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ABSTRACT 
Graphical animation is a way of visualizing the behavior of 
design models. This visualization is of use in validating a 
design model against informally specified requirements and 
in interpreting the meaning and significance of analysis 
results in relation to the problem domain.  In this paper we 
describe how behavior models specified by Labeled 
Transition Systems (LTS) can drive graphical animations. 
The semantic framework for the approach is based on 
Timed Automata. Animations are described by an XML 
document that is used to generate a set of JavaBeans. The 
elaborated JavaBeans perform the animation actions as 
directed by the LTS model. 
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1 INTRODUCTION 
A model-based design approach involves building analysis 
models early in the software lifecycle. These models can be 
developed shortly after the initial requirements capture and 
refined in parallel with further requirements elicitation so 
that early feedback on the operation of a proposed system 
can be fed back to customers and so that potential design 
problems are highlighted early. We have proposed such an 
approach, in relation to Software Architecture[1, 2], in 
which component behavior is modeled using Labeled 
Transitions Systems (LTS) and the overall behavior of a 
system can be formed by the parallel composition of these 
component models. We have developed the Labelled 
Transition System Analysis (LTSA) tool to support the 
approach. 

The behavior of a model can be interactively explored 
using the LTSA tool. The output of such an execution is 
essentially a trace of action names. Each action is the 
abstract representation in the model of an input or output of 
the proposed system.  In common with other model 
checking tools, the LTSA produces counter examples when 

it  discovers  safety   property[3]   or  progress   property[4] 
violations in a model. Again these counter-examples 
consist of action traces.  A difficulty arises in interpreting 
the meaning of traces in relation to the original problem 
domain. Even when the meaning is clear to the model 
designer, the problem of communicating model behavior 
and the results of analysis to non-technical stakeholders of 
a system remains. Our motivation is thus to explore the 
value of graphic animation in validating behavioral models 
against requirements and in communicating the results of 
model analysis. The first step in this exploration, reported 
in this paper, is the development of suitable tools.  

The idea of graphic animation is not in itself novel. For 
example, StateMate[5] supports animation through a set of 
predefined graphic widgets that display buttons, lights, 
dials and graphs. The novelty of the approach discussed 
here is the firm semantic foundation on which animations 
are constructed and the ease and flexibility with which an 
animation can be described and associated with the LTS 
model that drives it. The approach supports compositional 
animation development. 

Section 2 of the paper describes the semantics of animation 
and its basis in Timed Automata. It shows how an 
animation is associated with an LTS. Section 3 describes 
how animations can be composed. Section 4 outlines the 
JavaBean based animation engine and how animations are 
generated from XML documents. Section 5 discusses 
related work and the paper concludes with an evaluation 
and discussion of the approach. 

2 ANIMATION 
We will use the example of a communication channel to 
illustrate our approach to animation. The channel takes an 
input message and either outputs the message or fails. The 
choice between outputting or failing is non-deterministic. 
The channel is modelled below as an FSP process. FSP[6] 
is the input notation for the LTSA tool. It is a simple 
process algebra used as a concise way to specify labeled 
transitions systems. 

CHAN = (in -> out  -> CHAN 
       |in -> fail -> CHAN 
       ).
 

In the above, “-> ” denotes action prefix and “|” choice. The 
LTS that corresponds to CHAN is depicted in Fig 1. 
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Figure 1 – CHAN LTS 

Three stages of a graphic animation of the channel are 
depicted in Fig 2.  

 

(a) 

 

(b) 

 

(c) 
Figure 2 – Channel Animation 

Fig 2(a) depicts the situation in which an in operation has 
occurred and the out action has not yet happened. The 
message, represented by the block labeled a, is moving 
from the input box on the left to output box on the right. 
Fig 2(b) depicts the state in which the channel fail  action 
has occurred. This is animated by replacing the message 
block with an explosion. Fig 2(c) depicts the situation when 
the channel does not fail and the out action occurs. This 
simple animation consists of a single activity that moves 
the message block from the input box to the output box.  
Clearly the animation activity takes time. This time passes 
while the model is in a particular state. In the example, 
animation occurs when the model is in either state 1 or 
state 2. That is the in action has occurred but the out or fail  
action has not yet occurred.  In fact, we abstract all 
animation activities by local clocks that measure the 
passage of time. It was this observation that led us to the 
use of Timed Automata as the semantic basis for animation.  

Timed Automata 
Timed Automata [7] augment labeled transition systems 
with a finite set of (real-valued) clocks. Transitions are 
instantaneous and time can elapse in a state. A clock can be 
reset to zero simultaneously with any transition. At any 
instant, the reading of a clock equals the time elapsed since 
the last time it was reset. All clocks increase at a uniform 
rate, counting time with respect to a fixed global time 
frame. Clock constraints can be associated with transitions 
such that the transition can only occur if the current clock 
values satisfy the constraint. For a set X of clock variables, 
the set Φ(X) of clock constraints ϕϕ is limited by the 
following grammar: 

ϕϕ  ::=    x ≤ k  |  x ≥ k  |  x < k  |  x > k  |  ϕϕ1 ∧ ϕϕ2 

where x is a clock from the set X and k is a constant from 
the set of nonnegative rational numbers.  

The timed automaton that describes the behavior of CHAN 
when it is combined with its animation is shown in Fig 3. 

 

CHAN 

in, x := 0 

in, x := 0 

x > Tc, out 

x > Tf, fail 

0 1 2 

 
 Figure 3 – CHAN Timed Automaton 

Both of the transitions labeled by the action in reset the 
clock x that represents the channel animation activity. The 
out transition is only enabled when the clock value is 
greater than Tc. This represents the time at which the 
message reaches the box at the right of the animation 
display. The fail  action is enabled after the clock value 
becomes greater than Tf. In the animation, Tf is less than Tc 
so that the explosion drawn by the fail action occurs before 
the box to the right is reached. The timed automaton 
describes the abstract behavior of the animated model. In 
the following, we outline how the concrete graphic display 
for the animation is associated with the LTS model in a 
way that is consistent with this abstract model. 

Animation Activities 
An animation is broken down into a set of activities. Each 
animation activity corresponds to a single clock variable in 
the timed automata model. The action of starting the 
activity corresponds to resetting the clock while the end of 
the activity corresponds to the satisfaction of a clock 
constraint of the form x � k. The progress of an animation 
activity corresponds exactly to the increasing value of a 
clock variable in the timed automata model. Each 



 

animation activity consists of a command to start the 
activity and one or more conditions that it signals as the 
animation progresses. In addition, the activity may provide 
commands to modify how the animation is drawn – in the 
example, the command to draw an explosion. The channel 
animation activity has the following commands and 
conditions: 

commands: 
     channel.begin  -- corresponds to x := 0 
  explode  
conditions: 
     channel.end  -- corresponds to x � Tc 
  channel.fail  -- corresponds to x � Tf 
 

Combining Model with Animation 
One of the desirable characteristics of a graphic animation 
facility is that it should not obscure or complicate the 
model specification. The description of how a particular 
model is animated should be separate from the model 
specification itself. This allows different animations to be 
applied to the same model and ensures that model 
development is not confused and complicated by the need 
to animate. We achieve this by defining relations that 
associate animation activity commands and conditions with 
action labels in the LTS.  
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in, channel.begin 
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Figure 4 – CHAN annotated by animation CHAN 

Animation activities are associated with model action 
labels using two relations: - Actions and Controls.  The 
Actions relation maps model action labels to animation 
commands and the Controls relation maps action labels to 
animation conditions. The relations for associating the 
channel animation with the CHAN model are declared in 
FSP as follows, where the infix “/” introduces a 
〈label, command〉 or 〈label, condition〉  pair :

animation  CHAN = "channel.xml" 
   actions  { 
      in   / channel.begin, 
      fail / explode 
   } 
   controls  {  
      out  / channel.end, 
      fail / channel.fail 
   }  

An action label may be associated with both a command 
and a condition, e.g. fail. The effect of the animation 
declaration is to annotate an LTS with animation 
commands and conditions in the same way that timed 
automata annotate LTSs with clock resets and constraints. 
The animation above annotates CHAN as depicted in Fig 4.  

Animation Execution 
In the following, we outline the algorithm that executes an 
animation directed by an LTS. In the interests of clear 
exposition, we will ignore silent actions (τ) and the error 
state since these have little effect on the running of an 
animation. An error state or a state with no outgoing 
transitions terminates an execution. 

We define an LTS P as a quadruple 〈S, A, ∆, q0〉 where: 

• S is a finite set of states. 

• A is a set of action labels known as the alphabet of P. 

• ∆ ⊆ S × A × S, denotes a transition relation that maps 
from a state and an action onto one or more states,  

• q0 ∈ S indicates the initial state of P. 

The set of enabled actions Eq at some state q in the LTS is 
the set of actions that label outgoing transitions from that 
state: 

•  Eq  =  { a : A | ∃ r ∈ S,  (q, a, r ) ∈  ∆}. 

An animation M is defined by the quadruple 
 〈C, B, Actions, Controls〉 where: 

• C is a finite set of commands. 

• B is a finite set of boolean conditions. 

• Actions ⊆ A × C is the relation that maps an action to 
one or more commands. 

• Controls ⊆ A × B is the relation that maps an action to 
one or more conditions. 

An animation M applied to an LTS P partitions the alphabet 
of P into two sets, those that can be executed immediately 
and those that are controlled by animation conditions and 
thus must wait for these conditions to become true. These 
sets are: 

• Controlled = domain Controls. 

• Immediate = A – Controlled. 

The predicate Signaled(a) is true for an action a if all of the 
conditions that it is mapped to are set to true.  

NextState(q,a) computes the next state r in the LTS P such 
that (q,a,r) ∈  ∆. 

The following algorithm describes animation execution: 

 



 

Animate P with M : 
curr := q0 
loop 
 while (Ecurr @ Immediate � ^` �  

     choose a from (E @ Immediate) 
     execute { c : C | ( a, c ) ∈ Commands } 
     curr := NextState ( curr, a ) 

 end while 
 if  (Ecurr = {} ) exit 

while ({ a : Ecurr   | Signaled(a) } = {}) wait 
choose ac from { a : Ecurr   |  Signaled(a) } 
execute { c : C | ( ac, c ) ∈ Commands }  
curr := NextState (curr, ac ) 

end loop 
 

The animation algorithm ensures that all immediate actions, 
that are enabled, happen before the animation waits for 
controlled actions to be signaled. This is consistent with the 
maximal progress condition usually assumed for timed 
systems. We discuss later, how to check that a 
model/animation combination is free of Zeno behaviors – 
in our context, those behaviors involving an infinite 
number of immediate actions without time progressing. 

Interacting with Animations 
Animation execution as described above, once started, 
proceeds autonomously. Where more than one action is 
eligible as a choice, if the action is immediate and not 
controlled by an animation condition, the algorithm makes 
an arbitrary choice. This corresponds to letting the 
environment of the system make an arbitrary choice. 
Clearly we need to let the user interact with the animation 
so that these environment choices need not be arbitrary. To 
allow interaction, we introduce buttons which when pressed 
set conditions. These conditions control actions in the usual 
way.  

Returning to the channel example, the animation once 
started runs continuously. The in action, which corresponds 
to the environment sending a message to the channel, 
happens autonomously. To allow the user to dictate when a 
message is to be sent, we introduce a send condition to 
control the in action as shown below: 

animation  CHAN = "channel.xml" 
  actions  { in   / channel.begin, 
            fail / explode  
          } 
  controls {  out  / channel.end, 
            fail / channel.fail, 
            in   / send 
          }  
 

Introducing this new control mapping has two effects. It 
ensures that the in action cannot occur until send is set to 
true and it causes the animation engine to create a button. 
The button sets the send condition when it is pressed. The 
animation engine, by default, creates buttons for all those 
conditions named in the Controls relation that are not 

already used by animation activities. The channel animator 
together with the send button is depicted in Fig 5. 

 

Figure 5 – Channel Animation with send button 

The question that now arises is when to reset the condition 
set by a button? Normally an animation command resets all 
the conditions of the activity that it starts. However, there is 
no corresponding command for a button. Pragmatically, we 
have chosen to reset the condition associated with a button 
immediately after the button-enabled action occurs. All 
buttons are initially reset. The annotation of an LTS for a 
button go, is shown in Figure 6, where ~go is the command 
to reset the condition go. 

 
GO go, action, ~go 

0 1 

 

Figure 6 – LTS annotated with button condition 

This scheme has the limitation that a button can only be 
associated with a single action, while the general case is 
that activity conditions can be associated with more than 
one action. However, our experience to-date has been that 
this limitation is not intrusive when designing animations.  

Replaying traces 
So far, we have described how animation is accomplished 
for an interactive execution of an LTS. The other use of 
animation is to replay traces generated as counter-examples 
during model safety and progress analysis. A trace is 
simply a sequence of actions. Replay of a trace T by an 
animation M is performed by the following algorithm: 

Replay T with M : 
        R := T 

repeat  
 a  : = head(R );  R  : = tail(R ) 
 if  (a∈ Controlled)  wait Signaled( a ) 
 execute { c : C | ( a, c ) ∈ Commands }  
until ( R ≠ <> ) 

 
The algorithm simply executes actions in the sequence 
specified by the trace. However, where the action is 
controlled, replay waits until the controlling conditions are 
signaled. 



 

Animation Behavior 
The behavior of an LTS annotated by an animation – the 
traces it can generate or accept – is a subset of the behavior 
of the LTS without annotation. This becomes apparent if 
we reconsider the Animate algorithm. At any state, if there 
are both eligible immediate and controlled actions, the 
algorithm chooses immediate actions in preference to 
controlled actions. Controlled actions are only chosen if 
there are no eligible immediate actions.  The controlled 
actions have lower priority. Consequently, to specify the 
behavior of an animated LTS, we use the low priority 
operator “>>” from[4], specified as follows: 

For an LTS P = 〈S, A, ∆′, q0〉 and set of actions L ⊆ A, the 
LTS in which the actions L are low priority is: 

P>>L =〈S, A, ∆, q0〉 where ∆ is the smallest relation 
satisfying the rule: 

 

L P L P 

P P 
a 

a 

>>  →  >> 

 →  

' 

'  if ((a ∉ L) or (∀b ∈ (A – L),  P 
  → b  )) 

The transition rule states that an eligible action in the 
prioritized system can be performed if it is not a member of 
the set of low priority actions L or there are no eligible 
higher priority actions in  (A – L). 

With the low priority operator, we can now approximate 
the behavior of the LTS P animated by M with set of 
controlled actions Controlled as: 

P >> Controlled. 

This is an approximation that correctly constrains the 
relative ordering between immediate and controlled actions 
in the same way as the animation does. However, it permits 
more orderings of controlled actions than are permitted by 
the animation, since the animation schedules controlled 
actions with time. It is still a useful approximation since we 
can apply the progress check defined in [4], to check that a  
system is free of Zeno executions using: 

SURJUHVVSURJUHVV 121=(12 = { Controlled } 

This asserts that in an infinite execution, it must be possible 
to execute one of the actions in the controlled set infinitely 
often. In practice, satisfaction of this property means that 
the animation will display some activity rather than freeze 
while a continuous loop of commands is executed. 

3 COMPOSITION 
Composition is of fundamental importance in our approach 
to developing models. Primitive components are modeled 
and analyzed before being combined into larger structures 
as dictated by the architecture of the target system[8]. In 
using animation as an aid to developing and validating 
models we require that it be of use in this compositional 
setting. This dictates that when we compose components, 
the animations associated with these components should 
also combine in a meaningful way. In the following, we 

show how the Timed Automata semantics that underpin 
animations provides a way to compose animations. 

Timed Automata Composition 
A timed automaton PT is the tuple 〈S, A, X, ∆, q0〉 where: 

• S is a finite set of states. 

• A is a set of action labels known as the alphabet of PT. 

• X is a finite set of clocks. 

• ∆ ⊆ S × A × S × 2X × Φ(X), gives the set of transitions. 
〈s, a, s′, λ, ϕ 〉 represents the transition from state s to 
state s′ labeled by a with λ ⊆ X the set of clocks to be 
reset and ϕ ∈ Φ(X) a clock constraint. 

• q0 ∈ S indicates the initial state of PT. 

The composition of two timed automata: 

PT1  = 〈S1, A1, X1, ∆ 1, q1〉 and PT2  = 〈S2, A2, X2, ∆ 2, q2〉 is 

PT1 || PT2 = 〈S1× S2, A1 ∪ A2, X1 ∪ X2, ∆ , (q1 ,q2)〉 where X1 
and X2 are disjoint and ∆ is defined by: 

• for a ∈ A1∩ A2, for every 〈s1, a, s1′, λ1, ϕ1 〉 in ∆ 1 and 
〈s2, a, s2′, λ2, ϕ2 〉 in ∆ 2, ∆ contains  
〈(s1, s2), a, (s1′, s2′), λ1 ∪ λ2, ϕ1 ∧ ϕ2〉. 

• for a ∈ A1– A2, for every 〈s, a, s′, λ, ϕ 〉 in ∆ 1 and 
every t in S2 , ∆ contains 〈(s, t), a, (s′, t), λ, ϕ〉. 

• for a ∈ A2– A1, for every 〈s, a, s′, λ, ϕ 〉 in ∆ 2 and 
every t in S1 , ∆ contains 〈(t, s), a, (t ,s′), λ, ϕ〉. 

Composition for timed automata is an extension of the 
normal LTS composition construction in that the transition 
for a shared action is annotated both with the union of 
clock resets for the transitions from each of the constituent 
automata, and with the conjunction of clock constraints. 

Animation Composition 
Remembering that in an animation, activities reify clocks 
and that clock resets are interpreted as activity commands 
and clock constraints as activity conditions, we can apply 
the timed automata composition construction to animations. 
An animation is defined by the set of commands C, the set 
of conditions B and the two relations Actions and Controls 
that map LTS action labels to commands and conditions, as 
discussed previously. The relations are used to annotate the 
LTS. To compose animations, we need to form the union of 
commands that label a shared action and the conjunction of 
conditions. This is done by forming the union of the 
Actions and Controls relations.  

If animation M1 =  〈C1, B1, Actions1, Controls1〉 and  
animation M2 =  〈C2, B2, Actions2, Controls2〉 then: 

animation M1 || M1 = 〈C1 ∪ C2, B1 ∪ B2,  
Actions1 ∪ Actions2,  
Controls1 ∪ Controls2〉 



 

Where a model action maps to a set of animation 
commands, the Animate and Replay algorithms execute 
each of these commands. If it maps to a set of animation 
conditions, the algorithms require all of the conditions to be 
true before allowing the action to happen and any 
associated commands to be executed. 

Example 
To illustrate animation composition, we use a fragment 
from the Flexible Production Cell[9] animation depicted in 
Fig 7. This animation consists of activities to animate the 
operation of the input and output conveyors, the drilling 
and oven processes, and the crane that moves blanks 
between the conveyors and the manufacturing processes. In 
the following, the animation concerned with the crane is 
described.  

 

Figure 7 – Flexible Production Cell animation. 

The crane is composed of two elements, the gantry that 
moves along the x-axis and the head that moves along the 
y-axis. The crane is positioned at a point (x, y) by a 
combination of gantry and head moves. The LTS of the 
gantry, annotated with its animation commands and 
conditions is depicted in Fig 8. 

 

GANTRY 

go[x:X], gantry.go[x] 

gantry.end, end 

0 1 

 

Figure 8 – GANTRY annotated with animation GANTRY_ANIM 

The FSP description that generates this annotated LTS is 
given below: 

range  X = 0..4 
GANTRY = (go[x:X] -> end -> GANTRY). 

animation GANTRY_ANIM = "fmc.xml" 
    actions   {go[x:X]/gantry.go[x]} 
    controls  {end/gantry.end} 

There is no direct textual association between the animation 
and the process in the example. The association between a 
particular animation and the system it animates is made by 
user choice in the LTSA tool when the animation is 
activated. This gives the user the flexibility to associate 
different animations with a system and thus have multiple 
views of its behaviour. Different system models may also 
be associated at different times with the same animation. 

The second element in the crane example is head 
movement. The annotated LTS is depicted in Fig  9. 

 

HEAD 

go[y:Y], head.go[y] 

head.end, end 

0 1 

 

Figure 9 – HEAD annotated with animation HEAD_ANIM 

The FSP description that generates this annotated LTS is 
given below: 

range  Y = 0..4 
GANTRY =  (go[y:Y] -> end -> GANTRY). 
 
animation HEAD_ANIM  = "fmc.xml" 
    actions   {go[y:Y]/head.go[y]} 
    controls  {end/head.end}  

We can now construct a process that coordinates gantry and 
head such that we can have composite actions that model 
moves to specific (x ,y) coordinates. Composing the head 
and gantry processes forms this crane control process: 

 ||CRANE = ( GANTRY/{move[x:X][Y]/go[x]}  
           ||HEAD  /{move[X][y:Y]/go[y]} 
           ).  

Composing the animations for gantry and head forms the 
animation for this composite process: 

animation  CRANE_ANIM  = "fmc.xml" 
 compose  { GANTRY_ANIM/{move[x:X][Y]/go[x]} 
         ||HEAD_ANIM  /{move[X][y:Y]/go[y]} 
         }  

Note that the relabeling relations used in the process 
composition are the same as those used in animation 
composition to ensure the alphabets of process and 
animation remain consistent. The annotated LTS produced 
by applying the crane animation to the crane process is 
depicted in Fig 10. From this figure, it can be seen that a 
move action to a particular location starts both the gantry 
and head animation activities. The end action cannot occur 
before both of these activities have terminated. 



 

 

 

CRANE 

move[x:X][y:Y], gantry.go[x], head.go[y] 

gantry.end ∧ head.end, end 

0 1 

 

Figure 10 – CRANE annotated with animation CRANE_ANIM 

Animation compositionality allows the incremental 
development of model and animation. Components of a 
system can be modeled and animated before being 
combined into a larger system that has a composite 
animation by construction. In the following section, we 
outline the way that the graphic animation activities that are 
controlled by the model are specified and composed. 

4 ANIMATION ENGINE - SCENEBEANS 
Graphic animations are constructed from a library of 
JavaBeans that we have called SceneBeans. In the 
following, we first outline the architecture of SceneBeans 
and then show how a particular animation is specified using 
an XML document. 

SceneBean Architecture 
The basic entities in the SceneBeans architecture are scene 
graphs, behaviors and animations. A SceneBean animation 
communicates with an application such as the LTSA tool 
via commands and events. 

Scene-graphs are a technique extensively used in 3D 
graphics, however here we apply them to 2D images.  In 
SceneBeans, a scene-graph is implemented by a directed 
acyclic graph (DAG) of JavaBeans that draws a 2D image. 
Leaf nodes in the graph draw primitive shapes such as 
circles, ellipses, rectangles, and polygons. Intermediate 
nodes combine or transform their sub-graphs. Combination 
nodes either layer one sub-graph on top of another or 
choose one from a set of sub-graphs. Transform nodes 
apply an affine transformation to their sub-graphs – 
rotation, scaling, shearing or translation. Transforms may 
also change the way that their sub-graphs are rendered – for 
example, changing the color in which a node is drawn. 
Nodes in the scene graph expose one or more JavaBean 
properties by which their visual appearance can be 
modified. For example, a node that draws a circle exposes 
the radius of the circle as a bean property.  

A behavior in SceneBeans is a bean that manages a time-
varying value, announcing an event whenever the value 
changes. By connecting the events fired by a behavior to 
the property of a bean in the scene graph, the property can 
be made to change over time, so animating the visual 
appearance of the scene graph. A behavior updates its value 
from its initial parameter setting and from the passage of 

time. An animation thread that controls the frame rate of 
the overall animation signals the passage of time. 
Behaviors are started by a command and announce an event 
when they finish. 

 Our notion of an animation activity introduced in section 2 
corresponds exactly to a behavior in the SceneBean 
framework. Each behavior maintains a clock that it uses to 
compute its output value. The behavior termination event is 
fired when this local clock value exceeds a maximum value 
set before the behavior was started. The animation thread 
updates the clocks of all behaviors synchronously. As a 
result, SceneBean behaviors respect the conventions for the 
local clocks of timed automata. 

The times that are associated with an animation behavior in 
SceneBeans are in fact real times that are independent of 
the animation frame rate. The animation frame rate simply 
determines the smoothness of the animation. We can speed 
up or slow down the global time frame by making 
animation time faster or slower than real-time, however this 
does not affect the timing relationship between different 
animation activities, nor does it affect the frame rate. 

The relationship between scene-graph, behaviors and 
animation thread is depicted schematically in Fig 11. 

 

Scene Graph Behaviours Animation 
Thread  

Figure 11 – SceneBean Architecture 

A SceneBean animation encapsulates a scene-graph and the 
behaviors that animate the nodes of that graph. It acts as the 
manager for the behaviors encapsulated within it, routing 
commands and events. Most importantly, a SceneBean 
animation is also a scene-graph node, since this means we 
can compose animations, applying transformation and 
further animation as required. For example, in the earlier 
channel example, the explosion is a SceneBean animation 
that has been included as a node of the overall channel 
animation.  

Specifying an animation in XML 
To describe a specific animation, it is necessary to describe 
a scene-graph and the behaviors that animate that graph. A 
GUI-based tool that produces an XML document will 



 

eventually support animation design. However, although 
the eXtensible Markup Language (XML) [10] should most 
sensibly be considered as a machine-readable format, we 
currently specify animations directly in XML. To give a 
flavor of how this works, we present the encoding of the 
channel animation introduced in Section 2. The scene-
graph and behavior for this animation are shown in Fig 12.  

 

behavior 
“channel” 
algorithm 
  move 

transform 
translate 

image 
message 

draw 

image 
channel 

command 
channel.begin 

event 
channel.end 

 

Figure 12 – Channel Animation Scene Graph 

This generates the pictures of Fig 2. In the interest of 
brevity, we omit the elements that deal with channel failure 
and with displaying the explosion. The animation consist of 
a background image of the channel, consisting of the two 
boxes and the line between them, and the message image 
which is drawn on top of this background. The message 
image is moved by a translate transform fed by the 
behavior named “channel”. This behavior is of type move, a 
behavior that over a period of time generates a set of values 
from a starting value to an end value. The XML file that 
describes the animation is listed below: 

1 <?xml version="1.0"?> 
2 <!DOCTYPE animation SYSTEM "scenebeans.dtd"> 

3 <animation width="400" height="136"> 

4 <behavior id="channel" algorithm="move" 
5        event="channel.end"> 
6   <param name="from" value="71"/> 
7   <param name="to"   value="323"/> 
8   <param name="duration" value="2"/> 
9 </behaviour> 

10 <command name="channel.begin"> 
11   <announce event = "~channel.end"/> 
12   <start behaviour= "channel"/> 
13 </command> 

14 <event object="channel" event="channel.end"> 
15   <announce event="channel.end"/> 
16 </event> 

17 <draw> 
18   <transform type="translate"> 
19     <param name="y" value="64"/> 
20     <animate param="x" behavior="channel"/> 
21     <image src="image/message.gif"/>  
22   </transform> 
23   <image src="image/channel.gif"/> 
24 </draw> 

25 </animation> 

This XML description is used to instantiate a set of Java 
Beans. The �SDUDP! tags translate into calls to bean 
property set methods. For example, line 6 translates to the 
call VHW)URP���� on the behavior bean instantiated from
0RYH�FODVV. Line 20 adds the translate transform bean as a 
listener of the behavior bean for value change events. These 
value change events update the x parameter of the 
transform bean – resulting in movement of the message 
image. 

We have chosen to completely define the interface between 
SceneBeans animation and an application, by a set of 
commands and a set of events. This simple architectural 
interface was chosen to facilitate integration of SceneBeans 
with applications other than the LTSA tool. However, it 
introduces a slight architectural mismatch between 
SceneBeans and the LTSA. As described previously, the 
LTSA considers an animation to be defined by commands 
and conditions. To turn events into conditions, we have 
introduced “not-events” that clear conditions in the LTSA. 
Line 11 announces aFKDQQHO�HQG, the not-event for the 
condition FKDQQHO�HQG signaled when the channel behavior 
terminates. The command that starts a SceneBean behavior 
must always send not-events for all events that it 
subsequently announces. The combination of not-event and 
event implements the condition state required by the LTSA. 

Space has permitted us to describe only a very small subset 
of the comprehensive animation facilities supported by 
SceneBeans. The intension is to demonstrate that we have a 
concrete, powerful and flexible implementation of 
animation that is consistent with the abstract model 
assumed in sections 2 & 3. 

5 RELATED WORK 
Most verification tools provide the ability to execute the 
model specification as a way of simulating the system 
being modeled. The output of this simulation is displayed 
in the context of the specification. For example in 
SPIN[11], the simulator highlights statements in the 
Promela specification source as execution proceeds. The 
Concurrency Factory[12] displays the execution in the 
context of process diagrams specified in GCCS, a graphical 
notation for Milner’s CCS[13]. UPPAAL[14], a tool based 
on timed automata, displays simulation results by high-
lighting transitions and states of diagrammatic 
representations of automata produced using the Autograph 
tool[15]. Graphical animation in these tools thus refers to 
animation of some graphical representation of the model 
specification. This is clearly a useful facility in debugging 
and understanding models – it is a facility provided in the 
LTSA which animates LTS graphs – however, it does not 
address the problem of communicating in a domain specific 
way with requirements stakeholders unfamiliar with the 
modeling formalism. 

Some initial work on domain specific visualization is 
reported by Heitmeyer[16] in the context of the SCR[17] 



 

simulator. They use the image of real instrument panels to 
display the outputs and controls for a simulation of the 
function of that control panel specified in SCR. The form 
of animation is similar in scope to that of the StateMate 
tool mentioned in the introduction. As far as we are aware, 
animation facilities, with the generality and flexibility of 
those described here, have not been applied to behavior 
modeling and verification tools.  

Our work is perhaps closest in approach to work in the field 
of program visualization, although the objective of that 
work is to visualize program execution while ours is to 
target model visualization at a problem domain. A 
comprehensive account of the field of Software 
Visualization may be found in the eponymous book edited 
by Stasko et al[18]. We compare our approach with 
program visualization systems that represent two of the 
main approaches.  

The Tango[19] and XTango[20] systems exemplify the first 
approach. In these systems, a program is annotated with 
“interesting events” that drive the visual animation. The 
animation is constructed using a “path-transition” 
paradigm. Interesting events correspond to our notion of 
command and paths are essentially a limited form of 
animation behavior. However, the notion of a condition 
that synchronizes program execution with animation is 
missing and perhaps not required since the systems are 
targeted at sequential algorithm visualization. Indeed as 
pointed out by Roman and Cox[21], Tango and related 
systems cannot easily be applied to concurrent programs.  

The second approach exemplified by the Pavane[22] 
system as applied to Swarm[23] programs, visualizes 
program execution by declaring a mapping between 
program state and the visual representation of that state. 
Animation is thus a consequence of modifying the state. 
Our approach of providing a clear semantic framework for 
animation is predated by the declared intention of the 
authors of the Pavane system to put program visualization 
on firm formal foundations. Interestingly, our system may 
be considered to be a dual of Pavane, since Pavane depicts 
states and does animation during the transition between 
states. In our system, animation occurs while the model 
remains in a state and transitions can cause the elements in 
the picture to change instantaneously. We believe this 
difference results from the different objectives of the 
systems. Pavane is targeted at visualizing data parallel 
computations and as a result is state-based, while our 
system is targeted at depicting behavior and is event-based. 
The decoupling of animation from program/model is a 
common objective of both systems.  

6 DISCUSSION & CONCLUSION 
We have presented an approach to animating behavioral 
models that preserves a clear separation between model and 
animation. Animation need not interfere with the process of 
model development, specification and analysis – it is 

treated as an annotation of the model. This separation 
permits an animation to be applied to different models and 
allows multiple animations to be applied to a particular 
model. Although we have not yet done so, multiple 
animations can be applied concurrently to a model by 
forming the union of their animation relations.  

This flexibility is achieved by using Timed Automata as the 
abstract basis for animated models. Where Timed 
Automata add local clocks to standard labeled transition 
systems, animated models add activities that reify clocks as 
visual behavior. We have exploited the compositional 
semantics of Timed Automata to permit the compositional 
development of animated models. Separation between 
model and animation is achieved by defining an animation 
relation that annotates an LTS with animation activities in 
the same way that Timed Automata are annotated with 
clocks. This animation relation provides equivalent 
flexibility for event-based systems to the flexibility Pavane 
achieves in mapping states to visual representations.  

However, strict adherence to the clock constraints allowed 
by Timed Automata, when combined with the fact that the 
animation relation annotates all transitions labeled by an 
action rather than a specific transition, does limit the range 
of possible animation behaviors. For example, in some 
animations, it is desirable that for different starting 
situations, the activity has a different end time – in other 
words, abstractedly k is not a constant in the constraint 
 x ≥ k.  This relaxation does not invalidate the composition 
rules for animations, the ability to replay property violation 
traces or the prioritized approximation used to check 
progress properties. However, it means the Timed 
Automaton that represents the abstract behavior of an 
animated model can no longer be formed simply by 
replacing animation commands by clock resets and 
animation conditions by clock constraints. In using the 
animation facilities, we have also discovered that it is 
useful in some problem domains to reflect physical 
constraints, such as the fact that two objects cannot occupy 
the same space, in the animation rather than the behavior 
model. In essence, the model reflects system behavior 
while the animation provides the environmental constraints 
on that behavior Again this does not seem to affect the 
composition of animations but the overall abstract 
behavior. Investigation of these issues forms part of our 
current work on animation. 

The SceneBeans animation engine provides a flexible 
general-purpose framework for implementing animations. 
This flexibility arises from the use of JavaBeans to package 
behavior and graphical entities and scene-graphs as the way 
of combining these entities into an animation. XML has 
proved a useful notation for describing the organization of 
a particular animation. The XML document type definition 
(DTD) constrains the way the different elements of an 
animation can be combined.   The SceneBeans framework 



 

can be easily extended by the addition of behavior and 
graphics beans.  Animations can be packaged in a reusable 
way as XML files that can then be included into larger 
animations. We hope to exploit this flexibility in an 
animation design tool that will have associated with it 
libraries of domain specific animations. An exciting future 
prospect is the use of three-dimensional animations viewed 
in three dimensions. 

Currently, we are gaining experience in the use of 
animation in a number of areas. We are applying it to 
animating workflows in the area of complex distributed 
service provision[24], to the development of pedagogic 
examples and to modeling a sub-system of an air traffic 
control system. In future papers we hope to report on our 
conjecture that animation fulfils a useful role in 
communicating both the intent of a model and the analysis 
results from that model. The LTSA application and 
SceneBeans animation package are available from: 

KWWS���ZZZ�GVH�GRF�LF�DF�XN�FRQFXUUHQF\�OWVD�Y��
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