
Concurrency: processes & threads 1
©Magee/Kramer

Chapter 2

Processes & Threads

Concurrency: processes & threads 2
©Magee/Kramer

concurrent processes

We structure complex systems as
sets of simpler activities, each
represented as a sequential process.
Processes can overlap or be
concurrent, so as to reflect the
concurrency inherent in the physical
world, or to offload time-consuming
tasks, or to manage communications or
other devices.

Designing concurrent software can be
complex and error prone. A rigorous
engineering approach is essential.

Model processes as
finite state machines.

Program processes as
threads in Java.

Concept of a process as
a sequence of actions.

Concurrency: processes & threads 3
©Magee/Kramer

processes and threads

Concepts: processes - units of sequential execution.

Models: finite state processes (FSP)
 to model processes as sequences of actions.

 labelled transition systems (LTS)
 to analyse, display and animate behavior.

Practice: Java threads

Concurrency: processes & threads 4
©Magee/Kramer

2.1 Modeling Processes

Models are described using state machines,
known as Labelled Transition Systems LTS.
These are described textually as finite state
processes (FSP) and displayed and analysed by
the LTSA analysis tool.

♦ LTS - graphical form

♦ FSP - algebraic form

Concurrency: processes & threads 5
©Magee/Kramer

modeling processes

A process is the execution of a sequential program. It is
modeled as a finite state machine which transits from
state to state by executing a sequence of atomic actions.

a light switch
LTS

onààoffààonààoffààonààoffàà ……….
a sequence of
actions or trace

on

off

0 1

Concurrency: processes & threads 6
©Magee/Kramer

FSP - action prefix

If x is an action and P a process then (x-> P)
describes a process that initially engages in the action
x and then behaves exactly as described by P.

ONESHOT = (once -> STOP). ONESHOT state
machine

(terminating process)

Convention: actions begin with lowercase letters
 PROCESSES begin with uppercase letters

once

0 1

Concurrency: processes & threads 7
©Magee/Kramer

FSP - action prefix & recursion

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

Repetitive behaviour uses recursion:

Substituting to get a more succinct definition:

SWITCH = OFF,
OFF = (on ->(off->OFF)).

And again:

SWITCH = (on->off->SWITCH).

on

off

0 1

Concurrency: processes & threads 8
©Magee/Kramer

animation using LTSA

Ticked actions are eligible
for selection.

In the LTS, the last action is
highlighted in red.

The LTSA animator can be
used to produce a trace.

on

off

0 1

Concurrency: processes & threads 9
©Magee/Kramer

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
 -> TRAFFICLIGHT).

LTS generated using LTSA:

Trace:

FSP model of a traffic light :

redààorangeààgreenààorangeààredààorangeààgreen …

red orange green

orange

0 1 2 3

Concurrency: processes & threads 10
©Magee/Kramer

FSP - choice

If x and y are actions then (x-> P | y-> Q)
describes a process which initially engages in either of
the actions x or y. After the first action has
occurred, the subsequent behavior is described by P if
the first action was x and Q if the first action was y.

Who or what makes the choice?

Is there a difference between input and
output actions?

Concurrency: processes & threads 11
©Magee/Kramer

FSP - choice

DRINKS = (red->coffee->DRINKS
 |blue->tea->DRINKS
).

LTS generated using LTSA:

Possible traces?

FSP model of a drinks machine :

red

blue

coffee

tea

0 1 2

Concurrency: processes & threads 12
©Magee/Kramer

Non-deterministic choice

Process (x-> P | x -> Q) describes a process which
engages in x and then behaves as either P or Q.

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

Tossing a
coin.

toss

toss

heads

tails

0 1 2

Possible traces?

Concurrency: processes & threads 13
©Magee/Kramer

Modeling failure

How do we model an unreliable communication channel
which accepts in actions and if a failure occurs produces
no output, otherwise performs an out action?

Use non-determinism...

CHAN = (in->CHAN
 |in->out->CHAN
).

in

in

out

0 1

Concurrency: processes & threads 14
©Magee/Kramer

Single slot buffer that inputs a value in the range 0 to 3
and then outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]-> BUFF).
equivalent to

or using a process parameter with default value:

BUFF = (in[0]->out[0]->BUFF
 |in[1]->out[1]->BUFF
 |in[2]->out[2]->BUFF
 |in[3]->out[3]->BUFF
).

BUFF(N=3) = (in[i:0..N]->out[i]-> BUFF).

Concurrency: processes & threads 15
©Magee/Kramer

const N = 1
range T = 0..N
range R = 0..2*N

SUM = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

FSP - constant & range declaration

index expressions to
model calculation:

in.0.0

in.0.1
in.1.0

in.1.1

out.0

out.1

out.2

0 1 2 3

Concurrency: processes & threads 16
©Magee/Kramer

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that
when the guard B is true then the actions x and y are
both eligible to be chosen, otherwise if B is false then
the action x cannot be chosen.

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
 |when(i>0) dec->COUNT[i-1]
).

inc inc

dec

inc

dec dec

0 1 2 3

Concurrency: processes & threads 17
©Magee/Kramer

FSP - guarded actions

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

(when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0)beep->STOP

|stop->STOP
).

A countdown timer which beeps after N ticks, or can be
stopped.

start

stop

tick

stop

tick

stop

tick beep
stop

0 1 2 3 4 5

Concurrency: processes & threads 18
©Magee/Kramer

FSP - guarded actions

What is the following FSP process equivalent to?

const False = 0
P = (when (False) doanything->P).

Answer:

STOP

Concurrency: processes & threads 19
©Magee/Kramer

FSP - process alphabets

The alphabet of a process is the set of actions in
which it can engage.

Alphabet extension can be used to extend the implicit
alphabet of a process:

Alphabet of WRITER is the set {write[0..3]}
(we make use of alphabet extensions in later chapters)

WRITER = (write[1]->write[3]->WRITER)
+{write[0..3]}.

Concurrency: processes & threads 20
©Magee/Kramer

2.2 Implementing processes

Modeling processes as
finite state machines
using FSP/LTS.

Implementing threads
in Java.

Note: to avoid confusion, we use the term process when referring to
the models, and thread when referring to the implementation in Java.

Concurrency: processes & threads 21
©Magee/Kramer

Implementing processes - the OS view

A (heavyweight) process in an operating system is represented by its code,
data and the state of the machine registers, given in a descriptor. In order to
support multiple (lightweight) threads of control, it has multiple stacks, one
for each thread.

Data Code

O S Process

Descriptor

Thread 1 Thread 2 Thread n

Stack Stack Stack

Descriptor Descriptor

Descriptor

Concurrency: processes & threads 22
©Magee/Kramer

threads in Java

A Thread class manages a single sequential thread of control.
Threads may be created and deleted dynamically.

Thread

 run()

MyThread

 run()

The Thread class executes instructions from its method
run(). The actual code executed depends on the
implementation provided for run() in a derived class.

class MyThread extends Thread {
public void run() {

//......
}

}

Concurrency: processes & threads 23
©Magee/Kramer

threads in Java

Since Java does not permit multiple inheritance, we often
implement the run() method in a class not derived from Thread but
from the interface Runnable.

Runnable

run()

MyRun

run()

public interface Runnable {
public abstract void run();

}

class MyRun implements Runnable{
public void run() {

 //.....
 }
}

Thread
target

Concurrency: processes & threads 24
©Magee/Kramer

thread life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

Created Alive

Terminated

new Thread()

start()

stop(), or
run() returnsstop()

The predicate isAlive() can be
used to test if a thread has been started but
not terminated. Once terminated, it cannot
be restarted (cf. mortals).

start() causes the thread to call its
run() method.

Concurrency: processes & threads 25
©Magee/Kramer

thread alive states in Java

Once started, an alive thread has a number of substates :

Runnable Non-Runnable
suspend()

resume()

yield()

Running

dispatch

suspend()

start()

stop(), or
run() returnswait() also makes a Thread Non-Runnable, and

notify() Runnable (used in later chapters).

sleep()

Concurrency: processes & threads 26
©Magee/Kramer

Java thread lifecycle - an FSP specification

THREAD = CREATED,
CREATED = (start ->RUNNING
 |stop ->TERMINATED),
RUNNING = ({suspend,sleep}->NON_RUNNABLE
 |yield ->RUNNABLE
 |{stop,end} ->TERMINATED
 |run ->RUNNING),
RUNNABLE = (suspend ->NON_RUNNABLE
 |dispatch ->RUNNING
 |stop ->TERMINATED),
NON_RUNNABLE = (resume ->RUNNABLE
 |stop ->TERMINATED),
TERMINATED = STOP.

Concurrency: processes & threads 27
©Magee/Kramer

Java thread lifecycle - an FSP specification

end, run,
dispatch are
not methods of
class Thread.

States 0 to 4 correspond to CREATED, TERMINATED, RUNNING,
NON-RUNNABLE, and RUNNABLE respectively.

start

stop

stop

suspend
sleep

yield

end

run

stop

resume

stop

suspend

dispatch

0 1 2 3 4

Concurrency: processes & threads 28
©Magee/Kramer

CountDown timer example

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

(when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0)beep->STOP

|stop->STOP
).

Implementation in Java?

Concurrency: processes & threads 29
©Magee/Kramer

CountDown timer - class diagram

The class CountDown derives from Applet and contains the
implementation of the run() method which is required by Thread.

Applet

init()
start()
stop()
run()
tick()
beep()

Runnable

CountDown

NumberCanvas

setvalue()

Threadcounter

display

target

The class NumberCanvas
provides the display canvas.

Concurrency: processes & threads 30
©Magee/Kramer

CountDown class

public class CountDown extends Applet
 implements Runnable {
 Thread counter; int i;
 final static int N = 10;
 AudioClip beepSound, tickSound;
 NumberCanvas display;

 public void init() {...}
 public void start() {...}
 public void stop() {...}
 public void run() {...}
 private void tick() {...}
 private void beep() {...}
}

Concurrency: processes & threads 31
©Magee/Kramer

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {
 while(true) {
 if (counter == null) return;
 if (i>0) { tick(); --i; }
 if (i==0) { beep(); return;}
 }
 }

COUNTDOWN Model
start ->

stop ->

COUNTDOWN[i] process
 recursion as a while loop
 STOP
 when(i>0) tick -> CD[i-1]
 when(i==0)beep -> STOP

STOP when run() returns

Concurrency: processes & threads 32
©Magee/Kramer

Summary

uConcepts
l process - unit of concurrency, execution of a program

uModels
l LTS to model processes as state machines - sequences of

atomic actions

l FSP to specify processes using prefix “->”, choice ” | ”
and recursion.

uPractice
l Java threads to implement processes.

l Thread lifecycle - created, running, runnable, non-
runnable, terminated.

