
Graphical Animation of Behavior Models

 Jeff Magee, Nat Pryce, Dimitra Giannakopoulou and Jeff Kramer
{jnm, np2, dg1, jk}@doc.ic.ac.uk

Department of Computing, Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, UK.

ABSTRACT
Graphical animation is a way of visualizing the behavior of
design models. This visualization is of use in validating a
design model against informally specified requirements and
in interpreting the meaning and significance of analysis
results in relation to the problem domain. In this paper we
describe how behavior models specified by Labeled
Transition Systems (LTS) can drive graphical animations.
The semantic framework for the approach is based on
Timed Automata. Animations are described by an XML
document that is used to generate a set of JavaBeans. The
elaborated JavaBeans perform the animation actions as
directed by the LTS model.

Keywords
 Labeled Transition System, Graphic Animation, Behavior
Analysis

1 INTRODUCTION
A model-based design approach involves building analysis
models early in the software lifecycle. These models can be
developed shortly after the initial requirements capture and
refined in parallel with further requirements elicitation so
that early feedback on the operation of a proposed system
can be fed back to customers and so that potential design
problems are highlighted early. We have proposed such an
approach, in relation to Software Architecture[1, 2], in
which component behavior is modeled using Labeled
Transitions Systems (LTS) and the overall behavior of a
system can be formed by the parallel composition of these
component models. We have developed the Labelled
Transition System Analysis (LTSA) tool to support the
approach.

The behavior of a model can be interactively explored
using the LTSA tool. The output of such an execution is
essentially a trace of action names. Each action is the
abstract representation in the model of an input or output of
the proposed system. In common with other model
checking tools, the LTSA produces counter examples when

it discovers safety property[3] or progress property[4]
violations in a model. Again these counter-examples
consist of action traces. A difficulty arises in interpreting
the meaning of traces in relation to the original problem
domain. Even when the meaning is clear to the model
designer, the problem of communicating model behavior
and the results of analysis to non-technical stakeholders of
a system remains. Our motivation is thus to explore the
value of graphic animation in validating behavioral models
against requirements and in communicating the results of
model analysis. The first step in this exploration, reported
in this paper, is the development of suitable tools.

The idea of graphic animation is not in itself novel. For
example, StateMate[5] supports animation through a set of
predefined graphic widgets that display buttons, lights,
dials and graphs. The novelty of the approach discussed
here is the firm semantic foundation on which animations
are constructed and the ease and flexibility with which an
animation can be described and associated with the LTS
model that drives it. The approach supports compositional
animation development.

Section 2 of the paper describes the semantics of animation
and its basis in Timed Automata. It shows how an
animation is associated with an LTS. Section 3 describes
how animations can be composed. Section 4 outlines the
JavaBean based animation engine and how animations are
generated from XML documents. Section 5 discusses
related work and the paper concludes with an evaluation
and discussion of the approach.

2 ANIMATION
We will use the example of a communication channel to
illustrate our approach to animation. The channel takes an
input message and either outputs the message or fails. The
choice between outputting or failing is non-deterministic.
The channel is modelled below as an FSP process. FSP[6]
is the input notation for the LTSA tool. It is a simple
process algebra used as a concise way to specify labeled
transitions systems.

CHAN = (in -> out -> CHAN
 |in -> fail -> CHAN
).

In the above, “-> ” denotes action prefix and “|” choice. The
LTS that corresponds to CHAN is depicted in Fig 1.

CHAN

in

in

out

fail

0 1 2

Figure 1 – CHAN LTS

Three stages of a graphic animation of the channel are
depicted in Fig 2.

(a)

(b)

(c)
Figure 2 – Channel Animation

Fig 2(a) depicts the situation in which an in operation has
occurred and the out action has not yet happened. The
message, represented by the block labeled a, is moving
from the input box on the left to output box on the right.
Fig 2(b) depicts the state in which the channel fail action
has occurred. This is animated by replacing the message
block with an explosion. Fig 2(c) depicts the situation when
the channel does not fail and the out action occurs. This
simple animation consists of a single activity that moves
the message block from the input box to the output box.
Clearly the animation activity takes time. This time passes
while the model is in a particular state. In the example,
animation occurs when the model is in either state 1 or
state 2. That is the in action has occurred but the out or fail
action has not yet occurred. In fact, we abstract all
animation activities by local clocks that measure the
passage of time. It was this observation that led us to the
use of Timed Automata as the semantic basis for animation.

Timed Automata
Timed Automata [7] augment labeled transition systems
with a finite set of (real-valued) clocks. Transitions are
instantaneous and time can elapse in a state. A clock can be
reset to zero simultaneously with any transition. At any
instant, the reading of a clock equals the time elapsed since
the last time it was reset. All clocks increase at a uniform
rate, counting time with respect to a fixed global time
frame. Clock constraints can be associated with transitions
such that the transition can only occur if the current clock
values satisfy the constraint. For a set X of clock variables,
the set Φ(X) of clock constraints ϕϕ is limited by the
following grammar:

ϕϕ ::= x ≤ k | x ≥ k | x < k | x > k | ϕϕ1 ∧ ϕϕ2

where x is a clock from the set X and k is a constant from
the set of nonnegative rational numbers.

The timed automaton that describes the behavior of CHAN
when it is combined with its animation is shown in Fig 3.

CHAN

in, x := 0

in, x := 0

x > Tc, out

x > Tf, fail

0 1 2

 Figure 3 – CHAN Timed Automaton

Both of the transitions labeled by the action in reset the
clock x that represents the channel animation activity. The
out transition is only enabled when the clock value is
greater than Tc. This represents the time at which the
message reaches the box at the right of the animation
display. The fail action is enabled after the clock value
becomes greater than Tf. In the animation, Tf is less than Tc
so that the explosion drawn by the fail action occurs before
the box to the right is reached. The timed automaton
describes the abstract behavior of the animated model. In
the following, we outline how the concrete graphic display
for the animation is associated with the LTS model in a
way that is consistent with this abstract model.

Animation Activities
An animation is broken down into a set of activities. Each
animation activity corresponds to a single clock variable in
the timed automata model. The action of starting the
activity corresponds to resetting the clock while the end of
the activity corresponds to the satisfaction of a clock
constraint of the form x � k. The progress of an animation
activity corresponds exactly to the increasing value of a
clock variable in the timed automata model. Each

animation activity consists of a command to start the
activity and one or more conditions that it signals as the
animation progresses. In addition, the activity may provide
commands to modify how the animation is drawn – in the
example, the command to draw an explosion. The channel
animation activity has the following commands and
conditions:

commands:
 channel.begin -- corresponds to x := 0
 explode
conditions:
 channel.end -- corresponds to x � Tc
 channel.fail -- corresponds to x � Tf

Combining Model with Animation
One of the desirable characteristics of a graphic animation
facility is that it should not obscure or complicate the
model specification. The description of how a particular
model is animated should be separate from the model
specification itself. This allows different animations to be
applied to the same model and ensures that model
development is not confused and complicated by the need
to animate. We achieve this by defining relations that
associate animation activity commands and conditions with
action labels in the LTS.

CHAN

in, channel.begin

in, channel.begin

channel.end, out

channel.fail, fail, explode

0 1 2

Figure 4 – CHAN annotated by animation CHAN

Animation activities are associated with model action
labels using two relations: - Actions and Controls. The
Actions relation maps model action labels to animation
commands and the Controls relation maps action labels to
animation conditions. The relations for associating the
channel animation with the CHAN model are declared in
FSP as follows, where the infix “/” introduces a
〈label, command〉 or 〈label, condition〉 pair :

animation CHAN = "channel.xml"
 actions {
 in / channel.begin,
 fail / explode
 }
 controls {
 out / channel.end,
 fail / channel.fail
 }

An action label may be associated with both a command
and a condition, e.g. fail. The effect of the animation
declaration is to annotate an LTS with animation
commands and conditions in the same way that timed
automata annotate LTSs with clock resets and constraints.
The animation above annotates CHAN as depicted in Fig 4.

Animation Execution
In the following, we outline the algorithm that executes an
animation directed by an LTS. In the interests of clear
exposition, we will ignore silent actions (τ) and the error
state since these have little effect on the running of an
animation. An error state or a state with no outgoing
transitions terminates an execution.

We define an LTS P as a quadruple 〈S, A, ∆, q0〉 where:

• S is a finite set of states.

• A is a set of action labels known as the alphabet of P.

• ∆ ⊆ S × A × S, denotes a transition relation that maps
from a state and an action onto one or more states,

• q0 ∈ S indicates the initial state of P.

The set of enabled actions Eq at some state q in the LTS is
the set of actions that label outgoing transitions from that
state:

• Eq = { a : A | ∃ r ∈ S, (q, a, r) ∈ ∆}.

An animation M is defined by the quadruple
 〈C, B, Actions, Controls〉 where:

• C is a finite set of commands.

• B is a finite set of boolean conditions.

• Actions ⊆ A × C is the relation that maps an action to
one or more commands.

• Controls ⊆ A × B is the relation that maps an action to
one or more conditions.

An animation M applied to an LTS P partitions the alphabet
of P into two sets, those that can be executed immediately
and those that are controlled by animation conditions and
thus must wait for these conditions to become true. These
sets are:

• Controlled = domain Controls.

• Immediate = A – Controlled.

The predicate Signaled(a) is true for an action a if all of the
conditions that it is mapped to are set to true.

NextState(q,a) computes the next state r in the LTS P such
that (q,a,r) ∈ ∆.

The following algorithm describes animation execution:

Animate P with M :
curr := q0
loop
 while (Ecurr @ Immediate � ^` �

 choose a from (E @ Immediate)
 execute { c : C | (a, c) ∈ Commands }
 curr := NextState (curr, a)

 end while
 if (Ecurr = {}) exit

while ({ a : Ecurr | Signaled(a) } = {}) wait
choose ac from { a : Ecurr | Signaled(a) }
execute { c : C | (ac, c) ∈ Commands }
curr := NextState (curr, ac)

end loop

The animation algorithm ensures that all immediate actions,
that are enabled, happen before the animation waits for
controlled actions to be signaled. This is consistent with the
maximal progress condition usually assumed for timed
systems. We discuss later, how to check that a
model/animation combination is free of Zeno behaviors –
in our context, those behaviors involving an infinite
number of immediate actions without time progressing.

Interacting with Animations
Animation execution as described above, once started,
proceeds autonomously. Where more than one action is
eligible as a choice, if the action is immediate and not
controlled by an animation condition, the algorithm makes
an arbitrary choice. This corresponds to letting the
environment of the system make an arbitrary choice.
Clearly we need to let the user interact with the animation
so that these environment choices need not be arbitrary. To
allow interaction, we introduce buttons which when pressed
set conditions. These conditions control actions in the usual
way.

Returning to the channel example, the animation once
started runs continuously. The in action, which corresponds
to the environment sending a message to the channel,
happens autonomously. To allow the user to dictate when a
message is to be sent, we introduce a send condition to
control the in action as shown below:

animation CHAN = "channel.xml"
 actions { in / channel.begin,
 fail / explode
 }
 controls { out / channel.end,
 fail / channel.fail,
 in / send
 }

Introducing this new control mapping has two effects. It
ensures that the in action cannot occur until send is set to
true and it causes the animation engine to create a button.
The button sets the send condition when it is pressed. The
animation engine, by default, creates buttons for all those
conditions named in the Controls relation that are not

already used by animation activities. The channel animator
together with the send button is depicted in Fig 5.

Figure 5 – Channel Animation with send button

The question that now arises is when to reset the condition
set by a button? Normally an animation command resets all
the conditions of the activity that it starts. However, there is
no corresponding command for a button. Pragmatically, we
have chosen to reset the condition associated with a button
immediately after the button-enabled action occurs. All
buttons are initially reset. The annotation of an LTS for a
button go, is shown in Figure 6, where ~go is the command
to reset the condition go.

GO go, action, ~go

0 1

Figure 6 – LTS annotated with button condition

This scheme has the limitation that a button can only be
associated with a single action, while the general case is
that activity conditions can be associated with more than
one action. However, our experience to-date has been that
this limitation is not intrusive when designing animations.

Replaying traces
So far, we have described how animation is accomplished
for an interactive execution of an LTS. The other use of
animation is to replay traces generated as counter-examples
during model safety and progress analysis. A trace is
simply a sequence of actions. Replay of a trace T by an
animation M is performed by the following algorithm:

Replay T with M :
 R := T

repeat
 a : = head(R); R : = tail(R)
 if (a∈ Controlled) wait Signaled(a)
 execute { c : C | (a, c) ∈ Commands }
until (R ≠ <>)

The algorithm simply executes actions in the sequence
specified by the trace. However, where the action is
controlled, replay waits until the controlling conditions are
signaled.

Animation Behavior
The behavior of an LTS annotated by an animation – the
traces it can generate or accept – is a subset of the behavior
of the LTS without annotation. This becomes apparent if
we reconsider the Animate algorithm. At any state, if there
are both eligible immediate and controlled actions, the
algorithm chooses immediate actions in preference to
controlled actions. Controlled actions are only chosen if
there are no eligible immediate actions. The controlled
actions have lower priority. Consequently, to specify the
behavior of an animated LTS, we use the low priority
operator “>>” from[4], specified as follows:

For an LTS P = 〈S, A, ∆′, q0〉 and set of actions L ⊆ A, the
LTS in which the actions L are low priority is:

P>>L =〈S, A, ∆, q0〉 where ∆ is the smallest relation
satisfying the rule:

L P L P

P P
a

a

>> → >>

 →

'

' if ((a ∉ L) or (∀b ∈ (A – L), P
 → b))

The transition rule states that an eligible action in the
prioritized system can be performed if it is not a member of
the set of low priority actions L or there are no eligible
higher priority actions in (A – L).

With the low priority operator, we can now approximate
the behavior of the LTS P animated by M with set of
controlled actions Controlled as:

P >> Controlled.

This is an approximation that correctly constrains the
relative ordering between immediate and controlled actions
in the same way as the animation does. However, it permits
more orderings of controlled actions than are permitted by
the animation, since the animation schedules controlled
actions with time. It is still a useful approximation since we
can apply the progress check defined in [4], to check that a
system is free of Zeno executions using:

SURJUHVVSURJUHVV 121=(12 = { Controlled }

This asserts that in an infinite execution, it must be possible
to execute one of the actions in the controlled set infinitely
often. In practice, satisfaction of this property means that
the animation will display some activity rather than freeze
while a continuous loop of commands is executed.

3 COMPOSITION
Composition is of fundamental importance in our approach
to developing models. Primitive components are modeled
and analyzed before being combined into larger structures
as dictated by the architecture of the target system[8]. In
using animation as an aid to developing and validating
models we require that it be of use in this compositional
setting. This dictates that when we compose components,
the animations associated with these components should
also combine in a meaningful way. In the following, we

show how the Timed Automata semantics that underpin
animations provides a way to compose animations.

Timed Automata Composition
A timed automaton PT is the tuple 〈S, A, X, ∆, q0〉 where:

• S is a finite set of states.

• A is a set of action labels known as the alphabet of PT.

• X is a finite set of clocks.

• ∆ ⊆ S × A × S × 2X × Φ(X), gives the set of transitions.
〈s, a, s′, λ, ϕ 〉 represents the transition from state s to
state s′ labeled by a with λ ⊆ X the set of clocks to be
reset and ϕ ∈ Φ(X) a clock constraint.

• q0 ∈ S indicates the initial state of PT.

The composition of two timed automata:

PT1 = 〈S1, A1, X1, ∆ 1, q1〉 and PT2 = 〈S2, A2, X2, ∆ 2, q2〉 is

PT1 || PT2 = 〈S1× S2, A1 ∪ A2, X1 ∪ X2, ∆ , (q1 ,q2)〉 where X1
and X2 are disjoint and ∆ is defined by:

• for a ∈ A1∩ A2, for every 〈s1, a, s1′, λ1, ϕ1 〉 in ∆ 1 and
〈s2, a, s2′, λ2, ϕ2 〉 in ∆ 2, ∆ contains
〈(s1, s2), a, (s1′, s2′), λ1 ∪ λ2, ϕ1 ∧ ϕ2〉.

• for a ∈ A1– A2, for every 〈s, a, s′, λ, ϕ 〉 in ∆ 1 and
every t in S2 , ∆ contains 〈(s, t), a, (s′, t), λ, ϕ〉.

• for a ∈ A2– A1, for every 〈s, a, s′, λ, ϕ 〉 in ∆ 2 and
every t in S1 , ∆ contains 〈(t, s), a, (t ,s′), λ, ϕ〉.

Composition for timed automata is an extension of the
normal LTS composition construction in that the transition
for a shared action is annotated both with the union of
clock resets for the transitions from each of the constituent
automata, and with the conjunction of clock constraints.

Animation Composition
Remembering that in an animation, activities reify clocks
and that clock resets are interpreted as activity commands
and clock constraints as activity conditions, we can apply
the timed automata composition construction to animations.
An animation is defined by the set of commands C, the set
of conditions B and the two relations Actions and Controls
that map LTS action labels to commands and conditions, as
discussed previously. The relations are used to annotate the
LTS. To compose animations, we need to form the union of
commands that label a shared action and the conjunction of
conditions. This is done by forming the union of the
Actions and Controls relations.

If animation M1 = 〈C1, B1, Actions1, Controls1〉 and
animation M2 = 〈C2, B2, Actions2, Controls2〉 then:

animation M1 || M1 = 〈C1 ∪ C2, B1 ∪ B2,
Actions1 ∪ Actions2,
Controls1 ∪ Controls2〉

Where a model action maps to a set of animation
commands, the Animate and Replay algorithms execute
each of these commands. If it maps to a set of animation
conditions, the algorithms require all of the conditions to be
true before allowing the action to happen and any
associated commands to be executed.

Example
To illustrate animation composition, we use a fragment
from the Flexible Production Cell[9] animation depicted in
Fig 7. This animation consists of activities to animate the
operation of the input and output conveyors, the drilling
and oven processes, and the crane that moves blanks
between the conveyors and the manufacturing processes. In
the following, the animation concerned with the crane is
described.

Figure 7 – Flexible Production Cell animation.

The crane is composed of two elements, the gantry that
moves along the x-axis and the head that moves along the
y-axis. The crane is positioned at a point (x, y) by a
combination of gantry and head moves. The LTS of the
gantry, annotated with its animation commands and
conditions is depicted in Fig 8.

GANTRY

go[x:X], gantry.go[x]

gantry.end, end

0 1

Figure 8 – GANTRY annotated with animation GANTRY_ANIM

The FSP description that generates this annotated LTS is
given below:

range X = 0..4
GANTRY = (go[x:X] -> end -> GANTRY).

animation GANTRY_ANIM = "fmc.xml"
 actions {go[x:X]/gantry.go[x]}
 controls {end/gantry.end}

There is no direct textual association between the animation
and the process in the example. The association between a
particular animation and the system it animates is made by
user choice in the LTSA tool when the animation is
activated. This gives the user the flexibility to associate
different animations with a system and thus have multiple
views of its behaviour. Different system models may also
be associated at different times with the same animation.

The second element in the crane example is head
movement. The annotated LTS is depicted in Fig 9.

HEAD

go[y:Y], head.go[y]

head.end, end

0 1

Figure 9 – HEAD annotated with animation HEAD_ANIM

The FSP description that generates this annotated LTS is
given below:

range Y = 0..4
GANTRY = (go[y:Y] -> end -> GANTRY).

animation HEAD_ANIM = "fmc.xml"
 actions {go[y:Y]/head.go[y]}
 controls {end/head.end}

We can now construct a process that coordinates gantry and
head such that we can have composite actions that model
moves to specific (x ,y) coordinates. Composing the head
and gantry processes forms this crane control process:

 ||CRANE = (GANTRY/{move[x:X][Y]/go[x]}
 ||HEAD /{move[X][y:Y]/go[y]}
).

Composing the animations for gantry and head forms the
animation for this composite process:

animation CRANE_ANIM = "fmc.xml"
 compose { GANTRY_ANIM/{move[x:X][Y]/go[x]}
 ||HEAD_ANIM /{move[X][y:Y]/go[y]}
 }

Note that the relabeling relations used in the process
composition are the same as those used in animation
composition to ensure the alphabets of process and
animation remain consistent. The annotated LTS produced
by applying the crane animation to the crane process is
depicted in Fig 10. From this figure, it can be seen that a
move action to a particular location starts both the gantry
and head animation activities. The end action cannot occur
before both of these activities have terminated.

CRANE

move[x:X][y:Y], gantry.go[x], head.go[y]

gantry.end ∧ head.end, end

0 1

Figure 10 – CRANE annotated with animation CRANE_ANIM

Animation compositionality allows the incremental
development of model and animation. Components of a
system can be modeled and animated before being
combined into a larger system that has a composite
animation by construction. In the following section, we
outline the way that the graphic animation activities that are
controlled by the model are specified and composed.

4 ANIMATION ENGINE - SCENEBEANS
Graphic animations are constructed from a library of
JavaBeans that we have called SceneBeans. In the
following, we first outline the architecture of SceneBeans
and then show how a particular animation is specified using
an XML document.

SceneBean Architecture
The basic entities in the SceneBeans architecture are scene
graphs, behaviors and animations. A SceneBean animation
communicates with an application such as the LTSA tool
via commands and events.

Scene-graphs are a technique extensively used in 3D
graphics, however here we apply them to 2D images. In
SceneBeans, a scene-graph is implemented by a directed
acyclic graph (DAG) of JavaBeans that draws a 2D image.
Leaf nodes in the graph draw primitive shapes such as
circles, ellipses, rectangles, and polygons. Intermediate
nodes combine or transform their sub-graphs. Combination
nodes either layer one sub-graph on top of another or
choose one from a set of sub-graphs. Transform nodes
apply an affine transformation to their sub-graphs –
rotation, scaling, shearing or translation. Transforms may
also change the way that their sub-graphs are rendered – for
example, changing the color in which a node is drawn.
Nodes in the scene graph expose one or more JavaBean
properties by which their visual appearance can be
modified. For example, a node that draws a circle exposes
the radius of the circle as a bean property.

A behavior in SceneBeans is a bean that manages a time-
varying value, announcing an event whenever the value
changes. By connecting the events fired by a behavior to
the property of a bean in the scene graph, the property can
be made to change over time, so animating the visual
appearance of the scene graph. A behavior updates its value
from its initial parameter setting and from the passage of

time. An animation thread that controls the frame rate of
the overall animation signals the passage of time.
Behaviors are started by a command and announce an event
when they finish.

 Our notion of an animation activity introduced in section 2
corresponds exactly to a behavior in the SceneBean
framework. Each behavior maintains a clock that it uses to
compute its output value. The behavior termination event is
fired when this local clock value exceeds a maximum value
set before the behavior was started. The animation thread
updates the clocks of all behaviors synchronously. As a
result, SceneBean behaviors respect the conventions for the
local clocks of timed automata.

The times that are associated with an animation behavior in
SceneBeans are in fact real times that are independent of
the animation frame rate. The animation frame rate simply
determines the smoothness of the animation. We can speed
up or slow down the global time frame by making
animation time faster or slower than real-time, however this
does not affect the timing relationship between different
animation activities, nor does it affect the frame rate.

The relationship between scene-graph, behaviors and
animation thread is depicted schematically in Fig 11.

Scene Graph Behaviours Animation
Thread

Figure 11 – SceneBean Architecture

A SceneBean animation encapsulates a scene-graph and the
behaviors that animate the nodes of that graph. It acts as the
manager for the behaviors encapsulated within it, routing
commands and events. Most importantly, a SceneBean
animation is also a scene-graph node, since this means we
can compose animations, applying transformation and
further animation as required. For example, in the earlier
channel example, the explosion is a SceneBean animation
that has been included as a node of the overall channel
animation.

Specifying an animation in XML
To describe a specific animation, it is necessary to describe
a scene-graph and the behaviors that animate that graph. A
GUI-based tool that produces an XML document will

eventually support animation design. However, although
the eXtensible Markup Language (XML) [10] should most
sensibly be considered as a machine-readable format, we
currently specify animations directly in XML. To give a
flavor of how this works, we present the encoding of the
channel animation introduced in Section 2. The scene-
graph and behavior for this animation are shown in Fig 12.

behavior
“channel”
algorithm
 move

transform
translate

image
message

draw

image
channel

command
channel.begin

event
channel.end

Figure 12 – Channel Animation Scene Graph

This generates the pictures of Fig 2. In the interest of
brevity, we omit the elements that deal with channel failure
and with displaying the explosion. The animation consist of
a background image of the channel, consisting of the two
boxes and the line between them, and the message image
which is drawn on top of this background. The message
image is moved by a translate transform fed by the
behavior named “channel”. This behavior is of type move, a
behavior that over a period of time generates a set of values
from a starting value to an end value. The XML file that
describes the animation is listed below:

1 <?xml version="1.0"?>
2 <!DOCTYPE animation SYSTEM "scenebeans.dtd">

3 <animation width="400" height="136">

4 <behavior id="channel" algorithm="move"
5 event="channel.end">
6 <param name="from" value="71"/>
7 <param name="to" value="323"/>
8 <param name="duration" value="2"/>
9 </behaviour>

10 <command name="channel.begin">
11 <announce event = "~channel.end"/>
12 <start behaviour= "channel"/>
13 </command>

14 <event object="channel" event="channel.end">
15 <announce event="channel.end"/>
16 </event>

17 <draw>
18 <transform type="translate">
19 <param name="y" value="64"/>
20 <animate param="x" behavior="channel"/>
21 <image src="image/message.gif"/>
22 </transform>
23 <image src="image/channel.gif"/>
24 </draw>

25 </animation>

This XML description is used to instantiate a set of Java
Beans. The �SDUDP! tags translate into calls to bean
property set methods. For example, line 6 translates to the
call VHW)URP���� on the behavior bean instantiated from
0RYH�FODVV. Line 20 adds the translate transform bean as a
listener of the behavior bean for value change events. These
value change events update the x parameter of the
transform bean – resulting in movement of the message
image.

We have chosen to completely define the interface between
SceneBeans animation and an application, by a set of
commands and a set of events. This simple architectural
interface was chosen to facilitate integration of SceneBeans
with applications other than the LTSA tool. However, it
introduces a slight architectural mismatch between
SceneBeans and the LTSA. As described previously, the
LTSA considers an animation to be defined by commands
and conditions. To turn events into conditions, we have
introduced “not-events” that clear conditions in the LTSA.
Line 11 announces aFKDQQHO�HQG, the not-event for the
condition FKDQQHO�HQG signaled when the channel behavior
terminates. The command that starts a SceneBean behavior
must always send not-events for all events that it
subsequently announces. The combination of not-event and
event implements the condition state required by the LTSA.

Space has permitted us to describe only a very small subset
of the comprehensive animation facilities supported by
SceneBeans. The intension is to demonstrate that we have a
concrete, powerful and flexible implementation of
animation that is consistent with the abstract model
assumed in sections 2 & 3.

5 RELATED WORK
Most verification tools provide the ability to execute the
model specification as a way of simulating the system
being modeled. The output of this simulation is displayed
in the context of the specification. For example in
SPIN[11], the simulator highlights statements in the
Promela specification source as execution proceeds. The
Concurrency Factory[12] displays the execution in the
context of process diagrams specified in GCCS, a graphical
notation for Milner’s CCS[13]. UPPAAL[14], a tool based
on timed automata, displays simulation results by high-
lighting transitions and states of diagrammatic
representations of automata produced using the Autograph
tool[15]. Graphical animation in these tools thus refers to
animation of some graphical representation of the model
specification. This is clearly a useful facility in debugging
and understanding models – it is a facility provided in the
LTSA which animates LTS graphs – however, it does not
address the problem of communicating in a domain specific
way with requirements stakeholders unfamiliar with the
modeling formalism.

Some initial work on domain specific visualization is
reported by Heitmeyer[16] in the context of the SCR[17]

simulator. They use the image of real instrument panels to
display the outputs and controls for a simulation of the
function of that control panel specified in SCR. The form
of animation is similar in scope to that of the StateMate
tool mentioned in the introduction. As far as we are aware,
animation facilities, with the generality and flexibility of
those described here, have not been applied to behavior
modeling and verification tools.

Our work is perhaps closest in approach to work in the field
of program visualization, although the objective of that
work is to visualize program execution while ours is to
target model visualization at a problem domain. A
comprehensive account of the field of Software
Visualization may be found in the eponymous book edited
by Stasko et al[18]. We compare our approach with
program visualization systems that represent two of the
main approaches.

The Tango[19] and XTango[20] systems exemplify the first
approach. In these systems, a program is annotated with
“interesting events” that drive the visual animation. The
animation is constructed using a “path-transition”
paradigm. Interesting events correspond to our notion of
command and paths are essentially a limited form of
animation behavior. However, the notion of a condition
that synchronizes program execution with animation is
missing and perhaps not required since the systems are
targeted at sequential algorithm visualization. Indeed as
pointed out by Roman and Cox[21], Tango and related
systems cannot easily be applied to concurrent programs.

The second approach exemplified by the Pavane[22]
system as applied to Swarm[23] programs, visualizes
program execution by declaring a mapping between
program state and the visual representation of that state.
Animation is thus a consequence of modifying the state.
Our approach of providing a clear semantic framework for
animation is predated by the declared intention of the
authors of the Pavane system to put program visualization
on firm formal foundations. Interestingly, our system may
be considered to be a dual of Pavane, since Pavane depicts
states and does animation during the transition between
states. In our system, animation occurs while the model
remains in a state and transitions can cause the elements in
the picture to change instantaneously. We believe this
difference results from the different objectives of the
systems. Pavane is targeted at visualizing data parallel
computations and as a result is state-based, while our
system is targeted at depicting behavior and is event-based.
The decoupling of animation from program/model is a
common objective of both systems.

6 DISCUSSION & CONCLUSION
We have presented an approach to animating behavioral
models that preserves a clear separation between model and
animation. Animation need not interfere with the process of
model development, specification and analysis – it is

treated as an annotation of the model. This separation
permits an animation to be applied to different models and
allows multiple animations to be applied to a particular
model. Although we have not yet done so, multiple
animations can be applied concurrently to a model by
forming the union of their animation relations.

This flexibility is achieved by using Timed Automata as the
abstract basis for animated models. Where Timed
Automata add local clocks to standard labeled transition
systems, animated models add activities that reify clocks as
visual behavior. We have exploited the compositional
semantics of Timed Automata to permit the compositional
development of animated models. Separation between
model and animation is achieved by defining an animation
relation that annotates an LTS with animation activities in
the same way that Timed Automata are annotated with
clocks. This animation relation provides equivalent
flexibility for event-based systems to the flexibility Pavane
achieves in mapping states to visual representations.

However, strict adherence to the clock constraints allowed
by Timed Automata, when combined with the fact that the
animation relation annotates all transitions labeled by an
action rather than a specific transition, does limit the range
of possible animation behaviors. For example, in some
animations, it is desirable that for different starting
situations, the activity has a different end time – in other
words, abstractedly k is not a constant in the constraint
 x ≥ k. This relaxation does not invalidate the composition
rules for animations, the ability to replay property violation
traces or the prioritized approximation used to check
progress properties. However, it means the Timed
Automaton that represents the abstract behavior of an
animated model can no longer be formed simply by
replacing animation commands by clock resets and
animation conditions by clock constraints. In using the
animation facilities, we have also discovered that it is
useful in some problem domains to reflect physical
constraints, such as the fact that two objects cannot occupy
the same space, in the animation rather than the behavior
model. In essence, the model reflects system behavior
while the animation provides the environmental constraints
on that behavior Again this does not seem to affect the
composition of animations but the overall abstract
behavior. Investigation of these issues forms part of our
current work on animation.

The SceneBeans animation engine provides a flexible
general-purpose framework for implementing animations.
This flexibility arises from the use of JavaBeans to package
behavior and graphical entities and scene-graphs as the way
of combining these entities into an animation. XML has
proved a useful notation for describing the organization of
a particular animation. The XML document type definition
(DTD) constrains the way the different elements of an
animation can be combined. The SceneBeans framework

can be easily extended by the addition of behavior and
graphics beans. Animations can be packaged in a reusable
way as XML files that can then be included into larger
animations. We hope to exploit this flexibility in an
animation design tool that will have associated with it
libraries of domain specific animations. An exciting future
prospect is the use of three-dimensional animations viewed
in three dimensions.

Currently, we are gaining experience in the use of
animation in a number of areas. We are applying it to
animating workflows in the area of complex distributed
service provision[24], to the development of pedagogic
examples and to modeling a sub-system of an air traffic
control system. In future papers we hope to report on our
conjecture that animation fulfils a useful role in
communicating both the intent of a model and the analysis
results from that model. The LTSA application and
SceneBeans animation package are available from:

KWWS���ZZZ�GVH�GRF�LF�DF�XN�FRQFXUUHQF\�OWVD�Y��

Acknowledgements
We are grateful to the EPSRC for funding part of this work
under grant GR/M24493, to British Telecomms for the
motivation to look at workflow as a target for animation,
and to the EU under grant C3DS for funding work on
modeling workflow systems.

REFERENCES
[1] J. Magee, J. Kramer, and D. Giannakopoulou, “Behaviour

Analysis of Software Architectures,” presented at 1st
Working IFIP Conference on Software Architecture
(WICSA1), San Antonio, TX, USA, 22-24 February 1999.

[2] J. Magee, J. Kramer, and D. Giannakopoulou, “Analysing the
Behaviour of Distributed Software Architectures: a Case
Study,” presented at 5th IEEE Workshop on Future Trends of
Distributed Computing Systems, Tunis, Tunisia, October
1997.

[3] S. C. Cheung and J. Kramer, “Checking Subsystem Safety
Properties in Compositional Reachability Analysis,”
presented at 18th International Conference on Software
Engineering (ICSE'18), Berlin, Germany, March 1996.

[4] D. Giannakopoulou, J. Magee, and J. Kramer, “Checking
Progress with Action Priority: Is it Fair?,” presented at 7th
European Software Engineering Conference held jointly with
the 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE'99), Toulouse, France,
September 1999.

[5] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.
Sheman, A. Shtul-Trauring, and M. Trakhtenbrot,
“STATEMATE: A Working Environment for the
Development of Complex Reactive Systems,” IEEE
Transactions on Software Engineering, vol. 16, pp. 403-414,
April 1990.

[6] J. Magee and J. Kramer, Concurrency - State Models & Java
Programs. Chichester: John Wiley & Sons, 1999.

[7] R. Alur and D. L. Dill, “A theory of timed automata.,”
Theoretical Computer Science, vol. 126, pp. 183-235, 1994.

[8] D. Giannakopoulou, J. Kramer, and S. C. Cheung,
“Analysing the Behaviour of Distributed Systems using
Tracta,” Journal of Automated Software Engineering, special
issue on Automated Analysis of Software, vol. 6, pp. 7-35,
January 1999.

[9] A. Lotzberger and R. Muhfeld, “Task Description of a
Flexible Cell with Real Time Properties,” FZI, Karslruhe
version 2.1, http://www.fzi.de/prost/projects/korsys/ 1996.

[10] T. Bray, J. paoli, and C. M. Sperberg-McQueen, “Extensible
Markup Language,” World Wide Web Consortium
http://www.w3.org/TR/1998/REC-xml-19980210 1998.

[11] G. J. Holzmann, “The Model Checker SPIN,” IEEE
Transactions on Software Engineering, vol. 23, pp. 279-295,
May 1997.

[12] R. Cleaveland, P. M. Lewis, S. A. Smolka, and O. Sokolsky,
“The Concurrency Factory: A Development Environment for
Concurrent Systems,” presented at 8th International
Conference on Computer-Aided Verification (CAV'96), New
Brunswick, NJ, USA, July/August 1996.

[13] R. Milner, Calculus of Communicating Systems, vol. 92:
Springer-Verlag, 1980.

[14] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a
Nutshell,” Springer International Journal on Software Tools
for Technology Transfer, vol. 1, pp. 134-152, 1997.

[15] V. Roy and R. de Simone, “Auto/Autograph,” in Computer-
Aided Verification, R. Kurshan, Ed.: Kluwer Academic
Publishers, 1993.

[16] C. Heitmeyer, C. Kirby, and B. Labaw, “The SCR method
for Formally Specifying, Verifying and Validating
requirements: Tool Support.,” presented at 19th International
Conference on Software Engineering (ICSE'97), Boston,
Massachussets, USA, May 1997.

[17] R. Bharadwaj and C. Heitmeyer, “Verifying SCR
Requirements Specifications Using State Exploration,”
presented at 1st ACM Sigplan Workshop on Automated
Analysis of Software (AAS'97), Paris, France, January 1997.

[18] J. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
Software Visualization. Cambridge, Massachusetts: MIT
Press, 1998.

[19] J. Stasko, “TANGO: A Framework and System for
Algorithm Animation,” IEEE Computer, vol. 23, pp. 27-39,
1990.

[20] J. Stasko, “Animating Algorithms with XTango,” SIGACT
News, vol. 23, pp. 67-71, February 1992.

[21] G. C. Roman and K. Cox, “A Taxonomy of Program
Visualization Systems,” IEEE Computer, vol. 26, pp. 11-24,
December 1993.

[22] G. C. Roman, K. Cox, C. Wilcox, and J. Plun, “Pavane: A
System for Declarative Visualization of Concurrent
Computations,” Journal of Visual Languages and
Computing, vol. 3, pp. 161-193, January 1992.

[23] G. C. Roman and H. Cunningham, “Mixed Programming
Metaphors in a Shared Dataspace Model of Concurrency,”
IEEE Transactions on Software Engineering, vol. 16, pp.
1361-1373, December 1990.

[24] C. Karamanolis, D. Giannakopoulou, J. Magee, and S.
Wheater, “Modelling and Analysis of Workflkow
Processes,” Imperial College, London TR 99/2, 1999.

