Advanced Computer Architecture: Google 2

Jeremy Bradley

8 March 2004

Figure 1: Graph G_1

Figure 2: Graph G_2

- 1. The graph G_1 represents a set of connected web pages. Taking c = 4/5, write down:
 - (a) The transition matrix P
 - (b) The personalisation vector \vec{p}
 - (c) The modified transition matrix A
 - (d) Two iterations of $\vec{x}_{(k+1)} = \vec{x}_{(k)}A$, i.e. $\vec{x}_{(1)}, \vec{x}_{(2)}$ with $\vec{x}_{(0)} = (0, 1, 0)$
 - (e) Two iterations of the PageRank algorithm for comparison
 - (f) The value $\delta = || |\vec{x}_{(k+1)} \vec{x}_{(k)}| ||_1$ for each iteration

If you have access to a machine you can implement the PageRank algorithm on slide 17 using an ϵ -value of 0.01, instead of doing parts (d) and (e) by hand. How many iterations does it take to converge?

- 2. Repeat question 1 for the graph G_2 , this time with $\vec{x}_{(0)} = (1, 0, 0, 0)$. How does the answer/convergence vary if you alter c?
- 3. Suggest scalable techniques for implementing each of the vector operations below across several processors, where as necessary each processor has the same partitioned set of rows for each vector $\vec{v_1}$ and $\vec{v_2}$
 - (a) $v_1 + v_2$
 - (b) $||v_1||_1$
 - (c) αv_1 for some scalar multiplier, α