
Advanced Computer
Architecture:

A Google Search Engine
Jeremy Bradley

Room 372. Office hour - Thursdays at 3pm. Email: jb@doc.ic.ac.uk

Course notes: http://www.doc.ic.ac.uk/∼jb/

Department of Computing, Imperial College London

Produced with prosper and LATEX

JTB [01/2004] – p.1/35

Introduction to PageRank

PageRank is used by Google to order pages
which have the same search terms

Documented by Google founders: Sergey
Brin and Lawrence Page

"The PageRank Citation Ranking: Bringing Order to
the Web" Page, Brin, Motwani and Winograd

"The Anatomy of a Large-Scale Hypertextual Web
Search Engine" Brin and Page

"Extrapolation Methods for Accelerating PageRank
Computations" Kamvar, Haveliwala, Manning and
Golub

JTB [01/2004] – p.2/35

Motivation for PageRank

PageRank introduced to solve the junk
web-page problem

By 1997, even a specific search query would
generate 100s of results

November 1997: "...only one of the top four
commercial search engines finds itself"! i.e.
places itself in its own top ten search results

JTB [01/2004] – p.3/35

Search Result Manipulation (I)

Search engines ordered results returned for
the same query terms according to:

page content

URL

page title

user presented meta data

frequency of occurance of search term/related
terms

This is all user controllable data

⇒ Web authors could manipulate it to enhance
their search ordering

JTB [01/2004] – p.4/35

Search Result Manipulation (II)

Web pages that wanted to popularise
themselves:

put repeated dummy search terms into
web pages to catch search engine traffic
competitor web pages (even reputable
ones) had to do likewise
web pages ballooned in size from junk
content

user controllable page content quickly
became no judge of page quality or relevance

JTB [01/2004] – p.5/35

Solution: PageRank

PageRank designed to overcome problem
based on research-style citations

A page is considered more useful if:
many pages refer to (link) to it
small number of important pages refer to it

A page is considered less useful:
if few or no pages link to it

PageRank is independent of the page content
i.e. importantly does not have to be
recalculated for each query

JTB [01/2004] – p.6/35

What is PageRank

PageRank is based on underlying web graph
measure of page interconnectedness

For a given web page, its PageRank is:
proportional to the number of pages that link to it

is a value between 0 and 1

propagated recursively to all the pages that the
page links to

does not bear any "linear" relationship to the quoted
PageRank figure (between 0 and 10) that you get
from the Google toolbar in Windows

JTB [01/2004] – p.7/35

PageRank’s Shortcomings

the accumulated PageRank for a site is much
harder to manipulate BUT...

dependent on link-structure i.e. links not
being broken

works well over static web structure but
poorly over dynamic or query-driven structure

susceptible to Google spam
i.e. large communities of people
collaborating to link to each others pages

JTB [01/2004] – p.8/35

Derivation of PageRank

Consider G the underlying web graph.
The nodes of G are web pages
A directed edge from page u to page v
represents a hypertext link on u which
points to v; written u→ v

Construct transition matrix P from graph G by
letting Pij = 1/ deg(ui) if there is a link ui → uj

in G and 0 otherwise.

Is this uniform distribution a fair assumption?

JTB [01/2004] – p.9/35

The Random Surfer

e.g. P =






...
1/3 1/3 0 · · · 0 1/3

...






Example row shows a page linking to 3 other
pages u1, u2 and un

What happens if a page has no out-links?
Get an all-zero row

Matrix represents a random surfer who, with
equal probability, follows any of the links that
they find on a page

JTB [01/2004] – p.10/35

A Markov Chain

P can also be viewed as a transition matrix of
a discrete-time Markov chain

The PageRank vector represents the
steady-state vector of the Markov chain

i.e. the probability that the random surfer
goes to a particular page after a large
number of transitions

However the pages with no out-links will
terminate the surfing (are absorbing states)
and distort the steady-state solution

JTB [01/2004] – p.11/35

Treating cul-de-sac Pages

To solve absorbing page problem – if surfer
ends up in a page with no out-links:

assign probability that surfer will go to any
other page (e.g. via bookmarks or typing in
a URL) according to personal vector, ~p

⇒ replace all zero rows in P with ~p

P ′ = P + D where D = ~d~pT

di =

{

1 : if deg(ui) = 0

0 : otherwise

JTB [01/2004] – p.12/35

Personalisation Vector

Assumption that ~p taken as:






1
n
...
1
n






Outer product: (~d~pT)ij =
∑1

k=1 dikpkj = dipj

⇒ e.g. D =













1
n

1
n

1
n
· · · 1

n

0 0 0 · · · 0
...
0 0 0 · · · 0
1
n

1
n

1
n
· · · 1

n

0 0 0 · · · 0













JTB [01/2004] – p.13/35

Teleportation Matrix

Have not yet represented surfer that ignores
links on a given page and randomly goes to
another (unlinked) page anyway

This behaviour is given by the teleportation
matrix, E

Now: A = cP ′ + (1− c)E where E = 1̃~pT

i.e. E =








1
n

1
n
· · · 1

n
1
n

1
n
· · · 1

n
...
1
n

1
n
· · · 1

n








for 1̃ =








1

1
...
1








JTB [01/2004] – p.14/35

Teleportation

In equation A = cP ′ + (1− c)E

c = IP(link/redirection on page is taken)

(1− c) = IP(random page is visited)

c ≈ 0.85

In Markov chain terms:
Prevents process getting livelocked in
cliques of states
Process with transition matrix A is now
irreducible (can reach any state from any
other state)

JTB [01/2004] – p.15/35

PageRank Solution

PageRank represented by iterative technique,
Power method:

~x(k+1) = ~x(k)A

Until convergence is achieved

Need to solve equation:

~π = ~πA

where ~π = limk→∞ ~x(k) = limk→∞ ~x(0)A
k

JTB [01/2004] – p.16/35

PageRank Solution (II)

~π = lim
k→∞

~x(0)A
k

PageRank algorithm depends crucially on the
sparsity of the original matrix P :

to keep the matrix–vector multiplication
efficient
to ensure quick convergence of algorithm

For a sparse system matrix–vector
multiplication can be O(n) rather than O(n2)

Even for a web graph of 3 billion nodes,
convergence can be achieved within about 80
iterations

JTB [01/2004] – p.17/35

PageRank Algorithm

Basic operation: ~x(k+1) = ~x(k)A

A is dense matrix – so need to transform this
operation into a sparse matrix calculation
involving P

Trying to show that:

~x(k+1) = c~x(k)P + (||~x(k)||1 − c||~x(k)P ||1)~p
T

Need definition of 1-norm of a vector:

||~a||1 =
∑

i

|ai|

JTB [01/2004] – p.18/35

PageRank Algorithm I

~x(k+1) = c~x(k)P
′ + (1− c)~x(k)E

= c~x(k)P + c~x(k)D + (1− c) ~x(k)1̃
︸ ︷︷ ︸

=||~x(k)||1

~pT

Now look at c~x(k)D term:

c~x(k)D = c(~x(k)
~d)~pT

= c

(
∑

i

I{deg (ui)=0}xi

)

~pT

= c

(

||~x(k)||1 −
∑

i

I{deg (ui)>0}xi

)

~pT

JTB [01/2004] – p.19/35

PageRank Algorithm II

Consider term ~x(k)P =
∑n

j=1 xjpji

||~x(k)P ||1 =
n∑

i=1

n∑

j=1

xjpji

=
n∑

j=1

xj

n∑

i=1

pji

=
n∑

j=1

xj . sum of prob. in row j of P

=
n∑

j=1

xjI{deg (uj)>0}

JTB [01/2004] – p.20/35

PageRank Algorithm III

Now c~x(k)D = c(||~x(k)||1 − ||~x(k)P ||1)~p
T

Back to (k + 1)th iterate, ~x(k+1):

= c~x(k)P + c~x(k)D + (1− c)||~x(k)||1~p
T

= c~x(k)P + (||~x(k)||1 − c||~x(k)P ||1)~p
T

Proof by induction on k for ~x(k+1) = ~x(k)A that
||~x(k)||1 = 1 for all k, so:

~x(k+1) = c~x(k)P + (1− c||~x(k)P ||1)~p
T

JTB [01/2004] – p.21/35

PageRank Algorithm IV

Gives rise to quoted algorithm:
1. Start with ~x(0) = any vector
2. Let ~y = c~x(k)P

3. Set ω = ||~x(k)||1 − ||~y||1

4. Next iterate: ~x(k+1) = ~y + ω~pT

5. Repeat from 2. until ||~x(k+1) − ~x(k)||1 < ε

Why not ω = 1− ||~y||1?

What’s the complexity of this?

How does it improve over direct ~x(k+1) = ~x(k)A

approach?
JTB [01/2004] – p.22/35

PageRank Analysis

Complexity/operation count
1. ~y = c~x(k)P : sparse multiplication ⇒ O(n)

2. ω = ||~x(k)||1 − ||~y||1: 1-norm of one (or two)
1× n vectors ⇒ O(n)

3. ω~pT : scalar multiplication of 1× n vector
⇒ O(n)

4. ~x(k+1) = ~y + ω~pT : addition of two 1× n

vectors ⇒ O(n)

5. ||~x(k+1) − ~x(k)||1 < ε: vector subtraction and
1-norm ⇒ O(n)

JTB [01/2004] – p.23/35

Teleporting Probability

The effect of changing the parameter, c:

If c ≤ 0.85: convergence is fast

As c −→ 1: convergence is slowed

However, if c is decreased too far:
Google spam becomes more of a problem.
i.e. clusters of interlinked pages that are
trying to gain high PageRank have a higher
probability of being visited at random

JTB [01/2004] – p.24/35

PageRank Assumptions

Uniform distribution of choice of link on a
given page

Personalisation vector ~p assumes uniform
distribution across all web pages

The same personalisation vector is used at
page cul-de-sacs as well as in teleportation

Probability of teleporting, 1− c, at a given
page is the same at each page

JTB [01/2004] – p.25/35

Google Enhancements I

User classes
Different categories of user might have
different values of ~p and c

Requires a separate PageRank calculation
for each user class
With for example 10 user classes:
⇒ 800 iterations of 3 billion by 3 billion

matrix in 4 weeks
⇒ 37,000 matrix calculations per second

per computer across 2000 computers
(assuming 15 links per page)

JTB [01/2004] – p.26/35

Google Enhancements II

Ideally have a user class per individual but
not scalable

Base calculation of ~p, c on:
Observed link-following behaviour from a
Google search
Cookie analysis (set expiry date to 2039!)
Google toolbar (record every URL visited?)

JTB [01/2004] – p.27/35

Implementation on a Cluster

Vector addition, subtraction, 1-norm, scalar
multiplication are perfectly parallelisable

Require parallel/distributed matrix–vector
multiplication:

Graph partitioning
Hypergraph partitioning

Parallel graph partitioners exist

No existing open-source parallel hypergraph
partitioners

JTB [01/2004] – p.28/35

Hypergraph Research

Currently done at DoC:
Will Knottenbelt
Nick Dingle
Alex Trifunovic

Graph partitioning balances computational
load

Hypergraph partitioning minimises
communication overhead as well

JTB [01/2004] – p.29/35

Unpartitioned Graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

JTB [01/2004] – p.30/35

Hypergraph Partition

13 7 16 10 15 9 1 3 14 8 11 4 2 12 5 6

P1

P2

P3

P4

13

7

16

10

15

9

1

3

14

8

11

4

2

12

5

6

x

JTB [01/2004] – p.31/35

Speedup over 32 Processors

5

10

15

20

25

30

1 2 4 8 16 32

sp
ee

du
p

processors

Speedup

JTB [01/2004] – p.32/35

Efficiency over 32 Processors

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

ef
fic

ie
nc

y

processors

Efficiency

JTB [01/2004] – p.33/35

Where Next?

Web as a Peer-to-peer network, a distributed
database of documents

Web servers keep track of own PageRank
statistics

⇒ Distributed development of PageRank
algorithm (see proposed student project)

http://www.doc.ic.ac.uk/∼jb/projects.html

BUT... harder to guarantee:
availability
response-time of query

JTB [01/2004] – p.34/35

Acknowledgements

For comments, discussions and keeping the
course on the architectural straight and
narrow – thanks go to:

Paul Kelly
Nick Dingle
Ashok Argent-Katwala
Tony Field
Olav Beckmann
Jeyarajan Thiyagalingam
all the students who took 332 and who
asked insightful questions!

JTB [01/2004] – p.35/35

	Introduction to PageRank
	Motivation for PageRank
	Search Result Manipulation (I)
	Search Result Manipulation (II)
	Solution: PageRank
	What is PageRank
	PageRank's Shortcomings
	Derivation of PageRank
	The Random Surfer
	A Markov Chain
	Treating cul-de-sac Pages
	Personalisation Vector
	Teleportation Matrix
	Teleportation
	PageRank Solution
	PageRank Solution (II)
	PageRank Algorithm
	PageRank Algorithm I
	PageRank Algorithm II
	PageRank Algorithm III
	PageRank Algorithm IV
	PageRank Analysis
	Teleporting Probability
	PageRank Assumptions
	Google Enhancements I
	Google Enhancements II
	Implementation on a Cluster
	Hypergraph Research
	Unpartitioned Graph
	Hypergraph Partition
	Speedup over 32 Processors
	Efficiency over 32 Processors
	Where Next?
	Acknowledgements

