
Advanced Computer
Architecture:

A Google Search Engine
Jeremy Bradley

Room 372. Office hour - Thursdays at 3pm. Email: jb@doc.ic.ac.uk

Course notes: http://www.doc.ic.ac.uk/∼jb/

Department of Computing, Imperial College London

Produced with prosper and LATEX

JTB [01/2004] – p.1/26

Response Time Summary

Google processes between 1000 and 2000
requests per second on average

Google has a response time requirement that
it should process all requests within 0.5s

Start by treating system as black box with just
these constraints

JTB [01/2004] – p.2/26

Little’s Law

Used to estimate response time of a
processing system:

IE(N) = λ× IE(R)

IE(N) = mean number of jobs in system

IE(R) = mean response time for a job (time
elapsed from the instant job enters system
until its completion)

λ = arrival rate of jobs/requests

Only applies for system in steady-state

No creating/destroying of jobs
JTB [01/2004] – p.3/26

A Basic Processing System

Job arrival rate = λ jobs per second

Size of buffer = m cells

Probability that buffer has n jobs in at
steady-state = πn

⇒ mean no. of jobs = IE(N) =
∑m

n=0 nπn

⇒ mean response time = IE(R) = 1
λ

∑m
n=0 nπn

JTB [01/2004] – p.4/26

Google Specifics (I)

We know that in December 2000, λ was
roughly 1000 requests per second

Assume 10,000 mile worst case distance
from a cohosting site

Using speed of light ∼ 300,000 kms−1

⇒ at least 0.1 second network latency per
request

JTB [01/2004] – p.5/26

Google Specifics (II)

We know that Google set itself the target that
mean response time should be < 0.5s
including network latency: i.e. IE(R) < 0.4

By Little’s Law: IE(N) = λ× IE(R)

⇒ IE(R) = IE(N)/λ < 0.4

Dec. 2000: λ = 1000, IE(N) < 0.4× 1000 = 400

Feb. 2004: λ = 2000, IE(N) < 0.4× 2000 = 800

i.e. In December 2000, average number of
queued requests at any moment should have
been < 400

JTB [01/2004] – p.6/26

Google as a single server (I)

Take a Google site to be a single server in an
M/M/1 queue

IE(N) for an M/M/1 queue is:

ρ

1− ρ

where ρ = arrival rate× av. time in service

µ is the service rate of the whole site (in this
case)

⇒ ρ = λ/µ is called server utilisation

JTB [01/2004] – p.7/26

Google as a single server (II)

We need IE(N) < L for some value L, so:

µ >
L + 1

L
λ

i.e. if L = 400, λ = 1000 then µ > 1002.5 per second

i.e. if L = 800, λ = 2000 then µ > 2002.5 per second

i.e. an overall Google cluster had to be able to
service requests at greater than 1002.5 per
second assuming an incoming load of 1000
per second, if the number of waiting jobs was
to be kept below 400 and the system
response time was to be kept below 0.4s

JTB [01/2004] – p.8/26

An M/M/1 Queue Diagram

Arrival rate: λ, Service rate: µ (see Figs. 8.2/8.1 [Tri])

Markovian arrivals/services, infinite buffer, one server

JTB [01/2004] – p.9/26

Why Markov?

Why is a Markovian arrival a good model?
Good reason: random interleaved
independent streams of requests tend to
be Markovian
OK reason: if you know nothing about the
distribution, then this is the least biased
distribution to use
Bad reason: the maths is easier

Markovian (or exponential) distribution is
memoryless. i.e. it can be interrupted
anywhere and the remainder is also
Markovian

JTB [01/2004] – p.10/26

Markov property

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

JTB [01/2004] – p.11/26

Small bit of queueing theory

Going to show that mean queue length,
IE(N), on M/M/1 queue at steady-state is
ρ/(1− ρ)

As IE(N) =
∑∞

k=0 kπk, we need to find πk:
Derive steady-state equations from
time-varying equations
Solve steady-state equations to get πk

Calculate M/M/1 mean queue length, IE(N)

(In what follows, remember ρ = λ/µ)

JTB [01/2004] – p.12/26

Small bit of queueing theory

Write down time-varying equations for M/M/1
queue:

At time t, in state k = 0:

d

dt
π0(t) = −λπ0(t) + µπ1(t)

At time, t, in state k ≥ 1:

d

dt
πk(t) = −(λ+µ)πk(t)+λπk−1(t)+µπk+1(t)

JTB [01/2004] – p.13/26

Steady-state for M/M/1

At steady-state, πk(t) are constant (i.e. πk)
and d

dt
πk(t) = 0 for all k

⇒ Balance equations:
−λπ0 + µπ1 = 0

−(λ + µ)πk + λπk−1 + µπk+1 = 0 : k ≥ 1

Rearrange balance equations to give:

π1 = λ
µ
π0 = ρπ0

πk+1 = λ+µ
µ
πk − λ

µ
πk−1 : k ≥ 1

Solution: πk = ρkπ0 (proof by induction)

JTB [01/2004] – p.14/26

Normalising to find π0

As these πk are probabilities which sum to 1:

∞∑

k=0

πk = 1

i.e.
∑∞

k=0 πk =
∑∞

k=0 ρ
kπ0 = π0

1−ρ
= 1

⇒ π0 = 1− ρ as long as ρ < 1

JTB [01/2004] – p.15/26

M/M/1 Mean Queue Length

N is queue length random variable

N could be 0 or 1 or 2 or 3 ...
Mean queue length is written IE(N):
IE(N) = 0.IP(in state 0) + 1.IP(in state 1) + 2.IP(in state 2) + · · ·

=

∞∑

k=0

kπk

= π0

∞∑

k=0

kρk = π0ρ

∞∑

k=0

kρk−1 = π0ρ

∞∑

k=0

d

dρ
ρk

= π0ρ
d

dρ

∞∑

k=0

ρk = π0ρ
d

dρ

(
1

1 − ρ

)

=
π0ρ

(1 − ρ)2
=

ρ

1 − ρ

JTB [01/2004] – p.16/26

M/M/1 Mean Queue Length

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

E
(N

),
 m

ea
n

qu
eu

e
le

ng
th

rho

E(N) for M/M/1 queue

JTB [01/2004] – p.17/26

M/D/1 Queue Model

M/M/1 queue has Markovian arrivals – a
plausable assumption

Markovian servicing – less likely from a
computer-driven system

M/D/1 might be a better approximation –
deterministic servicing e.g. a service 10 times
a second

For M/D/1:

IE(N) = ρ +
ρ2

2(1− ρ)

JTB [01/2004] – p.18/26

M/D/1 Queue versus M/M/1 queue

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

E
(N

),
 m

ea
n

qu
eu

e
le

ng
th

rho

E(N) for M/D/1 queue
E(N) for M/M/1 queue

JTB [01/2004] – p.19/26

M/D/1: Back to Google

What does this mean for service rate?
ρ + ρ2

2(1−ρ) < L

⇒ ρ < L + 1−
√
L2 + 1

Dec. 2000: λ = 1000, IE(N) < 400 ⇒ µ > 1001.252

Feb. 2004: λ = 2000, IE(N) < 800 ⇒ µ > 2001.251

c.f. µ > 1002.5, 2002.5 for M/M/1 queue

i.e. we can get away with dealing with
requests slightly more slowly if we can
guarantee a different overall service discipline

JTB [01/2004] – p.20/26

Modelling many servers: M/M/n

A cluster would be better represented by a
many-server model (Fig. 8.5 [Tri])

An M/M/n model has a single buffer and n servers

JTB [01/2004] – p.21/26

Mean queue length for M/M/n

The mean queue length for an M/M/n queue
is given by:

IE(N) = nρ + ρ
(nρ)n

n!

π0

(1− ρ)2

where ρ = λ/(nµ) and:

π0 =

[
n−1∑

k=0

(nρ)k

k!
+ ρ

(nρ)n

n!

1

1− ρ

]−1

For further details: Trivedi 2002

JTB [01/2004] – p.22/26

Mean queue length: 10 servers

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

E
(N

),
 m

ea
n

qu
eu

e
le

ng
th

rho

10*rho
n=10

JTB [01/2004] – p.23/26

Mean queue length: +100 servers

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

E
(N

),
 m

ea
n

qu
eu

e
le

ng
th

rho

10*rho
n=10

100*rho
n=100

JTB [01/2004] – p.24/26

Approximating IE(N)

The mean queue length for an M/M/n queue
is given by:

IE(N) = nρ + ρ
(nρ)n

n!

π0

(1− ρ)2
︸ ︷︷ ︸

almost 0 if ρ small

In fact we can say that for small ρ:

IE(N) ∼ nρ

if E(N) < L for some λ then µ > λ/L as long
as the number of processors exceeds the
average buffer size.

JTB [01/2004] – p.25/26

How fast is a single processor?

Dec. 2000: λ = 1000, IE(N) < 400 ⇒ µ > 2.5

Feb. 2004: λ = 2000, IE(N) < 800 ⇒ µ > 2.5

i.e. fast enough to service 2.5 requests per
second

But how good a model is M/M/n for
representing a cluster computer?

If you only need, say, 2000 processors to
cope with peek demand over the mean –
what are the other 3000 doing?

JTB [01/2004] – p.26/26

	Response Time Summary
	Little's Law
	A Basic Processing System
	Google Specifics (I)
	Google Specifics (II)
	Google as a single server (I)
	Google as a single server (II)
	An M/M/1 Queue Diagram
	Why Markov?
	Markov property
	Small bit of queueing theory
	Small bit of queueing theory
	Steady-state for M/M/1
	Normalising to find $pi _0$
	M/M/1 Mean Queue Length
	M/M/1 Mean Queue Length
	M/D/1 Queue Model
	M/D/1 Queue versus M/M/1 queue
	M/D/1: Back to Google
	Modelling many servers: M/M/n
	Mean queue length for M/M/n
	Mean queue length: 10 servers
	Mean queue length: +100 servers
	Approximating $Exp (N)$
	How fast is a single processor?

