
Program Verification 1 

1 

        

$$$$    Program Verification 
 

In the book, we take a modeling approach to the design of concurrent 
programs. Models are constructed, so that we can focus on actions, interaction 
and concurrency before proceeding to implementation and adding the details 
concerned with data representation, resource usage and user interface. We use 
the model as a basis for program construction by identifying a mapping from 
model processes to Java threads and monitor objects. However, we do not 
demonstrate other than by testing and observation that the behavior of the 
implementation corresponds to the behavior predicted by the model. 
Essentially, we rely on a systematic translation of the model into Java to 
ensure that the program satisfies the same safety and progress properties as 
the model. 

In this supplement, we address the problem of verifying implementations, 
using FSP and its supporting LTSA tool. In doing verification, we translate 
Java programs into a set of FSP processes and show that the resulting FSP 
model satisfies the same safety and progress properties that the design model 
satisfied. In this way, we can show that the program is a satisfactory 
implementation of its design model. 

Chapter 4 of the book took exactly this approach of translating a Java 
program into an FSP model to investigate the problem of interference. To 
perform verification, we need to model the Java program at the level of 
variables, monitor locks and condition synchronization. In Chapter 4, we 
showed how to model variables and monitor locks. This supplement develops 
a model for condition synchronization so that we can verify Java programs 
that use wait(), notify() and notifyAll(). This model is used 
in verifying the Bounded Buffer and Readers - Writers Java programs from 
Chapter 5 and 6. 

$.1  $.1  $.1  $.1      Modeling condition synchronization 

In chapter 5, we outlined how a guarded action in a design model can be 
translated into a synchronized method as shown below: 

FSP: when cond act -> NEWSTAT



Program Verification 2 

2 

Java: public synchronized void act()
throws InterruptedException

{
while (!cond) wait();
// modify monitor data
notifyAll()

}

We noted that if an action modifies the data of the monitor, it can call 
notifyAll() to awaken all other threads that may be waiting for a 
particular condition to hold with respect to this data. We also noted that if it is 
not certain that only a single thread needs to be awakened, it is safer to call 
notifyAll() than notify() to make sure that threads are not kept 
waiting unnecessarily. 

$.1.1  $.1.1  $.1.1  $.1.1      wait, notify & notifyAll 

To verify that a program using this translation satisfies the required safety and 
progress properties, we must model the behavior of wait(), notify() 
and notifyAll(). We can then rigorously check the use of notify() 
versus notifyAll(). A model for the interaction of these methods is 
developed in the following. Firstly, we define a process ELEMENT to manage 
the blocked state of each thread that accesses a monitor. 

ELEMENT
= (wait -> BLOCKED | unblockAll -> ELEMENT),

BLOCKED
= ({unblock,unblockAll} -> UNBLOCK),

UNBLOCK
= (endwait -> ELEMENT).

The wait action, representing a call to wait(), puts the process into the 
BLOCKED state. Then either an unblock action caused by a notify() or 
an unblockAll action caused by a notifyAll() causes the process to 
move to UNBLOCK and signal the return of the wait() method by the 
endwait action. We will deal with the way that the monitor lock is released 
and acquired by wait() later. 

The CONTROL process manages how notify and notifyAll actions, 
representing the eponymous Java methods, cause unblock and 
unblockAll actions: 



Program Verification 3 

3 

CONTROL = EMPTY,
EMPTY = (wait -> WAIT[1]

|{notifyAll,notify} -> EMPTY
),

WAIT[i:1..Nthread]
= (when (i<Nthread) wait -> WAIT[i+1]

|notifyAll -> unblockAll -> EMPTY
|notify -> unblock ->
if (i==1) then EMPTY else WAIT[i-1]
).

Since we can only check systems with a finite set of states, we must define a 
static set of identifiers Threads to represent the set of threads that can 
potentially access a monitor object. The cardinality of this set is defined by 
the constant Nthread. The CONTROL process maintains a count of the 
number of processes in the blocked state. If there are no blocked processes 
then notify and notifyAll have no effect. If there are many blocked 
processes then a notify action unblocks any one of them. The set of threads 
waiting on a monitor and the effect of the wait(), notify() and 
notifyAll() methods is modeled by the composition: 

const Nthread = 3 //cardinality of Threads
set Threads = {a,b,c} //set of thread indentifiers
set SyncOps = {notify,notifyAll,wait}

||WAITSET
= (Threads:ELEMENT || Threads::CONTROL)

/{unblockAll/Threads.unblockAll}.

The composition defines an ELEMENT process for each thread identifier in 
the set Threads. The CONTROL process is shared by all the threads in this 
set. The relabeling ensures that when any thread calls notifyAll() then 
all waiting threads are unblocked. The behavior of WAITSET is best 
illustrated using the animation facilities of LTSA.  

Figure $.1 shows a trace in which thread b calls wait, then thread a calls 
wait. A call by thread c to notify unblocks thread a. Note that while 
thread b was blocked before a, it is a that is unblocked first. In other words, 
the model does not assume that blocked threads are held in a FIFO queue, 
although many Java Virtual Machines implement thread blocking this way. 
The Java Language Specification specifies only that blocked threads are held 
in a set and consequently may be unblocked in any order by a sequence of 



Program Verification 4 

4 

notifications. An implementation that assumes FIFO blocking may not work 
correctly on a LIFO implementation. The WAITSET model permits all 
possible unblocking orders and consequently, when we use it in verification, 
it ensures that if an implementation model is correct, it is correct for all 
blocking/unblocking orders. 

 

Figure $.1 – WAITSET trace for notify 

Figure $.2 illustrates the behavior for notifyAll when threads a and b are 
blocked. 

 

Figure $.2 – WAITSET trace for notifyAll



Program Verification 5 

5 

$.2  $.2  $.2  $.2      Modeling Variables & Synchronized methods 

$.2.1  $.2.1  $.2.1  $.2.1      Variables 

Variables are modeled in exactly the same way as presented in Chapter 4. 
However, for convenience, we add actions to model incrementing and 
decrementing integer variables. An integer variable is modeled by: 

const Imax = // maximum value that variable can take 
range Int = 0..Imax
set VarAlpha = {read[Int],write[Int],inc,dec}

VAR = VAR[0],
VAR[v:Int] = (read[v] ->VAR[v] // v

|inc ->VAR[v+1] // ++v
|dec ->VAR[v-1] // - -v
|write[c:Int]->VAR[c] // v = c
).

A boolean variable is modeled by: 

const False = 0
const True = 1
range Bool = False..True
set BoolAlpha = {read[Bool],write[Bool]}

BOOLVAR = BOOLVAR[False],
BOOLVAR[b:Bool] = (read[b] ->BOOLVAR[b] // b

|write[c:Bool]->BOOLVAR[c] // b = c
).

$.2.2  $.2.2  $.2.2  $.2.2      Monitor exit & entry 

In Chapter 4, we noted that synchronized methods acquire the monitor lock 
before accessing the variables of a monitor object and release the lock on exit. 
We will use the same simple model of a lock used in chapter 4, ignoring the 
detail that locks in Java support recursive locking: 

set LockOps = {acquire,release}
LOCK = (acquire -> release ->LOCK).

We can now model the state of a monitor by the set of processes that 



Program Verification 6 

6 

represent its waitset, lock and variables. For example, the state for a monitor 
M that encapsulates a single boolean variable cond is modeled by: 

||Mstate = (Threads::LOCK || WAITSET
|| Threads::(cond:BOOLVAR)
).

In Java, the notification and waiting operations are only valid when the thread 
calling these operations holds the lock for the monitor object on which the 
operations are invoked. The following safety property checks that this is the 
case in the implementation models we construct: 

property SAFEMON
= ([a:Threads].acquire -> HELDBY[a]),

HELDBY[a:Threads]
= ([a].{notify,notifyAll,wait} -> HELDBY[a]
|[a].release -> SAFEMON
).

$.2.3  $.2.3  $.2.3  $.2.3      Synchronized Methods 

A synchronized method of the form: 

synchronized void act()throws InterruptedException {
while (!cond) wait();
// modify monitor data
notifyAll()

}

can now be modeled by the following FSP fragment: 



Program Verification 7 

7 

 

ACT // act()
= (acquire -> WHILE), // monitor entry – acquire lock

WHILE
= (cond.read[b:Bool] -> // while (!cond) wait(); 

if !b then
(wait ->release ->endwait ->acquire -> WHILE)
else
CONTINUE
),

CONTINUE
= ( // modify monitor data

notifyAll // notifyAll()
-> release // monitor exit – release lock
-> RETURN
),

Note that wait() is modeled by the sequence of actions: wait -
>release ->endwait ->acquire. This reflects the way the monitor 
lock is release before a thread is blocked and acquired before it re-enters the 
monitor. Since FSP does not have a direct way of modeling method calls, we 
simply embed the fragment describing a synchronized method in the process 
modeling a thread that calls the synchronized method. This is analogous to 
way an optimizing compiler can substitute or inline the code for a method in 
place of the call to that method. This embedding should become clear when 
we look at models of threads in the next section. A process that models a 
synchronized method in this way must have its alphabet extended with the 
alphabet of monitor actions. In the example above, this would be the set 
{SyncOps, LockOps, cond.BoolAlpha}.  

Lastly, we should note that with the above constructions, while we can now 
model monitors in some detail, we are still ignoring the effect of 
InterruptException occurrence and handling. In the book, we have 
only used this mechanism to terminate all the threads that constitute the 
concurrent Java program. We will discuss at the end of this supplement some 
of the problems that can occur if only a subset of threads are terminated in 
this way. 



Program Verification 8 

8 

$.3  $.3  $.3  $.3      Bounded Buffer example 

Program $.1 below reproduces the bounded buffer implementation from 
Chapter 5, Program 5.6. In this section, we develop a detailed model of the 
synchronization of this program and investigate its properties. As usual, we 
abstract from the details of what items are stored in the buffer and how these 
items are stored. Consequently, the only variable that we need to consider 
modeling is the variable count which stores the number of items currently 
stored in the buffer. The state of the buffer monitor implementation is thus 
modeled by: 

||BUFFERMON = ( Threads::LOCK || WAITSET || SAFEMON
||Threads::(count:VAR)
).

The set Threads is defined by: 

const Nprod = 2 // #producers
const Ncons = 2 // #consumers
set Prod = {prod[1..Nprod]} // producer threads
set Cons = {cons[1..Ncons]} // consumer threads 
 
const Nthread = Nprod + Ncons
set Threads = {Prod,Cons}

The alphabet that must be added to each thread process is defined by: 

set BufferAlpha = {count.VarAlpha, LockOps, SyncOps}



Program Verification 9 

9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

public interface Buffer {
public void put(Object o)

throws InterruptedException; //put object into buffer 
public Object get()

throws InterruptedException; //get object from buffer 
}

class BufferImpl implements Buffer {
protected Object[] buf;
protected int in = 0;
protected int out= 0;
protected int count= 0;
protected int size;

BufferImpl(int size) {
this.size = size; buf = new Object[size];

}

public synchronized void put(Object o)
throws InterruptedException {

while (count==size) wait();
buf[in] = o;
++count;
in=(in+1)%size;
notify();

}

public synchronized Object get()
throws InterruptedException {

while (count==0) wait();
Object o =buf[out];
buf[out]=null;
--count;
out=(out+1)%size;
notify();
return (o);
}

}
Program $.1 - Buffer interface and BufferImpl class 



Program Verification 10 

10 

$.3.1  $.3.1  $.3.1  $.3.1      Producer & Consumer Threads 

To investigate the properties of the bounded buffer implementation, we model 
systems consisting of one or more producer threads and one or more 
consumer threads. The producer threads call put() and the consumer 
threads call get(). The process that models the implementation of the 
producer thread is listed below. The program statements concerned with 
putting an item into the array and incrementing the incrementing the input 
index are represented by the single action put. The constant Size defines the 
maximum number of items that may be stored in the buffer. 

PRODUCER /* producer thread */
= (put.call -> PUT),

PUT /* inlined put method */
= (acquire -> WHILE),

WHILE
= (count.read[v:Int] -> // while (count == size) wait(); 

if v==Size then
(wait ->release ->endwait ->acquire ->WHILE)

else
CONTINUE

),
CONTINUE
= (put // buf[in] = o; in=(in+1)%size;

-> count.inc // ++count;
-> notify // notify()
-> release
-> RETURN
),

RETURN = PRODUCER + BufferAlpha.
 

The consumer thread is modeled below. Again, the statements concerned with 
the buffer array manipulation are represented by the single action get. 



Program Verification 11 

11 

CONSUMER /* consumer thread */
= (get.call -> GET),

GET /* inlined get method */
= (acquire -> WHILE),

WHILE
= (count.read[v:Int] -> // while (count == 0 ) wait() 

if v==0 then
(wait ->release ->endwait ->acquire ->WHILE)

else
CONTINUE

),
CONTINUE
= (get // Object[o] = buf[out]; buf[out] = null; 

-> count.dec // --count;
-> notify // notify()
-> release
-> RETURN
),

RETURN = CONSUMER + BufferAlpha.

The entire system of producer and consumer threads, together with the buffer 
monitor is now modeled by: 

||ProdCons = ( Prod:PRODUCER
|| Cons:CONSUMER
|| BUFFERMON
).

$.3.2  $.3.2  $.3.2  $.3.2      Analysis 

To verify our implementation model of the bounded buffer, we need to show 
that it satisfies the same safety and progress properties as the design model. 
However, the bounded buffer design model was specified in Chapter 5, which 
preceded the discussion of how to specify properties. Consequently, we 
simply inspected the LTS graph for the model to see that it had the required 
synchronization behavior. The LTS of the implementation model is much too 
large to verify by inspection. How then do we proceed? The answer with 
respect to safety is to use the design model itself as a safety property and 
check that the implementation satisfies this property. In other words, we 
check that the implementation cannot produce any executions that are not 
specified by the design. Clearly, this is with respect to actions that are 
common to the implementation and design models – the put and get 



Program Verification 12 

12 

actions. The property below is the same BUFFER process shown in Figure 
5.11, with the addition of a relabeling part that takes account of multiple 
producer and consumer processes. 

property
BUFFER = COUNT[0],
COUNT[i:0..Size]

= (when (i<Size) put->COUNT[i+1]
|when (i>0) get->COUNT[i-1]
)/{Prod.put/put,Cons.get/get}.

The LTS for this property with two producer processes, two consumer 
processes and a buffer with two slots (Size = 2)  is shown in Figure $.1. 

BUFFER

prod.1.put

cons.1.get

prod.2.put

cons.2.get

prod.1.put

cons.1.get

prod.2.put

cons.2.get

prod.1.put

cons.1.get

prod.2.put

cons.2.get

-1 0 1 2

 

Figure $.1 – LTS for property BUFFER

We are now in a position to perform a safety analysis of the bounded buffer 
implementation model using the composition: 

||ProdConsSafety = (ProdCons || BUFFER).
 
With two producer processes (Nprod=2), two consumer processes 
(Ncons=2) and a buffer with two slots (Size=2), safety analysis by the 
LTSA reveals no property violations or deadlocks. In this situation, the 



Program Verification 13 

13 

implementation satisfies the design. However, safety analysis with two 
producer processes (Nprod=2), two consumer processes (Ncons=2) and a 
buffer with only one slot (Size=1) reveals the following deadlock: 

Trace to DEADLOCK:
prod.1.put.call
prod.2.put.call
cons.1.get.call
cons.1.acquire
cons.1.count.read.0
cons.1.wait // consumer 1 blocked 
cons.1.release
cons.2.get.call
cons.2.acquire
cons.2.count.read.0
cons.2.wait // consumer 2 blocked 
cons.2.release
prod.1.acquire
prod.1.count.read.0
prod.1.put // producer 1 inserts item 
prod.1.count.inc
prod.1.notify // producer  1 notifies item  available
prod.1.release
prod.1.put.call
prod.1.acquire
prod.1.count.read.1
cons.1.unblock // consumer  1 unblocked by notify 
prod.1.wait // producer 1 blocks trying to insert 2nd  item
prod.1.release
prod.2.acquire
prod.2.count.read.1
prod.2.wait // producer 2 blocks trying to insert  item
prod.2.release
cons.1.endwait
cons.1.acquire
cons.1.count.read.1
cons.1.get // consumer  1 gets item
cons.1.count.dec
cons.1.notify // consumer  1 notifies space available
cons.1.release
cons.1.get.call
cons.1.acquire



Program Verification 14 

14 

cons.1.count.read.0
cons.2.unblock //consumer  2  unblocked by notify
cons.1.wait
cons.1.release
cons.2.endwait
cons.2.acquire
cons.2.count.read.0
cons.2.wait //consumer  2  blocks since buffer is empty
cons.2.release

The deadlock occurs because at the point that the consumer process calls 
notify to indicate that a space is available in the buffer, the wait set includes 
the second consumer process as well as both the producer processes. The 
consumer is unblocked and finds that the buffer is empty and goes back to 
waiting. At this point no further progress can be made and the system 
deadlocks since neither of the producer processes can run. This deadlock 
occurs if either the number of producer processes or the number of consumer 
processes is greater than the number of slots in the buffer. Clearly in this 
situation, the implementation given in Chapter 5 is incorrect!  

To correct the bounded buffer program of chapter 5, to handle the situation of 
greater number of producer or consumer threads than buffer slots, we need to 
replace the calls to notify() with calls to notifyAll(). This unblocks 
both consumer and the producer threads allowing an insertion or removal to 
occur. Replacing the corresponding actions in the implementation model 
removes the deadlock and verifies that the Java program is now correct. 

The lesson here is that it is always safer to use notifyAll() unless it can 
be rigorously shown that notify() works correctly. We should have 
followed our own advice in Chapter 5! The general rule is that notify() 
should only be used if at most one thread can benefit from the change of state 
being signaled and it can be guaranteed  that the notification will go to a 
thread that is waiting for that particular state change. An implementation 
model is a good way of doing this.  

The corrected model satisfies the following progress properties, which assert 
lack of starvation for put and get actions: 

progress PUT[i:1..Nprod] = {prod[i].put}
progress GET[i:1..Ncons] = {cons[i].get}
 



Program Verification 15 

15 

$.4  $.4  $.4  $.4      Readers-Writers example 

Program $.2 reproduces the Readers-Writers program from Chapter 7, 
program 7.8. This is the version that gives Writers priority. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ReadWritePriority monitor class has three variables – readers, 
writing and waitingW – which all play a part in synchronization. 
Consequently, in this example, we model the state of the monitor by: 

class ReadWritePriority implements ReadWrite{
private int readers =0;
private boolean writing = false;
private int waitingW = 0; // no of waiting Writers. 

public synchronized void acquireRead()
throws InterruptedException {

while (writing || waitingW>0) wait();
++readers;

}

public synchronized void releaseRead() {
--readers;
if (readers==0) notify();

}

public synchronized void acquireWrite()
throws InterruptedException {

++waitingW;
while (readers>0 || writing) wait();
--waitingW;
writing = true;

}

public synchronized void releaseWrite() {
writing = false;
notifyAll();

}
}

Program 7.17 – class ReadWritePriority 



Program Verification 16 

16 

||RWPRIORMON = ( Threads::LOCK || WAITSET || SAFEMON
||Threads::( readers:VAR

||writing:BOOLVAR
||waitingW:VAR
)

).

The set Threads is defined by: 

const Nread = 2 // #readers
const Nwrite = 2 // #writers
set Read = {reader[1..Nread]} // reader threads
set Write = {writer[1..Nwrite]} // writer threads

const Nthread = Nread + Nwrite
set Threads = {Read,Write}

The alphabet that must be added to each reader and writer process in this 
example is defined by: 

set ReadWriteAlpha =
{{readers,waitingW}.VarAlpha, writing.BoolAlpha,
LockOps, SyncOps,
acquireRead,acquireWrite,releaseRead,releaseWrite

}



Program Verification 17 

17 

$.4.1  $.4.1  $.4.1  $.4.1      Reader & Writer Threads 

As before, we develop a model of each type of thread. Each reader thread 
repetitively calls acquireRead() followed by releaseRead(). Each 
writer thread repetitively calls acquireWrite() followed by 
releaseWrite(). These methods calls are modeled as described in 
section $.2.3 by embedding the FSP fragment that describes their behavior in 
the processes modeling threads. The process that models the implementation 
of the Reader thread is listed below: 

READER /* reader thread */
= (acquireRead.call -> ACQUIREREAD),

ACQUIREREAD // inlined acquireRead method
= (acquire -> WHILE),

WHILE // while (writing || waitingW>0) wait(); 
= (writing.read[v:Bool] -> waitingW.read[u:Int] ->

if (v || u>0) then
(wait ->release ->endwait ->acquire ->WHILE)

else
CONTINUE

),
CONTINUE
= (acquireRead

-> readers.inc // ++readers
-> release -> RELEASEREAD
),

RELEASEREAD // inlined releaseRead method
= (releaseRead.call -> acquire -> releaseRead

-> readers.dec // --readers;
-> readers.read[v:Int] -> // if (readers==0) notify(); 
if (v==0) then

(notify -> RETURN)
else

RETURN
),

RETURN
= (release -> READER) + ReadWriteAlpha.



Program Verification 18 

18 

The Writer thread implementation is modeled by: 

WRITER /* writer thread */
= (acquireWrite.call -> ACQUIREWRITE),

ACQUIREWRITE // inlined acquireWrite method
= (acquire

-> waitingW.inc -> WHILE // ++waitingW;
),

WHILE // while (readers>0 || writing) wait(); 
= (writing.read[b:Bool] -> readers.read[v:Int]->

if (v>0 || b) then
(wait ->release ->endwait ->acquire ->WHILE)

else
CONTINUE

),
CONTINUE
= (acquireWrite

-> waitingW.dec // --waitingW;
-> writing.write[True] // writing = true;
-> release -> RELEASEWRITE
),

RELEASEWRITE // inlined releaseWrite method
= (releaseWrite.call -> acquire -> releaseWrite
-> writing.write[False] // writing = false; 
-> notifyAll // notifyAll();
-> release-> WRITER
) + ReadWriteAlpha.



Program Verification 19 

19 

$.4.2  $.4.2  $.4.2  $.4.2      Analysis 

To verify that the implementation model satisfies the desired safety 
properties, we use the safety property RW_SAFE originally specified in 
section 7.5.1 to check the correct behavior of the design model.  

property SAFE_RW
= (acquireRead -> READING[1]

|acquireWrite->WRITING
),

READING[i:1..Nread]
= (acquireRead -> READING[i+1]

|when(i>1) releaseRead -> READING[i-1]
|when(i==1) releaseRead -> SAFE_RW
),

WRITING = (releaseWrite -> SAFE_RW).

The system we perform safety analysis on consists of the reader and writer 
threads, the monitor state and the safety property as shown below: 

||RWSYS = ( Read:READER || Write:WRITER
||RWPRIORMON
||Threads::SAFE_RW
).

Safety analysis detects the following deadlock: 

Trace to DEADLOCK:
reader.1.acquireRead.call
reader.1.acquire
reader.1.writing.read.0
reader.1.waitingW.read.0
reader.1.acquireRead
reader.1.readers.inc
reader.1.release // reader 1 acquires  RW  lock 
reader.1.releaseRead.call
reader.2.acquireRead.call
writer.1.acquireWrite.call
writer.1.acquire
writer.1.waitingW.inc
writer.1.writing.read.0
writer.1.readers.read.1



Program Verification 20 

20 

writer.1.wait // writer 1 blocked as reader has RW lock 
writer.1.release
reader.2.acquire
reader.2.writing.read.0
reader.2.waitingW.read.1
reader.2.wait // reader 2 blocked as writer 1 waiting
reader.2.release
writer.2.acquireWrite.call
writer.2.acquire
writer.2.waitingW.inc
writer.2.writing.read.0
writer.2.readers.read.1
writer.2.wait // writer 2 blocked as reader has RW lock
writer.2.release
reader.1.acquire
reader.1.releaseRead
reader.1.readers.dec
reader.1.readers.read.0
reader.1.notify // reader 1 releases RW lock & notifies
writer.2.release
reader.1.release
reader.1.acquireRead.call
reader.1.acquire
reader.1.writing.read.0
reader.1.waitingW.read.2
reader.2.unblock // reader 2 unblocked by notify
reader.1.wait
reader.1.release
reader.2.endwait
reader.2.acquire
reader.2.writing.read.0
reader.2.waitingW.read.2
reader.2.wait // reader 2 blocks as writers waiting
reader.2.release

The deadlock happens because the notify operation performed by Reader 1 
when it releases the read-write lock unblocks another Reader rather than a 
Writer. This unblocked Reader subsequently blocks again since there are 
Writers waiting. The solution is again to use a notifyAll to awake all 
waiting threads and thus permit a Writer to run. Changing the notify action 
to notifyAll in the RELEASEREAD part of the model and rerunning the 
safety analysis conforms that the deadlock does not occur and that the 



Program Verification 21 

21 

implementation model satisfies the safety property. 

Why did we not observe this deadlock in the actual implementation of 
ReadWritePriority when running the demonstration applet? The reason 
is quite subtle. In most Java Virtual Machines, and in particular in the JVM 
distributed on the CDROM, the set of threads waiting on notification is 
implemented as a first-in-first-out (FIFO) queue. With this queuing discipline, 
the deadlock cannot occur as for the second Reader to block, a Writer must 
have previously blocked. This Writer will be unblocked by the notification 
when the first Reader releases the read-write lock and consequently, the 
deadlock does not occur. However, although the implementation works for 
some JVMs, it is not guaranteed to work on all JVMs since as noted earlier, 
the Java Language Specification specifies only that blocked threads are held 
in a set. Our implementation would exhibit the deadlock on a JVM that used a 
stack for the wait set. Consequently, the implementation is clearly erroneous 
and the notify()  in the releaseRead() method should be replaced 
with notifyAll(). Again the lesson is that notify() should only be 
used with extreme care! However, it should be noted that the use of 
notify() in the ReadWriteSafe version of the read-write lock is correct 
since it is not possible in that implementation to have both readers and writer 
waiting simultaneously. 

Progess Analysis 
Having demonstrated that the implementation model satisfies the required 
safety properties, it now remains to show that it exhibits the same progress 
properties as the design model. These properties assert lack of starvation for 
acquireRead and acquireWrite actions. 

progress WRITE[i:1..Nwrite] = writer[i].acquireWrite
progress READ [i:1..Nwrite] = reader[i].acquireRead

The adverse scheduling conditions needed to check progress in the presence 
of competition for the read-write lock are arranged by making the actions, 
representing calls to release read an write access to the lock, low priority: 

||RWPROGTEST
= RWSYS >> {Read.releaseRead.call,

Write.releaseWrite.call}.

Progress analysis reveals that the RWPROGTEST system satisfies the WRITE 
progress properties but violates the READ progress properties. In other words, 



Program Verification 22 

22 

the Writers priority implementation of the read-write lock satisfies its design 
goal of avoiding Writer starvation, but as with the design model, it permits 
Reader starvation. 

Summary 

This supplement has presented a way of verifying that Java implementations 
satisfy the same safety and progress properties as the design models from 
which they were developed. The approach is to translate the Java program 
into a detailed FSP model that captures all aspects of the Java synchronization 
mechanisms – in particular, monitor locks and notification. This 
implementation model is then analyzed with respect to the same safety and 
progress properties used in analyzing the design model. We also showed that 
in the bounded buffer example that the design model itself can be used as a 
safety property when verifying the implementation model. The current 
version of the LTSA tools only permits deterministic primitive processes to 
be used as safety properties. However, the next release of the tool will permit 
any composite process to be used as a safety property. 

Implementation models are considerably more detailed than design models 
and as such generate much larger state spaces during analysis. It is in general 
only possible to analyze small parts of an implementation. This is why in the 
book we have advocated a model-based design approach in which properties 
are investigated with respect to a design model and then this model is used as 
a basis for program implementation. Clearly, as we have demonstrated in the 
examples contained in this supplement, errors can be introduced in going 
from design model to implementation. Interestingly, the two bugs discovered 
both arise from the use of notify() in place of notifyAll(). Perhaps 
the most important lesson from this supplement is that strict attention must be 
paid to the rule that notify() should only be used if at most one thread can 
benefit from the change of state being signaled and it can be guaranteed  that 
the notification will go to a thread that is waiting for that particular state 
change in the monitor class itself or in  any subclasses. 

Notes 

We are indebted to David Holmes of Microsoft Research Institute, Macquarie 
University, Sydney, Australia for initially pointing out the problems with the 
bounded buffer and read-write lock that we have exposed in this chapter. He 
also motivated this supplement by suggesting that we should address the 
problem of verifying implementations. 



Program Verification 23 

23 

We pointed out in the supplement that our model of notification ignores the 
effect of an interrupt exception. It is possible, in the current versions of JDK, 
for a waiting thread to be notified, but to be interrupted before actually 
returning from the wait() call. As a result it returns via an 
InterruptedException not a normal return and essentially, the 
notification is lost even though other uninterrupted threads may be waiting. 
This means that programs that use notify() and allow 
InterruptedException to be thrown directly are not guaranteed to 
work correctly. This is a bug in JDK that hopefully will be resolved in future 
versions. Although we use this technique in the book, it does not result in 
inconsistencies since in all cases, the interrupt exception is used to terminate 
all active threads. However, it is another reason for using notifyAll() 
rather than notify(). However, this may sometimes result in a large 
number of unnecessary thread activations and consequently be inefficient. For 
example, in the semaphore program of section 5.2.2, a better way to deal with 
the lost notification problem is to catch the InterruptedException and 
perform an additional notify() before rethrowing the exception..  Thanks 
again to David for pointing this out. 

 

 

 

 

 

 

 

 

 


