
Concurrency: shared objects & mutual exclusion 1
©Magee/Kramer

Chapter 4

Shared Objects &
Mutual Exclusion

Concurrency: shared objects & mutual exclusion 2
©Magee/Kramer

Shared Objects & Mutual Exclusion

Concepts: process interference.
 mutual exclusion.

Models: model checking for interference
modeling mutual exclusion

Practice: thread interference in shared Java objects
mutual exclusion in Java
(synchronized objects/methods).

Concurrency: shared objects & mutual exclusion 3
©Magee/Kramer

4.1 Interference

Garden

West
Turnstile

East

Turnstile
people

People enter an ornamental garden through either of two
turnstiles. Management wish to know how many are in the
garden at any time.

The concurrent program consists of two concurrent
threads and a shared counter object.

Ornamental garden problem:

Concurrency: shared objects & mutual exclusion 4
©Magee/Kramer

ornamental garden Program - class diagram

The Turnstile thread simulates the periodic arrival of a visitor to
the garden every second by sleeping for a second and then invoking
the increment() method of the counter object.

setvalue()

NumberCanvas

Applet

init()
go()

Garden

Thread

Turnstile

run()

Counter

increment()

displaydisplay

east,west people

eastD,
westD,
counterD

Concurrency: shared objects & mutual exclusion 5
©Magee/Kramer

ornamental garden program

private void go() {
 counter = new Counter(counterD);
 west = new Turnstile(westD,counter);
 east = new Turnstile(eastD,counter);
 west.start();
 east.start();
}

The Counter object and Turnstile threads are created by the
go() method of the Garden applet:

Note that counterD, westD and eastD are objects of
NumberCanvas used in chapter 2.

Concurrency: shared objects & mutual exclusion 6
©Magee/Kramer

Turnstile class

class Turnstile extends Thread {
 NumberCanvas display;
 Counter people;

 Turnstile(NumberCanvas n,Counter c)
 { display = n; people = c; }

 public void run() {
 try{
 display.setvalue(0);
 for (int i=1;i<=Garden.MAX;i++){
 Thread.sleep(500); //0.5 second between arrivals
 display.setvalue(i);
 people.increment();
 }
 } catch (InterruptedException e) {}
 }
}

The run()
method exits
and the thread
terminates after
Garden.MAX
visitors have
entered.

Concurrency: shared objects & mutual exclusion 7
©Magee/Kramer

Counter class

class Counter {
 int value=0;
 NumberCanvas display;

 Counter(NumberCanvas n) {
 display=n;
 display.setvalue(value);
 }

 void increment() {
 int temp = value; //read value
 Simulate.HWinterrupt();
 value=temp+1; //write value
 display.setvalue(value);
 }
}

Hardware interrupts can occur
at arbitrary times.

The counter simulates a
hardware interrupt during an
increment(), between
reading and writing to the
shared counter value.
Interrupt randomly calls
Thread.yield() to force
a thread switch.

Concurrency: shared objects & mutual exclusion 8
©Magee/Kramer

ornamental garden program - display

After the East and West turnstile threads have each
incremented its counter 20 times, the garden people
counter is not the sum of the counts displayed. Counter
increments have been lost. Why?

Concurrency: shared objects & mutual exclusion 9
©Magee/Kramer

concurrent method activation

Java method activations are not atomic - thread
objects east and west may be executing the code for
the increment method at the same time.

eastwest

increment:

 read value

 write value + 1

program
counter program

counter

PC PC
shared code

Concurrency: shared objects & mutual exclusion 10
©Magee/Kramer

ornamental garden Model

Process VAR models read and write access to the shared
counter value.

Increment is modeled inside TURNSTILE since Java method
activations are not atomic i.e. thread objects east and west
may interleave their read and write actions.

value:VAR
display

write

GARDEN

west:
TURNSTILE

value

end
go

arrive

east:
TURNSTILE

value

end
go

arrive

go
end

read

Concurrency: shared objects & mutual exclusion 11
©Magee/Kramer

ornamental garden model

const N = 4
range T = 0..N
set VarAlpha = { value.{read[T],write[T]} }

VAR = VAR[0],
VAR[u:T] = (read[u] ->VAR[u]
 |write[v:T]->VAR[v]).

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT
 |end -> TURNSTILE),
INCREMENT = (value.read[x:T]
 -> value.write[x+1]->RUN
)+VarAlpha.

||GARDEN = (east:TURNSTILE || west:TURNSTILE
 || { east,west,display} ::value:VAR)
 /{ go /{ east,west} .go,
 end/{ east,west} .end} .

The alphabet of
process VAR is
declared explicitly
as a set constant,
VarAlpha.

The alphabet of
TURNSTILE is
extended with
VarAlpha to ensure
no unintended free
actions in VAR ie. all
actions in VAR must
be controlled by a
TURNSTILE.

Concurrency: shared objects & mutual exclusion 12
©Magee/Kramer

checking for errors - animation

Scenario checking
- use animation to
produce a trace.

Is this trace
correct?

Concurrency: shared objects & mutual exclusion 13
©Magee/Kramer

checking for errors - exhaustive analysis

TEST = TEST[0],
TEST[v:T] =
 (when (v<N){east.arrive,west.arrive}->TEST[v+1]
 |end->CHECK[v]
),
CHECK[v:T] =
 (display.value.read[u:T] ->
 (when (u==v) right -> TEST[v]
 |when (u!=v) wrong -> ERROR
)
)+{display.VarAlpha}.

Exhaustive checking - compose the model with a TEST
process which sums the arrivals and checks against the
display value:

Like STOP, ERROR is
a predefined FSP
local process (state),
numbered -1 in the
equivalent LTS.

Concurrency: shared objects & mutual exclusion 14
©Magee/Kramer

ornamental garden model - checking for errors

||TESTGARDEN = (GARDEN || TEST).

Use LTSA to perform an exhaustive search for ERROR.

Trace to property violation in TEST:
go
east.arrive
east.value.read.0
west.arrive
west.value.read.0
east.value.write.1
west.value.write.1
end
display.value.read.1
wrong

LTSA produces
the shortest
path to reach
ERROR.

Concurrency: shared objects & mutual exclusion 15
©Magee/Kramer

Interference and Mutual Exclusion

Destructive update, caused by the arbitrary
interleaving of read and write actions, is termed
interference.

Interference bugs are extremely difficult to
locate. The general solution is to give methods
mutually exclusive access to shared objects.
Mutual exclusion can be modeled as atomic
actions.

Concurrency: shared objects & mutual exclusion 16
©Magee/Kramer

4.2 Mutual exclusion in Java

class SynchronizedCounter extends Counter {

 SynchronizedCounter(NumberCanvas n)
 {super(n);}

 synchronized void increment() {
 super.increment();
 }
}

We correct COUNTER class by deriving a class from it and
making the increment method synchronized:

Concurrent activations of a method in Java can be made
mutually exclusive by prefixing the method with the keyword
synchronized.

Concurrency: shared objects & mutual exclusion 17
©Magee/Kramer

mutual exclusion - the ornamental garden

Java associates a lock with every object. The Java compiler inserts
code to acquire the lock before executing the body of the
synchronized method and code to release the lock before the
method returns. Concurrent threads are blocked until the lock is
released.

Concurrency: shared objects & mutual exclusion 18
©Magee/Kramer

Java synchronized statement

Access to an object may also be made mutually exclusive by using the
synchronized statement:

synchronized (object) { statements }

A less elegant way to correct the example would be to modify the
Turnstile.run() method:

 synchronized(counter) {counter.increment();}

Why is this “less elegant”?

To ensure mutually exclusive access to an object,
all object methods should be synchronized.

Concurrency: shared objects & mutual exclusion 19
©Magee/Kramer

To add locking to our model, define a LOCK, compose it with
the shared VAR in the garden, and modify the alphabet set :

4.3 Modeling mutual exclusion

LOCK = (acquire->release->LOCK).
||LOCKVAR = (LOCK || VAR).

set VarAlpha = {value.{read[T],write[T],
 acquire, release}}

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT
 |end -> TURNSTILE),
INCREMENT = (value.acquire
 -> value.read[x:T]->value.write[x+1]
 -> value.release->RUN
)+VarAlpha.

Modify TURNSTILE to acquire and release the lock:

Concurrency: shared objects & mutual exclusion 20
©Magee/Kramer

Revised ornamental garden model - checking for errors

Use TEST and LTSA to perform an exhaustive check.
Is TEST satisfied?

 go
 east.arrive
 east.value.acquire
 east.value.read.0
 east.value.write.1
 east.value.release
 west.arrive
 west.value.acquire
 west.value.read.1
 west.value.write.2
 west.value.release
 end
 display.value.read.2
 right

A sample animation
execution trace

Concurrency: shared objects & mutual exclusion 21
©Magee/Kramer

COUNTER: Abstraction using action hiding

To model shared objects
directly in terms of their
synchronized methods, we
can abstract the details by
hiding.

For SynchronizedCounter
we hide read, write,
acquire, release actions.

const N = 4
range T = 0..N

VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]
 | write[v:T]->VAR[v]).

LOCK = (acquire->release->LOCK).

INCREMENT = (acquire->read[x:T]
 -> (when (x<N) write[x+1]
 ->release->increment->INCREMENT
)
)+{read[T],write[T]}.

||COUNTER = (INCREMENT||LOCK||VAR)@{increment}.

Concurrency: shared objects & mutual exclusion 22
©Magee/Kramer

COUNTER: Abstraction using action hiding

Minimized
LTS:

We can give a more abstract, simpler description of a
COUNTER which generates the same LTS:

This therefore exhibits “equivalent” behavior i.e. has the
same observable behavior.

COUNTER = COUNTER[0]
COUNTER[v:T] = (when (v<N) increment -> COUNTER[v+1]).

increment increment increment increment

0 1 2 3 4

Concurrency: shared objects & mutual exclusion 23
©Magee/Kramer

Summary

uConcepts
l process interference

l mutual exclusion

uModels
l model checking for interference

l modeling mutual exclusion

uPractice
l thread interference in shared Java objects

l mutual exclusion in Java (synchronized objects/methods).

