Advanced Computer Architecture: Google 2

Jeremy Bradley

8 March 2004

Figure 1: Graph G_{1}

Figure 2: Graph G_{2}

1. The graph G_{1} represents a set of connected web pages. Taking $c=4 / 5$, write down:
(a) The transition matrix P
(b) The personalisation vector \vec{p}
(c) The modified transition matrix A
(d) Two iterations of $\vec{x}_{(k+1)}=\vec{x}_{(k)} A$, i.e. $\vec{x}_{(1)}, \vec{x}_{(2)}$ with $\vec{x}_{(0)}=(0,1,0)$
(e) Two iterations of the PageRank algorithm for comparison
(f) The value $\delta=\left\|\left|\vec{x}_{(k+1)}-\vec{x}_{(k)}\right|\right\|_{1}$ for each iteration

If you have access to a machine you can implement the PageRank algorithm on slide 17 using an ϵ-value of 0.01 , instead of doing parts (d) and (e) by hand. How many iterations does it take to converge?
2. Repeat question 1 for the graph G_{2}, this time with $\vec{x}_{(0)}=(1,0,0,0)$. How does the answer/convergence vary if you alter c ?
3. Suggest scalable techniques for implementing each of the vector operations below across several processors, where as necessary each processor has the same partitioned set of rows for each vector \vec{v}_{1} and \vec{v}_{2}
(a) $v_{1}+v_{2}$
(b) $\left\|v_{1}\right\|_{1}$
(c) αv_{1} for some scalar multiplier, α

