
FPGA-based Data Partitioning

Kaan Kara Jana Giceva Gustavo Alonso
Systems Group, Department of Computer Science

ETH Zürich, Switzerland

{firstname.lastname}@inf.ethz.ch

ABSTRACT
Implementing parallel operators in multicore machines of-
ten involves a data partitioning step that divides the data
into cache-size blocks and arranges them so to allow concur-
rent threads to process them in parallel. Data partitioning
is expensive, in some cases up to 90% of the cost of, e.g.,
a parallel hash join. In this paper we explore the use of an
FPGA to accelerate data partitioning. We do so in the con-
text of new hybrid architectures where the FPGA is located
as a co-processor residing on a socket and with coherent ac-
cess to the same memory as the CPU residing on the other
socket. Such an architecture reduces data transfer overheads
between the CPU and the FPGA, enabling hybrid operator
execution where the partitioning happens on the FPGA and
the build and probe phases of a join happen on the CPU.
Our experiments demonstrate that FPGA based partition-
ing is significantly faster and more robust than CPU based
partitioning. The results open interesting options as FPGAs
are gradually integrated tighter with the CPU.

1. INTRODUCTION
Modern in-memory analytical database engines achieve

high throughput by carefully tuning their implementation to
the underlying hardware [4,5,21]. This often involves a fine-
grained partitioning to cluster and split data into smaller
cache size blocks to improve locality and facilitate parallel
processing. Recent work [31] has confirmed the importance
of data partitioning for joins in an analytical query context.
Similar results exist for other relational operators [27]. Un-
fortunately, even though it improves the performance of the
subsequent processing stages (e.g., in-cache build and probe
for the hash join operator), partitioning comes at a cost of
additional passes over the data and is very heavy on random
data access. In many cases, it can account for a significant
portion of the execution time, nearly 90% [31]. Since it is
an important, yet expensive sub-operator, partitioning has
been extensively studied to make it faster on modern mul-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’17, May 14–19, 2017, Raleigh, NC, USA.
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035946

ticore processors [3,27,32] and to explore possible hardware
acceleration [37,41].

In this paper we explore the design and implementation of
an FPGA-based data partitioning accelerator. We leverage
the flexibility of a hybrid architecture, a 2-socket machine
combining an FPGA and a CPU, to show that data par-
titioning can be effectively accelerated by an FPGA-based
design when compared to CPU-based implementations [27].

The context for the work is, however, not only hybrid ar-
chitectures but the increasing heterogeneity of multicore ar-
chitectures. In this heterogeneity, FPGAs are playing an in-
creasingly relevant role both as an accelerator per se as well
as a platform for testing hardware designs that are even-
tually embedded in the CPU. One prominent example of
this is Microsoft’s Catapult which uses a network of FPGA
nodes in the datacenter to accelerate, e.g., page rank al-
gorithms [28]. Other such hybrid platforms include IBM’s
CAPI [34] and Intel’s research oriented experimental archi-
tecture Xeon+FPGA [24]. The latter one, which we use in
this paper, brings an FPGA closer to the CPU enabling true
hybrid applications where part of the program executes on
the CPU and part of it on the FPGA. Especially because of
its hybrid nature, this type of architecture enables the ex-
ploration of which CPU intensive parts of an application can
be offloaded to an FPGA as it has been done for GPUs [25].

Our contributions are the following:

• The hash function used for partitioning plays a crucial
role but robust hash functions are expensive [29]. In our
FPGA design we show how to use the most robust hashing
available with no performance loss.

• The partitioning operation can be implemented as a fully
pipelined hardware circuit, with no internal stalls or locks,
capable of accepting an input and producing an output at
every clock cycle. To our knowledge this is the first FPGA
partitioner to achieve this and improves throughput by
1.7x over the best reported FPGA partitioner [37].

• We compare our FPGA based partitioning with a state-
of-the-art CPU implementation in isolation and as part of
a partitioned hash join. The experiments show that the
FPGA partitioner can achieve the same performance as a
state-of-the-art parallel CPU implementation, despite the
FPGA having 3x less memory bandwidth and an order
of magnitude slower clock frequency. The cost model we
developed shows that, in future architectures without such
structural barriers, FPGA based partitioning will be the
most efficient way to partition data.

��������	�

�
��
�

�
�����	�
���

����
�

�����������

	
� ����
����
�����

�

��� ���� ��������

���

���
�

���

���

�	 !��	�

Figure 1: Intel Xeon-FPGA Architecture

2. XEON+FPGA ARCHITECTURE

2.1 General Description
Our target architecture is the Intel-Altera Heterogeneous

Architecture1 [24] (Figure 1). It consists of a dual socket
with a server grade 10-core CPU (Intel Xeon E5-2680 v2,
2.8 GHz) on one socket and an FPGA (Altera Stratix V
5SGXEA) on the other. The CPU and the FPGA are con-
nected via QPI (QuickPath Interconnect). The FPGA has
64B cache line and L3 cache-coherent access to the 96 GB
of main memory located on the CPU socket. On the FPGA,
an encrypted QPI end-point module provided by Intel han-
dles the QPI protocol. This end-point also implements a
128 KB two-way associative FPGA-local cache, using the
Block-RAM (BRAM) resources. A so-called Accelerator
Function Unit (AFU) implemented on the FPGA can access
the shared memory pool by issuing read and write requests
to the QPI end-point using physical addresses. Our mea-
surements show the QPI bandwidth to be around 6.5 GB/s
on this platform for combined read and write channels and
with an equal amount of reads and writes. In Figure 2, a
comparison of the memory bandwidth available to the CPU
and the FPGA is shown, measured for varying sequential
read to random write ratios, since this is the memory access
characteristic that is relevant for the partitioning operation.
We also show the measured bandwidth when both the CPU
and the FPGA access the memory at the same time, causing
a significant decrease in bandwidth for both of them.

Since the QPI end-point accepts only physical addresses,
the address translation from virtual to physical has to take
place on the FPGA using a page-table. Intel also provides an
extended QPI end-point which handles the address transla-
tion but comes with 2 limitations: 1) The maximum amount
of memory that is allocatable is 2 GB; 2) The bandwidth
provided by the extended end-point is 20% less compared
to the standard end-point. Therefore, we choose to use the
standard end-point and implement our own fully pipelined
virtual memory page-table out of BRAMs. We can adjust
the size of the page-table so that the entire main memory
could be addressed by the FPGA.

The shared memory operation between the CPU and the
FPGA works as follows: At start-up, the software appli-
cation allocates the necessary amount of memory through
the Intel provided API, consisting of 4 MB pages. It then
transmits the 32-bit physical addresses of these pages to the
FPGA, which uses them to populate its local page-table.
During runtime, an accelerator on the FPGA can work on
a fixed size virtual address space, where the size is deter-

1Following the Intel legal guidelines on publishing perfor-
mance numbers we want to make the reader aware that re-
sults in this publication were generated using preproduction
hardware and software, and may not reflect the performance
of production or future systems.

1/
0

0.
9/

0.
1

0.
8/

0.
2

0.
7/

0.
3

0.
6/

0.
4

0.
5/

0.
5

0.
4/

0.
6

0.
3/

0.
7

0.
2/

0.
8

0.
1/

0.
9

0/
1

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Sequential Read/Random Write Ratio

M
em

o
ry

T
h
ro

u
g
h
p
u
t

(G
B

/
s) CPU (alone)

FPGA (alone)

CPU (interfered*)

FPGA (interfered*)

Figure 2: Memory bandwidth available to the CPU and
QPI bandwidth available to the FPGA depending on the
sequential read to random write ratio. *The FPGA sends a
balanced ratio of read/write requests (0.5/0.5) at the highest
possible rate, while the CPU read/write ratio changes as
shown on the x-axis.

mined by the number of 4 MB pages allocated. Any read
or write access to the memory is then translated using the
page-table. The translation takes 2 clock cycles, but since it
is pipelined, the throughput remains one address per clock
cycle. On the CPU side, the application gets 32-bit virtual
addresses of the allocated 4 MB pages from the Intel API
and keeps them in an array. Accesses to the shared memory
are translated by a look-up into this array. The fact that
a software application has to perform an additional address
translation step is a current drawback of the framework.
However, this can very often be circumvented if most of the
memory accesses by the application are sequential or if the
working set fits into a 4 MB page. We observed in our ex-
periments that if the application is written in a conscious
way to bypass the additional translation step, no overhead
is visible since the translation happens rarely.

2.2 Effects of the cache-coherence protocol
Before discussing performance in later sections, we micro-

benchmark the Xeon+FPGA architecture. In the experi-
ments we saw that when the CPU accesses a memory re-
gion which was lastly written by the FPGA, the memory
access takes significantly longer in comparison to accessing
a memory region lastly written by the CPU. In the micro-
benchmark, we first allocate 512 MB of memory and either
the CPU or the FPGA fills that region with data. Then,
the CPU reads the data from that region (1) sequentially,
(2) randomly. The results of the single-threaded experiment
is presented in Table 1. After the FPGA writes to the mem-
ory region, no matter how many times the CPU reads it, it
does not get faster. Only after the CPU writes that same
region do the reads become just as fast.

This is a side-effect of the cache-coherence protocol be-
tween two sockets connected by QPI. When the FPGA writes
some cache-lines to the memory, the snooping filter on the
CPU socket marks those addresses as belonging to the FPGA
socket. When the CPU accesses those addresses, they are
snooped on the FPGA socket, which causes a delay. Further-
more, the snooping filter gets only updated through writes
and not reads. In a homogeneous 2-socket machine with

Table 1: Memory access behavior depending on which socket
has lastly written to the memory

CPU reads CPU reads
sequentially randomly

CPU writes 0.1381 s 1.1537 s
FPGA writes 0.1533 s 2.4876 s

2 CPUs, this is not an issue because both sockets would
have the same amount of L3 cache (in this case 25 MB).
The probability of a cache-line residing in the L3 of the
other socket would be very high, if that cache-line was last
written by that socket. However in the Xeon+FPGA ar-
chitecture, the FPGA has a cache of only 128 KB and any
cache-line that is snooped on the FPGA socket is most likely
not found. In short, the snooping mechanism designed for a
homogeneous multi-socket architecture causes problems in a
heterogeneous multi-socket architecture.

This behavior particularly affects the hybrid join because
during the build+probe phase the CPU reads regions of
memory last written by the FPGA, when it created the par-
titions. During the build phase the effect is not as high,
because the partitions of the build relation are read sequen-
tially. However, during the probe phase, the build relation
needs to be accessed randomly, following the bucket chain-
ing method from [21] and the CPU cannot prefetch data to
hide the effects of the needless snooping.

In our experiments, the build+probe phase after the FPGA
partitioning is always disadvantaged by this behavior. How-
ever, the Xeon+FPGA platform is an experimental proto-
type, and we expect future version not to have this issue.

3. CPU-BASED PARTITIONING

3.1 Background
In a database, a data partitioner reads a relation and puts

tuples in their respective partitions depending on some at-
tribute of the input key. This attribute can be determined
by either some simple calculation, e.g., taking a certain num-
ber of least significant bits of the key in the case of radix
partitioning, or something more complex, e.g., computing a
hash value of the key in the case of hash partitioning. Thus,
the means of determining which partition a tuple belongs to
is a factor affecting the partitioning throughput.

Code 1: Partitioning

1 foreach tuple t in relation R
2 i = partitioning_attribute(t.key)
3 partitions[i][counts[i]] = t
4 counts[i]++

Another important aspect is how the algorithm is designed
to access the memory when putting the tuples into their
respective partitions, called the shuffling phase. Since the
shuffling is very heavy on random-access, the performance
is limited by TLB misses. Earlier work by Manegol et al. [21]
has focused on dividing the partitioning into multiple stages
with the goal of limiting the shuffling fan-out of each stage,
so that TLB misses can be minimized. Surprisingly, the mul-
tiple passes over the data required by this approach pay off
in terms of performance. Later on, a more sophisticated so-
lution proposed by Balkesen et al. [3] used software-managed
cache-resident buffers, an idea first introduced for radix sort
by Satish et al. [30], to improve radix partitioning. The

cache-resident buffers, each usually having the size of a cache
line, are used to accumulate a certain number of tuples, de-
pending on the tuple size. If a buffer for a certain partition
gets full, it is written to the memory:

Code 2: Partitioning with software-managed buffers

1 foreach tuple t in relation R
2 i = partitioning_attribute(t.key)
3 buffers[i][counts[i] mod N] = t
4 counts[i]++
5 if (counts[i] mod N == 0)
6 copy buffers[i] to partitions[i]

The size of each buffer (N) should be set so that all the
buffers fit into L1 to achieve maximum performance. The
advantage of this technique is that it prevents frequent TLB
misses without the need of reducing the partitioning fan-
out. Thus, a single pass partitioning can be performed very
fast. An additional improvement to this was proposed by
Wassenberg et al. [38] to use non-temporal SIMD instruc-
tions for directly writing the buffers to their destinations
in the memory, bypassing the caches. That way the cor-
responding cache-lines do not need to be fetched and the
pollution of caches is avoided. If non-temporal writes are
used, N depends also on the SIMD width.

Polychroniou et al. [27] and Schuhknecht et al. [32] have
both performed extensive experimental analysis on data par-
titioning and confirmed that best throughput can be achieved
with the above mentioned optimizations. Accordingly, in the
rest of the paper we use the open-sourced implementation
from Balkesen et al. [3] as the software baseline and use a
single-pass partitioning with software-managed buffers and
non-temporal writes enabled.

3.2 Radix vs Hash partitioning
Richter et al. [29] describe the importance of implement-

ing robust hash functions for analytical workloads. In par-
ticular, they have shown that for certain key distributions
simple and inexpensive radix-bit based hashing can be very
ineffective in achieving a well distributed hash value space.
On the other hand, robust hash functions can produce infre-
quently colliding and well distributed hash values for every
key distribution but they are computationally costly. Conse-
quently, there is a trade-off between hashing robustness and
performance. To observe this trade-off in the context of data
partitioning, we perform both radix and hash partitioning
on 4 different key distributions (following [29]):

1. Linear Distribution: The keys are unique in the range
[1:N], where N is the number of keys in the data set.

2. Random Distribution: The keys are generated using
the C pseudo-random generator in the full 32-bit inte-
ger range.

3. Grid Distribution: Every byte of a 4B key takes a
value between 1 and 128. The least significant byte
is incremented until it reaches 128, then it is reset to
1. This is repeated with the next least significant byte
until N unique keys are generated.

4. Reverse Grid Distribution: The keys are generated in
a similar fashion as the grid distribution. However,
the incrementing starts with the most significant byte.
Both grid distributions resemble address patterns and
strings.

0 16,384 32,768 65,536

0

2,000

4,000

6,000

8,000

Number of Tuples/Partition

C
D

F
(N

u
m

b
er

o
f

P
a
rt

it
io

n
s)

Linear

Random

Grid

Rev. Grid

(a) Radix partitioning is applied.

0 16,384 32,768 65,536

0

2,000

4,000

6,000

8,000

Number of Tuples/Partition

C
D

F
(N

u
m

b
er

o
f

P
a
rt

it
io

n
s)

Linear

Random

Grid

Rev. Grid

(b) Hash partitioning is applied.

Figure 3: The distribution of tuples across 8192 partitions
represented as a cumulative distribution function.

When radix partitioning is used, the resulting partitions
may have unbalanced distributions as depicted in Figure 3a.
On the other hand, if hash partitioning is used with a ro-
bust hash function, such as murmur hashing [2], the created
partitions have all more or less the same number of tuples
as shown in Figure 3b.

Although hash partitioning is robust against various key
distributions, using a powerful hash function lowers the par-
titioning throughput as depicted in Figure 4. However, as
the number of threads is increased, the partitioning pro-
cess becomes memory bound. Consequently, there are free
clock cycles available as the CPU waits on memory requests.
These free clock cycles can be used for calculating a more
powerful hash function. Thus, the throughput slowdown
observed with few threads disappears.

3.3 Partitioned hash join
The relational equi-join is a primary component of almost

all analytical workloads and constitutes a significant portion
of the execution time of a query. Therefore, it has received a
lot of attention in terms of how to improve its performance
on modern architectures. A recent paper by Schuh et al. [31]
provides a detailed analysis of implementations and opti-
mizations for both hash- and sort-based joins published in
the last few years [3,4,8,19,20]. The conclusion is that par-
titioned, hardware-conscious, radix hash-joins have a clear
performance advantage over non-partitioned and sort-based
joins on modern multi-core architectures for large and non-
skewed relations. Hence, in the rest of this paper we evaluate
how offloading the partitioning phase to a hardware accel-
erator affects the performance of radix hash join algorithm.

The partitioned hash join algorithm (also known as radix
join) operates in several stages:

1. Both relations (R and S) are partitioned using radix
partitioning, so that each partition fits into cache. More

1 2 4 8 10

100

200

300

400

500

Number of Threads

T
h
ro

u
g
h
p
u
t

(M
il
li
o
n

T
u
p
le

s/
s)

Radix Part.(linear)

Radix Part.(random)

Radix Part.(grid)

Radix part.(rev. grid)

Hash Part.(all)

Figure 4: CPU Partitioning throughput with 8B tuples, for
varying key distributions and partitioning methods. Hash
partitioning delivers for every key distribution the same
throughput.

details about the implementation and various opti-
mizations are discussed in Section 3.

2. For each partition, a build and probe phase follows:

(a) During the build phase, a cache resident hash ta-
ble is built from a partition of R.

(b) During the probe phase, the tuples of the corre-
sponding partition of S are scanned and for each
one, the hash table is probed to find a match.

4. FPGA-BASED PARTITIONING
In this section we give a detailed description of the VHDL

implementation of the FPGA partitioner. Because the ac-
celerators on the Xeon+FPGA architecture access the mem-
ory in 64B cache-line granularity, the partitioner circuit is
designed to work on that data width. The design is fully
pipelined requiring no internal stalls or locking mechanisms
regardless of input type. Therefore, the partitioner circuit
is able to consume and produce a cache-line at every clock
cycle.

When it comes to tuple width, the design supports var-
ious tuple sizes (e.g., 8B, 16B, 32B and 64B). Throughout
the first parts of this section, we explain the partitioner ar-
chitecture in the 8B tuple configuration, since this is the
smallest granularity we are able to achieve and poses the
largest challenge for write combining. Besides, 8B tuples
(4B key, 4B payload) are a common scheme in most of the
previous work [4,31] and that allows for direct comparisons
afterwards in the evaluation. We later show how to change
the design to work on larger tuples and how this considerably
reduces resource consumption on the FPGA. Additionally,
the partitioner has multiple modes of operation for accom-
modating both column and row store memory layouts and
for handling data with large amounts of skew, as explained
in Section 4.5.

4.1 Hash function module
Figure 5 shows the top level design of the circuit. Ev-

ery tuple in a received cache-line first passes through a hash
function module, which can be configured to do either mur-
mur hashing [2] or a radix-bit operation taking N least sig-

��������	�

��������

	
�����

	
�
����

����

����	
��

����

����	
��

����

����	
��

������������������

�������

�

	�

�����

�

�

	�

�����

�

�

	�

�����

�

�����

��������	��
����	
�������
��

������	
���������

��������������

���
�

��� �!���

�"�

#�$� ��%��%�&�'
� ����

#�$� ��%��%�&�'('
� ����

�����

���

���	
����
���

���	
����
���

���	
����
���

��������	��
����	
�������
��

������	
���������

��������	��
����	
�������
��

������	
���������

������
�

#�$� ��%��%�&�'
� ����

��������	

'
� ����

��������

	
�����

	
�
����

��������

	
�����

	
�
����

���	
����
���

���	
����
���

���	
����
���

Figure 5: Top level design of the hardware partitioner for
8B tuples.

nificant bits of the key. The important thing to keep in
mind is that in the synthesized hardware for the pseudo-
code in Code 3 every calculation (Lines 6-11) is a stage of a
pipeline, which is very different from a sequential execution
point-of-view of software. For example, when Line 9 exe-
cutes the multiplication on the first received key, Line 8 can
execute the bit-shift on the second received key and so on.
Therefore, the hash function module can produce an output
at every clock cycle, regardless of how many intermediate
stages are inserted into the calculation pipeline. The only
thing that increases with additional pipeline stages is the
latency. For murmur hashing the latency is 5 clock cycles:
(1/200MHz) · 5 = 10ns.

Code 3: Hash Function Module for 4B keys. Pseudo-Code
for VHDL, where each line is always active.

1 Input is:
2 64-bit tuple <key ,payload >
3 Output is:
4 N-bit hash & 64-bit tuple <key ,payload >
5 if (do_hash == 1)
6 key ^= key >> 16;
7 key *= 0x85ebca6b;
8 key ^= key >> 13;
9 key *= 0xc2b2ae35;

10 key ^= key >> 16;
11 hash = N LSBs of key;
12 else
13 hash = N LSBs of key;

4.2 Write combiner module
The output of every hash function module is placed into

a first-in, first-out buffer (FIFO), waiting to be read by a
write combiner module. The job of the write combiner is to
put 8 tuples belonging to the same partition together in a

������

���������	

�����
�

�������
����
���	

���������	
��
��

���������	
��
��

���������	
��
��

���	�
��
�����

�����

����	����	�
��
	��������
���
������������	

����	����	�
��
	��������
���
������������	

����	����	�
��
	��������
���
������������	

���������

����

������
���	
��
��

������
���	
��
��

������
���	
��
��

���	�
��
�����

���
	

�	��

��

�������
	

�
��

��
���

������

���������	
��
��

���������	
��
��

���������	
��
��

������

���������	
��
��

���������	
��
��

���������	
��
��

Figure 6: Design of the write combiner module for 8B tuples.

cache-line before they are written back to the memory. To
demonstrate the benefits of write combining, consider the
case when no write combiner is used: For every tuple going
into a partition first its corresponding cache-line from the
memory has to be fetched (64B read). Then, the tuple is in-
serted into the cache-line at a certain offset and written back
to memory (64B write). This operation takes place for ev-
ery tuple entering the partitioner, say T tuples. In total, the
amount of memory transfers excluding the initial sequential
read of tuples is (64 + 64) · T Bytes. With write combining
enabled we have to write approximately as much data as we
have read: 64 · T/8Bytes, a 16x improvement over the no
write combining option. Since the hardware partitioner in
the current architecture is already bound by memory band-
width, we choose to implement a fully-pipelined write com-
biner to achieve the best performance on the current plat-
form.

Here we describe in more detail how the circuit avoids
internal locking in the write combiner module. The module
reads a tuple from its input FIFO as soon as it sees that the
FIFO is not empty. It then reads from an internal BRAM
the fill rate of the partition, to which the tuple belongs.
The fill rate holds a value between 0 and 7 (the number of
previously received tuples belonging to the same partition),
specifying into which BRAM the tuple should be put (see
Figure 6). Reading the fill rate from the BRAM takes 2
clock cycles. However, during this time the pipeline does
not need to be stalled since the BRAM can output a value
at every clock cycle. The design challenge here is inserting a
forwarding register outside the BRAMs, to handle the cases
where a read and a write occur to the same address at the
same clock cycle. Basically, a comparison logic recognizes if
the current tuple goes into the same partition as one of the
previous 2 tuples (Lines 6 and 8 in Code 4). If that is the
case, the issued read of the fill rate 2 cycles ago is ignored and
the in-flight fill-rate of either one of the matching hashes is
forwarded (Lines 7 or 9 in Code 4). Otherwise, the requested
fill rate is read to determine which BRAM the tuple belongs
to. If the fill rate for any partition reaches 7, it is first
reset to 0, the tuple is written to the last BRAM, and then

a read from the corresponding addresses of all 8 BRAMs
is requested. The actual read from the BRAMs happens
1 clock cycle later, since the BRAMs operate with 1 cycle
latency. During the read cycle, if a write occurs to the same
address as the read, there is no problem because of this 1
clock cycle latency. No data gets lost and no pipeline stalls
are incurred regardless of any input pattern.

Code 4: Write Combiner Module. 1d and 2d represent the
same signals after 1 and 2 clock cycles, respectively. Pseudo-
Code for VHDL, where each line is always active.

1 Input is:
2 N-bit hash & 64-bit tuple
3 Output is:
4 N-bit hash & 512-bit combined_tuple
5
6 if (hash == hash_1d)
7 which_BRAM = which_BRAM_1d + 1;
8 else if (hash == hash_2d)
9 which_BRAM = which_BRAM_2d + 1;

10 else
11 which_BRAM = fill_rate[hash];
12
13 if (which_BRAM == 7)
14 fill_rate[hash] = 0;
15 read_from_BRAM = True;
16 else
17 fill_rate[hash]++;
18
19 BRAM[which_BRAM][hash] = tuple;
20 if (read_from_BRAM_2d == True)
21 combined_tuple = BRAM [7][hash_1d] &
22 BRAM [6][hash_1d] & ..
23 BRAM [0][hash_1d];

At the end of a partitioning run, some partitions in the
write combiner BRAMs may remain empty. In fact, this
happens almost every time since the scattering of tuples to
8 write combiners are irregular and some cache-lines remain
partially filled in the end. To write back every tuple a flush
is performed, where every address of the BRAMs is read se-
quentially and full cache-lines are put into the output FIFO.
To obtain a full cache-line in this case, the empty slots are
filled with dummy keys, which later on won’t be regarded by
the software application. Because of this non-perfect gath-
ering after the scattering, the partitioner circuit writes some
more data than it receives. In the worst case, every partition
in a write combiner module would be filled with one single
tuple, making the other 7 tuples at every partition a dummy
key. This overhead is in principle no different than the one
incurred through aligning and padding to enable the use of
SIMD or optimize cache accesses on a CPU.

4.3 Write back module
This module reads the output FIFO of the write combin-

ers in a round-robin fashion and puts the cache-lines in a
last stage FIFO to be sent to the main memory via QPI
(See Figure 5). There are 2 BRAMs which are used to cal-
culate the end destinations of tuples. The first BRAM holds
the prefix sum for the histogram that can optionally be built
in an initial run over the data (see Section 4.5). If the his-
togram is populated, the prefix sum is used to obtain the
partition’s base address in memory. If the histogram is not
populated, a calculated base address via the fixed size parti-
tion is used. A second BRAM holds the counts of how many
cache-lines have already been written to a certain partition.
These counts are used as an offset to the base address to ob-

��������	�
���

�����

	
��

����

	
��

����

	
��

����

�
���
�
���
�
���

�����	�

�����

�

�����

�

�����

�

��
�����������

�
��

 �!"�

#��$�

�

!����
"�

����

��
�������
�
�
%�!"�

��
�

�

�����
���

����

	�����
 �!"�

#��$�

�

 �!"�

#��$�

�

�����

�
�����

 �!"���
�&

��������	
���

�����

���

�����

��������	�
��������	

	
��

���"!��

	
��

���"!��

�
���
�
��'

�����	�

 �!"�

#��$!���

�

 �!"�

#��$!���

'

�
���

�
�����

 �!"���
�&

��������	

��������	

������

��
�����������

�
��

��
�������
�
�
%�!"�

��
�

�

�����
���

����

	�����

�����������������'

!����
"�

����

��������	�
��������	

	
��

���"!��

	
��

���"!��

�
���
�
���

�����	�

 �!"�

#��$!���

�

 �!"�

#��$!���

�

�
���

�
�����

 �!"���
�&

�
�������	

��������	

������

��
�����������

�
��

��
�������
�
�
%�!"�

��
�

�

�����
���

����

	�����

������

!����
"�

����

��������	�
��������	

	
��

���"!��

�
���

�����	�

 �!"�

#��$!���

�

�
���

�
�����

 �!"���
�&

���������	

������

��
�����������

�
��

��
�������
�
�
%�!"�

��
�

�

�����
���

����

	�����

!����
"�

����

Figure 7: Changes to the design to support wider tuples.

tain the end address of a current cache-line, which can then
be sent. For maintaining the integrity of the offset BRAM,
the forwarding logic described in Section 4.2 is used.

The circuit is able to produce a cache-line at every clock
cycle when the entire pipeline is filled, but the QPI band-
width cannot handle this and puts back-pressure on the
write back module. This back-pressure has to be propa-
gated along the pipeline to ensure that no FIFO experiences
an overflow, which would cause data to be lost. We handle
this by issuing only so many read requests as there are free
slots in the first stage FIFOs just after the hash function
modules (see Figure 5). If the QPI write bandwidth would
be more than 12.8 GB/s, which is the output throughput of
the circuit, no back-pressure would be put and there would
always be free slots in the first stage FIFOs so that new
cache-lines would be requested at every clock cycle.

4.4 Configuring for wider tuples
The most complex and resource consuming part of the

partitioner is the write combiner module, partly since it has
to assemble small tuples to build a full cache-line. Therefore,
as we increase the tuple width, the complexity of the write
combiner decreases considerably and the overall design be-
comes much simpler as depicted in Figure 7. However, there
is also one part of the design that may become more complex
with wider tuples: The hash function. With increasing size
of the key to be hashed, more arithmetic units of the FPGA
or more pipeline stages may be needed. Nevertheless, the
throughput remains a cache-line per clock cycle across all
configurations. In Table 2 we can observe how the resource
usage drops with wider tuples. The only increase observed is
for DSP blocks (responsible for arithmetic operations on the
FPGA) when going up from 8B to 16B. This is due to the
hash function requiring more multiplications per clock cycle
to be able to hash 8B keys instead of 4B keys. However, for
32B and 64B tuples, the DSP block usage drops since the
write combiner becomes much simpler (less addresses need
to be computed).

Figure 8 shows the throughput in tuples per second, which
understandably decreases with wider tuples, since the par-
titioner is bandwidth bound. However, the total amount of
data processed remains nearly the same, indicating that the
partitioner consumes and produces cache-lines at the same
rate regardless of the tuple width (as predicted by the ana-
lytical model in Section 4.6).

4.5 Different Modes of Operation
The partitioner has 2 binary configuration parameters, re-

sulting in 4 modes of operation in total.

1. How to format the output: HIST or PAD mode

(a) Histogram Building Mode (HIST). In this mode the
partitioner does a first pass over the relation to build a
histogram. During the first pass, no data is written back,
and the histogram is built using an internal BRAM. Dur-
ing a second pass, the tuples are written out to their
partitions using the prefix sum obtained from the saved
histogram. In this mode, intermediate memory for hold-
ing the partitions is minimized. This mode is also robust
against skew, because the number of tuples in each par-
tition is known before writing out begins.

(b) Padding Mode (PAD). In this mode the partitioner
preassigns a fixed size to every partition, which is cal-
culated by: #Tuples/#Partitions + Padding. As the
padding gets larger, the partitioner becomes more robust
against skew. In this mode only one pass over the data
is done and the tuples are written directly to their parti-
tions by using the fixed sized prefix sum. If one partition
gets filled, the operation aborts and falls back to a CPU
based partitioner. This should happen very rarely and
only under large skews with a Zipf factor of more than
0.25.

2. Whether the partitioner works in a column store mode
or not: RID or VRID

(a) Record ID Mode (RID). In this mode the tuples re-
side in the main memory as the partitioner expects them:
<xB key, yB payload>.

(b) Virtual Record ID Mode (VRID) is used by column
store databases. In this mode the keys and the payloads

Table 2: Resource usage depending on tuple width configu-
ration

Tuple width Logic units BRAM DSP blocks
8B 37% 76% 14%
16B 28% 42% 21%
32B 27% 24% 11%
64B 27% 15% 6%

8B 16B 32B 64B
0

100

200

300

Tuple Size

T
h
ro

u
g
h
p
u
t

(M
il
li
o
n

T
u
p
le

s/
s)

0

2

4

6
+ Model Prediction for Tuples/s

Throughput (Million Tuples/s)

Total Data Processed (GB/s)

T
o
ta

l
D

a
ta

P
ro

ce
ss

ed
(G

B
/
s)

Figure 8: Throughput in tuples per second and total
amount of data processed with changing tuple width (Mode:
HIST/RID).

are assumed to be stored in separate arrays in the mem-
ory, only associated by their ordering in the arrays. How-
ever, partitioning does not maintain the ordering of tuples
in the intermediate result, that is the created partitions.
Therefore, in this mode the FPGA only reads the key
array as <xB key> and a virtual record ID is appended
to that key on the FPGA, creating a tuple <xB key, 4B
VRID>. After the partitioning takes place, the real tu-
ple can be materialized using the VRIDs to associate keys
with their payloads.

4.6 Analytical model of the FPGA circuit
Table 3 shows the notation of all parameters that we use in

this section when developing the model for the partitioning
implementation.

Table 3: Summary of notation used in cost model
Parameter Description Values or Units

fFPGA Clock frequency of the FPGA 200 MHz
TFPGA Clock period of the FPGA 5 ns

CL Width of a cache line 64 Bytes
W Width of a tuple in bytes 8, 16, 32 or 64
r Seq. read/rand. write ratio 2, 1, 0.5

Tmem Time for memory access in seconds
Tprocess Time to process in seconds
BFPGA Partitioner throughput in tuples/second
LFPGA Partitioner latency in seconds
fmode Mode factor 2(HIST), 1(PAD)
B(r) QPI Bandwidth for r in Bytes/seconds

chashing Cycles for hashing 5
cwritecomb Cycles for write combining 65540

cfifos Cycles for fifo accesses 4

Let’s consider the total processing rate of the FPGA par-
titioner for N tuples and in units of tuples/s:

Ptotal = min{ N

Tprocess
,

N

Tmem
} (1)

The FPGA partitioner completes its execution in:

Tprocess = fmode(
N

BFPGA
+ LFPGA) (2)

where,

BFPGA =
CL

W
fFPGA (3)

LFPGA = (chashing + cwritecomb + cfifos) · TFPGA (4)

Thus, the processing rate of the FPGA in tuples/s is:

PFPGA =
N

Tprocess
=

1

fmode(
1

BFPGA
+

LFPGA

N
)

(5)

For a sufficiently high N , the term LFPGA/N becomes or-
ders of magnitudes smaller than 1/BFPGA and the latency
is hidden.

The memory access rate (in tuples/s) is, when r ·N tuples
are read and N tuples are written, where a tuple has W
Bytes:

Pmem =
N

Tmem
=

N

W (Nr + N)/B(r)
=

B(r)

W (r + 1)
(6)

Thus, total processing rate of the FPGA partitioner be-
comes:

Ptotal = min{ 1

fmode(
1

BFPGA
+

LFPGA

N
)
,

B(r)

W (r + 1)
} (7)

In the current architecture, the second term in equation
7 is always smaller than the first term. Therefore, it defines
the rate at which the FPGA partitioner processes the tuples.

4.7 Performance analysis
In this section we determine the throughput of the FPGA

partitioner using the different modes of operation. Whether
radix or hash partitioning is used does not affect perfor-
mance since computing a hash comes virtually at no ad-
ditional cost. Figure 9 shows the performance of 4 modes
of operation of the FPGA partitioner with respect to prior
work, the CPU based partitioning and the raw FPGA par-
titioning throughput. All experiments are performed on the
Xeon+FPGA platform and the numbers represent end-to-
end partitioning throughput, with the exception of the raw
FPGA numbers. The raw FPGA numbers are obtained with
the following method to show the throughput capabilities of
the partitioner when it is not limited by the bandwidth:
An FPGA internal wrapper around the partitioner is imple-
mented to emulate QPI memory access behavior, however
with a combined read and write bandwidth of 25.6 GB/s.
The wrapper generates tuples internally, feeds the cache-
lines to the partitioner when requested, and gets the pro-
cessed cache-lines from the partitioner to disregard them.

We observe that using both the PAD and VRID modes
increases the throughput. Using PAD instead of HIST is
clearly faster, because only one scan over the data has to
be done instead of two, although the same amount of data
has to be written. Using VRID instead of RID also leads
to an increase in throughput. This actually is an experi-
mental proof that the hardware partitioner on the FPGA is
memory bound. More specifically, in VRID mode, for each
cache-line the FPGA receives, two cache-lines are generated
internally by appending the virtual record IDs as explained

[2
5]

(3
2

co
re

s)

[3
4]

(F
PG

A
)

H
IS

T
/R

ID

H
IS

T
/V

R
ID

PA
D
/R

ID

PA
D
/V

R
ID

C
PU

(1
0

co
re

s)

R
aw

FPG
A

(H
IS

T
)

R
aw

FPG
A

(P
A
D
)

0

500

1,000

1,500

+ Model Prediction for Tuples/s

Xeon+FPGA

1,100

256 299
391 436

514 506

799

1,597

T
h
ro

u
g
h
p
u
t

(M
il
li
o
n

8
B

T
u
p
le

s/
s)

Figure 9: Throughput of hardware partitioner for its 4 dif-
ferent configurations. For all the results the number of par-
titions is 8192, the tuple size is 8B.

in Section 4.5. In total the partitioning circuit receives the
same number of cache-lines, but over the QPI only half the
number of cache lines are read compared to RID mode. Re-
moving some of the reads from the QPI bandwidth lowers
the back-pressure on the writes and the overall throughput
increases.

The best direct comparison to CPU partitioning is the
HIST/ RID mode, because the CPU algorithm also builds a
histogram and uses tuples in <4B key, 4B payload> layout.
However, the partitioning algorithm for the CPU builds the
histogram out of necessity, in order to remove synchroniza-
tion between multiple threads, so that each thread accesses
a specific part of memory while writing out the partitions.
The FPGA implementation can be seen as single-threaded
from a software point-of-view because the memory is ac-
cessed from only one agent. Therefore, there is no need
to build a histogram for synchronization, an advantage for
the FPGA partitioner. We see that the FPGA partitioner
reaches the same throughput as the 10-threaded CPU par-
titioner on the Xeon+FPGA platform. When compared to
related work, we observe that we improve the FPGA parti-
tioning throughput reported by Wang et al. [37]. In com-
parison to the results reported by Polychroniou et al. [27],
the raw throughput of our FPGA partitioner in PAD mode
is 45% higher when compared with 32 cores.

4.8 Model validation
In this section we validate the model. For this, we select a

sufficiently large number of tuples N = 128 ·106 and assume
a tuple width of W = 8B:

Ptotal = min{ 1 · tuples/s
fmode(6.25 e−10 + 2.58 e−12)

,
B(r)

W (r + 1)
}

(8)
Obviously, the latency term has become 2 orders of magni-
tude smaller than the output rate for this N , consequently
its effect is minimal:

Ptotal = min{fmode · 1.593 e9 tuples/s,
B(r)

W (r + 1)
} (9)

For different modes of operation of the FPGA partitioner,
the read to write ratio r changes. From Figure 2 we can
look-up the matching bandwidth for a particular ratio B(r)
and it should give us the processing rate, which then can be
matched to the experimental results in Figure 9.

• In HIST/RID mode the FPGA partitioner reads twice
as much data, since the first scan is just for the internal
build of the histogram r = 2:

Ptotal =
7.05GB/s

8B/tuple · 3 = 294Mtuples/s

• In HIST/VRID and PAD/RID mode read ratio is equal
to write ratio r = 1:

Ptotal =
6.97GB/s

8B/tuple · 2 = 435Mtuples/s

• In PAD/VRID mode read ratio is half the write ratio
r = 0.5:

Ptotal =
5.94GB/s

8B/tuple · 1.5 = 495Mtuples/s

Comparing the derived values with the measured ones,
we can see that the model matches the experiments within
10%. The model does not capture every detail of the imple-
mentation for the sake of simplicity, such as triggering the
start of the FPGA partitioning by passing the pointers, the
flushing of the pipeline or writing a histogram back. For
example, the reason why PAD/RID mode is faster than the
HIST/VRID mode in experiments is that, in HIST mode,
the FPGA partitioner completely flushes the pipeline while
building the histogram during the first phase and then the
pipeline has to be filled again during the second phase which
adds to the overall latency. We choose not to further detail
the model, as the FPGA partitioner remains bound on the
memory access bandwidth.

The validated model shows that, if the second term in
equation 7 ever becomes larger, by providing a high enough
bandwidth around 25.6 GB/s to the FPGA, the first term
would define the throughput, which will become 1.6 Billion
tuples/s. This is 45% faster than the highest absolute parti-
tioning throughput reported by a 64-threaded CPU solution
on a 4-socket 32-core machine [27]. Now, this improvement
is achievable on an FPGA with 200 MHz frequency. If the
provided design is hardened as a macro on the CPU die,
which can then be clocked in the GHz range, one could ex-
pect an even higher throughput performance. Even a better
utilization of the design would be to have it integrated in a
DRAM chip, which could do near memory processing, sim-
ilar to what Mirzadeh et al. [22] discusses for whole joins.

5. EVALUATION
We evaluate the proposed partitioner when executed as

part of a radix hash join. We use the workloads in Table 4
in our experiments, with the key distributions introduced in
Section 3.2. All experiments performed here use 8B tuples.
Since the join is bandwidth bound both on the CPU and the
FPGA, performing it on wider tuples only results in linear
changes for tuples per second, whereas total data processed
per second remains the same [4].

Table 4: Workloads used in experiments.
Name #Tuples R #Tuples S Key Distribution

Workload A 128 · 106 128 · 106 Linear
Workload B 16 · 220 256 · 220 Linear
Workload C 128 · 106 128 · 106 Random
Workload D 128 · 106 128 · 106 Grid
Workload E 128 · 106 128 · 106 Reverse Grid

5.1 Different number of partitions
In this experiment we perform the join on workload A with

an increasing number of partitions to see how the CPU and
FPGA partitioning behave, and also how the CPU build+probe
phase is affected. Figure 10a shows the results for the single
threaded join and Figure 10b for the 10-threaded. When we
say 10-threaded join in the context of hybrid joins, we mean
that after the FPGA partitioning the CPU build+probe
phase is 10-threaded. For the pure CPU join, both parti-
tioning and build+probe phases are 10-threaded. In this
experiment, the partitioner can work in PAD mode, since
the workload does not have any skew. Also, we choose RID
mode so that it is a direct comparison to the CPU.

The results indicate that as the number of partitions in-
creases, a single threaded CPU join spends more time on
partitioning. On the other hand, FPGA partitioning de-
livers the same performance regardless of the number of
partitions. Similar to the behavior of the CPU join, the
build+probe performance increases for the hybrid join as
well with increasing number of partitions. For lower num-
ber of partitions, the build+probe takes longer time than the
partitioning. This is due to the fact that for large relations
as in workload A, low number of partitions is not enough to
split the data into small enough, cache-fitting blocks.

The build+probe performance after FPGA partitioning
is always slower compared to being performed after CPU
partitioning, although both of them execute the same algo-
rithm. This happens due to the cache-coherency protocol as
explained in Section 2.2. For the 10-threaded execution de-
picted in Figure 10b the CPU partitioning becomes slightly
faster than the FPGA one. It also appears to be memory
bandwidth bound during the partitioning phase, since the
performance remains the same across all the number of par-
titions.

5.2 Different relation sizes and ratios
In this experiment we fix the number of partitions to 8192,

which delivers the best performance for build+probe. We
perform the pure CPU join and the hybrid join on work-
loads A and B, representing joins between similar sized rela-
tions and joins between a smaller build relation and a larger
probe relation, respectively. We observe the join perfor-
mance with increasing number of CPU threads in Figures
11a and 11b. Again, in the context of the hybrid join the
number of threads only refers to the build+probe phase com-
ing after the FPGA partitioning. The partitioner can work
in PAD mode, since both workloads are without skew. Oth-
erwise, we choose to evaluate both RID and VRID mode to
see how they compare against each other and the CPU.

The FPGA partitioner reaches its best performance in
VRID mode, since it has to read half the amount of data
from the main memory, saving bandwidth. The hybrid join
throughput for workload A in this mode is 406 Million tu-
ples/s and the CPU join throughput is 436 Million tuples/s,

256 512 1024 2048 4096 8192
0

1

2

3

4

256 512 1024 2048 4096 8192
0

1

2

3

4

Number of Partitions

T
o
ta

l
J
o
in

T
im

e
(s

)

(a) Execution is single threaded.

256 512 1024 2048 4096 8192
0

1

2

3

4

256 512 1024 2048 4096 8192
0

1

2

3

4

Number of Partitions

T
o
ta

l
J
o
in

T
im

e
(s

)

+ Model Prediction

CPU Partitioning

FPGA (PAD/RID) Partitioning

CPU Build+Probe

(b) Execution is 10 threaded.

Figure 10: Join performance with increasing number of partitions. Join is performed on workload A.

1 2 4 8 10
0

1

2

3

1 2 4 8 10
0

1

2

3

1 2 4 8 10
0

1

2

3

Number Of Threads

T
o
ta

l
J
o
in

T
im

e
(s

)

(a) Workload A

1 2 4 8 10
0

1

2

3

1 2 4 8 10
0

1

2

3

1 2 4 8 10
0

1

2

3

Number Of Threads

T
o
ta

l
J
o
in

T
im

e
(s

)

+ Model Prediction

CPU Partitioning

FPGA (PAD/RID) Partitioning

FPGA (PAD/VRID) Partitioning

CPU Build+Probe

(b) Workload B

Figure 11: Join performance for increasing number of software threads. Number of partitions is set to 8192. Join is performed
on workloads A and B.

both reported for 10 threaded execution. Also in this mode,
the FPGA partitioning seems to be slightly faster than the
10-threaded CPU one, but the assumption is that the database
is a column-store. If the tuples need to be materialized with
the payloads later for the query, this will be an additional
cost that does not occur in RID mode. However, this is no
different than an additional materialization cost that also
occurs in column-store database engines.

Both CPU and FPGA partitioning for workload B are
slightly slower, since the probe relation is larger than the
one in workload A and during writing the tuples to their
respective partitions random-access over a wider range of
memory is required. The build+probe performance after the
FPGA partitioning again is throttled by the cache coherence
protocol as explained in Section 2.2.

5.3 Different key distributions
Executing the join for relations of different key distribu-

tions provides us a way to see in Figure 12, whether the
difference in robustness of hash or radix partitioning has
any effect on the performance of the build+probe phase.
We perform radix and hash partitioning on the CPU, and
just hash partitioning on the FPGA, since hash calculation
on the FPGA comes at no additional cost. For workload C,
no benefit for the build+probe phase comes from using hash
partitioning, since the input keys are distributed randomly.
In that case, radix partitioning delivers a good enough dis-

tribution. For workloads D and E however, we can observe
a visible improvement of build+probe time, when hash par-
titioning is used: 11% for workload D and 35% for workload
E, both observed from the 10-threaded execution. In con-
trast, the results also show up to 50% increase in the CPU
partitioning time when hash partitioning is used, confirming
the performance reduction through the added cost of hash
computation. For the 10-threaded execution, the CPU does
not seem to suffer from doing hash partitioning, because it is
memory bound and has free cycles to compute the complex
hash function. However, this is only the case for 10-threaded
execution, when the whole CPU is used for this operation,
whereas with the FPGA we can get the same robustness for
free. This is another example where the advantage of the
FPGA implementation shows itself, because even a complex
hash function calculation does not slow it down and it de-
terministically delivers the same performance.

5.4 Effect of skew
If one of the relations is skewed following the Zipf distribu-

tion law with a factor larger than 0.25, the PAD mode of the
FPGA partitioner fails for realistic padding sizes, leading to
overflowed partitions. When this happens, the HIST mode
must be used to ensure no overflow occurs. The detection
time for the failure of the PAD mode is random and depends
on the arrival order of the tuples, how they are hashed and
the size of the relation. The failure is detected when one

1 2 4 8 10
0

1

2

3

4

5

1 2 4 8 10
0

1

2

3

4

5

1 2 4 8 10
0

1

2

3

4

5

Number Of Threads

T
o
ta

l
J
o
in

T
im

e
(s

)

(a) Workload C

1 2 4 8 10
0

1

2

3

4

5

1 2 4 8 10
0

1

2

3

4

5

1 2 4 8 10
0

1

2

3

4

5

Number Of Threads

T
o
ta

l
J
o
in

T
im

e
(s

)

(b) Workload D

1 2 4 8 10
0

1

2

3

4

5

1 2 4 8 10
0

1

2

3

4

5

1 2 4 8 10
0

1

2

3

4

5

Number Of Threads

T
o
ta

l
J
o
in

T
im

e
(s

)

+ Model Prediction

CPU Radix Partitioning

CPU Hash Partitioning

FPGA (PAD/RID) Hash Partitioning

CPU Build+Probe

(c) Workload E

Figure 12: Join performance with for increasing number of software threads. Number of partitions is set to 8192. Join is
performed on workloads C,D and E after having either radix or hash partitioning.

0.25 0.5 0.75 1 1.25 1.5 1.75
0

0.5

1

1.5

2

0.25 0.5 0.75 1 1.25 1.5 1.75
0

0.5

1

1.5

2

Zipf Factor

T
o
ta

l
J
o
in

T
im

e
(s

)

+ Model Prediction

CPU Partitioning

FPGA (HIST/RID) Partitioning

CPU Build+Probe

Figure 13: Join performance on workload A, when relation
S is skewed. Execution is 10-threaded.

of the counters for a partition exceeds the preassigned fixed
size. In the worst case, this might happen at the very end
of a partitioning run. Then, the procedure has to start from
the beginning in HIST mode, which is able handle any Zipf
skew factor.

In Figure 13 the join performance for 10-threaded exe-
cution is given, comparing CPU partitioning and FPGA
partitioning. We see that the FPGA partitioner is slower
compared to the CPU one, when HIST/RID mode is used.
Note that, this is again a limitation of the bandwidth that
is available to the FPGA. As we have shown in our analyt-
ical model, the partitioner throughput can reach 800 Mil-
lion tuples/s in HIST/RID mode, when not limited by the
bandwidth (see Section 4.7). This means that the FPGA
partitioning time in Figure 13 would be approximately 0.32
seconds, 1.56x faster than the 10-core Xeon.

6. DISCUSSION
This paper’s primary focus is on the partitioning sub-

operator and its integration within a CPU+FPGA hybrid
platform for hash joins, but the proposed techniques and
ideas can be applied in a broader setting.

FPGAs excel at processing deep pipelines, vectorized in-
structions, and computationally intensive workloads. How-
ever, their main constraint until now has been the limited
integration with the CPU. Therein lies the potential of hy-
brid architectures. With this work, we have shown that even
a tightly integrated and CPU-optimized algorithm as the
radix join can benefit from FPGA co-processing. This opens

up the possibility of using FPGA co-processing on a wider
range of algorithms, from which compute intensive parts
can be extracted and accelerated. For example, the par-
titioning we have described can also be used for a hardware
conscious group by aggregation [1] and in other operators
involving partitioning [27]. Recent literature provides mul-
tiple examples for operations which can be offloaded to an
FPGA: Sub-operators such as bitonic sorting networks [10],
histograms [15], hash functions [18]; full operators such as
pattern matching and regular expressions [14,23]; and even-
tually new functions typically not supported such as skyline
operators [40].

FPGAs are bandwidth bound on most workloads because
of their very high internal processing rate and parallelism.
Therefore, we currently try to optimize our designs for the
limited bandwidth, hence the write combiner in our par-
titioner. Sequential access (e.g., table scans) and stream
processing are something FPGAs are very good at. In the
current state where the bandwidth is so scarce, doing ran-
dom access from the FPGA is not a good option (e.g., using
indexes), unless it is part of the algorithm as it was for the
partitioner writes. In this context, the data layout is also
important to consider. Column stores can benefit greatly
from deep pipelines implementing complex analytics queries.
Similarly, when processing compressed columns (a de facto
standard for analytical workloads), decompression and com-
pression can be done for free on the FPGA as the first and
the last steps of a processing pipeline. For row stores, the
flexible vectorized instructions (e.g., a customized SIMD)
can be very beneficial, enabling multiple predicate evalua-
tions per only one row access.

Regarding the integration of FPGA co-processing into a
DBMS, depending on the nature of the algorithm there are
several possibilities. Some can be integrated as part of the
DBMS query processing by invoking the FPGA sub-operators
for a more complex relational operator. This is the method
used in this paper. A similar approach was also explored by
He et al. in the context of CPU+GPU co-processing [13].
An alternative method for DBMS integration is to imple-
ment relational operators or complex analytics as user de-
fined functions (UDF) executed on the FPGA, similar to
what Sidler et al. [33] propose.

As part of the future work, we see two main use cases
for the partitioner presented in this work. The first one is a
tight integration into a DBMS, following the ideas presented
in [33], for accelerating end-to-end execution time of joins.

The second one is to have the FPGA partitioner directly con-
nected to the network to distribute the data across machines
using RDMA for highly scaled distributed joins, presented
by Barthels et al. in [6, 7]

7. RELATED WORK
Relational database joins have been the subject of hard-

ware acceleration in many previous works. In the following,
all reported throughput numbers are for 8B tuples and sim-
ilar relation sizes and ratios to provide as fair a comparison
as possible. Kaldeway et al. [17] port hash join algorithms
to a GPU exploiting massive parallelism and achieve 480
Million tuples/s throughput. Sukhwani et al. [35] use an
FPGA to accelerate predicate evaluation and decompres-
sion to improve the performance of queries utilizing those
sub-operators. Werner el al. [39] provide one of the early
works implementing simple join algorithms on an FPGA at
very small scales (evaluation is up to 5000 tuples per re-
lation, reaching a throughput of 2.5 Million tuples/s) and
the data is assumed to be on the FPGA prior to the join
operation. Halstead et al. [12] implement a non-partitioned
hash join on an FPGA and report the simulated throughput
for the probe phase, where the FPGA probing outperforms
the CPU by an order of magnitude. As the results reported
are based on a simulation, data transfer overheads and in-
tegration challenges are not addressed. As a follow-up of
this work, Halstead et al. [11] implement a non-partitioned
hash join on a Convey-MX architecture with multiple FP-
GAs and shared global memory. The logic on the FPGAs
is designed to hide the memory-latency by sustaining a high
utilization of the available memory bandwidth (76 GB/s)
through deep-pipelining and having thousands of concur-
rent hardware threads. The design relies on in-order re-
sponses to memory requests and direct support of atomic
operations for the FPGA, which is currently only available
in the Convey-MX architecture. With 4 FPGAs, the sys-
tem achieves around 620 Million tuples/s join throughput.
Casper et al. [9] present a sort-merge based equi-join imple-
mented completely on an FPGA. Based on this work, Chen
et al. [10] perform a hybrid sort-merge join and accelerate
the sorting phase with a bitonic sorter on an FPGA, which
is part of a hybrid CPU-FPGA platform designed mainly
for embedded low-end applications. Because of the mem-
ory bandwidth limitations of the target platform, the re-
sulting design does not outperform previous work in terms
of absolute throughput (with 86 Million tuples/s). Ueda et
al. [36] focus more on partial reconfiguration, reconfiguring
the FPGA at runtime either with a sort-merge join or a hash
join pre-compiled circuit depending on relation sizes to pro-
vide optimal performance. Jha et al. [16] and Polychroniou
et al. [26] both implement non-partitioned and partitioned
hash joins on a many-core (Xeon Phi) architecture. The join
throughput reported by Jha et al. [16] is 450 Million tuples/s
with the non-partitioned hash join and by Polychroniou et
al. [26] 740 Million tuples/s with the partitioned hash join
on the Xeon Phi. Another interesting work for accelerating
join processing by Mirzadeh et al. [22] suggests doing near
memory processing, to execute the join without the CPU
ever touching the actual data. Although absolute through-
put numbers are not reported, it is stated that near mem-
ory join processing outperforms CPU-based ones for both
hash and sort-based joins, through a highly parallelized de-
sign and very high internal bandwidth. There has been also

many advancements for CPU-based join implementations in
recent years [4, 5, 8, 20]. Schuh et al. [31] performed a de-
tailed experimental analysis of previous work and suggested
their own improvements for NUMA-aware joins. On a server
with 4 CPUs each with 15 cores, they report a throughput
of 1800 Million tuples/s.

Data partitioning as an important sub-operator in database
engines has been studied in previous work. Polychroniou
et al. [27] provide an extensive analysis on data partition-
ing across several dimensions, such as the partitioning type
(radix, hash or range) and the shuffling strategy. It has been
shown that for more than 16 partitions, write-combining
partitioning with non-temporal writes directly to the mem-
ory bypassing the cache performs the best. The reported
partitioning throughput is 1.1 Billion tuples/s for 8192 parti-
tions with 64-threaded parallel execution on a 32-core server.
Schuhknecht et al. [32] present a set of experiments ex-
ecuting radix partitioning. Known optimizations (write-
combining, non-temporal stores etc.) are enabled and novel
optimizations (prefetching for writes, micro row layouts) are
added step-by-step to observe their effects on the total ex-
ecution time. The experiments in this study are all single-
treaded and the reported throughput is 77 Million tuples/s.
Wu et al. [41] present a range partitioner accelerator de-
signed as an ASIC and the simulated throughput is reported
to be 312 Million tuples/s for 511 partitions. The fastest to
date FPGA data partitioning implementation is presented
by Wang et al. [37] with 256 Million tuples/s for 8192 parti-
tions. They improved an existing OpenCL implementation
of a partitioner and deployed it on an FPGA. The data to
be partitioned is assumed to reside in a DRAM connected
directly to the FPGA. The resulting partitions are written
back to the same DRAM, making a transfer over PCIe to
the host memory necessary if the partitioned data is to be
used by the CPU for subsequent operations.

For reference, the design we propose in this paper achieves
for 8192 partitions a raw partitioning throughput of 1597
Million tuples/s. On the Xeon+FPGA platform, where we
prototype our design and perform experiments, we measure
a maximum end-to-end partitioning throughput of 514 Mil-
lion tuples/s. Our hybrid join achieves a maximum through-
put of 406 Million tuples/s.

8. CONCLUSION
In this paper we present an FPGA data partitioner for

radix hash joins. To our knowledge it is the first FPGA
partitioner to avoid internal pipeline stalls and locks, being
able to produce a 64B cache-line per clock cycle. We test
our implementation on a research-oriented platform, Intel
Xeon+FPGA. In an experimental analysis incorporating a
wide range of workloads, we show that the hybrid join is
on par regarding performance with the state-of-the-art 10-
threaded CPU solution. We develop an analytical model
of the FPGA partitioner showing that it is bound on the
memory bandwidth. We have shown the benefits of using a
specialized hardware data partitioner, and hope to integrate
it in future platforms with better characteristics.

9. ACKNOWLEDGMENTS
Part of the work of Jana Giceva has been funded by a

Fellowship from Google. The Intel HARP v1 platform has
been generously donated by Intel.

10. REFERENCES
[1] I. Absalyamov et al. Fpga-accelerated group-by

aggregation using synchronizing caches. In DaMoN,
page 11, 2016.

[2] A. Appleby. https://github.com/aappleby/smhasher.
January 2016.

[3] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu.
Multi-core, main-memory joins: Sort vs. hash
revisited. VLDB, 7(1):85–96, 2013.

[4] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu.
Main-memory hash joins on multi-core cpus: Tuning
to the underlying hardware. In ICDE, pages 362–373,
2013.

[5] R. Barber et al. Memory-efficient hash joins. VLDB,
8(4):353–364, 2014.

[6] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann.
Rack-scale in-memory join processing using rdma. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1463–1475.
ACM, 2015.

[7] C. Barthels, I. Müller, T. Schneider, G. Alonso, and
T. Hoefler. Distributed join algorithms on thousands
of cores. Proceedings of the VLDB Endowment, 10(5),
2017.

[8] S. Blanas, Y. Li, and J. M. Patel. Design and
evaluation of main memory hash join algorithms for
multi-core cpus. In SIGMOD, pages 37–48, 2011.

[9] J. Casper and K. Olukotun. Hardware acceleration of
database operations. In FPGA, pages 151–160, 2014.

[10] R. Chen and V. K. Prasanna. Accelerating Equi-Join
on a CPU-FPGA Heterogeneous Platform. FCCM,
2016.

[11] R. J. Halstead, I. Absalyamov, W. A. Najjar, and
V. J. Tsotras. FPGA-based Multithreading for
In-Memory Hash Joins. In CIDR, 2015.

[12] R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes,
P. Dube, S. Asaad, and B. Iyer. Accelerating join
operation for relational databases with FPGAs. In
FCCM, pages 17–20, 2013.

[13] J. He, S. Zhang, and B. He. In-cache query
co-processing on coupled cpu-gpu architectures.
VLDB, 8(4):329–340, 2014.

[14] Z. Istvan, D. Sidler, and G. Alonso. Runtime
parameterizable regular expression operators for
databases. 2016.

[15] Z. Istvan, L. Woods, and G. Alonso. Histograms as a
side effect of data movement for big data. In
SIGMOD, pages 1567–1578, 2014.

[16] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh.
Improving main memory hash joins on intel xeon phi
processors: An experimental approach. VLDB,
8(6):642–653, 2015.

[17] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk.
Gpu join processing revisited. In DaMoN, pages
55–62, 2012.

[18] K. Kara and G. Alonso. Fast and robust hashing for
database operators. In FPL, pages 1–4, 2016.

[19] C. Kim et al. Sort vs. hash revisited: fast join
implementation on modern multi-core cpus. VLDB,
2(2):1378–1389, 2009.

[20] H. Lang, V. Leis, M.-C. Albutiu, T. Neumann, and
A. Kemper. Massively parallel numa-aware hash joins.

In In Memory Data Management and Analysis, pages
3–14. 2015.

[21] S. Manegold, P. Boncz, and M. Kersten. Optimizing
main-memory join on modern hardware. TKDE,
14(4):709–730, 2002.

[22] N. Mirzadeh, O. Kocberber, B. Falsafi, and B. Grot.
Sort vs. hash join revisited for near-memory
execution. In ASBD, 2015.

[23] R. Mueller, J. Teubner, and G. Alonso. Glacier: a
query-to-hardware compiler. In SIGMOD, pages
1159–1162, 2010.

[24] N. Oliver et al. A reconfigurable computing system
based on a cache-coherent fabric. In ReConFig, pages
80–85, 2011.

[25] H. Pirk, S. Manegold, and M. Kersten. Waste not...
efficient co-processing of relational data. In ICDE,
pages 508–519, 2014.

[26] O. Polychroniou, A. Raghavan, and K. A. Ross.
Rethinking SIMD vectorization for in-memory
databases. In SIGMOD, pages 1493–1508, 2015.

[27] O. Polychroniou and K. A. Ross. A comprehensive
study of main-memory partitioning and its application
to large-scale comparison- and radix-sort. In
SIGMOD, pages 755–766, 2014.

[28] A. Putnam et al. A reconfigurable fabric for
accelerating large-scale datacenter services. In ISCA,
pages 13–24, 2014.

[29] S. Richter, V. Alvarez, and J. Dittrich. A
seven-dimensional analysis of hashing methods and its
implications on query processing. VLDB, 9(3):96–107,
2015.

[30] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W.
Lee, D. Kim, and P. Dubey. Fast sort on cpus and
gpus: a case for bandwidth oblivious simd sort. In
SIGMOD, pages 351–362, 2010.

[31] S. Schuh, X. Chen, and J. Dittrich. An Experimental
Comparison of Thirteen Relational Equi-Joins in Main
Memory. In SIGMOD, 2016.

[32] F. M. Schuhknecht, P. Khanchandani, and J. Dittrich.
On the surprising difficulty of simple things: the case
of radix partitioning. VLDB, 8(9):934–937, 2015.

[33] D. Sidler, Z. Istvan, M. Owaida, and G. Alonso.
Accelerating pattern matching queries in hybrid
cpu-fpga architectures.

[34] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel. Capi:
A coherent accelerator processor interface. IBM
Journal of Research and Development, 59(1):7–1, 2015.

[35] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer,
B. Brezzo, D. Dillenberger, and S. Asaad. Database
analytics acceleration using fpgas. In PACT, pages
411–420. ACM, 2012.

[36] T. Ueda, M. Ito, and M. Ohara. A Dynamically
Reconfigurable Equi-Joiner on FPGA. IBM Tehnical
Report RT0969, 2015.

[37] Z. Wang, B. He, and W. Zhang. A study of data
partitioning on OpenCL-based FPGAs. In FPL, pages
1–8, 2015.

[38] J. Wassenberg and P. Sanders. Engineering a
multi-core radix sort. In European Conference on
Parallel Processing, pages 160–169, 2011.

[39] S. Werner, S. Groppe, V. Linnemann, and

T. Pionteck. Hardware-accelerated join processing in
large Semantic Web databases with FPGAs. In HPCS,
pages 131–138, 2013.

[40] L. Woods, G. Alonso, and J. Teubner. Parallel
computation of skyline queries. In FCCM, pages 1–8,
2013.

[41] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross.
Navigating big data with high-throughput,
energy-efficient data partitioning. In SIGARCH,
volume 41, pages 249–260, 2013.

