
Design Patterns 1

Software Engineering - Methods

Overview
Design Patterns
Testing
Professional Issues

Lecturers
Jeff Magee <jnm@doc.ic.ac.uk>
Michael Huth <mrh@doc.ic.ac.uk>

Design Patterns 2

Design Patterns

Objective:
Increasing the flexibility,

modularity and reusability of OO
designs.

Jeff Magee
jnm@doc.ic.ac.uk
rm 572A

Design Patterns 3

Bridges - (thanks to Sue Eisenbach for this)

A bridge is a structure which is used
for traversing a chasm.
In its basic form it consists of a
beam constructed from a rigid
material.
The two ends of the beam

are fixed at opposite edges
of the chasm.

Design Patterns 4

Bridges
The bridge will fulfill its function if
the rigidity of the beam can support
the loads that go over it.
Heavier loads may tax the rigidity of
the bridge.
The rigidity depends on both the
length and the material that the
beam is made of.

Design Patterns 5

Modifying the design

If the bridge might fail
heaviness of the load
size of span
material of construction

Then modify bridge design
increase the rigidity
decrease the span

Design Patterns 6

Increase the rigidity

Box girder
redistribute material

The arch

The suspension bridge

Design Patterns 7

Decrease the span

Divide the
chasm

Extend the
edges of the
chasm

Design Patterns 8

Civil engineering design patterns

These are all the design patterns of bridge
design.
Civil engineers only build bridges following
one of the designs shown.
The idea of design patterns comes from
architects who also follow a fixed number
of designs.
Why should software design be different
from design in other engineering disciplines?

Design Patterns 9

Tacoma Narrows Bridge
November 7, 1940, at approximately 11:00 AM,

Design Patterns 10

the End

Design Patterns 11

What is a design pattern?

“Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem
in such a way that you can use this solution a
million times over, without ever doing it the same
way twice.”

Christopher Alexander

Design Patterns 12

From Architecture…

Christopher Alexander, Sara
Ishikawa, Murray Silverstein,
with
Max Jacobsen, Ingris Fiksdahl-
King, and Shlomo Angel.
A Pattern Language:
Towns,Buildings,
Construction.
Oxford University Press, New
York, 1977.

Design Patterns 13

Gang of Four (GoF)

Design Patterns
Erich Gamma,
Richard Helm,
Ralph Johnson,
John Vlissides

Addison-Wesley 1995

Design Patterns 14

Supplementary Text

Java Design Patterns
James W. Cooper

Addison-Wesley 2000

Design Patterns 15

How do you describe a pattern?

name
capture essence of pattern

problem
intent, when to apply pattern, context

solution
abstract, not concrete + examples of use

consequences
results and trade-off of applying the

pattern.
Design Patterns 16

Rule of Three

A pattern must have occurred in at
least three existing systems.

Discovered rather than invented.

preferably reviewed by a third-party.

Design Patterns 17

The first pattern (from Smalltalk)
Model-View-Controller group of classes from Smalltalk
is used to build interfaces (Java Swing classes have a
similar structure, EPOC uses MVC).
Model -application object,
View - presentation on screen,
Controller - how user input controls user interface.
Decoupling into 3 increases flexibility and reuse.
A view must keep itself up-to-date with a
subscribe/notify protocol.
Model must tell views when they change.
You can have several controllers eg for command keys,
for pop-up menus and a do-nothing controller

Design Patterns 18

MVC

Model

ViewController

Design Patterns 19

Two views on the same data

0

10

20

30

40

50

60

70

80

90

1st

Qtr

2nd

Qtr

3rd

Qtr

4th

Qtr

East

W est

North

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

Design Patterns 20

Another view + data from model

0% 50% 100%

1st Qtr

2nd Qtr

3rd Qtr

4th Qtr

East

W est

North

North 45.9 46.9 45 43.9

W est 30.6 38.6 34.6 31.6

East 20.4 27.4 90 20.4

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

Design Patterns 21

A digression - UML notation
Generalization
(which we
consistently use
to mean
inheritance)

+operation()
-attributes
ClassName

Subclass1 Subclass2

classclassclassclass Subclass1 extendsextendsextendsextends ClassName {
…
} Design Patterns 22

UML – implementing interfaces
«interface»
Interface

Class
Interface

classclassclassclass Foo implementsimplementsimplementsimplements MyInterface {
}

Design Patterns 23

UML - associations

Class A Class B-myb

classclassclassclass A {
privateprivateprivateprivate B myb;

…
}

classclassclassclass A {
privateprivateprivateprivate B [] myb;

…
}

Design Patterns 24

GoF pattern description template
Name & classification
Intent
Also Known As
Motivation
Applicability
Structure
Participants

Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Pattern

Design Patterns 25

Canonical Form
Name

+ classification
Problem
Context

preconditions for
applicability

Forces
example scenario
sometimes used for
motivation

Solution
Examples

Resulting Context
Rationale
Related Patterns
Known Uses

Design Patterns 26

Classification (GoF)

Creational Patterns
Abstract Object Instantiation

Structural Patterns
Compose Objects into larger structures

Behavioral Patterns
deal with algorithms and control flow

between objects.

Design Patterns 27

Creational patterns
Deals with object creation
Examples:

singleton - for creating classes which must have
only a single instance (e.g. a printer spooler)
factory method - used when a class can’t
anticipate the class of objects it must create
but it wants its subclasses to specify the
objects it creates
abstract factory - provides an interface for
creating families of related objects without the
need to specify their concrete classes

Design Patterns 28

Singleton

Ensure a class has one instance, and provide a
global point of access to it.

Structure

+getSingleton() : Singleton
-single : Singleton

Singleton

Design Patterns 29

Singleton - example
public class PrintSpooler {

// a prototype for a spooler class,
// such that only one instance can ever exist
private static PrintSpooler spooler;

private PrintSpooler() { //private constructor }

public static synchronized
PrintSpooler getSpooler() {
if (spooler == null)

spooler = new PrintSpooler();
return spooler;

}

public void print(String s) {
System.out.println(s);

}
}

Design Patterns 30

Singleton usage

public class finalSpool {

public finalSpool() {
PrintSpooler spl = PrintSpooler.getSpooler ();
spl.print ("Printing data");

}

static public void main(String argv[]) {
new finalSpool();

}

}

Design Patterns 31

Factory Method
Example - Maze Game

Classes for Mazes

Now a maze game has to make a maze, so
we might have something like:

Design Patterns 32

Maze Class - Version 1
class MazeGame{

public Maze createMaze(){

Maze aMaze = new Maze();

Room r1 = new Room(1);

Room r2 = new Room(2);

Door theDoor = new Door(r1, r2);

aMaze.addRoom(r1);

aMaze.addRoom(r2);

r1.setSide(North, new Wall());

r1.setSide(East, theDoor);

r1.setSide(South, new Wall());

r1.setSide(West, new Wall());

r2.setSide(North, new Wall());

r2.setSide(East, new Wall());

r2.setSide(South, new Wall());

r2.setSide(West, theDoor);

return aMaze;}}

1 2

Design Patterns 33

How do we make Other Mazes?

Idea 1 - Subclass MazeGame,
override createMaze

MazeGame

Bombed
MazeGame

Enchanted
MazeGame

Design Patterns 34

Note the amount of cut and paste!
class BombedMazeGame extends MazeGame{

public Maze createMaze(){

Maze aMaze = new Maze();

Room r1 = new RoomWithABomb(1);

Room r2 = new RoomWithABomb(2);

Door theDoor = new Door(r1, r2);

aMaze.addRoom(r1);

aMaze.addRoom(r2);

r1.setSide(North, new BombedWall());

r1.setSide(East, theDoor);

r1.setSide(South, new BombedWall());

r1.setSide(West, new BombedWall());

etc.

Design Patterns 35

Factories:
encapsulating object creation

When you discover that you need to add new types to a system,
the most sensible first step is to use polymorphism to create a
common interface to those new types.

This separates the rest of the code in your system from the
knowledge of the specific types that you are adding. New types
may be added without disturbing existing code ... or so it seems.

At first it would appear that the only place you need to change
the code in such a design is the place where you inherit a new
type, but this is not quite true.

You must still create an object of your new type, and at the point
of creation you must specify the exact constructor to use.

Design Patterns 36

Thus, if the code that creates objects is distributed
throughout your application, you have the same problem when
adding new types – you must still chase down all the points of
your code where type matters.

It happens to be the creation of the type that matters in this
case rather than the use of the type (which is taken care of by
polymorphism).

The solution is to force the creation of objects to occur
through a common factory rather than to allow the creational
code to be spread throughout your system.

If all the code in your program must go through this factory
whenever it needs to create one of your objects, then all you
must do when you add a new object is to modify the factory.

Design Patterns 37

How do we make Other Mazes?
Idea 2 - Factory Method

class MazeGame{

public Maze makeMaze(){
return new Maze(); }

public Room makeRoom(int n){
return new Room(n); }

public Wall makeWall(){
return new Wall(); }

public Door makeDoor(){
return new Door(); }

public Maze CreateMaze(){

Maze aMaze = makeMaze();

// next slide !
return aMaze;

}

} Design Patterns 38

Room r1 = makeRoom(1);

Room r2 = makeRoom(2);

Door theDoor = makeDoor(r1,r2);

aMaze.addRoom(r1);

aMaze.addRoom(r2);

r1.setSide(North, makeWall());

r1.setSide(East, theDoor);

r1.setSide(South, makeWall());

r1.setSide(West, makeWall());

r2.setSide(North, makeWall());

r2.setSide(East, makeWall());

r2.setSide(South, makeWall());

r2.setSide(West, theDoor);

Design Patterns 39

Now subclasses of MazeGame
override make methods

CreateMaze method stays the same

class BombedMazeGame extends MazeGame{

public Room makeRoom(int n) {

return new RoomWithABomb(n);

}

public Wall makeWall(){

return new BombedWall();

}

Design Patterns 40

Factory Method - summary

"Create objects in a separate
operation so that subclasses can
override the way they're
created"

Design Patterns 41

Abstract factory
Provides an interface for creating families
of related objects without the need to
specify their concrete classes

create a window and an attached
scrollbar in a consistent visual style
(Gnome vs NT)
no specification of the individual styles

Different subclasses of AbstractFactory
class are responsible for creating objects
appropriate to particular families.

Design Patterns 42

Example code
interface AbstractMazeFactory {

public Maze makeMaze();
public Room makeRoom(int n);
public Wall makeWall();
public Door makeDoor();

}

class MazeFactory implements AbstractMazeFactory {
public Maze makeMaze(){ return new Maze(); }

public Room makeRoom(int n){ return new Room(n);}

public Wall makeWall(){ return new Wall(); }

public Door makeDoor(){ return new Door(); }

}

public Maze CreateMaze(AbstractMazeFactory factory){
Maze aMaze = factory.makeMaze();
Room r1 = factory.makeRoom(1);

Room r2 = factory.makeRoom(2);

Door theDoor = factory.makeDoor(r1,r2);

aMaze.addRoom(r1);

aMaze.addRoom(r2);

r1.setSide(North, factory.makeWall());

r1.setSide(East, theDoor);

r1.setSide(South, factory.makeWall());

r1.setSide(West, factory.makeWall());

r2.setSide(North, factory.makeWall());

r2.setSide(East, factory.makeWall());

r2.setSide(South, factory.makeWall());

r2.setSide(West, theDoor);
return aMaze;

}

class EnchantedMazeFactory implements
AbstractMazeFactory {

public Maze makeMaze(){
return new EnchantedMaze();

}

public Room makeRoom(int n){
return new EnchantedRoom(n);

}

public Wall makeWall(){
return new EnchantedWall();

}

public Door makeDoor(){
return new EnchantedDoor();

}

}

Usage:
Maze m = createMaze(new EnchantedMazefactory());

Design Patterns 45

Use AbstractFactory when:

A system should be independent of
how its products are created,
composed and represented
a system needs to be configured with
one of a number of families of
products
a family of related objects is
designed to be used together, and
this constraint needs to be enforced

Design Patterns 46

AbstractFactory classes
AbstractFactory-declares operations which create
abstract product objects
ConcreteFamily subclasses - implements
operations for particular families
AbstractProduct - declares interface for one
type of products
ConcreteProduct- implements AbstractProduct
interface and defines a product type to be
created by corresponding concrete factory
Client - uses only interfaces - so independent of
particular family in use.

Design Patterns 47

Application of AbstractFactory

before after

Client Client1

AbsA AbsB

A1

A2

B1

B2

AbsA AbsB

A1

A2

B1

B2

AbsFac

ConcF1

ConcF2
Design Patterns 48

Windows Application of
AbstractFactory

after

Client1

AbsButton AbsScrollBar

GnomeButton

NTButton

GnomeScrollBar

NTScrollBar

NTSB

AbsFac

Gnome

NT

Design Patterns 49

Prototype - creational
Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype.

+clone()

«interface»
Prototype

+clone()

ConcretePrototype

return copy of self

+operation()

Client
prototype

p = prototype.clone()

Design Patterns 50

Prototype - implementation in Java

public interface Cloneable

A class implements the Cloneable interface to indicate to the
Object.clone() method that it is legal for that method to
make a field-for-field copy of instances of that class.

Attempts to clone instances that do not implement the
Cloneable interface result in the exception
CloneNotSupportedException being thrown.

The interface Cloneable declares no methods.

Design Patterns 51

Java Hack - deep cloning
public Object deepClone() {
try {
ByteArrayOutputStream b
= new ByteArrayOutputStream();

ObjectOutputStream out
= new ObjectOutputStream(b);

out.writeObject(this);
ByteArrayInputStream bIn
= new ByteArrayInputStream(b.toByteArray());

ObjectInputStream oi = new ObjectInputStream(bIn);
return oi.readObject());
} catch (Exception e) {
System.out.println("exception:"+e.getMessage());
e.printStackTrace();
return null;

}
}

Design Patterns 52

Questions

What Java standard interface must a
class implement for deepClone to
work.

How does deep clone work?

