Advanced Computer Architecture: Google 2

8 March 2004

$$G_{1} = G_{2} = G_{1} = G_{2}$$

Figure 1: Graph G_1

- Figure 2: Graph G_2
- 1. The graph G_1 represents a set of connected web pages. Taking c = 4/5, write down:
 - (a) The transition matrix P
 - (b) The personalisation vector \vec{p}
 - (c) The modified transition matrix A
 - (d) Two iterations of $\vec{x}_{(k+1)} = \vec{x}_{(k)}A$, i.e. $\vec{x}_{(1)}, \vec{x}_{(2)}$ with $\vec{x}_{(0)} = (0, 1, 0)$
 - (e) Two iterations of the PageRank algorithm for comparison
 - (f) The value $\delta = || |\vec{x}_{(k+1)} \vec{x}_{(k)}| ||_1$ for each iteration

If you have access to a machine you can implement the PageRank algorithm on slide 17 using an ϵ -value of 0.01, instead of doing parts (d) and (e) by hand. How many iterations does it take to converge?

• For graph
$$G_1$$
, $P = \begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$
• Personalisation vector, $\vec{p} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}$
• $A = cP' + (1-c)E = \frac{2}{5} \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} + \frac{1}{15} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

• Two iterations of $\vec{x}_{(k)}A$ /PageRank:

 $\vec{x}_{(1)} = \frac{1}{15}(7, 1, 7); \quad \vec{x}_{(2)} = \frac{1}{225}(63, 141, 21)$

• After one iteration: $\delta = \frac{28}{15}$. After two, $\delta = \frac{252}{225}$

2. Repeat question 1 for the graph G_2 , this time with $\vec{x}_{(0)} = (1, 0, 0, 0)$. How does the answer/convergence vary if you alter c?

• Two iterations of $\vec{x}_{(k)}A$ /PageRank:

$$\vec{x}_{(1)} = \frac{1}{20}(1, 17, 1, 1); \quad \vec{x}_{(2)} = \frac{1}{50}(3, 5, 22, 20)$$

- After one iteration: $\delta = \frac{19}{10}$. After two, $\delta = \frac{3}{2}$
- 3. Suggest scalable techniques for implementing each of the vector operations below across several processors, where as necessary each processor has the same partitioned set of rows for each vector $\vec{v_1}$ and $\vec{v_2}$
 - (a) v₁ + v₂
 (b) ||v₁||₁
 (c) αv₁ for some scalar multiplier, α

This uses a technique know as row-striping where processor 1 stores the first k entries of the vectors \vec{v}_1 and \vec{v}_2 , processor 2 stores the next k and so on. Where a vector is the result of the distributed calculation, each processor should store the appropriate k entries of the result vector. Where there is a single scalar result, you can assume a central master machine to collate the distributed calculation.

Processor *i* holds elements k(i-1) + 1 to ki of \vec{v}_1 and \vec{v}_2 . Call these $(v_{1_{k(i-1)+1}}, \dots, v_{1_{ki}})$ and $(v_{2_{k(i-1)+1}}, \dots, v_{2_{ki}})$.

- (a) Processor *i* calculates and stores $(\vec{v}_1 + \vec{v}_2)_{k(i-1)+j} = v_{1_{k(i-1)+j}} + v_{2_{k(i-1)+j}}$ for $1 \le j \le k$.
- (b) Processor *i* calculates $s_i = \sum_{j=1}^k |v_{1_{k(i-1)+j}}|$. Master processor collects s_i values and performs $\sum_{i=1}^n s_i$ for *n* processors.
- (c) Processor *i* calculates and stores $(\alpha v_1)_{k(i-1)+j} = \alpha v_{1_{k(i-1)+j}}$ for $1 \le j \le k$.