ{Dh7|7<)\},

BLy<A

with the left hand side infinite. Thus we can builgdby taking the limit trees in the domain
{Dhy [y <A} O

3.2.3 Existence Conditions For The Construction

Let us repeat, and restate, the waywas defined i$3.2.1 To find g,+1 we work through
the following steps.

() DefineKy := Bad and putg, := z for some z € min.,, Ky . Then we definé,
to be some infinitely increasing subsequeice of g.

(i) Define Kost = {s € Bad : s<ha},

and put

/ o .
o1 = r<nlnlCa+1 .

lex

(i) We shall show that although we know by (hyp) only that there exists samge
sequence, we actually have

Va < wy —dg € Bad. g < hq (3.10)

Therefore, we can lej,+1 C g, be an infinite sequence Sg,11 < hq. Let
Ja+1:={s € Bad : s<_ hy}, S0 3.10 becomes

Va < wi. Ja+1 =0 (311)
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We have the following induction invariant which will be used throughout the next sec-
tions.

Corollary 3.10 Minimality w.rt. <;e.:

VB < a-ds.seKgi1 A s <jeg g'ﬂﬂ .

It remains to prove3.11) and thatC,; is closed undek .., that is:

r<nin Kas1 #0 (3.12)

lex

3.2.4 Outline of the Existence Proof
For someZ C Seq let us denote by’L(7) thatZ is closed, that is,
CL(Z) <& VzeSeq (VieNF el |=z2<)— 2€T,

Let us denote by i.ha) that induction hypothesig’, 1, = 0 holds for ally + 1 < «,
hence the construction exists (and its invariants hold) up,toby the previous section.
Note that if« is a limit then it is sufficient to have for alf < « that 7, = 0 in order to
know that the construction invariants hold upatdncluding « itself.

The following is an outline of what we prove next.

1. VS C Seq. CL(S) = (S # 0 — min., S # 0);
2. CL(Kq41) foralla < wy;
3. () i.h.(0): min.,Co # 0;

(i) i.h(a) = Tayr1=10.

By (hyp) we already know that,1 # 0, hence by 2) and () we get 8.12). (3i) is
the base case of the induction, combined wiif) (ve get 3.11).

3.2.5 The Existence Proof
(1) VS C Seq.CL(S) = (S# 0 — min, S #0).

Remark Note that this is actually the original Nash-Williams’ sense of a minimal bad
sequence, except that we need here to skip empty 'slots’ in the domains of sequences (i.e.,
natural numbers absent from the domains), and we order elements by the relation

their roots, instead of by their size.

Proof. We simply build a 'minimal till:" sequence by induction for every finite and
by assumption conclude that the corresponding limit sequence exists and therefore is a
minimal sequence.
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Formally, assume thaf # () then let us build by induction on € N a minimal
sequencef,, of lengthn, with nog € S s.t. g|<i, <iex fnl<i,. FOrthe base case let
ip == min{i € N : 3g€S.card(Dg|<;) =1}, i.e. 4; is the minimal index of the first
elements in all sequencesdh Since(@ is well founded andS # () then there is a (not
necessarily unique) minimal sequengcef length1 that starts at;, thus letf; := g|<;, .

Now, having builtf,, in order to buildf,,+; we letS := {g € S : ¢|<;i, = fn} and
putiniq :=min{i € N : 3g€S.card(Dg|<;) = n+ 1}. Again, since? is well founded
we have &<;.,.-minimal sequence of lengthn + 1 from S, then letf,, 11 := g|<i, .

Let f be the limit sequenc¢ := lim,, ., f,. By closure assumption fa$ we have
f € S. Further,f is clearly<;.,.-minimal in S, otherwise it would have contradicted our
choice off,, for somen € N. O

(2) CL(Kq41)foralla < wy.

If every finite initial segment of some sequernce Seq is bad, then clearly € Bad.
Furthermore, since the relation is element-wise then again if for every initial segment
of s € Seq that ends aj € N, we haveVi € Ds.i < j — s(i) < ha(), then obviously
s <1 hyg.

(3)) min., Ko # 0.

Proof. Similarly to (2), Xy = Bad is closed since if a sequeneec Seq is not bad then
there is agoodfinite initial segment|<; for some;j € N, which implies that not all finite
initial segments ot could be an initial segments of some sequencBdd.

By assumptiorBad # () then (1) above implies thatin., _ Co # 0. O

(3ii) This statementJ,.1 = 0, is at the heart of the proof. Equivalently, we have the
following lemma.

Lemma 3.11 Ifi.h.(3) holds then there is ng € Bad s.t.g <. hg.

Proof. Assume that the lemma is false anddet Bad be such thay <. hg.
We have to deal with three different cases:di}= 0; (ii) 5 = v + 1 for somey < wy;
(i) B8 = Aisalimit ordinal< wy.
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() B=0.
Define
l:= 96® (Q‘Dgé) .
We need to show thdte Bad andl <., g(, in contrast to the base case in which we took
a <jez-minimal sequence), € Bad.
By definition/ andg, are identical up tanin(Dg). We have

g<xho C gy = DgCDgp,
and
g << ho & Vi€ Dg.g(i) << ho(i) = g5 (i) -

Consequentlyy <1 g{, which means that bot$yj) andg,(j) are defined and(j) <. g{,(j).
hencer(g(j)) < r(g((J))- Therefore, by<,., definition we havé <., .

Now, assume by a way of contradiction thhas good. Hence there aie— ¢, where
Y € golmin(ng) aNAt € g (if gol<minpy = 0 then the claim is trivial). Letv be the
corresponding supertree ofin hy Sinceg <. ho thenr(t) < r(w) andr(t) has the
minimum label on the access pathttin w. Thereforey — w, a contradiction to the
badness ofy.

(i) B =~+1forsomey < w;.
We abuse the notation slightly and write-1 for . We havey <. hg < hg_1, thus by

property @.1) (see on fl3) we get

g<hg_1. (3.13)
Define

l:=g5® (9lpgy,) -

By (3.13 we have that

l<hg_1. (3.14)

By the construction of3 we havey <i. hg = h_1®@ gg. This means also that<. gj 2
gs (recall that the relation<i. on Seq is element-wise and ignores undefined places).
Similarly to the previous case thej< g’ﬁ implies

[ <iex 9 (3.15)

We need to show now thatis bad, which, combined withi3(14) and @.15, contradicts
corollary 3.10. Assume that is good. Hence there are— ¢ for s € g’ﬁ\<mian and

t e g(if gg|<mian = () then the claim is trivial). Letv be the corresponding super-tree
of tin gs. Sinceg <1 hg 2 g thenr(t) < r(w) and sor(t) is the minimal label
on the access path toin w. Sincer(s) < r(t), by the gap embedding definition, then
Vo € [r(w),r(t)].r(s) = r(x). Thus,s — w which contradicts the badness g@f (and
hence ofgj; 2 g5 t00).
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(i) B = A isalimitordinal.
We have
g << hy. (3.16)

Let g be the limit sequencBm,_,) h, and f := min.,  {s € Bad|s < g)} as defined
in §3.2.1,.

We shall show that the sequence defined'lsyy yields a contradiction to the definition
of f itself.

By definitionhy = f 1, thus as beforgy <1 h) implies

f®9 <iex f- (3.17)

Let u be any tree iry, w its supertree irf andz the supertree o in g). By (3.16 we
haver(u) < r(w) which implies thatmin {r(u), r(w),r(z)} € {r(u),r(z)}, thusu < z.
We have then

f®g<gn. (318)

Sincer(u) < r(w) then for allv € f|<minnDy:
V—=>U=V—>Ww

in contrast tof badness, hence
f®g € Bad. (3.19)

By (3.17), (3.18 and @.19 we reach a contradiction to the minimality ffw.r.t. <;.. .
O

3.2.6 Concluding the Minimal Bad Sequence Theorer8.7

For anya < w; we had built a bad increasing infinite sequence. These sequences form a
sequence of distinct increasing bad sequegtgsy < wi) of lengthw,, such thatz™> h,,
forall G<a.

In any sequence,; we replace some tree, say (i), by its propersubtreeh, 1 (7).
This process is obviously finite for every finite trég(:) wherei € N. Consequently,
the amount of such replacements, and hence the amount of such distinct sedienses
bounded from above by, |ho(i)|. Let A be the supremum of the sizes of treeshin
then we have

D (D) <) A< Rg-Ro =R .

<w <w
Therefore we can have onl}y sequences,, in (h,|a < wi), which yields a contradiction.
O
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3.3 Concluding Theorem3.1

Let us now restate the main theorem we were intending to prove in this section.

Theorem 3.1 7' is well quasi ordered by- for any wqoQ.

Proof. We apply here the usual Nash-Williams’ methadi/f63]. Assume by a way of
contradiction that the theorem is false. We take= min, Bad 1. By theorem 8.7) such
anm exists. LetS be the set consisting @l immediate subtreesf trees inm, that is,
trees rooted by immediate children of treesin Since( is a wqo then there are at most
finitely many trees of one vertex in, thereforeS is infinite.

Lett be the i" tree ofm, that is,t = m(i). We let(ty, .. .t,,) denote the finite ordered
sequence consisting of the immediate subtrees iofthe order they occur as children of
r(t). Hencet = r(t)(t1, ... tn,), represented as a term.

Now, if S'is a wqo then lets;);cp., be an infinite sequence defined s.t.

Vi € Dm. s; == (m(i)1,...m(i)n,) -

SinceS is a wgo then by Higman lemmali[g52], (s;):cpm IS @ good sequence w.r.t. the
embedding relation on finite sequences of trees flodefined by

<81,...8k>‘—><t1,...,tl> ~
f ALk} —{1,...,1} A fis strictly monotonen Vj (1<j<k).s; < ts()-

Therefore, sincen is increasingthere exists a pair dfeess, ¢ in m, s.t. s precedes
ands = r(s)(s1,...s) — r(t)(t1,...,t;) = t (for s andt represented as terms), where
the root is mapped to the root and the immediate subtreesaoé mapped to those of
according to the Higman embedding. Hence we arrive at a contradiction to the badness of
m.

In cases is not a wgo then take a bad infinite sequeh¢e S. Since for each tree im,
the number of children pertaining to the root is finite, then we can assumé tbatains
atmostone subtree for each treersin. Thereforep < m in contradiction to the minimality
of m. O
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4 Comparable Sub-Paths Trees

Let us denote byT'(A) the set of all trees for which internal vertices are labelledzby
and leaves labelled by U @ for some two independent quasi-orderirgsand A. Let us
call a leaf labelled byd an A-leaf. All other vertices (including possible leaves) are called
Q-vertices

The gap embedding fcf(A), denoted by—’, is defined the same as before except for
leaves labelled by, for which the gap condition is not applicable.

Definition 4.1 (—' tree embeddingFor two treess, ¢t € T(A), we write s — ¢ iff there
is an embedding : s — t with the following properties:

1. for all Q-vertices ofv € s we havey < f(v);

2. If u € sis anA-leaf, thenf(u) € tis aleaf too and: < f(u);

3. (root gap condition)f the root ofs, (), is not anA-vertex then for all vertices in
the access path from(t) to f(r(s)) we haveu = r(s);

4. (gap condition)For all edges(u, v) in s wherev is not anA-vertex and for alkw € ¢
such that f(u) < w < f(v) we havew = v.

Also note that if there are nd-leaves ins then the gap embedding—' ¢ is the same
as—.
The main theorem of this section is the following (see also d&jye

Main Theorem 4.2 Let (@ be a wqo and lef'* be the set of all finite trees such that each
path in a tree can be partitioned infoc N or less comparable sub-paths th&fi is a wao
under gap embedding-.

We prove the main theorem in two steps. First we show that putting an arbitrary well-
guasi-ordering on leaves frofﬁyields awgo under-’. And then show how this construc-
tion can be applied by inductiahtimes.

Let Seq(A) be the set of all infinite sequences O\ZAé(rA), Bad(A) the set of bad
sequences fromeq(A) and Bad T(A) the set of increasing sequences fréad(A). All
oAther definitions of the previous section concerrﬂ?’lgemain the same when applied to
T(A).

Lemma 4.3 f(A) is well quasi ordered by- for any two well quasi ordering® and A.
To prove this we need the following variant of the minimal bad sequence theorem.

Theorem (minimal bad sequence fo@(A)) 4.4 If there is a bad infinite sequence from
T(A) then there exists a minimak € Bad T(A) s.t. there is no infinite bad sequengte
with f < m.
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Proof. We verify that the same proof &7 applies here too. We need to prove

Bad(A) # 0 — ImeBad(A).m € In<i]n Bad(A).

The contradiction hypothesis (hyp) now beconi#si(A) # 0 A ming Bad(A) = 0.
Consequently, for alk € Bad(A) we have some subtree subsequelice Bad(A) s.t.

h’ < h. However, sinced is a wqgo then there are only finitely many treeshirthat have

a root fromA (these are trees of only one vertex) or gi$evas good. Therefore, we can
ignore all of these trees. This means thatd(A) and Bad 1(A) contain only sequences
whose roots are entirely fror@ (which are infinite, since we ignore only finitely many
elements in each sequence). Consequently, sihe§ A) = Bad and Bad T (A) =
Bad1 we can repeat each step in the proo84f. The construction and its existence proof
thus remain the same. O

Proof of4.3. Similar to the proof of 8.1). We takem := miny Bad1(A). By 4.4such an
m exists. LetS be the set consisting afl immediate subtreesf trees inm.

If S is a wqo then lets;);cpm be defined s.tVi € Dm. s; := (m(i)1,...m(i)y,),
wherem(i),, is thek™™ immediate subtree of.(i) (cf. p. 24). SincesS is wqo then by Hig-
man lemma(s; );epm, 1S good with respect to the»’ relation extended to finite sequences
of trees. Therefore, sinee is increasingwe have a contradiction as turns out to be good
too.

In casesS is not a wqo, then take a bad infinite sequehce S. Again we can assume
w.l.g. thatb contains at most one subtree for each tremirAs A is a wqo therb has only
finitely manytrees whose roots are fro. Hence we can discard these trees frigrand
get a bad infinite sequenéésuch that’ <t m in contradiction to the minimality of.. O

We saw that every infinite sequence fr(fﬁ(]A) has a pair of trees —’ ¢t wheres
precedeg. Assume thatd itself is a set of trees ordered by the embeddability relation
—' and 'unfold’ the leaves of andt¢ s.t. all leavesu € s andv € t labelled fromA
become the correspondisgbtreef s, and the upward closure afv) becomes the tree
from A that was labelling: (respectivelyp). We denote these leaf-unfolded treesdiy
andt*, respectively. In order to show that the set of such unfolded trees is a wgounder
theorem4.3is not sufficient since we have not guaranteed the gap condition for leaves in
f(A). Indeed we can see in figudethat the leafu € s is embedded with gap into € ¢
but since the gap condition fardoes not hold, theyfi : s* < ¢*.

Consequently, in order to keep this gap condition we should take carerthediate
predecessors of leaves are mapped to each p#rat not to other internal vertices. This is
what we do next.
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Figure 4.1:—’ embedding between two tregg in f(A U Q), does not yield necessarity— t.

Let T be the set of path comparable trees ogeand letA be some other set of labelled
trees. We shall denote KJ*(A4) the set of trees from’(A) s.t. each leaf fronH is
unfolded. Accordingly]’ *(T) is the set of all trees labelled fro@ s.t. each tree path can
be partitioned into two or less comparable sub-paths.

For two treess, ¢t € T(T) such thatf : s <’ ¢, letrng(f) C ¢ denote the range of,
and lets*, t* € T *(T“) be the corresponding leaf-unfolded treesdar, respectively.

Observation. Foralls, ¢ € T(T) such thatf : s —' ¢ we have

Vu € rng(f). leaf(u) — pred(u) € rmg(f) (4.1)
— §F "

Let oo be a new maximum element & such thato = z for all z € ). For all leaves
v of trees inT'(T') we shall break the edde, v) into two edges(u, z) and(z, v), wherex
is a new vertex labelled byo andu < 2 < v for the tree ordeK. Denote this set b¥,..
Sinceoo is comparable to all elements ¢f then all the paths ol (excluding perhaps
the leaves) are comparable. Further, sifide a wqo, then by.3 T, is a wgo under—'.

Lemma 4.5 For two treesSsq, too € Tro, let s, t € f(f) be their original corresponding
trees, achieved by deleting alb vertices, respectively. Then, <’ t,, implies that

§* — t*.
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Proof. Let f be the gap embedding function feg, —’ ¢.,. Eachoo leaf in s, ought to be
mapped to someo leaf int.,. We shall show that wheneverc rng( f) for aleafv € ¢,
then its grandfather, = pred(pred(v)) is in rng( f) too.

That there is a~' embedding with gap betweearandt is immediate (we just contract
the oo edges. Recall that this embedding does not necessarily respects the gap condition
for leaves). Now, take a leaf in ¢ such thatv € rng(f) and letw € s, be its source
leaf in the embedding, that is, f : w — wv. Thus, the verteyred(w) € s IS an
oo-vertex and so, by the embedding definition, it must be mapped to some ancestor of
v € ts, Which is also aro-vertex int,. The only such ancestor jg-ed(v). Thus we
havef : pred(w) — pred(v).

Letwu := pred(pred(v)) € to and assume by a way of contradiction thag rng(f).
Hence, we have thatred(pred(w)) is mapped to somancestor ofu, thus by the gap
conditionu > pred(w) = oo, a contradiction, sinca < oo. Therefore we have that
s —' t and condition 4.1) holds, which yields, by the above observation, tiat— ¢t*. O

Corollary 4.6 f*(f) iS a wgo under—.

Proof. By lemma4.5, the existence of a bad sequence(ﬁ*(f), —) implies a corre-
sponding bad sequence in the w@d,,, —’), a contradiction. (For eacti € f*(f) let
t e f(f) be its corresponding tree; amg is the corresponding tree ifi,,, achieved by
putting oo vertices as predecessors of leaves). O

We now restate the main theorem.

Main Theorem 4.7 LetQ be a wqo and lef"* be the set of all trees labelled frof such
that each path in a tree, beginning from the root, can be partitioned into N or less
comparable sub-paths, th&rf is a wgo under gap embeddirg-.

Proof. The proof is a simple corollary ¢f.6. By 4.6the theorem holds fok = 2. Hence

by 4.3 T(T?) is also a wgo undet-’, which implies thal”" (7'2) = T% is a wqo under
— t00. (Note that in the proof of.5, we only use the fact that the labels of the leaves form
a wqo, therefore any wqo labelling of leaves (€[4) is applicable to it and hence also to
corollary4.6.) Hence by induction the theorem holds for |
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5 Conclusions and Directions of Further Research

We have showed how to extend the gap embedding to trees with wqo labels. We also
showed that bounding the amount of comparable sub-paths in each tree path is not only
sufficient but necessary in order to obtain a well-quasi-ordering.

Comparing our minimal bad sequence theorem (MBS)) @nd that of K¥i89], we no-
tice that the conditions for the abstract framework introduced By #r aquasi-ordering
with gap conditiorare all satisfied (Ibid. definition 1.4). Hence we obtain a similar result
to the main theorem oK{fi89), that is,an abstract formulation of MBS which holds for an
arbitrary wqgo (no concept of bounding comparable paths is relevant here, since we only
introduce this concept so that the set of finite labelled trees would comply with the condi-
tions of the abstract formulation of the MBS). This can be proved by simple verification
that each of the conditions in section 1KF{89] holds also in the proof of3.7) in this
work.

A natural application of our main result should be a corresponding extension of Okada-
Takeuti g.0.d. PT87], so that quasi ordered label would not be restricted to leaves only.
In this context, Okada showed i@ka8g how to extend Buchholz’s variant of the Hydra
game Buc87 from ordinals less thew + 1 labels to ordinals below,. The termination of
the Hydra game, as defined by Okada, is proved by exploiting its relationship with ordinal-
diagrams. Consequently, we can further extend this result to a game on trees labelled by
some wqaR, with a fixed bound: on their comparable sub-paths partitions (i.e. what we
denote byI'*), whereQ has no chain of length greater than

As mentioned in the introduction\[ei92] speaks of the interrelations between a prece-
dence relation on function symbols and the induced termination ordering. Precedence or-
derings seem to transfer elementary properties to the corresponding termination orderings.

It remains to find the best way to use our extension of Kruskal theorem or thatnf K
in order to construct a new recursive path ordering which can orient non-simplifying rewrite
systems (i.e. systems that lack the subterm property). We have done a preliminary attempt
in this direction. As mentioned in the introduction, some applications of the gap embedding
(with a somewhat different definition) for proving termination of term graph rewriting was
introduced in Pga9j.

With regard to pure proof theoretical matters, the strength of thed2e@nwhich states
that(7o,, —) is awqo, i.e., its proof theoretic ordinal, is not known yeii99. Further-
more, it might be that the strength of the universal statement "for all natu#a! is a wgo”
is bigger than that 02.3.
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