Advanced Computer Architecture: A Google Search Engine

Jeremy Bradley

Room 372. Office hour - Thursdays at 3pm. Email: jb@doc.ic.ac.uk

Course notes: http://www.doc.ic.ac.uk/~jb/

Department of Computing, Imperial College London

Produced with prosper and LATEX

JTB [01/2004] - p.1/35

Motivation for PageRank

- PageRank introduced to solve the junk web-page problem
- By 1997, even a specific search query would generate 100s of results
- November 1997: "...only one of the top four commercial search engines finds itself"! i.e. places itself in its own top ten search results

Introduction to PageRank

- PageRank is used by Google to order pages which have the same search terms
- Documented by Google founders: Sergey Brin and Lawrence Page
 - "The PageRank Citation Ranking: Bringing Order to the Web" Page, Brin, Motwani and Winograd
 - "The Anatomy of a Large-Scale Hypertextual Web Search Engine" Brin and Page
 - "Extrapolation Methods for Accelerating PageRank Computations" Kamvar, Haveliwala, Manning and Golub

JTB [01/2004] – p.2/35

Search Result Manipulation (I)

- Search engines ordered results returned for the same query terms according to:
 - page content
 - URL
 - page title
 - user presented meta data
 - frequency of occurance of search term/related terms
- This is all user controllable data
- ⇒ Web authors could manipulate it to enhance their search ordering

JTB [01/2004] - p.3/

JTB [01/2004] - p.4/35

Search Result Manipulation (II)

- Web pages that wanted to popularise themselves:
 - put repeated dummy search terms into web pages to catch search engine traffic
 - competitor web pages (even reputable ones) had to do likewise
 - web pages ballooned in size from junk content
- user controllable page content quickly became no judge of page quality or relevance

JTB [01/2004] - p.5/3

What is PageRank

- PageRank is based on underlying web graph
 - measure of page interconnectedness
- For a given web page, its PageRank is:
 - proportional to the number of pages that link to it
 - is a value between 0 and 1
 - propagated recursively to all the pages that the page links to
 - odoes not bear any "linear" relationship to the quoted PageRank fi gure (between 0 and 10) that you get from the Google toolbar in Windows

Solution: PageRank

- PageRank designed to overcome problem
 - based on research-style citations
- A page is considered more useful if:
 - many pages refer to (link) to it
 - small number of important pages refer to it
- A page is considered less useful:
 - if few or no pages link to it
- PageRank is independent of the page content
 - i.e. importantly does not have to be recalculated for each query

JTB [01/2004] - p.6/35

PageRank's Shortcomings

- the accumulated PageRank for a site is much harder to manipulate BUT...
- dependent on link-structure i.e. links not being broken
- works well over static web structure but poorly over dynamic or query-driven structure
- susceptible to Google spam
 - i.e. large communities of people collaborating to link to each others pages

JTB [01/2004] - p.7/35

.ITB [01/2004] - p.8/35

Derivation of PageRank

- Consider G the underlying web graph.
 - \circ The nodes of G are web pages
 - ⁹ A directed edge from page u to page v represents a hypertext link on u which points to v; written $u \rightarrow v$
- Construct transition matrix P from graph G by letting $P_{ij} = 1/\deg(u_i)$ if there is a link $u_i \to u_j$ in G and 0 otherwise.
- Is this uniform distribution a fair assumption?

JTB [01/2004] - p.9/3

A Markov Chain

- P can also be viewed as a transition matrix of a discrete-time Markov chain
- The PageRank vector represents the steady-state vector of the Markov chain
 - i.e. the probability that the random surfer goes to a particular page after a large number of transitions
- However the pages with no out-links will terminate the surfing (are absorbing states) and distort the steady-state solution

The Random Surfer

$$e.g. P = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ 1/3 & 1/3 & 0 & \cdots & 0 & 1/3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

- Example row shows a page linking to 3 other pages u_1 , u_2 and u_n
- What happens if a page has no out-links?
 - Get an all-zero row
- Matrix represents a random surfer who, with equal probability, follows any of the links that they find on a page

JTB [01/2004] - p.10/35

Treating cul-de-sac Pages

- To solve absorbing page problem if surfer ends up in a page with no out-links:
 - assign probability that surfer will go to any other page (e.g. via bookmarks or typing in a URL) according to personal vector, \vec{p}
 - \Rightarrow replace all zero rows in P with \vec{p}
 - P' = P + D where $D = \vec{d}\vec{p}^T$

$$d_i = \begin{cases} 1 & : \text{ if } \deg(u_i) = 0 \\ 0 & : \text{ otherwise} \end{cases}$$

JTB [01/2004] - p.11/35

JTB [01/2004] - p.12/35

Personalisation Vector

- Assumption that \vec{p} taken as: $\begin{pmatrix} \frac{1}{n} \\ \vdots \\ \frac{1}{n} \end{pmatrix}$
- Outer product: $(\vec{d}\vec{p}^T)_{ij} = \sum_{k=1}^1 d_{ik} p_{kj} = d_i p_j$

$$\Rightarrow \text{ e.g. } D = \begin{pmatrix} \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

JTB [01/2004] - p.13/35

Teleportation

- In equation A = cP' + (1-c)E
 - $c = \mathbb{P}(\text{link/redirection on page is taken})$
 - $(1-c) = \mathbb{P}(\text{random page is visited})$
 - $c \approx 0.85$
- In Markov chain terms:
 - Prevents process getting livelocked in cliques of states
 - Process with transition matrix A is now irreducible (can reach any state from any other state)

Teleportation Matrix

- Have not yet represented surfer that ignores links on a given page and randomly goes to another (unlinked) page anyway
- This behaviour is given by the *teleportation matrix*, *E*
- Now: A=cP'+(1-c)E where $E=\tilde{\mathbf{1}}\vec{p}^T$

• i.e.
$$E=\left(egin{array}{cccc} rac{1}{n} & rac{1}{n} & \cdots & rac{1}{n} \\ rac{1}{n} & rac{1}{n} & \cdots & rac{1}{n} \\ rac{1}{n} & rac{1}{n} & \cdots & rac{1}{n} \\ rac{1}{n} & rac{1}{n} & \cdots & rac{1}{n} \end{array}
ight)$$
 for $ilde{\mathbf{1}}=\left(egin{array}{c} 1 \\ 1 \\ dots \\ 1 \end{array}
ight)$

JTB [01/2004] - p.14/35

PageRank Solution

PageRank represented by iterative technique, Power method:

$$\vec{x}_{(k+1)} = \vec{x}_{(k)} A$$

- Until convergence is achieved
- Need to solve equation:

$$\vec{\pi} = \vec{\pi} A$$

where
$$\vec{\pi} = \lim_{k \to \infty} \vec{x}_{(k)} = \lim_{k \to \infty} \vec{x}_{(0)} A^k$$

JTB [01/2004] - p.15/3

JTB [01/2004] - p.16/35

PageRank Solution (II)

$$\vec{\pi} = \lim_{k \to \infty} \vec{x}_{(0)} A^k$$

- PageRank algorithm depends crucially on the sparsity of the original matrix P:
 - to keep the matrix-vector multiplication efficient
 - to ensure quick convergence of algorithm
- For a sparse system matrix–vector multiplication can be O(n) rather than $O(n^2)$
- Even for a web graph of 3 billion nodes, convergence can be achieved within about 80 iterations

JTB [01/2004] - p.17/35

PageRank Algorithm I

$$\vec{x}_{(k+1)} = c\vec{x}_{(k)}P' + (1-c)\vec{x}_{(k)}E$$

$$= c\vec{x}_{(k)}P + c\vec{x}_{(k)}D + (1-c)\underbrace{\vec{x}_{(k)}\tilde{\mathbf{1}}}_{=||\vec{x}_{(k)}||_{1}} \vec{p}^{T}$$

• Now look at $c\vec{x}_{(k)}D$ term:

$$\begin{split} c\vec{x}_{(k)}D &= c(\vec{x}_{(k)}\vec{d})\vec{p}^T \\ &= c\left(\sum_i I_{\{\deg(u_i)=0\}}x_i\right)\vec{p}^T \\ &= c\left(||\vec{x}_{(k)}||_1 - \sum_i I_{\{\deg(u_i)>0\}}x_i\right)\vec{p}^T \end{split}$$

JTB [01/2004] - p.19/35

PageRank Algorithm

- Basic operation: $\vec{x}_{(k+1)} = \vec{x}_{(k)} A$
- A is dense matrix so need to transform this operation into a sparse matrix calculation involving P
- Trying to show that:

$$\vec{x}_{(k+1)} = c\vec{x}_{(k)}P + (||\vec{x}_{(k)}||_1 - c||\vec{x}_{(k)}P||_1)\vec{p}^T$$

Need definition of 1-norm of a vector:

$$||\vec{a}||_1 = \sum_i |a_i|$$

JTB [01/2004] - p.18/35

PageRank Algorithm II

• Consider term $\vec{x}_{(k)}P = \sum_{j=1}^{n} x_j p_{ji}$

$$||\vec{x}_{(k)}P||_1 = \sum_{i=1}^n \sum_{j=1}^n x_j p_{ji}$$

$$= \sum_{j=1}^n x_j \sum_{i=1}^n p_{ji}$$

$$= \sum_{j=1}^n x_j \text{ . sum of prob. in row } j \text{ of } P$$

$$= \sum_{j=1}^n x_j I_{\{\deg(u_j) > 0\}}$$

JTB [01/2004] - p.20/35

PageRank Algorithm III

- **>** Now $c\vec{x}_{(k)}D = c(||\vec{x}_{(k)}||_1 ||\vec{x}_{(k)}P||_1)\vec{p}^T$
- Back to (k+1)th iterate, $\vec{x}_{(k+1)}$:

$$= c\vec{x}_{(k)}P + c\vec{x}_{(k)}D + (1-c)||\vec{x}_{(k)}||_1\vec{p}^T$$

= $c\vec{x}_{(k)}P + (||\vec{x}_{(k)}||_1 - c||\vec{x}_{(k)}P||_1)\vec{p}^T$

• Proof by induction on k for $\vec{x}_{(k+1)} = \vec{x}_{(k)}A$ that $||\vec{x}_{(k)}||_1 = 1$ for all k, so:

$$\vec{x}_{(k+1)} = c\vec{x}_{(k)}P + (1 - c||\vec{x}_{(k)}P||_1)\vec{p}^T$$

JTB [01/2004] - p.21/35

PageRank Analysis

- Complexity/operation count
 - 1. $\vec{y} = c\vec{x}_{(k)}P$: sparse multiplication $\Rightarrow O(n)$
 - 2. $\omega = ||\vec{x}_{(k)}||_1 ||\vec{y}||_1$: 1-norm of one (or two) $1 \times n$ vectors $\Rightarrow O(n)$
 - 3. $\omega \vec{p}^T$: scalar multiplication of $1 \times n$ vector $\Rightarrow O(n)$
 - 4. $\vec{x}_{(k+1)} = \vec{y} + \omega \vec{p}^T$: addition of two $1 \times n$ vectors $\Rightarrow O(n)$
 - 5. $||\vec{x}_{(k+1)} \vec{x}_{(k)}||_1 < \epsilon$: vector subtraction and 1-norm $\Rightarrow O(n)$

PageRank Algorithm IV

- Gives rise to quoted algorithm:
 - 1. Start with $\vec{x}_{(0)} =$ any vector
 - 2. Let $\vec{y} = c\vec{x}_{(k)}P$
 - 3. Set $\omega = ||\vec{x}_{(k)}||_1 ||\vec{y}||_1$
 - 4. Next iterate: $\vec{x}_{(k+1)} = \vec{y} + \omega \vec{p}^T$
 - 5. Repeat from 2. until $||\vec{x}_{(k+1)} \vec{x}_{(k)}||_1 < \epsilon$
- Why not $\omega = 1 ||\vec{y}||_1$?
- What's the complexity of this?
- How does it improve over direct $\vec{x}_{(k+1)} = \vec{x}_{(k)} A$ approach?

JTB [01/2004] - p.22/35

Teleporting Probability

The effect of changing the parameter, *c*:

- If $c \le 0.85$: convergence is fast
- As $c \longrightarrow 1$: convergence is slowed
- However, if *c* is decreased too far:
 - Google spam becomes more of a problem.
 i.e. clusters of interlinked pages that are trying to gain high PageRank have a higher probability of being visited at random

JTB [01/2004] - p.23/35

JTB [01/2004] - p.24/35

PageRank Assumptions

- Uniform distribution of choice of link on a given page
- Personalisation vector \vec{p} assumes uniform distribution across all web pages
- The same personalisation vector is used at page cul-de-sacs as well as in teleportation
- Probability of teleporting, 1-c, at a given page is the same at each page

JTB [01/2004] - p.25/3

Google Enhancements II

- Ideally have a user class per individual but not scalable
- Base calculation of \vec{p} , c on:
 - Observed link-following behaviour from a Google search
 - Cookie analysis (set expiry date to 2039!)
 - Google toolbar (record every URL visited?)

Google Enhancements I

- User classes
 - Different categories of user might have different values of \vec{p} and c
 - Requires a separate PageRank calculation for each user class
 - With for example 10 user classes:
 - ⇒ 800 iterations of 3 billion by 3 billion matrix in 4 weeks
 - ⇒ 37,000 matrix calculations per second per computer across 2000 computers (assuming 15 links per page)

JTB [01/2004] - p.26/35

Implementation on a Cluster

- Vector addition, subtraction, 1-norm, scalar multiplication are perfectly parallelisable
- Require parallel/distributed matrix-vector multiplication:
 - Graph partitioning
 - Hypergraph partitioning
- Parallel graph partitioners exist
- No existing open-source parallel hypergraph partitioners

JTB [01/2004] - p.27/35

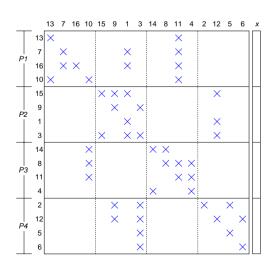
.ITB [01/2004] - p.28/35

Hypergraph Research

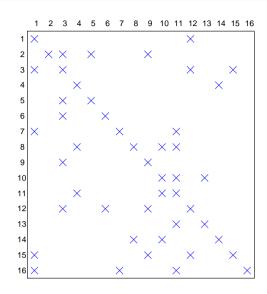
- Currently done at DoC:
 - Will Knottenbelt
 - Nick Dingle
 - Alex Trifunovic
- Graph partitioning balances computational load
- Hypergraph partitioning minimises communication overhead as well

JTB [01/2004] - p.29/35

Hypergraph Partition

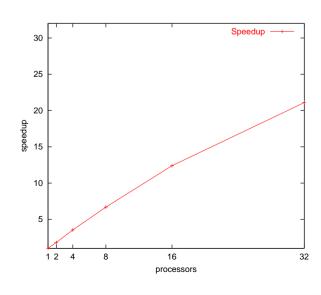


Unpartitioned Graph



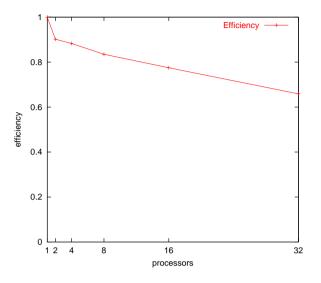
JTB [01/2004] - p.30/35

Speedup over 32 Processors



JTB [01/2004] - p.31/35

Efficiency over 32 Processors



JTB [01/2004] - p.33/3

Acknowledgements

- For comments, discussions and keeping the course on the architectural straight and narrow – thanks go to:
 - Paul Kelly
 - Nick Dingle
 - Ashok Argent-Katwala
 - Tony Field
 - Olav Beckmann
 - Jeyarajan Thiyagalingam
 - all the students who took 332 and who asked insightful questions!

Where Next?

- Web as a Peer-to-peer network, a distributed database of documents
- Web servers keep track of own PageRank statistics
- ⇒ Distributed development of PageRank algorithm (see proposed student project)
 - http://www.doc.ic.ac.uk/~jb/projects.html
- **BUT...** harder to guarantee:
 - availability
 - response-time of query

J1B [01/2004] - p.34/3

JTB [01/2004] - p.35/38