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ABSTRACT it discovers safety property[3] or progress property[4]
Graphical animation is a way of visualizing the behavior of violations in a model. Again these counter-examples
design models. This visualization is of use in validating a consist of action traces. A difficulty arises in interpreting
design model against informally specified requirements andthe meaning of traces in relation to the original problem
in interpreting the meaning and significance of analysis domain. Even when the meaning is clear to the model
results in relation to the problem domain. In this paper we designer, the problem of communicating model behavior
describe how behavior models specified by Labeled and the results of analysis to non-technical stakeholders of
Transition Systems (LTS) can drive graphical animations. a system remains. Our motivation is thus to explore the
The semantic framework for the approach is based onvalue of graphic animation in validating behavioral models
Timed Automata. Animations are described by an XML against requirements and in communicating the results of
document that is used to generate a set of JavaBeans. Theaodel analysis. The first step in this exploration, reported
elaborated JavaBeans perform the animation actions asn this paper, is the development of suitable tools.

directed by the LTS model. The idea of graphic animation is not in itself novel. For

Keywords example, StateMate[5] supports animation tigto a set of
Labeled Transition System, Graphic Animation, Behavior predefined graphic widgets that display buttons, lights,
Analysis dials and graphs. The novelty of the approach discussed

here is the firm semantic foundation on which animations

i m:)l\é-(gﬁt% zgé:g:g:\ln aoproach involves building analvsis® € constructed and the ease and flexibility with which an
gn app 9 y animation can be described and associated with the LTS

models early in the software lifecycle. These models can be : . e
. . model that drives it. The approach supports compositional

developed shortly after the initial requirements capture and_ .~ 7 .

. ) . ) o animation development.

refined in parallel with further requirements elicitation so

that early feedback on the operation of a proposed systenBection 2 of the paper describes the semantics of animation

can be fed back to customers and so that potential desigand its basis in Timed Automata. It shows how an

problems are highlighted early. We have proposed such aranimation is associated with an LTS. Section 3 describes

approach, in relation to Software Architecture[l, 2], in how animations can be composed. Section 4 outlines the

which component behavior is modeled using Labeled JavaBean based animation engine and how animations are

Transitions Systems (LTS) and the overall behavior of agenerated from XML documents. Section 5 discusses

system can be formed by the parallel composition of theserelated work and the paper concludes with an evaluation

component models. We have developed the Labelledand discussion of the approach.

Transition System Analysis (LTSA) tool to support the 5 ANIMATION

approach. We will use the example of a communication channel to
The behavior of a model can be interactively explored illustrate our approach to animation. The channel takes an
using the LTSA tool. The output of such an execution is input message and either outputs the message or fails. The
essentially a trace of action names. Each action is thechoice between outputting or failing is non-deterministic.
abstract representation in the model of an input or output ofThe channel is modelled below as an FSP process. FSP[6]
the proposed system. In common with other modelis the input notation for the LTSA tool. It is a simple
checking tools, the LTSA produces counter examples whenprocess algebra used as a concise way to specify labeled
transitions systems.

CHAN = (in -> out -> CHAN
[in -> fail -> CHAN
).

In the above, -> " denotes action prefix and “|” choice. The
LTS that corresponds to CHAN is depicted in Fig 1.



in Timed Automata
Timed Automata [7] augment labeled transition systems
with a finite set of (real-valued) clocks. Transitions are
instantaneous and time can elapse in a state. A clock can be
CHAN reset to zero simultaneously with any transition. At any
0 9 instant, the reading of a clock equals the time elapsed since
the last time it was reset. All clocks increase at a uniform
rate, counting time with respect to a fixed global time
frame. Clock constraints can be associated with transitions
such that the transition can only occur if the current clock
fail values satisfy the constraint. For a Xeif clock variables,
Figure 1 ~CHANLTS the s_etCD(X) of clock constraintsg is limited by the
following grammar:
Three stages of a graphic animation of the channel are
depicted in Fig 2. ¢ = x<sk |xzk |x<k|x>k | ¢ 0@
wherex is a clock from the seX andk is a constant from
the set of nonnegative rational numbers.

X The timed automaton that describes the behavié€ZHAN
when it is combined with its animation is shown in Fig 3.

Channel

in,x:=0
(a)
Channel
‘ CHAN
(b)
Channel x > Tf, falil
=1 Figure 3 —-CHANTimed Automaton
Both of the transitions labeled by the actionreset the
clock x that represents the channel animation activity. The
() out transition is only enabled when the clock value is

greater thanTc. This represents the time at which the

) ) o o . message reaches the box at the right of the animation
Fig 2(a) depicts the situation in which amoperation has  gisplay. Thefail action is enabled after the clock value
occurred and theut action has not yet happened. The pecomes greater thaf. In the animationTf is less thafc
message, represented by the block labeleds moving  gq that the explosion drawn by the fail action occurs before
from the input box on the left to output box on the right. the hox to the right is reached. The timed automaton
Fig 2(b) depicts the state in which the charfadl action  gescribes the abstract behavior of the animated model. In
has occurred. This is animated by replacing the messaggne following, we outline how the concrete graphic display

block with an explosion. Fig 2(c) depicts the situation when 5 the animation is associated with the LTS model in a
the channel does not fail and that action occurs. This way that is consistent with this abstract model.

simple animation consists of a single activity that moves

the message block from the input box to the output box.Animation Activities

C|ear|y the animation activity takes time. This time passesAn animation is broken down into a set of activities. Each
while the model is in a particular state. In the example, @ahimation activitycorresponds to a single clock variable in

Figure 2 — Channel Animation

animation occurs when the model is in either stater ~ the timed automata model. The action of starting the
state2. That is thén action has occurred but tbet or fail activity corresponds to resetting the clock while the end of
action has not yet occurred. In faste abstract all the activity corresponds to the satisfaction of a clock

animation activities by local clocks that measure the constraint of the fornx > k. The progress of an animation
passage of timelt was this observation that led us to the activity corresponds exactly to the increasing value of a
use of Timed Automata as the semantic basis for animation.clock variable in the timed automata model. Each



An action label may be associated with both a command
activity and one or moreonditionsthat it signals as the and a condition, e.gfail. The effect of the animation
animation progresses. In addition, the activity may provide declaration is to annotate an LTS with animation
commands to modify how the animation is drawn — in the commands and conditions in the same way that timed
example, the command to draw an explosion. The channeblutomata annotate LTSs with clock resets and constraints.
animation activity has the following commands and The animation above annotateslANas depicted in Fig 4.
conditions:

animation activity consists of @ommandto start the

Animation Execution

commands: In the following, we outline the algorithm that executes an
channel.begin -~ corresponds t&@:= 0 animation directed by an LTS. In the interests of clear
eXP'_Ode exposition, we will ignore silent actions) @nd the error

conditions state since these have little effect on the running of an
channel.end --  corresponds t& > Tc animation. An error state or a state with no outgoing
channel.fail - corresponds ta> Tf transitions terminates an execution.

Combining Model with Animation We define an LT as a quadruplEB, A, A, golwhere:

One of the desirable characteristics of a graphic animation.
facility is that it should not obscure or complicate the

model specification. The description of how a particular °
model is animated should be separate from the model,
specification itself. This allows different animations to be

applied to the same model and ensures that model
development is not confused and complicated by the neec
to animate. We achieve this by defining relations that

associate animation activity commands and conditions with

action labels in the LTS.

in, channel.begin

in, channel.begin

CHAN

channel.endout

channel.fail fail, explode

Figure 4 —CHANannotated by animationCHAN

Animation activities are associated with model action
labels using two relations: Actions and Controls The
Actions relation maps model action labels to animation
commands and th€ontrolsrelation maps action labels to
animation conditions. The relations for associating the
channel animation with the CHAN model are declared in
FSP as follows, where the infix “/" introduces a
abel, commandor dabel, conditiori] pair :

animation CHAN = "channel.xml"
actions {
in / channel.begin,
fail / explode

controls  {
out / channel.end,
fail / channel.fail

}

Sis a finite set of states.
A'is a set of action labels known as #hghabetof P.

A O Sx Ax S denotes a transition relation that maps
from a state and an action onto one or more states,

0o 0 Sindicates the initial state of P.

The set of enabled actiofg at some statg in the LTS is

the set of actions that label outgoing transitions from that
state:

* Ey={a:A|0rOS (@ar)0 A}.

An animation M is defined by
[C, B, Actions, ControlSwhere:

the quadruple

* Cis a finite set of commands.
* Bis afinite set of boolean conditions.

* Actions A x C is the relation that maps an action to
one or more commands.

e ControlsOd A x B is the relation that maps an action to
one or more conditions.

An animationM applied to an LT® partitions the alphabet

of P into two sets, those that can be executed immediately
and those that are controlled by animation conditions and
thus must wait for these conditions to become true. These
sets are:

¢ Controlled =domain Controls.
*« Immediate = A- Controlled.

The predicatesignaled(a)is true for an actioa if all of the
conditions that it is mapped to are set to true.

NextStatég,a) computes the next staten the LTSP such
that @,a,r) O A.

The following algorithm describes animation execution:



Animate P with M : already used by animation activities. The channel animator

Curr :=qo together with the send button is depicted in Fig 5.
loop oo :
while (Ecurr N Immediateyﬁ {} ) Eggl:ustom Animator S =] B
choosea from (E N Immediatg fun Trace =
execute{ c: C| (a c¢) O Command$ Channel

curr := NextStatg curr, a)
end while =
it (Eeur = 1) exit —(
while ({ a: E.y, | Signaleda) } = {}) wait
chooseacfrom { a: Ey, | Signaleda) }
execute{ c: C| (ac, ¢) 0 Command$
curr := NextStatdcurr, ac)

end loop

Figure 5 — Channel Animation withsendbutton

The animation algorithm ensures that all immediate actions,The question that now arises is when to reset the condition
that are enabled, happen before the animation waits forset by a button? Normally an animation command resets all
controlled actions to be signaled. This is consistent with thethe conditions of the activity that it starts. However, there is
maximal progress condition usually assumed for timed no corresponding command for a button. Pragmatically, we
systems. We discuss later, how to check that ahave chosen to reset the condition associated with a button
model/animation combination is free of Zeno behaviors — immediately after the button-enabled action occurs. All
in our context, those behaviors involving an infinite buttons are initially reset. The annotation of an LTS for a
number of immediate actions without time progressing. buttongo, is shown in Figure 6, whergyo is the command

. . L to reset the conditiogo.
Interacting with Animations

Animation execution as described above, once started, GO 9o, action, go

proceeds autonomously. Where more than one action is

eligible as a choice, if the action is immediate and not

controlled by an animation condition, the algorithm makes

an arbitrary choice. This corresponds to letting the

environment of the system make an arbitrary choice. Figure 6 — LTS annotated with button condition

Clearly we need to let the user interact with the animation Thjs scheme has the limitation that a button can only be
so that these environment choices need not be arbitrary. Tqgsociated with a single action, while the general case is
allow interaction, we introduce buttons which when pressednat activity conditions can be associated with more than
set conditions. These conditions control actions in the usualne action. However, our experience to-date has been that
way. this limitation is not intrusive when designing animations.
Returning to the channel example, the animation oncereplaying traces

started runs continuously. Tieaction, which corresponds 5o far, we have described how animation is accomplished
to the environment sending a message to the channelior an interactive execution of an LTS. The other use of

happens autonomously. To allow the user to dictate when animation is to replay traces generated as counter-examples
message is to be sent, we introduceead condition 0 quring model safety and progress analysis. A trace is

control thein action as shown below: simply a sequence of actions. Replay of a trfidey an
animation CHAN = "channel.xml" animationM is performed by the following algorithm:
actions in / channel.begin, .
fail/e{xplode ’ Replay T with M :
} R:=T
controls { out /channel.end, repeat
fail / channel fail, a :=headR); R : =tail(R)
in /send if (al Controlled wait Signaleq a)
} execute{ c: C| (a c¢) O Command$
Introducing this new control mapping has two effects. It until ( Rz <>)

ensures that thm action cannot occur untendis set to

true and it causes the animation engine to create a buttoriThe algorithm simply executes actions in the sequence
The button sets theendcondition when it is pressed. The specified by the trace. However, where the action is
animation engine, by default, creates buttons for all thosecontrolled, replay waits until the controlling conditions are
conditions named in th&€ontrols relation that are not signaled.



Animation Behavior show how the Timed Automata semantics that underpin
The behavior of an LTS annotated by an animation — theanimations provides a way to compose animations.

traces it can generate or accept — is a subset of the behaviorr. -
of the LTS without annotation. This becomes apparent if ”T‘ed Automata Composmon )
we reconsider thAnimate algorithm. At any state, if there A timed automatoir is the twple5 A, X, A, golwhere:
are both eligible immediate and controlled actions, the. Sjs a finite set of states.

algorithm chooses immediate actions in preference to _ )

controlled actions. Controlled actions are only chosen if* Ais aset of action labels known as éghabetof Pr.
there are no eligible immediate actions. The controlled ,
actions have lower priority. Consequently, to specify the
behavior of an animated LTS, we use the low priority * ADOSxAxSx 28 x d(X), gives the set of transitions.
operator “>>" from[4], specified as follows: (3, a, s, A, ¢ Orepresents the transition from state

For an LTSP =[§ A, A', golJand set of actionk [0 A, the fézt;s,alr?;elmegjgg ;Vg::)ékmcz:nt;?;g: of clocks to be
LTS in which the actionk are low priority is: int.

X is a finite set of clocks

P>>L =[§ A, A, g0 where Ais the smallest relation U Sindicates the initial state 6.

satisfying the rule: The composition of two timed automata:
S P Pr1 =8, Ag, Xg, A1, qudandPr, =[5, Ay, Xo, A5, gplis
pOf-p if((aDL)orﬂ]bD(A—L),PIj)/—»)) 1 =[5y, Ay, Xi, A, o 2 =[5, Ag, X, Ap, O

P>>L I~ P>>L Pri||Pr2 = [B1% $, Ac O A, X1 O X3, A, (G ,02)DwhereX;
andX; are disjoint and\ is defined by:

The transition rule states that an eligible action in the
prioritized system can be performed if it is not a member of e for a 0 A;n A,, for everyis,, a, s/, A1, ¢1 [in A, and
the set of low priority action& or there are no eligible 3,3 S, Ay ¢, 0in A, A contains

higher priority actions in A —L). 01 ), &, (5 &), A 0 Ay, ¢y 0 o]

With the low priority operator, we can now approximate , ¢ 40 A A, for everyis, a, €, A, ¢ Cin A and
the behavior of the LTS animated byM with set of everytins, Acontainﬂé ti a; (’s’ 9, A, ¢0]

controlled action€ontrolledas:
« foral Ay, A foreveryls, a s, A, ¢ OnA,and
everytin S, A containd{t, 9), a, (t,s), A, ¢0

Composition for timed automata is an extension of the
ormal LTS composition construction in that the transition
or a shared action is annotated both with the union of
clock resets for the transitions from each of the constituent
automata, and with the conjunction of clock constraints.

P >> Controlled.

This is an approximation that correctly constrains the
relative ordering between immediate and controlled actions
in the same way as the animation does. However, it permit
more orderings of controlled actions than are permitted by
the animation, since the animation schedules controlled
actions with time. It is still a useful approximation since we
can apply the progress check defined in [4], to check that aAnimation Composition

system is free of Zeno executions using: Remembering that in an animation, activities reify clocks
and that clock resets are interpreted as activity commands
and clock constraints as activity conditions, we can apply
This asserts that in an infinite execution, it must be possiblethe timed automata composition construction to animations.
to execute one of the actions in the controlled set infinitely An animation is defined by the set of commafighe set
often. In practice, satisfaction of this property means thatof conditionsB and the two relationdctionsand Controls

the animation will display some activity rather than freeze that map LTS action labels to commands and conditions, as
while a continuous loop of commands is executed. discussed previously. The relations are used to annotate the
3 COMPOSITION LTS. To compose animations, we need to form the union of

Composition is of fundamental importance in our approach commands that label a shared action and the conjunction of

to developing models. Primitive components are mOdeledZ?:ggﬁ:;r?dcg:tsro;zre?gtri]c?nsby forming the union of the
and analyzed before being combined into larger structures '
as dictated by the architecture of the target system[8]. Inif animationM; = [T,, B,, Actions, ControlsCand
using animation as an aid to developing and validating animationM, = [T,, B,, Actions, Controls(ithen:
models we require that it be of use in this compositional =

setting. This dictates that when we compose components@nimationM, |[M; =[C, O Cp, B, U B,

the animations associated with these components should Actiong 0 Actions,

also combine in a meaningful way. In the following, we Controlg [J Controls[

progress NONZENO = { Controlled}



Where a model action maps to a set of animationanimation  GANTRY_ANIM = "fmc.xml"
commands, theAnimate and Replay algorithms execute actions  {go[x:X]/gantry.go[x]}
each of these commands. If it maps to a set of animation ~ controls  {end/gantry.end}

conditions, the algorithms require all of the conditions to be There is no direct textual association between the animation

true before allowing the action to happen and any and the process in the example. The association between a
associated commands to be executed. particular animation and the system it animates is made by

Example user choice in the LTSA tool when the animation is

To illustrate animation composition, we use a fragment activated. This gives the user the flexibility to associate
from the Flexible Production Cell[9] animation depicted in different animations with a system and thus have multiple

Fig 7. This animation consists of activities to animate the VIeWS of its behaviour. Different system models may also
operation of the input and output conveyors, the drilling be associated at different times with the same animation.

and oven processes, and the crane that moves blankshe second element in the crane example is head

between the conveyors and the manufacturing processes. Ifovement. The annotated LTS is depicted in Fig 9.
the following, the animation concerned with the crane is

described. go[y:Y], head.goly]
= HEAD

Fun Ty

head.endend

Figure 9 —HEADannotated with animationHEAD_ANIM

The FSP description that generates this annotated LTS is
given below:

owen

range Y=0.4
GANTRY = (go[y:Y] -> end -> GANTRY).

animation  HEAD_ANIM = "fmc.xml"

i actions  {go[y:Y]/head.go[y]}
SEE controls  {end/head.end}

Figure 7 — Flexible Production Cell animation. We can now construct a process that coordinates gantry and

The crane is composed of two elements, dhatry that head such that we can have composite actions that model
moves along the x-axis and theadthat moves along the moves to specific (x ,y) coordinates. Composing the head
y-axis. The crane is positioned at a point (X, y) by a and gantry processes forms this crane control process:
combination of gantry and head moves. The LTS of the ICRANE = ( GANTRY/{move[x:X][Y}/go[x]}

gantry, annotated with its animation commands and IHEAD A{move[X]ly:Y)/goly]}
conditions is depicted in Fig 8. ).
go[x:X], gantry.go[x] Composing the animations for gantry and head forms the

animation for this composite process:

animation CRANE_ANIM = "fmc.xml"
compose { GANTRY_ANIM/{move[x:X][Y]/go[x]}
[[HEAD_ANIM /{move[X][y:Y]/go[yl}
}

gantry.end end Note that the relabeling relations used in the process

) _ o composition are the same as those used in animation
Figure 8 —-GANTRYannotated with animation GANTRY_ANIM composition to ensure the alphabets of process and

The FSP description that generates this annotated LTS is animation remain consistent. The annotated LTS produced
given below: by applying the crane animation to the crane process is

depicted in Fig 10. From this figure, it can be seen that a
move action to a particular location starts both the gantry
and head animation activities. The end action cannot occur
before both of these activities have terminated.

GANTRY

range X=0.4
GANTRY = (go[x:X] -> end -> GANTRY).



time. An animation thread that controls the frame rate of
the overall animation signals the passage of time.
move[x:X][y:Y], gantry.go[x], head.go[y] Behaviors are started by a command and announce an event

when they finish.
CRANE

Our notion of an animatioactivity introduced in section 2
corresponds exactly to dehavior in the SceneBean
framework. Each behavior maintains a clock that it uses to
compute its output value. The behavior termination event is
fired when this local clock value exceeds a maximum value
set before the behavior was started. The animation thread
updates the clocks of all behaviors synchronously. As a
Animation compositionality allows the incremental result, SceneBean behaviors respect the conventions for the
development of model and animation. Components of alocal clocks of timed automata.

system can be modeled and animated before beingThe times that are associated with an animation behavior in
combined into a larger system that has a composite . . )
animation by construction. In the following section, we Scene_Bearjs are in fact real times th_at are lndepend_ent of
outline the way that the graphic animation activities that arethe animation frame rate. The animation frame rate simply
controlled by the model are specified and composed. determines the smoothness of the_ animation. We can _speed
up or slow down the global time frame by making
4  ANIMATION ENGINE - SCENEBEANS animation time faster or slower than real-time, however this
Graphic animations are constructed from a library of does not affect the timing relationship between different
JavaBeans that we have callésiceneBeansIn the animation activities, nor does it affect the frame rate.
following, we first outline the architecture &ceneBeans
and then show how a particular animation is specified using
an XML document.

gantry.end] head.endend

Figure 10 —CRANEannotated with animation CRANE_ANIM

The relationship between scene-graph, behaviors and
animation thread is depicted schematically in Fig 11.

SceneBean Architecture

The basic entities in the SceneBeans architecturscare
graphs behaviorsandanimations A SceneBean animation
communicates with an application such as the LTSA tool
via commandsndevents

Scene-graphs are a technique extensively used in 3D
graphics, however here we apply them to 2D images. In
SceneBeans, acene-graphis implemented by a directed

acyclic graph (DAG) of JavaBeans that draws a 2D image.
Leaf nodes in the graph draw primitive shapes such as
circles, ellipses, rectangles, and polygons. Intermediate
nodes combine or transform their sub-graphs. Combination

: . Animation
nodes either layer one sub-graph on top of another or Scene Graph Behaviours Thread
choose one from a set of sub-graphs. Transform nodes . .
apply an affine transformation to their sub-graphs - Figure 11 — SceneBean Architecture

rotation, scaling, shearing or translation. Transforms may o SceneBeamnimationencapsulates a scene-graph and the
also change the way that their sub-graphs are rendered — fQfenaviors that animate the nodes of that graph. It acts as the
example, changing the color in which a node is drawn. manager for the behaviors encapsulated within it, routing
Nodes in the scene graph expose one or more JavaBea@ymmands and events. Most importantly, a SceneBean
properties by which their visual appearance can begnimation is also a scene-graph node, since this means we
mOdIer.d. For exa_mple, a node that draws a circle exposes.gp compose animations, applying transformation and
the radius of the circle as a bean property. further animation as required. For example, in the earlier
A behaviorin SceneBeans is a bean that manages a timechannel example, the explosion is a SceneBean animation
varying value, announcing an event whenever the valuethat has been included as a node of the overall channel
changes. By connecting the events fired by a behavior toanimation.

the property of a bean in the scene graph, the property Calnecifying an animation in XML

be made to change over time, so animating the visualtg gescribe a specific animation, it is necessary to describe

appearance of the scene graph. A behavior updates its valug scene-graph and the behaviors that animate that graph. A
from its initial parameter setting and from the passage of 5|.pased tool that produces an XML document will



eventually support animation design. However, altio This XML description is used to instantiate a set of Java
the eXtensible Markup Language (XML) [10] should most Beans. The<param> tags translate into calls to bean
sensibly be considered as a machine-readable format, we@ropertyset methods. For example, line 6 translates to the
currently specify animations directly in XML. To give a call setFrom(71) on the behavior bean instantiated from
flavor of how this works, we present the encoding of the move.class. Line 20 adds the translate transform bean as a
channel animation introduced in Section 2. The scene-listener of the behavior bean for value change events. These
graph and behavior for this animation are shown in Fig 12. value change events update tke parameter of the

transform bean — resulting in movement of the message
command image.

draw channel.begin
/

, We have chosen to completely define the interface between
/

transform / SceneBeans animation and an application, by a set of

translate / behavior commands and a set of events. This simple architectural
¥ schannel” interface was chosen to facilitate integration of SceneBeans
. algorithm with applications other than theTSA tool. However, it
image N move introduces a slight architectural mismatch between
channel \\ SceneBeans and tHETSA As described previously, the
\ LTSAconsiders an animation to be defined by commands
. evem‘ gnd conditions To turn events into condition.s, we have
image channel.end introduced “not-events” that clear conditions in thESA
message Line 11 announceschannel.end, the not-event for the
conditionchannel.end signaled when the channel behavior
Figure 12 — Channel Animation Scene Graph terminates. The command that starts a SceneBean behavior

This generates the pictures of Fig 2. In the interest of Must always send not-events for all events that it
brevity, we omit the elements that deal with channel failure Subsequently announces. The combination of not-event and
and with displaying the explosion. The animation consist of €vent implements the condition state required by A

a background image of the channel, consisting of the twogpace has permitted us to describe only a very small subset
boxes and the line between them, and the message imagss the comprehensive animation facilities supported by
which is drawn on top of this background. The messagegceneBeans. The intension is to demonstrate that we have a
image is moved by a translate transform fed by the concrete, powerful and flexible implementation of

behavior named “channel”. This behavior is of typ@&ve & gnimation that is consistent with the abstract model
behavior that over a period of time generates a set of valueg ssymed in sections 2 & 3.

from a starting value to an end value. The XML file that

describes the animation is listed below: 5 RELATED WORK _ N

1 <oxml version="1.0"?> Most verification tools provide the ability to execute the

2 <IDOCTYPE animation SYSTEM "scenebeans.dtd"> model specification as a way of simulating the system

3 <animation width="400" height="136"> _belng modeled. The output of _t_hls _S|mulat|on is dlsplay_ed
N . o " in the context of the specification. For example in

4 <behavior id="channel" algorithm="move . S :

5 event="channel.end"> SPIN[11], the simulator highlights statements in the

6 <param name="from" value="71"/> Promela specification source as execution proceeds. The

7 <param ”amef:go" \{allf?:"fﬂﬁ':{i/ Concurrency Factory[12] displays the execution in the

g e emes uration” value="2"/> context of process diagrams specified in GCCS, a graphical

10< . - notation for Milner's CCS[13]. UPPAAL[14], a tool based

command name="channel.begin"> . . . . .

11 <announce event = "~channel.end"/> on timed automata, displays simulation results by high-

12 <start behaviour= "channel"/> lighting transitions and states of diagrammatic

13 </command> representations of automata produced using the Autograph

14 <event object="channel" event="channel.end"> tool[15]. Graphical animation in these tools thus refers to

15 <announce event="channel.end"/> animation of some graphical representation of the model

16 </event> e .. A .

17 <draw> specification. This is clearly a useful facility in debugging

18 <transform type="translate"> and understanding models — it is a facility provided in the
19 <param name="y" value="64"/> LTSAwhich animates LTS graphs — however, it does not
20 <animate param="x" behaVI0r='_'f§hannel"/> address the problem of communicating in a domain specific
g; </<t|rr2r?sgfﬁrf;c>_ image/message.gif'/> way with requirements stakeholders unfamiliar with the

23 <image src="image/channel.gif"/> modeling formalism.

24 </draw>

25 <Janimation> Some initial work on domain specific visualization is

reported by Heitmeyer[16] in the context of the SCR[17]



simulator. They use the image of real instrument panels totreated as an annotation of the model. This separation
display the outputs and controls for a simulation of the permits an animation to be applied to different models and
function of that control panel specified in SCR. The form allows multiple animations to be applied to a particular

of animation is similar in scope to that of the StateMate model. Although we have not yet done so, multiple

tool mentioned in the introduction. As far as we are aware,animations can be applied concurrently to a model by
animation facilities, with the generality and flexibility of forming the union of their animation relations.

those described here, have not been applied to behavio

modeling and verification tools. This flexibility is achieved by using Timed Automata as the

abstract basis for animated models. Where Timed
Our work is perhaps closest in approach to work in the field Automata add local clocks to standard labeled transition
of program visualization, although the objective of that systems, animated models add activities that reify clocks as
work is to visualize program execution while ours is to visual behavior. We have exploited the compositional
target model visualization at a problem domain. A semantics of Timed Automata to permit the compositional
comprehensive account of the field of Software development of animated models. Separation between
Visualization may be found in the eponymous book edited model and animation is achieved by defining an animation
by Stasko et al[18]. We compare our approach with relation that annotates an LTS with animation activities in
program visualization systems that represent two of thethe same way that Timed Automata are annotated with
main approaches. clocks. This animation relation provides equivalent

: . . flexibility for event-based systems to the flexibility Pavane
The Tango[19] and XTango[20] systems exemplify the first achieves in mapping states to visual representations.

approach. In these systems, a program is annotated with
“interesting events” that drive the visual animation. The However, strict adherence to the clock constraints allowed
animation is constructed using a “path-transition” by Timed Automata, when combined with the fact that the
paradigm. Interesting events correspond to our notion ofanimation relation annotates all transitions labeled by an
commandand paths are essentially a limited form of action rather than a specific transition, does limit the range
animation behavior However, the notion of @ondition of possible animation behaviors. For example, in some
that synchronizes program execution with animation is animations, it is desirable that for different starting
missing and perhaps not required since the systems arsituations, the activity has a different end time — in other
targeted at sequential algorithm visualization. Indeed aswords, abstractedlk is not a constant in the constraint
pointed out by Roman and Cox[21], Tango and related x > k. This relaxation does not invalidate the composition
systems cannot easily be applied to concurrent programs. rules for animations, the ability to replay property violation
The second approach exemplified by the Pavane[22]traces or the pripritized approximation used to c_heck
progress properties. However, it means the Timed

system as applied to Swarm[23] programs, visualizes :
program execution by declaring a mapping betweenAu.tomaton that represents the abstract beha\{lor of an
animated model can no longer be formed simply by

program state and the visual representation of that statefe lacina animation commands bv clock resets and
Animation is thus a consequence of modifying the State'anpma;'ogn corlld't'cljn by clock con )':ra'nt n Ssin the
Our approach of providing a clear semantic framework for Imati \aitions by straints. using th

animation is predated by the declared intention of the animation facilities, we have also discovered that it is

authors of the Pavane system to put program visualizationuse}‘uI in some problem domains to refiect physical

on firm formal foundations. Interestingly, our system may constraints, such as the fact that two objects cannot occupy

be considered to be a dual of Pavane, since Pavane depic[Qe same space, in the animation rather than the beha\(lor
states and does animation during the transition betweenmo.del' In essence, the_ model refl_ects system beh?"'”
states. In our system, animation occurs while the modelwh|Ie the ammgtlon prpwdgs the environmental constraints
remains in a state and transitions can cause the elements i’ that.l:_)ehawor Ag_am .th's does not seem to affect the
the picture to change instantaneously. We believe thiscompqsmon Of. anlmatlons bu; the ~overall abstract
difference results from the different objectives of the behavior. Invesngguon_ of these issues forms part of our
systems. Pavane is targeted at visualizing data paraIIeFurrent work on animation.

computations and as a result is state-based, while ouThe SceneBeans animation engine provides a flexible
system is targeted at depicting behavior and is event-basedyeneral-purpose framework for implementing animations.
The decoupling of animation from program/model is a This flexibility arises from the use of JavaBeans to package
common objective of both systems. behavior and graphical entities and scene-graphs as the way
6 DISCUSSION & CONCLUSION of combining these entities into an animation. XML has

We have presented an approach to animating behavioraProved a useful notation for describing the organization of
models that preserves a clear separation between model a particular animation. The XML document type definition

animation. Animation need not interfere with the process of anTrr?azt'gr?ncS;alg: ctgrib\{\f:ayd theTr?(laﬁgrceenr:egf;:gn;rsan?:ev\?grk
model development, specification and analysis — it is imatl ined.



can be easily extended by the addition of behavior and[8] D. Giannakopoulou, J. Kramer, and S. C. Cheung,
graphics beans. Animations can be packaged in a reusable “Analysing the Behaviour of Distributed Systems using
way as XML files that can then be included into larger Tracta,”Journal of Automated Software Engineering, special
animations. We hope to exploit this flexibility in an issue on Automated Analysis of Softwarel. 6, pp. 7-35,
animation design tool that will have associated with it January 1999. o
libraries of domain specific animations. An exciting future [9] A. Lotzberger and R. Muhfeld, *Task Description of a

. i . . . . Flexible Cell with Real Time Properties,” FZI, Karslruhe
ﬁ’lr?ﬁfeeectj;rsntemesigii of three-dimensional animations viewed version 2.1, http://www.fzi.de/prost/projects/kors¥806.

[10] T. Bray, J. paoli, and C. M. Sperberg-McQueen, “Extensible
Currently, we are gaining experience in the use of Markup Language,” World Wide Web Consortium
animation in a number of areas. We are applying it to http://www.w3.0rg/TR1998/REC-xml-19980210 1998.
animating workflows in the area of complex distributed [11] G. J. Holzmann, “The Model Checker SPIN|IEEE
service provision[24], to the development of pedagogic Transactions on Software Engineeringl. 23, pp. 279-295,
examples and to modeling a sub-system of an air traffic May 1997.
control system. In future papers we hope to report on our[12] R. Cleaveland, P. M. Lewis, S. A. Smolka, and O. Sokolsky,

conjecture that animation fulfls a useful role in “The Concurrency Factory: A Development Environment for
communicating both the intent of a model and the analysis ~ Concurrent Systems,” presented at 8th International
results from that model. The.TSA application and Conference on Computer-Aided Verification (CAV'96), New
SceneBeans animation package are available from: Brunswick, NJ, USA, July/August 1996.

[13] R. Milner, Calculus of Communicating Systenwl. 92:
Springer-Verlag, 1980.
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